L

NATIONAL COMPUTERS AND TABULAT(
o e pen iy 4 i R i 7 MPILITERS 4 F 5 K §i AT
m .ﬁ.ﬁm._&:ww-w m@gmﬁmﬁ.f fmﬂg%w W DI MY IR ad B AT

INTERNATIONAL COMPUTERS AND TABULATORS LIMITED

THE 1.C.T. ATLAS 1 COMPUTER
PROGRAMMING MANUAL
FOR
ATLAS BASIC LANGUAGE
(ABL)

68 NEWMAN STREET, LIST CS 348A
LONDON, W.1. JANUARY 1965

- .1—,
. |
L&
||

In

68 NEWMAN STREET,

LONDON, Wed.

INTERNATIONAL COMPUTERS AND TABULATORS LIMITED

THE T.CeTe ATLAS 1 COMPUTER

PROGRAMMING MANUAL
FOR
ATLAS BASIC LANGUAGE

(4ABL)

LIST CS 348A

JANUARY 1965

- TaaS TS S U W S .

PREFACE

This manual supersedes the manual CS 348, "The Atlas Provisional
Programming Manual", January 1963, It provides information for the
programming of the Atlas 1 computer in the language known as Atlas Basio
Language Abmbva It is a self-contained document, providing sufficient in-
formation about the Atlas 1 computer to enable programmers to write and
develop programs in ABL without recourse to any other documents about Atlas 1.

The Atlas 1 Computer is the latest result of a long-standing col-
laboration between Manchester University and Ferranti Ltd. A later version
of the computer, known as Atlas 2, has been developed jointly by Cambridge
University and Ferranti Ltd. In September 1963 the Computer Department of
Ferranti Ltd., was acquired by I.C,T. Ltd., who now manufacture and market
the Atlas computers.

Atlas Basic Language (ABL) is a symbolic input language close to
"machine language™. iach ABL instruction corresponds to one machine in-
struction, and each part of an ABL instruction to each part of a machine
instruction. In its simplest form an ABL instruction consists of four
numbers corresponding exactly to the internal machine representation, but
extensive facilities are also provided in ABL for the use of a variety of
parameters and symbolic expressions which are evaluated by the ABL compiler.
ABL also provides a comprehensive system of directives to control the
assembly of a complete programe Finally ABL provides facilities for the
input, conversion and storage of fixed-point numbers, floating-point num-
bers and character strings for use by the program.

In this manual no attempt is normally made to differentiate between
those facilities which are a basic part of the machine (e.ge the instruction
repertoire) and those which are a part of the particular language ABL
(eegs the formats for writing instructions). This is partly because it is
impossible to separate them completely -~ any feature of the machine itself
needs a language in which to describe it, end in this case that language is
ABL - and partly because it is not normally necessary or helpful for a pro-
grammer to be conscious of the distinction. However, inasmuch as certain
facilities of the machine itself are described here, parts of this manual
are relevant and interesting to users of other Atlas programming languages.
In particular, Chapter 10 "Preparing a Complete Prugram" applies to all
Atlas languages.

A word must be said about the enumeration of binary digits: through-
out this manual the convention adopted is to number bits as 0, 1, 2 eeee,
starting always with bit number O at the more significant end. This con-
vention differs from that used in documents on the Supervisor and in engi-
neering documents, in which only the accumulator is numbered as here, and
in all other cases bit 0 is the least-signifiicant bit.

(165)

PREFACE

CHAPTER 1

[y
* o
N =

- ek wed
e

Ut W

1.6

CHAPTER 2

2.1

L N * & a o

WWw WLwLwLLWW
L]
Voo ToawmFLuN -

CHAPTER 4

L] - -

- =0 00N ANt FL N =

= 0O

¢ ® & o o

FEEFEFREREEFEFEAEFE

(1)

CONTENTS

AUTOMATIC DIGITAL COiPUTERS

Introduction

Electronic Computers
1.2,1 Digital Computers
Addresses

Instruction Code

Jump Instructions

15.1 Looping

1,52 Modification
Binary Numbers

1.6,1 Negative Numbers

THE ATLAS 1 CCKPUTER

A General Description of Atlas 1
2.1.1 The Control Unit

2.1.2 The Arithmetic Units

2,1.3 The Supervisor

2,1.4 Storage

2.1.5 Input and Output

The Main Store

Storage of information in Atlas 1
Instructions in the machine

The written form of Instructions
The full range of Atlas 1 addresses

THE ACCUMULATOR

Floating-point numbers

The Accumulator

Standardised numbers

Fixed~point numbers

Rounding

Floating~point operations
Standardising and Rounding accumulator
instructions

The timing of instructions

.Some fixed-point instructions

THE B~REGISTEZXRS

General Purpose B~registers
Arithmetic Operations

Logical COperations

Test Instructions

Special Purpose B-registers
Modification/Counting Instructions
The B~test register

The Shifting Instructions

The 0dd/Even Test Instructions
Restrictions on the use of B81-B119
The B-~carry digit

(1.65)

Date of Issue

1.65

1.65
1,65
1.65
1,65
1,65
1,65
1.65
1.65
1,65
1.65

1.65
1.65
1.65
1.65
1.65
1,65
1.65
1465
1.65
1,65
1.65

CHAPTER 5

Wt
®
-

¢« o o a
W N

= =0 002 N\t &

-t
LN=0

» ® B o

.

Ut Ut Ut Ut Ut Ut Ut Ut Ut Ut e

CHAPTZR 6

6.1
6.2

6.3

CHAPTER 7

71

N g
+ W Y

745

746

~1 ~J
.

(i1)

Date

ROUTINES AND DIRECTIVES

Routines, Subroutines and Symbolic
Addresses

Parameters

Preset Parameters

Global Parameters

Optional Parameter Setting
Expressions

Separators

The Special Parameter *

The Ba and Bm Parts of an Instruction
Half-Words, Six-Bit Words and Characters
Floating-Point Numbers

Library Routines

Directives

THE REMAINING ACCUMULATOR INSTRUCTIONS

Standardised Unrounded Operations
Unstandardised Instructions

6.2.,1 Storing and Loading the Accumulator
6,2,2 Unstandardised Multiplication

6.2.3 Division with Remainder

6.2,4 Miscellaneous

Test Instructions

EXTRACODE INSTRUCTIONS

Introduction
7+141 Uses of the Extracode Instructions
7+1.2 A-type and B~type Extracodes

The Logical Interpretation of Extracode
Instructions

Allocation of Functions

The Accumulator Extracodes

7.4.1 The Most Used Arithmetic Functions
7.4.2 Other Floating-Point Arithmetic
Functions

7.4.3 Accumulator functions suitable for
Fixed=-Point Working

7.4.4 Double~Length Arithmetic

7.4.5 Arithmetic Using the Address as an
Operand

7.4.6 Complex Arithmetic

7.4.7 Vector Arithmetic

7.4,8 Half-Yord Packing

register Arithmetic

5.1 General B~register Operations

5.2 Character Data Processing

5¢3 Logical Accumulator Instructions
st Instructions

7.6,1 Accumulator Test Instructions
7.6.2 B-register Test Instructions
Subroutine Entry

Miscellaneous Operations

B-
7.
7o
7o
Te

(1.65)

1.65

1.65
1.65
1.65

1.65
1.65
1,65
1,65

[p———y ——

p— p—

[!\‘; ot

CHAPTER 8

8,1

00 0o @
TR
vt &L

8,6

8,7

(idid)
Date

INPUT AND OCUTPFUT
Introduction
8.1.1 FPeripheral Devices
8,1.2 The System Input and Output Tapes
8.1.3 Internal Code Input and Output
8.,1.,4 Binary Input and Output
The Internal Code
8.2,1 Abbreviations
8.2.2 The Internal Code Table

8.2.3 ©Shifts and Case Changes
Carriage Control Characters and Records
Selecting Input and Cutput

Input using L100

8.5.1 Line reconstruction

8.5,2 Entries to L100

8.5.3 Data Preparation for L100
8.5.4 Punching Errors

The Entries to L10C in Detail

8.6.1 A1/L100 (am' = floating point
number)

8.6.2 A2/L100 (b81' = 21-bit integer
without octal fraction)

8.,6.3 A3/L100 (b81' = character)

8.644 AL/L100 (lose current line)

8.6,5 A5/L100 (input émxﬁw

8.6,6 A6/L100 (input text

8.6,7 A7/L100 (b81' = 24-bit integer) .
8.6.8 A8/L10C (b81! = 21-bit integer with
octal fraction) .
8,6.9 A9/L100 (print reconstructed line)
Optional Parameters of L100 »

8.7.1 A20/L100 (private use of
reconstructed line) .
8.7.2 A21/L100 (spurious character in
place of a number) .
8.7.3 A22/L100 (spurious character within
a number)

8,7.4 A23/L100 (number of inputs handled
at one time)

8,7.5 A24/1.100 (line length)

8,7.6 A25/L100 (tab mmwwwsmmw

8.7.7 A26/L100 (tab settings

Fault Printing by L100

Output using L1

8,9.1 Entry Points to LA

The Entries to L1 in Detail

8.10.1 A1/L1 (print a floating point
number)

8,10,2 A2/L1 M@uwsﬁ an integer)
8.10.,3 A3/L1 (print a character)
8,10,4 Al/11 Msms line or card)
8,10.5 A%/L1 (carriage control)
8.10,6 A6/L1 Moﬁﬁvﬁe &oxﬁw

8,10,7 A7/L1 (output text

(1.65)

(iv) 1 » (v)

| ~
; , . Date of Issue
Date of Issue ,
) | “ 10.5 A Complete Job Description 1,65
8.11 Optional Parameters of L1 1.65 : : 10,6 The lMagnetic Tape Section of the Job
8.11.1 A21/L1, A22/L1 {controlling A Description 1.65
places allowed before and after the T 10,6.1 Single Tapes 1,65
mmMﬂEwH point on oﬁwﬁ:&v . 1.65 R 10.6.2 Files 1.65
WM m. PNm\bd (optional sign for Ml 5 do.m.m Deck Allotment 1,65
5 ocating point oﬁﬁwﬁﬁv 1,65 j 10.7 Time Fm&wamﬁmm.WOH a Job
..Md.u bNM\FMVAoUdHcﬂmH sign for 10.7.1 Computing Time d.Mm
integer outpu 1.65 , 1G.7.2 Execution Time 1.65
8o11.4 >wq\rd (printed width of 1 i 10,8 Store Allocation 1,65
exponents 1.65 , h 10,9 Job Description Format
wmdd.m >NM\WJ and A29/L1 (printed form ur _ 10,9,1 Order of Sections . d.mw
exponents 1.6 | | 10.9.,2 Case Changes 1.
m.“w Wﬁ@ﬂ& and Output by Extracode d“mw { 10.9.3 Backspace 165
. inary Input and Output 1.65 10,10 Composite Documents
M.“w %Wo Mﬁwsﬁ fxtracodes a“mw & m 10.10,1 Job Description combined with
. e Output Extracodes 1.65 { Program 1.65
8,16 Further Information on Binary Input/Output 1.65 10.10.2 Job Descriptiom combined with Data 6
, Document 1,65
CHAPTER 9 MAGNETIC TAPE ; 10.10.3 Data Files 1,65
§ 10,11 Tape and Card Markers 1.65
9.1 Introduction 1.65 ‘ , 10.11,1 The Tape Markers **¥Z, C, T and A 1.65
9.2 Atlas One Inch Tape 1.65 1 10,11.2 The Binary Tape Markers *¥¥B,
9.3 Block Transfers on One Inch Tape 1.65 F and F 1.65
W.W.M wwoowweﬂmsmwmﬁ Instructions 1.65 ﬁ ao.dd.w The Tape Marker *¥P J.MW
e Je se of Block Transfers 1.6 . 10,11, Card Markers 1,
9.4 Variable Length working on One Inch Tape d.mw 10,12 Input and Output using Private Magnetic
9.4.1 Variable Length Instructions 1.65 _ Tapes 1.65
W.M.w %Mm%wmmba mMHMo& Instructions 1.65 “w.uw.w WHMmeM<m.HMMG¢ i “.MW
oo ansfer an rganisational 12, o] escription Reference .
Instructions 1.65 _ 10.12.3 Re-use of Documents on System
m.:W¢ Efficiency of Variable Length emwmw b Bxt S d.MW
Working 1.6 10.12, xtensive Outpu 1,
9.5 m%mmswmmwwo:mw Instructions for One +03 _ 10.13 Job Description Farameter 1.65
nch
w.m.demmwﬁnﬁ il AR 1.65 CHAPTER 11 MONITCRING AND FAULT DETECTICN
9.5.2 Other organisational Ext 1,68 M 11.1 Supervisor Monitoring 1.65
9.6 m . : nal Extracodes 1,65 | # .m
. HGQOHMHonHob of the Atlas One Inch 11.1.1 H%wow of Program Faults d.mw
ape System 11.1.2 Standard Post liortem L
9.6.1 Control 1.65 11.1.,3 Ending a Program 1,65
9.6.2 The Tape Layout 1.65 11.2 The Trapping Vector 1.65
9.6.3 Performance 1.65 11.3 Private Monitoring 1.65
9.6.4 Safeguards 1,65 11,4 Restarting and Re-entering a Program 1,65
9.7 Orion Tapes 1.65 11.4,1 Preventing a Restart 1.65
11.4.2 Re-entering a Program 1.65
CHAPTER 10 PREPARING A COMFLETE PROGRAM 1.65 11.5 Monitor Extracodes 1.65
* 11,6 Faults Detected by the Compiler 1,65
10,1 Atlas Jobs 1.65 11.6.1 B~lines in ABL 1.65
10,2 Documents 1.65 11,6.,2 Indeterminate Items 1465
10,3 wmowswzﬁmmomawsmm and Titles d“mu Aﬂ.m.w uHmWSodeo&wwwsﬁwzm d.mw
e3e eadings 1.6 11.6, Fault Location 1.
10.3.2 Titles d”mw 11,6.,5 Diagnostic Printing Character Set 1.65
10.3.3 Rules for title preparation 1.65 11.,6.6 Explanatory Texts 1.65
10,4 The Input and Output Sections of the Job “
Description 1.65 w
10.4,1 The Input Section 1.65
10.4.2 The Output Section 1,65 ,_
10.4,3 Output: General Notes 1.65 _
| (1.65)
(1.65) @,_%

(vi)

_ w 1.4/1
Date of Issue
CHAPTER 12 FURTHER FACILITIES AND TECHNIQUES 1,65 | | Chapler 1
12,1 Programmed Drum Transfers 1,65 w AUTOMATIC DIGITAL COMPUTERS
12,2 Optimization of Program Loops 1.65
12,2.1 Store Access 1.65)
12,2.2 The Overlapping of Instructions 1.65 _
12,3 Branching 1,65 . 1gd Introduction
12.3.1 Existing Parallel Operations - 165)
12.3.2 The Branch Instructions 1.65 | Atlas 1 is a very fast, automatic digital computer with built-in
12.3.3 The Use of Branching 1.65 ‘ time-sharing facilities enabling a considersble number of problems to be
12.3.4 Store Requirements 1.65 |) processed simultaneously. This manual is intended for those who will pre-
12,4 Instruction Counters 1,65 E | pare programs giving the machine detailed instructions for the step-by-
12,5 Re-entering the Compiler 1.65 . step solution of individual problems. It is likely that they will have
12,6 Special Preset Parameters 1,65 some previous knowledge of computers: should the ideas outlined in this
12,7 Private Library Routines _ chapter be unfamiliar, the reader is advised to consult an introductory
12,7.1 Library Routine Titles 1.65 ' text for further clarification.
12,7.2 Undefined Library Routines 1,65
12,7.3 Preparing a Private Library [152 Electronic Computers
Routine 1.65
12.7.4 Incorporating a new Library The application of electronics has led to the development of the
Routine into the Publiec Library 1,65 m nodern high~speed computer; we must distinguish two types of electronic com-
12,7.5 Conventions 1.65 | puters:- :
12.7,6 Referring to the master program
from within a library routine 1,65 r Analogue computers represent quantities by some analogous physical
12.8 Correction of Programs, and System quantity and solve problens by working with an actual physical model
Peculiarities] obeying the desired theoretical equations. Since the quantities involved
12.8,1 Program Alterations 1465 | can be evaluated only by neasurement, the attainable precision is neces-
12,8.2 Further Peculiarities 1.65 sarily linited. The slide-rule is a familiar exanple of an analogue com=-
12,9 Compiler and Supervisor Extracodes 1.65 1] puter, using lengths to represent the logarithms of numbers.
APPENDIX A References 1,65 . Digital computers operate upon nunbers in some coded-digit form
and make use of standard conputational techniques to obtain direct nu-
APPENDIX B Notation 1.65 _ merical solutions to problems. By increasing the number of digits with
which numbers are represented in the machine, the precision may be ex=-
APPENDIX C V-Store addresses of Peripherals 1.65 h tended without limit. A desk celculator is a simple forn of digitel
computer,
APPENDIX D Character Codes 1.65
1.,2,1 Digital Conputerse.
APPENDIX E Summary of Extracodes 1.65 |
As a nore couplete forn of digital computer, we may consider the
APPENDIX F Surmary of Basic Instructions by Function 1,65 combination of a desk calculator and its operator as a single computing
~ unit; this will enable us to introduce the essential features of a typical
APPENDIX G Summary of Basic Instructions by Number 1,65 digital computer:-

Amv Input and Output. This is one of the roles performed by the operator
of a desk calculator, who nust set up numbers in the machine before they
can be operated on and also read results from the machine, recording them
elsewhere, TFor an electronic conputer, information is transferred tc and
from the nachine by autonatic equiprent,

(b) Controle Here again, it is the operator who must control the se-

quence of operations on a desk calculator. An automatic computer is con-
trolled by a progran consisting of a sequence of detailed instructions in
_ coded forme. In the important cese of a stored-program computer, the whole

(1.65) ’ ‘w, (1.65)

1.2/2

program is stored within the machine before any of it is obeyed; the speed
of the computation is then not restricted to that of the input devices.

(¢) Arithmetic Units The nechanisn of a desk calculator carries out the
individual operatiocns in accordance with the key depressed. Sinilarly,
the arithmetic unit of an electronic computer performs the functions
called for by the successive instructicns in the program. There will
usually be included an accumulator in which the result of each step first
appears, similar to the long register on the carriege of a desk machine,

() Storage. The keyboard and certain other registers of a desk cal-
culator constitute a working storc, insofar as the mechanisn of the
arithmetic unit is able to operate directly upon numbers contained in these
registers. An electronic conputer commonly hes a working store capable

of holding several thousand numbers. At any time each of these numbers

is immediately available to the arithmetic unit, and so one speaks of a
Urandom access" or "fast" store.

This type of storage is relatively expensive and so if still
larger amounts of storage are required this is normally provided by some
cheaper forn of "backing" store. This will inevitably involve a longer
access time, but, when required for computation, data can be transferred
in blocks of several hundred numbers at once fron the backing store to the
working store.

1.3 Addresses

Bach of the locations in the backing store and in the conputing
store is assigned an address. The address is a nurber, and it is in-
portant to distinguish the number which is the address of a location from
the number which is contained in that locotion. As a neans of distinction,
we shall denote addresses by capital letters and contents by small letters
and will assume, for example, that the number s is the content of the
location whose address is S. In certain contexts we shall find it neces-
sary to use the notation C(S) as an altcrnative to s. (Note that C(S +1)
is not the same as's + 1; the notation S* is sometimes used to denote
S +1, so that s* = C(S +1))e The contents of S after en operation will
be written s’, so that, for example, the equction

s’ =5 +b

denotes the operaticn of adding the number b to the contents of S.

1.4 Instruction Code

We have so far spoken of the contents of store locations as numbers,
but they may also be instructions in coded form. Both numbers and coded
instructions may be referred to as “"words"; it is for the progremmer to
ensure that no atteupt is made to interpret one type of word as the othere.
An instruction word will usuelly contain one or more addresses to specify
the data to be operated on; there will also be a coded number specifying .
the operation to be performed. The correspondence between the elenentary
operations which may be directly carried out in the arithnetic unit and
the code numbers which control them constitutes the "order-code" or
"instruction~-code" of the computer.

(165)

esp—

T 2 2z e

1.5/53

1.5 Jump Instructions

.Hbm&%ﬁOdwoum will generally be obeyed in the same sequential order
as their addresses occur in the store. However, it is possible to specify
by an instruction the address of the next instruction to be obeyed, and
wGSmm one may arrange to "Jjuup" out of sequence to an instruction at any
desired address. Instructions are provided to make such a jump conditional
cwou.&wo sign of certain numbers in the machine; these conditional jumps
provide the eability to take elementary decisions.

Ho@ouv HLOO@HHHW'

By repeatedly jumping back to the sane instruction, the computer can
dw made to obey a 4Hoow= of instructions over and over again; this is a
vital feature of high-speed conmputing, naking it possible for a program of

Mwmmobwdpm length to control the machine for relatively long periods of
1€

1l.5.2 Modification.

The utility of computing loops is greatly enhanced by the facility
WSmss as "modification", whereby different data is processed in each iter-
ation of the loop. The store address of the number to be operated on is
sopwwwo@ before use by the addition of an index stcred in one of several
mwmowmw.wmmwmﬁmwm. Thus, if the index is increased by unity before each
successive iteration, one may operate upon a list of numbers held in the
store, and so, for example, form their sun or average.

1.6 Binary Numbers

The storage mechanisms used in electronic digitel computers are
normally made up of devices having two possible states, just as a switch
nay be either OFF or ON. If we associate with these two states the
syubols O and 4 respectively, we are led to adopt the binary number systen:
the string of 0's and 4's stored on a row of two-state devices is inter=-
preted as a succession of coefficients of powers of two in a polynomial.
This is exactly analogous to the conventional decinal notation based on
powers of ten, The binary digits O and 1 are comnonly referred to as "bits".

1,6,1 Negative Numbers.

If a desk calculator is used to subtract some small numbers fron
zero, the result is characterised by a string of 9's at the more-significant
end; the same operation with binary numbers produces a string of 1’'s. Ve
have here a naturally occurring representation of negative numbers, which is
nade unambiguous by restricting the range of positive nunbers to those having
0 as their most-significant digit. This then beconmes a sign digit, and the
presence of a 4 in this position will indicate a negative number whose actual
value is obtainable by subtracting 2T, r teing the nunber of bits in the
nunber.,

ﬁi‘gv

[—y

(e | [—

2.1/1

Chapter 2

THE ATLAS 1 COMPUTER

2,1 A General Description of Atlas 1

The nain parts of Atlas 1 consist of:-
a) The control unit

de Two arithmetic units

(c) The Supervisor

A@W The storage systen

(e) Input and output devices.

2.1.1 The control unit produces in correct sequence the control signa’s
necessary to call for an instruction, to decode it, to modify the address,
to obtain the operand from store and to perform the arithmetic operation.
The address of the current instruction is held in one of three special
index registers, called control registers. Before the current instruction
is decoded the contents of the control register in use are increased by
one in anticipation of the next instruction.

2.1.2 Arithmetic is meinly done in the accunulator, which is a double-
length floating-point register. The accunulator arithmetic unit can obey
49 different instructions, including different types of addition, sub-
traction, multiplication and division, transfers, tests, shifts etc.

For snall integer arithmetic, nodification and counting, there are
also 128 index registers. These are known as B-registers and have their
own arithmetic unit. The B-register arithmetic unit can obey 51 different
instructions, including addition, subtraction, logical operations, shifts,
tests, counts etc.

2.,1.3 Any peripheral transfer on Atlas 1 has only to be initiated, after
which it proceeds independently, leaving the central computer free to con-
tinue obeying instructions. Suppose there to be only one progren in the
computer, which might be reading characters fron the tape reader and sor-
ting then on nmagnetic tape, one per word in units of 512 words. The tape
reader operates at 300 characters per second and so reads a character

once every 3,333 nicroseconds Athm a nagnetic tape transfer of 512 words
takes 46 nilliseconds (ms). Between reading characters it would be pos-
sible for the central conmputer to obey about 2,000 instructions, and while
executing a magnetic tape transfer, about 30,000 arithmetic instructions
could be obeyed. If the computer were to be idle during transfers because
the information was wanted irmediately (in the next instruction) obviously
its utilisation would be very inefficient., Note that if the slow peri-
pheral equipnents could always transfer information at the rate required by
the central conputer for any problem no difficulty would arise. As they
cannot, special operating methods have to be used. The nethod on Atlas 1
is to have a special program called the Supervisor which controls the flow
of prograns through the computer. The Supervisor is simply a program which
attenpts to run Atlas in an efficient way, that is, it tries to keep all

(1.65)

2.1/2 b 2.1/8

the parts of Atlas busy. To achieve this, it shares computing time between | The following dlagran shows the component parts of Atlas li-

programs, and manages oll peripheral transfers, including input and output
as well as drum and magnetic tape transfers, The Supervisor is described
in more detail later; at this stage it must be remarked that although it is
not part of the "hardware" in the sense that the core store is, it is the
most important single feature of Atlas and quite indispensable,

2+1.4 The main store on Atlas 1 consists of core store in units of 8192 H _szda_ OUTPUT
/./ ;

words and magnetic drum store in units of 24,576 words. A total of about
one million words are directly addressable, Up to 32 magnetic tapes can also . 4 V-STORE ¥ FIXED | SUPERVISOR j
be used as a backing store. The main store can consist of core store and R STORE AND | MAGNETIC PRIVATE
ﬂ " SUPERVISOR TAPE STORES

drums in any proportion. The programmer treats the store as if it were all .
core store; he will in fact not know what parts of his program are in the w //////////// WORKING =7

1]
=
i

7

\
core store at any one time., The Supervisor manages drum transfers behind the // SPACE 7
scenes as required, and attempts to keep the most used blocks of program al- ,
£p<m95&5moowmm&owmndqswmbmowm=@H¢sHmmeHsm=@Homuma.ewwmwpmmow P /f

a fast and a slow store appearing as a single fast store is oalled the “one~
* = ;
level-store™ concept. B-REGTSTERS

1 A e b s e et e s

] oozewobﬁ _JACCUMULATOR

The Supervisor occupies most of a special store called the fixed store,

and some blocks of the main store. The fixed store is a "read only" store in
nultiples of 4096 words where binary ones and zeros are represented by ferrite

1 B-REGISTERS

ACCUMULATOR
ARTTIMETIC
UNIT

ARTTHMETIC

and copper slugs in a wire meshe. It is used to represent permanent programs UNIT

which will not be changed, and besides the Superwisor it holds the "extra= | -) \\
codes®, These are extensions to the basic instructions, described later. (g A Y,
For working space the Supervisor has a subsidiary core store of 1024 words, in 1
which it keeps parameters associated with programs in the machine, peripherals, MACNZTIC DRUMS CORE STOREL —— | MAGNETIC TAPE CENERAL
etce The Supervisor also uses three magnetio tape units, oalled "system | . ’ ~ g STORES

tapes" as part of its input/output organisation. All the stores used by the
Supervisor are known as private store, and it is not possible for ordinary

programs to interfere with them. |

~
H
Nd

2.1.5 A large variety of input and output devices are allowed on Atlas 1. W
Each type of device is connected to the central computer via the peripheral |
co-ordinator, which contains buffer registers and information registers con-
cerned with the transfer of data, These registers, which are at different , W
places in the computer, and also some registers comnected with the arith- d
metic units, are collectively referred to as the V-store. They are only

accessible to the Supervisor, and form part of the private store. The peri-
pheral co-ordinator allows the following types of input/output equipments to |
be attached,

ICT TR5 paper tape readers 300 ch/sec

ICT TR7 paper tape readers 1000 ch/sec

Teletype paper tape punches 110 ch/sec

Creed 3000 paper tape punches 300 ow\mmo

Creed 75 teleprinters 10 coh/sec

ICT card readers 600 omﬂmm\sws

ICT 582 card punches 100 cards/min

Anelex line printers 1000 lines/min)
Graphical outputs | i
Clock

(1.65) N\ J (1.65)

2.2/1

2+2 The Main Store

Within the programmers store, registers are numbered consecutively
from O upwards. Registers are arranged in blocks of 512 words called pages,
and transfers between the core store and d rums or magnetic tape take place
in units of 512-word blocks. To inorease the computing speed, the core
store is divided into stacks, each with its own read/write circuitry. These
are known as the even and odd stacks. Iach is of 4096 words and they are
arranged so that words 0, 2, 4, 6 ... are in the even stack, words 1, 3,

S eses in the odd. Instructions are always called for by the control unit
in pairs consisting of an even and the next odd instruction, although some~-
times only one of these instructions may be wanted.

Wherever it is safe to do so, as soon as the control unit has de-
coded the odd address instruetion it sends for the next pair. Thus, there
is overlap between the execution of instructions and it is in fact possible
for the computer to be in different stages of execution of up to five in-
structions, As a consequence, the first instruction in a pair must not
alter the second, and the second must not alter either of the next pair of
Instructions. Alnost always, if this were done, the unaltered versions
would be obeyed, but because of "interrupts" which occur at frequent inter-
vals and which effectively insert instructions between progrem instructions
sometimes the altered versions would be obeyed,

(1.65)

[

| S—

)

[S—

[“——1

sl

m—

buemeay

by

=

243/1

269 Storage of information in Atlas 1

An Atlas 1 register, or word, contains 48 binary digits. ewomm are
conventionally numbered from O (most-significant) to 47 (least-significant)e

A single word can be used to represent any of the following:-

(a) A 48-bit floating or fixed point number, with the 8 most-significant bits
representing the exponent and the other 40 the mantissas :

EXPONENT MANTISSA
0 7 '8 47

Adv Two 24-bit half-word numbers. These are taken usually as 21-bit signed
integers in digits 0-20, with an octal fraction in digits 21-23.

0 20, 21-23 24 A 44, 45-47
(o) Eight 6~bit characters.

o ,_ w u_ p mw @_ qu
0 5 6 11 12 17 18 235 24 29 30 35 36 41 42 47

(d) An instruction, specifying a function F (most~significant 10 dwdmva
two index registers Ba and Bm (7 bits each) and an address N (least~sig-
nificant 24 bits).

_m Mwm:ms ﬁlo N Num

0 9 10 16 17 23 24 47

Throughout this manual the binary digits of a word are wcawado@
from the most-significant end, starting with bit O. The engineers
numbering system is the reverse of this, and is used in some mmocams&m
describing basic programs such as the Supervisor and Engineers’ programs:
in these documents bit O is the least~significant bit.

(1465)

2e4/1 |
. 2.4/2

24 Instructions in the machine

i The B-registers are used in different ways depending on the type of

N can be taken as an OHVWH.m.Hw&. Q.u.vH.mO.W”_xu\x in some u.usm.ﬂgo.ﬂHOHHMu in which 2 instructions There are 128 WIH.OWu.-m.ﬂQH-Mh BO to B N‘Nb most of them of 24
case it is known as n. When N is used as an address, bits 1-20 specify a bits, B120-127 are special purpose B-registers, the rest are general pur-
word in the main store, bit 21 specifies a half-word address and bits 22 X pose, In A-codes, the contents of Ba and the contents of Bm are added
and 23 specify a character address within a half-word (for the moment re~) to N to give a modified address. That is, the address S used in the in-
nunbering the bits of N as 0-23), Instructions ignore irrelevent digits H struction is Nsba4bm. In most B-codes, ba is used as an operand, so only
in the address. Thus an instruction involving helf-words ignores digits | bm is used to modify N, and then S = Njbm. (There are two exceptions, in
22 and 23 in the address. Digits 12-20 specify the word address within a y which bm is also an operand, so no modification takes placee.) For most
block, and digits 1-11 specifly the block. test codes, bm is used as a further operand; where it is not it is used to

modify N, In extracode instructions, Ba and Bm are treated in a special

Thus a main store address consists of) waye. For the present we shall write Ba and Bm as decimal numbers in the

range 0 to 127, B-register arithmetic is described in Chapter 4.

Block number TWord number in block Half-word address Character address
1 11 12 20 21 22 23

For the moment we shall write N as a deoimal number and an octal n
fraction, separated by a point. Then 16,0 is the first half-word in word ;
16 (i.e. digits 0-23) and 16.4 is the less-signifioant half-word (digits
24-47), in an instruction which uses a half-word. In instructions for |
handling characters, the characters in word 16 are 16,0, 16.1, 16.2,
sese 16.7; where 16,0 is digits 0-5, 16.1 is 6-11 etc., with 16,7 being
%.NI&...N.

[

=

[SRR

The 10~bit function F is written as a single binary @HmwﬁAAwO fol=~
lowed by three octal digits. For all basic functions £0 is zero, and may
be omitted in the written form. The basic functions fall into three
categories, depending on the first octal digit (f1 to £3); if this digit
is 1, the function is a B-register instruction (B-code), if it is 2, the 3
function is a Test instruotion, and if it is 3, the function is an Accum-
ulator instruction (A-code). These instructions are described in detail
in later chapters.,

ol

The basic order-code is extended by the provision of "extracodes".
These are routines, written in basic instructions, which are positioned s
in the fixed store and which carry out many operations usually managed
by a subroutine library. Extracodes are recognised by having f0 = 1
When this is encountered, main control is halted and the program continues T
under a special "extracode" control at an address in the fixed store.
The final instruction in this routine (which is recognised by f1 =£3=1
and obeyed as if f1 = 0) has the effect of returning to main control at
the program’s next instruction. Thus extracodes are subroutines with
automatic entry and exit; to the programmer they appear as one instruction.

For example,

Function 113 is a B-code used to store a B-register

234 is a test-code, trensferring n to Ba if the
contents of the accumulator are zero

374 1is an A-code, dividing the accumulator by the
contents of a store address

1250 is an extracode, to unpack a 6-bit character
from store and place it in Bae.

- —
| = |

(1.65) X (1,65)

2.5/1

2e5 The written form of Instructions

Instructions are written on one line, with the component parts
separated:

F Ba Bm S

Thus 143 1 0 18,4 stores b1 in the half word
at address 16,4 (BO is
always zero)

If b2 = 1.4 say, then
113 1 2 16,4 stores b1 at 18,0
If b1 = 3.0 say, then with b2 = 1.4,
&§74 1 2 16,4 divides the accumulator

by the number at 21.0

Instructions are read into Atlas through the media of punched paper
tape, either of 5-track or 7-track width, and moncmwssb punched omwﬁm.
7-track paper tape (the most common input medium) is prepared on a Flex-
owriter, 5-track paper tape on a Creed teleprinter and cards on a card
punch. These three equipments have slightly different sets of owmmedon.
In the punched form, the parts of an instructionarc punched as written
and separated by "multiple spaces" or commas. Multiple space is dqo or
more spaces on the teleprinter, or a tabulate (T4B) on the Flexowriters

(1.65)

d

[IER

||

e

[-

2,6/1

2.6 The Full Range of Atlas 1 Addresses

As explained in 2,4, address bits 1 to 11 represent the number of
512 word main store block to which that address refers, so that an Atlas 1
main store address refers to one of 2048 blocks. In octal (for the J no-
tation see 4,3) these block addresses are JO000, J00O1, J0002,e¢e., J3777
and in their decimal representation (see 5.6) 0:, 1:, 2:,04s, 2047:, The
ABL compiler and the program it is compiling share the same range of block
nunbers, with ABL occupying blocks in the range J3 to J34. Consequently
to avoid over-writing itself ABL will refuse to compile program into any
of the 256 blocks 1536: to 17%1: Once the program is compiled and ABL
has withdrawn from the store these blocks become available again and can
be used as working space by the program.

The remainder of the main store vlock numbers J34 to J4 are 1llegal.
ABL will not store program in block J3 or above and the Supervisor will
fault the program if the eompiled progran attenpts to refer to block J34 or
above,

In fixed store and private store addresses bit 0 is a 1. There are
therefore another 2048 blocks that can be addressed and they have octal
addresses J4000 to J7777. The first 16 of these (J4 to J4017) are the
block numbers of the fixed store and may be referred to by the programmer
if he wishes, although there is generally no reason why he should do so.
The block numbers J4020 to J4777 are also quite legal.s In effect these
block numbers refer to 31 consecutively stored copies of the fixed store.
For example either of the instructions

101 3 0 Jao17777
101 3 0 ~-4J5

would place the same half-word in B3, namely the left half of the last word
of the fixed store, In other words addresses in the range J4 to J5 are in
effect masked with J40177777 before execution (for a definition of masking,
or what is the same thing collating, see 4.3)

The private store block addresses J5 through J7777 are completely
forbidden to the ordinary programmer. These addresses can be referred to
on extracode control. However it is impossible for the programmer to force
an extracode to refer to the private store. He is prevented by faulting an
extracode instruction in which the modified address is in the private store
but the unmodified address is not, Thus for example a program containing
the instruction

1730 0 0 J6 am’ = sin (J6)
would be thrown off because the first instruction of the extracode routine
S 324 0 119 0 an’ = (b119)
(B119 will contain the address J6 upon entry to the extracode. See 7.2.)

(165)

