

Schematic diagram

Purpose

This rig was built for studying the emission of raregas fission products, particularly the short-lived variety, emitted from fissile materials at various temperatures up to 1000°C.

Details of Experiments carried out to date

Chemistry Division, A.E.R.E., have used this rig to analyse the release of krypton and xenon fission product gases from UO₂ in pellet form and to relate the rate of release to specimen temperature, on which it is markedly dependent. Using small carrier gas flows the shorter lived activities decayed away before reaching the counting chamber and Xe¹³ (1, 5 · 2 days), Xe¹³ (9 · 2 hours) and Kr^{85m} (4 · 4 hours) predominated. With larger gas flows shorter lived active gases were more prominent. Quantitative estimation of the active gas emission utilised the gamma scintillation spectrometer.

Data

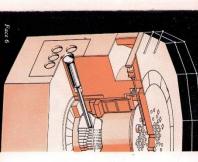
				N	_	Th		T.	Re	Ca	Ma		H,	Pr	Z	8	He	Ma.	Sp
Silica cell.	Heater wire	Stain	ength	ıclear	the sp	erma	empty	erma	activi	ırrier	x. ca	path	draul	essur	x. ris	ater fl	at ou	Mass of specimen	Specimen material
cell.	r wire	ess si	of th	heat	ecime	neu	4H3	neu	ty abs	gas fl	pacity		ic dia	e dro	e in o	ow th	tput o	spec	en ma
		Stainless steel thimble	ie silic	ing a	the specimen surface	tron	empty 4H3 thimble	tron	Reactivity absorbed	Carrier gas flow rate	of HS		neter	acro	coolin	rough	Heat output of specimen	imen	terial
		imble	length of the silica cell:	Nuclear heating at 12.5MW	face	Thermal neutron flux at 12.5MW on	е.	Thermal neutron flux at 12.5MW in		е.	Max. capacity of H20 cooling circuit		Hydraulic diameter of the helical cooling	Pressure drop across the circuit.	Max. rise in cooling-water temperature	Water flow through the jacket	imen		
			•••	W		t 12.		t 12.			ling c		helic	circu	er ten	acket			
				over the	4.	5MW	7	5MW			ircuit		al coc	it .	npera				
				the	1 x 10	on	2 x 1	ī					oling		ture				
)13 n/		013 n/			2-30				1.		_			UO2
15 watts	3 watts	43 watts	5		4-1 x 1013 n/cm.2 sec		7.2 x 1013 n/cm.2 sec		0.05%	2-30 c.c./min	7.5 kW.	0.0147 ft.		1.25 lb/in.	25	15 gall/hr.	24 watts	2.0 gm.	UO ₂ (natural)
atts	atts	atts			Sec		Sec		5%	3	ŝ	7#		5	25°C	7	atts	gm.	ral)

Completed inner and outer sections.

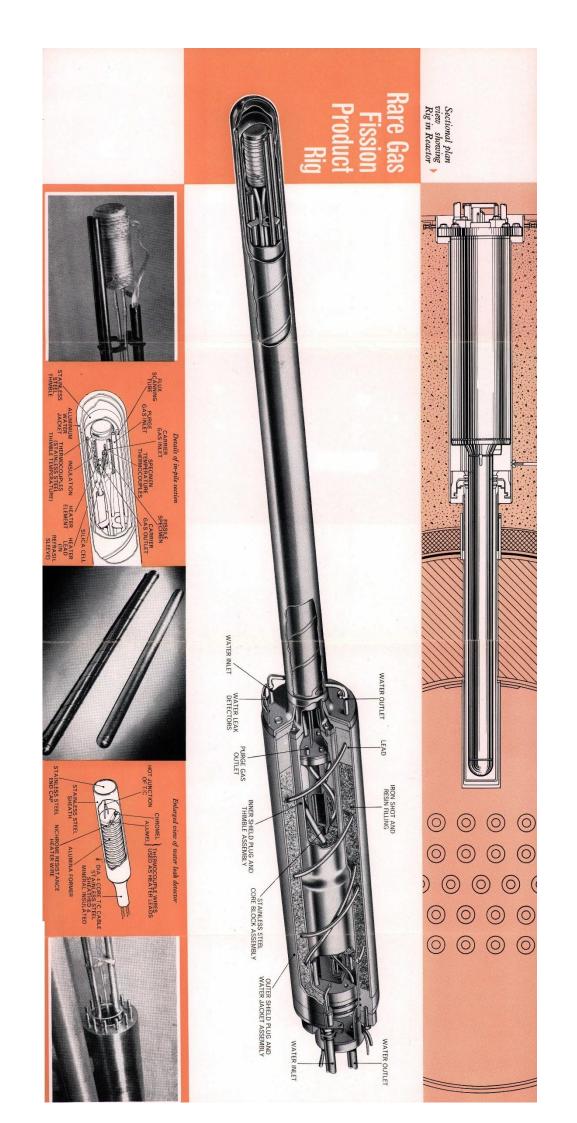
Equipment for Conducting Irradiation Experiments in A.E.R.E. Reactors Rare Gas Fission Product Rig in DIDO (S/D 366)

Research Reactors Division, A.E.R.E. Harwell

General Description


The in-pile section occupies the 4H3 experimental hole in DIDO and consists of an electrically heated silica reaction cell contained in a stainless steel thimble surrounded by an aluminium cooling-water jacket. Purified helium carrier gas passes at a controllable flow rate over the fissile specimen in the reaction cell and then to a lead shielded counting chamber in the out-of-pile section.

A separate supply of purging gas enters the stainless steel thimble and passes over the outside of the reaction cell. This gas may be helium or nitrogen as appropriate and the flow rate is controllable down to zero, to enable the widest range of temperatures to be achieved.


For economy the in-pile section comprises two components, an inner expendable unit consisting of a shield plug to which is attached the stainless steel thimble containing the reaction cell, and an outer unit, which is semi-permanently installed in the reactor, comprising an annular shield plug and aluminium water jacket.

The out-of-pile equipment is located in two consoles adjacent to the reactor face and includes carrier and cooling gas controls, filters and gamma radiation counter. Rig instrumentation consists of thermocouples indicating temperatures of the specimen, stainless steel thimble, cooling water at outlet, also water flow switches and leak detectors. These operate heater control, warning and trip circuits, and a reactor power set-back should serious fault conditions develop.

Rare Gas
Fission
Product
Rin

Design started in mid-1959, manufacture in January 1960 and works testing in May 1960. The rig was loaded into the reactor in October 1960. Fairey Engineering Ltd. was the main

