¥

S B e
m-»\-.‘_-._

-

-

3.1/4

Chapter 3

THI ACCUMULATOR

el Floating-point numbers

When a 48-bit word is used to represent a number it is divided into
40 bits for a signed mantissa x and 8 bits for a signed exponent ye

E EXPONENT D _ MANTTISSA

0 1 7 8 9 a7
Digit O is the exponent sign, digit 8 the mantissa sign.

The exponent is an ootal one, so the number represented has the
value
2. 8Y

The exponent is an integer and lies in the range
-128 < y < 127

The mantissa is a fraction, with the binary point taken to be after
the sign digit, so it lies in the range

lﬂm.&m‘_ IM..wo
With this system it is possible to represent positive or negative
numbers whose magnitudes are approximately in the range 1071 to 10**2,

Example: One way of representing the number 8 is by a mantissa of

.tw and an exponent of 42, i.e. as w x 8%, Thus:~

Exponent ilantissa
0 0000010 0007000000, ¢sse0000es0e 000
For clarity, when this is written in binary digits the exponent
is spaced out away from the mantissa, the sign digits are slightly separa-

ted from the numbers, and the mantissa binary point is shown. This con-
vention will be used in future without more explanation,

(1.65)

302/1

Se2 The Accumulator

Floating-point arithmetic is all done in the full accumulator (A)
and in order to describe the arithmetic it is first necessary to introduce
the accumulator,.

The accumulator has an 8~bit signed exponent ay and a double~length
mantissa ax, of 78-bits and a sign bit, The mantissa Ax is regarded as
being divided into M and L, Il being the sign digit with the 39 more-signif-
icant digits, and L being the 39 less~gignificant digits. Associated with
L is a sign digit called Ls. Ls is situgted between M and L, and it is

usually irrelevant; that is, arithmetic in the accumulator proceeds as if
Ls is not presenta

The accumulator is sometimes regarded as holding two single-length
floating-point numbers. These are called Am and Al,.

Am consists of Ay and M
Al consists of >$~m5m L with Ls

There are a Turther two digits to the left of the sign of Am. These
are the guard digits and their function is explained later. It is not pos-—
sible to transfer numbers into or out of the guard digits, and before an
accumulator operation they are normally copies of the mantissa sign digit.

The exponent ay is held in the special B-register B124, which con~
sists only of nine digits at its most-significant end, the other digits 9-23
being zeros The exponent is held in digits 1-8. Digit O is used as a guard
digit, to detect if the number departs from the range ~128 < ﬁ% < 127, Digit
1 is the sign digit and normally digit O is the same as digit 1. If the gwo
digits are different, then the exponent has gone outside ita permitted rangee
If 1 =1 and @0 = 0, then ay > 127; if ay > 127 at the end of an sccumulator
operation, then uxponent Overflow is said to have occurred and in some cases
the program is monitored (see section 11.1.1)s If d1 = 0 and 40 =1, then
ay < ~128; if ay < -128 at the end of an accumulator operation, then Exponent
Underflow is said to have occurred and normally the contents of the accumu~
lator are asutomatically replaced by "standard floating=-point zero" (see
section 3.3).

(1.65)

— p—
—

-y N WY - -
_ _. ﬁ w) _ _

3.2/2

Diagrer of the whole accumulator

T ...:“.Mu “!|!z!,o~ “..m
A g ! bl
Diagram showing component parts of the accunulator
i Eag _
Guard P 0 m M
digits L.s e vens

Ls

Note that because of the guard digit, the w0m9¢%o¢ of the exponent
as held in B124, (digits 1-8) is different from the womwﬁpms.ow the ex-
ponent for a mmber held in the store, which would be in digits 0=7.

Accunulator instructions usually involve arithmetic on two num=-
bers, one of these being in the acounulator and the other taken f rom the
store. Most accumulator instructions deal with standardised numbers, so
these will now be described.

(1.65)

|
il A
B¢ 3/4 |] 3.3/2
1 ,, _H
11 Example: the addition of & 42 with a standardising instruction
5.5 Standardised numbers | fief thcaddition of © &% 3
i gives the correct result of + 1 standardised; though
The™ representation of a floating-point number is not unique, For ' gﬁ immediately aofter the addition the number is super-
example =% x 8° ordy x & or % x 8 etc, so any of the forms below 1 standard.
represent %. 7=
@ ﬂ 2=3x8 0 0000000 000,401000,
Exponent Mantissa Value = % S
1 2.3 x¢8 0 0000000 000, 0140004a
0 0000000 000.400000000. 60 » W x & _- m + 8 8 e 8 *
0 0000004 000,000100000s a0 - x & i [=1 =1x8 (superstandard) 0 0000000 001.0000004/
1 . ﬁ
i = dised 0 00000 000.0010004'
0 0000040 000,000000100.4ss & x 8 | 1 =% x & (standardised) ol
(Note that the two guard digits are shown to the left of the mantissa w- 5 The number zero is a special case., Floating~point Zero is repre-

sign digit. sented by a mantissa of O and an exponent of -128, and this is regarded as a
standardised number. Zero is specially looked for when a number is to be
standardised, and, if found, no shifting tekes place and the exponent is

immediately set to to -128,

]

-

It will be noticed that the value of a number is unchanged if unity
is added to or subtracted from the exponent every time the nantissa is
shifted ‘octally’ (by 3 bits) down or up, respectively.

The optinum form of storage of a number in a binery floating-point
system is that in which there are the ninimun number of 0's (assuring a n
positive number) between the binary point and the most significant 1 of
the fractional part of the number, This enables the maximum number of
fractional digits to contribute to the accuracy of the representation.

- -

As Atlas has an octal exponent, shifts of the mantissa nay only be
by 3 bits at a time, so it is not possible to specify that there should N
be no 0's immediately after the point. It is possible to specify a
maximum of two, and this is known as the standardised condition. A cor-
responding convention for a mininum number of 1‘s holds for negative num~
bers.,

An Atlas standardised number is therefore such that the mantissa n
lies in the range:~-

\

1
s<sxifor=t cax< 4

- -

and it nay be necesscry to shift the nantissa of the number resulting from
an operation up or down, adjusting the exponent accordingly, to achieve
this,

-
e

If a number is not standard it is either ‘substandard’ or ‘super-
standard’. A substandard number is one such that Lw < x ¢ g+ The three
‘most significant digits of ax will be the same as the sign digit Amsa \
guard digits), so the number can be standardised by octal shifts up and m..
ad justment of the exponent, A superstanderd number is one in which the A
mantissa has overflowed into the sign and guard digit positions, i.e. it
is > 4 or < ~1 and it is detected by the guard digits not being the same
as the sign digit. To standardise such a number, a single octal shift i
down is required, with the addition of unity to aye

-
S

re e (PLL

(1465)

(rav @Am

3.4/4

Be4d Fixed-point numbers

For some purposes it is inconvenient to deal with floating=-point
numbers, and accumulator instructions are provided which do not stan-
dardise the results of operations. Using these instructions it is pos-
sible to regard the binary point as being anywhere it is mompwwmw for
exanple, at the least significant end of M (which wmmsw regarding numbers
in Am as integers between the range of -2°° and 2°° - 1), In this type of
arithmetic, the exponents of the numbers must all be the same, and are
comuonly zero, If they are the same but non-zero, adjustments are re-
quired when multiplications and divisions are performed.

Superstandard numbers cannot be automatically corrected in fixed-
point working, so if they occur, a special fccumulator Overflow digit (AO)
is set, and this digit can be inspected by the progrem.

For exanple, if the point is tcoken m& &W@wwwmmﬁ significant end
of M, then the numbers in the last example, § and 3, now have the values
(2°% 4+ 2°°) and (2°7 + 2°°%), Adding them gives a superstandard answer

and sets AO.

(1.65)

- jpess)

-

]
ES

—
e

3.5/1

Sed Rounding

Most accumulator instructions operate on the two numbers am and S,
leaving the answer in A, This answer may be an operand in the next instruc-
tion with only am used, the digits in L being cleared before the operation.
The process of cutting off these less-significant 39 digits of the answer is
called truncation, and this introduces an error each time which could quickly
becone significants Rounding is the name given to the process of compensating
the answer so as to minimise the effect of truncation.

' One method of rounding is to force a 1 (i.e. the logical "OR" op-
eration) in the least significant digit of M if 1 is non~zero. If 3 is zZero,
no foreing takes places In a sequence of accumulator instructions, the a~
verage error introduced by this method is zero, so no bias is introduced.

Further, single-length integer arithmetic in An can be carried out
exactly without any unwanted rounding, as long as numbers never extend into
L. The abbreviation R is used in describing some instruction to signify

rounding in this way. Notice that L is not changed by the process of roun~
Q.HD@ .

An instruction is also provided to give rounding by adding a one to
the least-significant digit of M if the most-significant digit of L is one.
Again, the digits of L are left unchanged. This type of rounding is referred
to as R+ Rounding. It is sometimes preferred to the method Jjust described
as less accuracy is lost, but is slightly biased in that the rounding is al=

ways upwards in the halfway case of L being a binary one followed by a string
of zeros.

\

(1.65)

3. 6/1 | u 3.7/
3o 6 Floating-point operations ! H 3¢7 Standardising and rounding accumulator instructions
Before two numbers in floating=point form can be added the nunbers !' We are now in a position to introduce some accumulator instructionse.
must be shifted relative to each other so that digits which have the same H
significance can be added together, i,e. one number is shifted octally until _ Function Description Notation

the two exponents are equal. i

The sbove are the most commonly used accumulator instructions, all
but the 356 instruction leaving a standardised rounded number in Am.

¥ N

Example: given four standardised floating-point numbers a, b, c,

F..u 320 Clear L; add the c ontents of S
In Atlas, the number which has the smaller exponent is the one that . y MM e medms.nm Mﬁc»am m;.un.ﬁw.mw@wmm
is shifted, and it is shifted down into L, irrespective of whether it is the i FSv et dil e Y- SEANAG Jec
number in A or the number in S. There are four addition instructions, and ol @ ,..MSHM 5 5aas ..mu.mbfwomb P Ssng
of these, three clear L before this shifting takes place, so the addition is N 1 Mm bow.mwmu.o and check for B
BEBE L Ah and bt I : , exponent overflow, an’ = am 4 s QRE
. i i | 321 As 320 but subtract s an’ = am - s QRE
Ay is then set equal to the larger o the two exponents and the ar- N A
guments are added together. The addition tales place over the 42 digits of 1k 522 As Mmo but first negate the)
An with its guard digits. L remains unchanged during this stage. 11 contents of A an’ = -an + s QRE
- 324 Transfer the floating point
After the addition, the accumulator nay be standardised and rcunded, ‘ = nunber in S to Am and
standardised but not rounded, or left unstendardised and unrounded, depending 1 stondardise it om’ = s Q
on the instruction., The instructions which standardise check that exponent Ty 395 394 but + £ bivel
overflow has not occurred, the instructions which do not standardise look 1 As iy M A e s.ﬂmm HMM.H% .
for accumulator overflow, 1 A Rl e G om” = ~s QE
- 356 Store am at S, leaving the
The sddition instruction which does not clear L first is used mainly q - contents of A unchanged s’ = an
in double-length arithnmetic. To work correctly, the exponent of s must be o | 569 c1 T B
equal to or greater than ay, so that the contents of the accunulator are R B &MMM m.u. multip %m.mb @.% M. 5
shifted down. If sy < ay, then s would be shifted down into L. overwriting i el e et R o i GE
the original contents of L. ‘ Ry EaPoeLToNe v e
: 363 As 362 but multiply negatively an’ = —~am.s QRE
| [374 Divide am by s, leaving the quotient
L standardised and rounded in Am,
il with 1/ == 0. Check for exponent
! - overflow and division overflow.
¥ Both am and s nust be standardised
) numbers en' =am / s
| i 1'=0
, GRE DO
- m d in the first four locations of store, replace a by
ﬁ (a-b10)/a?
i — 324 0 0 3 putd into Am
4 %62 0 0 3 form @°
“.W 4 356 0 0 4 store in location 4
324 0 0 0 & into Am
- 321 0 0 1 subtract b
n 320 0 0 2 addec
1 i 574 0 0 4 divide by d®
356 0 0 0 store answer in word O
T = Note that register 4 is used as working space, and that Ba and Bm
i are zero in every instruction.

((1.65) Tga (1.65)

3.8/

3.8 The timing of instructions

In general, it is not possible to state exactly how much time any
instruction will take, because this partly depends on the instructions bee
fore and after it, However, in a sequence of additions, subtractions or
transfers each unodified instruction takes about 1.6 ps, If modified by
bm, the tinme is 2,0 us, and if modified by bm and ba the time is 2.5 ps,
The times for multiplication and division are 6.0 ps and about 20 1S Tres=
pectively. The division time depends on the numbers involved. However,
another limitation on the speed is the time needed after reading a number
from a stack of core store before another number can be read from it. This
is known as the cycle time of the store and is 2 pse. As alternate addresses
are in the even and odd stacks, (see section 2.2) if operands are used in
sequence then the cycle time is not a limitation. In the example just
quoted, the sixth instruction would take 2 ps because the next instruction
cannot read its operand until this tine is up. In the fifth and sixth
instructions the operands are in different stacks so the subtraction would
take 1.6 pse B-register instructions, as they use a different arithnetic
unit, can continue while the accunulator is busy. During a division in-
struction, for exanple, three or four B-instructions might be completed,
effectively taking no time at all.

(1.85)

— el
¥ m— g—

[)

T

: ‘) U | " Ul T —

S s
- -
== ()

3,9/1

369 Some H.onm%oubd Instructions

Fixed-point working has been introduced in section 3.4

Function Desoription Notation

330 Clear L, add s to am, leaving the
result in As Do not standardise or
round but check for accunulator

overflow a’' =am 48 A0
331 As 330 but subtract s 2’ =an -~ 8 AO
532 As 330 but negate an before the

addition a’ = -an + 8 A0

In these instructions, if the exponents are the same, no shifting

down of either of the numbers into L takes place, so the answer will be in
An,

D34 Transfer s into Am without
standardising am’ = s
335 Transfer the nw:ber in S

negatively into Am without
standardising, and check for
accunulator overflow an’ = =5 AO

In 335 AO would be set if s is Jjust a one in the sign position
(which we will call ~-1.0) as negating this sets the sign digit different
from the zuard digits.

564 Shift the nantissa up one octal
place, leaving the exponent unchanged.
Accunulator overflow can occur, but

no check is made az’ = 8ax
ay’ = ay
565 Shift am down one octel loce,
leaving ay unchonged ax) =% az
ay = ay

The above two instructions are of course also useful in floating-
point arithmetic, to multiply or divide by 8. IExtracodes are provided to
shift any specified number of places up or down.

(1,65)

4,1/1

Chapter 4

THE B~-REGISTERS m

The index registers, or short accumulators, are known as B-registers {
m on Atlas. There are 128 B-registers. 7120 of these are constructed from a W
| very fast core store and are used for general purposes, The remaining 8 y
are "flip-flop" registers, used for special purposess The B-registers have M
— addresses from zero to 127, and are referred to by prefixing the address _
| with the letter B or b. Thus B61 is B-register with address 61 and b6l is ,
the contents of this B~register,

4,1 General Purpose B-registers

Hsommm&w&ﬁo&wwm&Amowmmwmﬁm&mwO.dowAAm.wmoWooamHmﬁmow m» _
bits of which the most significant (digit 0) is teken to be the sign digit. .
Tor purposes of modification and counting, integers are held one octal

place up from the least-significant end of a word, so the binary point is

assumed to lie between digits 20 and 21. Thus a B-register can hold a 21-

bit signed integer with an octal fraction,

SBEN "REN *REN “BEN B
— -

. Y

The contents of a B-register are usually written as a signed de-
cimal number and an octal fraction, the two parts separated by a point.
Thus 15.3, =2.7, 6.0 etc. When the octal freotion is zero it is usually
omitted, the point of course also being omitted. The number in a B-register _
can take any value in the range -920 45 49°° ~0.1 inclusive. An exception ,
is BO, whose contents are always z€ro.

F—

Progremmers are warned to refer to section 4.10 before using B81-
119, whose contents are liable to be overwritten. i

- O = E
|

The basic instructions which operate on B-registers have already
been mentioned. They are known as B-codes and B-Test codes, and will now

_ be described in detail, _

M R e e
Y =

s =
—

\
N | (1.65)

4,2/

4,2 Arithmetic Operations

In the following instructions, arithmetic takes place between a

24-bit number in the store and a number in the Ba B~register.
is modified by the contents of Bm, the other B-register, to give the half-

word store address S of the operand. The contents of this are known as s.

Function

101

103

104

102

100

111

113

M4

112

110

Example:

101
113
102
114
14

I
at
1
A
\—
A
A

Description _ Notation
Transfer s to Ba ba' = s
Transfer s negatively into Ba ba' = -s
Add s to the contents of Ba ba’ =ba + s
Subtract s from ba ba' =Dba - s
Negasec ba and add s to it ba’ = -ba + 8
Store ba negatively at S s’ = -ba
Store ba at S s’ =ba
Add ba into the contents of S s' =5 +ba
Negate the contents of S
and add ba s' = ~s +ba
Subtract ba from the contents of S s’ =5 - ba

m is held at address 5.4 and n at 6.4, place 3m - 2n
6, using B1 as working space.

0 o4 transfer m to B

0 6 store m in half-word 6.0

0 6.4 n - n in Bl

0 6 2m - n in 6

0 6 m ~ 2n in 6

There are instructions provided which use the address as an
operand. That is, N 4+ bm, instead of giving the address of the operand,
is used directly as a number n.

Function

121
123
124
122
120

Description Notation
Place n in Ba ba’ =n
Place & negatively in Ba ba' = -n
Add n to the contents of Ba ba’ =ba +n
Subtract n from ba ba’' =ba -n
Negate ba and add n ba’ = -ba +n
(1.65)

The .address

H;

|

&

I

S

-

Il
. = =

T

E

4.23/2

Empngiies:

1« Replace the number m in 17.4 by the number 64 - m
121 A 0 64 put 64 into B1
112 1 0 174 -0 4+ 64 in 17.4

2, Copy the number in B2 into B3
121 3 2 0 b3’ = 0 +b2

This has the effect of placing 0, modified by the contents

of B2, into B3 i.e. places b2 into B3.

B

Similarly, the number in B4, for example, can be doubled by

the instruction

124 4 4 0 b4’ =b4 +b4 40

(1.65)

4, 3/1

4,3 Logical Operations

Three types of logical operations can be carried i
. : e out in B- i
arithmetic. These are collating, non-equivalencing and "OR" Mh&.d@%WMWmH

operate on pairs of numbers simply as strings of bi iz
a third number from the pair, © nary digits, and form

The collate operation, which is denoted b i i

L Ope y &, gives a 1 in th
result in every position where both numbers have a m.@@b@ 0’s mHmmstHm
For example, the result of collating 1

00010110
with 01110100

D tatee e st

is 00010100

The non-equivalence operation, denoted by # gi i i
) The : - v £ gives a 1 in the posim
ﬁwosm in which the corresponding digits of the two numbers differ mwm)
0’s elsewhere, ’
The result of non-equivalencing
00010110
with 01110100

is 01100010

The OR operation, denoted by v, gives 1 in those po¢sitions in which

either (or both) of the corresponding digits of % i
o ther (ox bot P g dig he two numbers is a 1, and

The result of ORing

00010110
with 01110100

P e e

is 01110110

Function Description Notation

107 Collate the digits of Ba with

the digits of' 8 placing the -

result in Ba ba’ =ba & s
106 Non-equivalence ba with s, -

placing the result in Ba ba' =ba £ s
147 OR ba with s, placing the -

result in Ba ba’=ba v s
117 As 107, but placing the -

result in S s’ =35 & ba
116 As 106, but placing the -

result in S s’ = s #£ba
127 Collate ba with n, placing -

the result in Ba ba' =ba é&n

(1.65)

- 4.3/2
Function Description Notation
126 Non-equivalence ba with n, placing -
the result in Ba ba' =ba #n
167 OR ba with n, placing the result iy
in Ba ba’ =ba v n

Exanples:

—. e

4. Clear the nost-significant 17 bits of B99 and leave the other
bits unchanged.,

127 929 0 45,7 Cellate b99 with a nurber consisting
of ones in the 7 required positions.

When n is used in this way it is called a "nask". It is
often inconvenient to have to work out nasks as decirial numbers
with an octal fraction, so other ways of writing the address are
allowed.

For exanple, if it is required to leave the rost-significant 7
bits unchanged and to clear the rest of B9Y, then the umask required
consists of ones in the 7 rost-significant positions (0 - 8).

The two letters K and J introduce nunbers written in octal
notation.

K, followed by up to seven octal digits, positions the nu:ber
fron digit 20 upwards. Thus K 3642 places the nunber 00036420 in
the address position. Octal zero's at the nost-significant end
nay be onitted, and the least-significant octal fraction if present
has to be separated frou the nwber by a point. ee.g. K5252525.2
£ills the address digits with eltcrnote ones and. zerose.

J followed by up to eight octal digits, has the effect of con-
piling these digits fron the nost-significant end. That is, the
Pirst octal digit goes into bits 0 - 2 the next to 3 - 5 etce.
Less-significant zeros iiay be oritted. Thus J442 places the nun-
ber 44200000 in the address digitse

2. To leave the nost-significent 7 bits of B99 unchanged and to
clear the other digits

127 99 0 J774 collate b99 with a nask consisting
of ones in the top 7 positions.

3. Replace the nunber in B62 with a nunber such that where there
were ones there are now zeros and where there were zeros there are
now onese This is known as the 1’s conplenent

128 62 0 J77777777 non~equivalence with a nask con-
sisting of all onese. The nask
could also be written K7777777.7

or - 0

(1.65)

-

4.4/

i 44 Test Instructions

Forming the 1's complement of a number 1s often not so simple . The following test instructions test bm, and transfer n into Ba
as in this example, so the operator Awwgmv has been provided. if the test succeeds. n cannot be modified as bm is used, If the test
Any number followed by ' is interpreted as the 1’s complement of 11 fails, ba is unchangede.
that number. Thus the instruction could have been written

-

5 Function Description Notation

¢) s y
126 62 0 0 ' 214 If bm is gzero, place n in Ba If bm =0, ba’' =n
There are two other logical instructions on Atlas, and these use] 215 If bm is not zero, place n in Ba If bom#% 0, ba’ =n

= I E _
bm as a further operand. 1 216 If bm is greater than or equal to
Function Description Notation : zero, place n in Ba If bm > 0, ba’ = n

165 Collate bm with n and place 1 Ll 217 If bm is less than zero, place
the result in Ba, leaving n in Ba If bm < Oy ba’ =m
bm unchanged ba’' =bm & n -
. \ : These tests can be used with any B-registers but are most often
164 mwu.”_.m&mcwnw d.ﬁn.mw w mb%@MM@) L used to cause a change of control if a certain condition is satisfied,
mamc.wmmgmmws s e ba’ — ba 4 (tm & n) O so the control registers will now be described.

There are three control registers, only one of which is in operation
at any given time. These are called main control, extracode control and
interrupt control, and are the three special B-registers B127, B126 and

; . . o as - . y B125 respectively. When a program is being obeyed, the address of the cur—
Ixample: Add the Gebitisohangofienfinodd giks 6 ~-11-0f oBl finto L 3 | rent ingtruction is held in the relevant control Hmmu.mﬁm.d. The control
164 2 1 Joo77 1 | register is increased by one just before the instruction is obeyed in an-
ticipation of the next instruction. Ordinary programs can use only B127,

Notes If Bm is BO in the 164 and 165 instructions, then bm & n
gives n rather than O, n

1 | Unconditional jumps to some address S are effected by placing this
address in the control register

B 121 127 0 S causes the following Mbm&gm.ﬂobm
| to be taken from location 5 onwardse

Example: Two numbers a and b are in locations 14 and 14.4. A
program whichr equires these numbers is in locations
from 100.

0y b > 0 enter this program at register 100
o.. b<¢oO " n n "t 1 1041
Ov .U ~ O 1t 1 1® 1t 1" ‘—ON
Ou b < 0 f " 1t 1" 1® 103

® O p
v AN

v

| The program is 7 instructions long; let it occupy the first 7
registers of store,

n | Register Contents

101 1
101 2
216 127
217 127 101 if b < 0, jump to 101

| 121 127 100 if not, a < 0, b > 0 so jump
] to 100
216 127 102 if a>0,b
121 127

14 place a in B1
1444 place b in B2
5 if a > 0, jump to register 5

W -~ O
OoONn-+0O0

0, jump to 102
b < 0, s0 jump

o N

~
108 if not, a > 0,
to 103,

-
[e}

L‘

| When writing a program it is helpful to show the possible routes of
/1 Jumps with arrows. Unconditional jumps are often underlined, to indicate
a definite break in control.

(1.65) Ny (1,65)

&

R

4.5/1

4ed Special Purpose B-registers B120-B127

Although it is not necessary for the ordinary programner to know
" about many of these specisl-purpose B-registers, details of them are given
here for the sake of completeness.

Tt has been mentioned that there are three control registers, B125,
B126 and B127, which are called interrupt control (I), extracode control
(E) and main control (M) respectively. Ordinary programs use B127, and are
prevented from having access to the subsidiary store and V-store.

Interrupt control is used in short routines within the Supervisor,
which mainly deal with peripheral equipments. These routines are entered
autonatically whenever any peripheral equipment needs attention, e.g. when
a tape reader has read a character. Occasionally the Supervisor will need
to enter relatively longer routines to deal with the cause of interruption,
e.gs on conpletion of the input of a paper tape. Whilst in interrupt con-
trol, further interrupts are not possible, so control is switched to extra-
code whenever the Supervisor enters a nmore lengthy routine. Both I and E
control allow the Supervisor access to all the nachine, but extracode con-
trol programs can also be interrupted and restarted in the same way as

ordinary progranse

Extracode control is also used when any of the 300 or so subroutines
in the fixed store are being obeyed. These subroutines have automatic entry
and exit and are known as extracodes. Uhen an extracode instruction is en-
countered, the relevent subroutine entry is placed in B126 and control
switched to E. After the final subroutine instruction control is reswitched
to M which holds the address of the next progran instruction. (The current
control register is always increased by one before the instruction is obeyed.

B124 has been introduced as the acoumulator exponent aye It consists

of only the 9 most significant digits (0-8) the renaining 15 being always
zero. Exponent arithmetic can be carried out by using B-code instructionse
When this is done care must be taken to position exponents correctly in the
digit positions 1-8 and to set the guard digit (bit 0) correctly.

Example:
121 124 0 J0o4& sets the exponent to 4

B123 is o B-register with the special property that a number read
from it, instead of being the number last written to it, is the character-
istic of the logarithm to base two of the eight least-significent digits of

that number.

(1.65)

-Ll-.:]
—
-

s
E.,l‘

4,5/2
Input to B123 Output from B123
Digits 0~15 16 17 18 19 20 21 22 23 0-16 17 18 19 20 21-23
x 0 0O O 0 c o o0 1 0 0 0 0 0 0
@ 0 o e o 0 O @ 0 0 0 o0 1 0
2 0 0 0 © 0 1 x = 0 0 o 1 0 0
2 ORI OR O BN O] x X x 0 o 0
@ c 0 0 41 x =z =x wx 0 o 1 0 0 0
x o o0 1 x x® ® X @ 0 (0) G 6. 1 0
x 0o 1 x X T X X X 0 o 1 1 0 0
= 1 @2 =2 & =2 2z = = 0 Ok gl svpe 1 0
& 0O 0 0O o O O O © 0 1 () {0 (0 0

Using B123, the Supervisor can identifyy the exact cause of an in-
terrupt as a result of obeying from two to six instructions.

) .ewo.wuomwmssmw cannot use B123 directly because of the danger of an
intervening Hawmﬂacwﬁ which would alter the contents before they could be
Hmwwoowwmm A similar warning applies to B125, B126 and to all the B-registers

) w4mm mﬁ@ B121 are again B-registers provided with special circuitry.
Their function is to allow indirect addressing and modification of the Ba
operand in an instruction.

B121 behaves as a normal B-register except that it consists of only
seven digits (15-21), the remaining bits being always zero. These seven
bits allow B121 to hold any of the numbers O, Ou4dy, 1, 124, eese up to 63¢4.
When B121 is used in conjunction with B122 its contents are interpreted as
the address of a B-register in the range 0-127. That is, 0.4 =B1, 1 =B2,
essese Up to 63,4 =B127, the B~register address starting from digit 15.

h mqmm is omwpm@ the B-substitution register, which gives an indi-
cation of its function. When B122 is encountered as Ba in an instruction:

(a) the contents of B121 are taken as a B-register address, Bx say.

(b) &ww %SmdﬁﬁO&woﬁ is then obeyed as if the B~register specified in the
Ba position was Bz

A few examples will make this clearer,

Example 1

129 12 0 8.4 sets 121 = B17 address

121 122 0 1 will place the number 41 in B17

(1.65)

4,5/3

MNDBme 2

It is required to copy the contents of B87 into B80, B76, B72
and so on (every fourth B-register) leaving the other B-registers
unchanged.

This could be done by the sequence of instructions

121 80 87 0 copy B87 into B8O
121 76 87 0
121 72 87 0
121 68 87 0

etc. @000 0veco0vornroee HJOH: 19 HHPM.WH..C.O«.GU..OH\HM nw.”D. all but .U%. .G.mn._.HHm
B121 and B122 we can write & short loop of instructions.

6 121 121 0 40 set address of B80 in B121

7 121 122 87 0 copy b87; into B80 first time
B76 sccond time etc.

subtract 4 from the B-address

if b121 £ 0, jump to the in-
struction in location 7

8 122 121 0 2
9 215 127 121 7

When 1121 = 0 the jump does not take place, and the program
proceeds to the next instruction.

B121 and B122 play an important part in the extracodes. When an
extracode instruction is met, Jjust before control is switched to extracode,
the Ba digits in the instruction are copied into B121. This allows the
extracode routine to operate on Ba by using B122., B-register 119 is also
set up in a special way when an extracode instruction is met, to enable
the extracode routine to obtain the store operand involved. This is des-
cribed later.

In between a progran’s extracode instructions the programmer is able
to use B121, B122 as he likes, but caution must be exercised to avoid inad-
vertent over-writing of their contents when an extracode instruction is
called for.

B122 only operates as the B~substitution register when it is in the
Ba digits of an instruction. In the two other circumstances possible, its
value is zero. These are:

(a) Bm specified as B122

121 1 122 0 always puts zero in B1

(b) Using B122 as Ba when the contents of B121 are 61, i.e. B121 is poin-
ting at B122
set b121 =B122

writes the number zero into store
location 100

121 121 0 61
113 122 O 100

(165)

-l e
- -

-l
-

A 2l
- il

FEILS
g

nJ
R

4,5/4

Any number written into B120 is displayed as 24 digits on neon
lamps on the engineers consolee Thus:-

121 120 0 J52525252 displays alternate ones

and zeros

The engineers console is not normally available for use by the
programmer,

Whenever it is attempted to read from B120, the number read out is
always zero,

(1.65)

L%

4,6/4 4.6/2

4.6 Modification/Counting Instructions The last two instructions in the example above would be replaced by

The techni £ modification } en i . 5
e technique of modification has already becen introduced 203 127 3 1 If b3 4 0, 3" =13 = 1 and b127’ = 11.

i.e, jump back with b3 reduced by one.

In Atlas instructions, the contents of any of the B-registers not

directly concerned in the operation may be used to modify the address, Examples
Thus, the instruction amples s
324 0 3 100 1 1. At the addresses 90-99.4 inclusive there are 100 half-words.

Find how many of these numbers are zero and leave the answer in B7.

= B
-

copies the contents of location (100 +b3) into the accumulator (and stan-

dardises the result). J 0 121 7 0 0 start count of numbers = 0
1 | A S€ 14 3
Suppose we have 20 unstandardised floating-point numbers stored in H g Tet % 0 s set count/modifier in B2
locations 100-119, and it is required to standardise these numbers and re- 2 101 3 2 50 number to B3
store them in the same locations. A program to do this might be as follows:- ﬁ 3 15 427 3 5 jump to 5 if b3 £ 0
10 121 3 0 19 set 19 in B3 , 4 124 - ¢ 0 1 if b3 =0, add 1 to b7
11 324 0 100 am’ = s, standardised 5 202 127 o9 2 count

2. To clear the B-registers B {to B100

E—-‘ -
!,1 | oo | | !

3

12 356 0 3 100 s’ =anm
0
5

13 122 3 1 subtract 1 from b3 1

14 216 127 14 jump to location 14 if b3 » 0 o 0o 121 121 0 50 set count/modifier in B122

B3 is used as the modifier and to ensure that the loop is cycled 20 H ! ! it 1220l 28 clear B100 first time, then BYO etc,
times. This latter process, counting, is of such frequent occurrence thet 2 202 127 121 1 count reducing b121 by 0.4 each

eight basic counting instructions have been provided. time and Jjump back

The most important of these are:-

o

Function Description Notation i
200 If the contents of Bm are non-zero, If bm £ O, s '
2dd 0.4 into Bm and place n in Ba. bn’ =bm + 0.4 sl o
If bm = 0, bn and ba arc unchanged. and ba' =n LI |
-

201 As 200 but increase bm by 1 If bm £ O, |
bn’ =bm +1 and 1 — |
ba' =n L ! !

202 If bm is non-zero, subtract 0.4 If b # O, .~

fron it and place n in Ba bn’ =bm - 0.4, 1 —
dm\ =1 &

203 As 202 but subtract 1 from bm If bm # 0 il
' =bn - 1. | |
.UQ.- = 1N

il

Note: About instructions 200, 201, 202, 203 : If Ba and Bm are _‘

the seme B-line and the test succeeds, its final contents A
are n. If Bm is B127 (and Ba is not), these instructions SR
give an unpredictable result. i)™

[&l fen¥
—« _

-~
| =

(1.65) - (1.65)

4.7/1

4,7. The B-test Register

The B-test register Bt consists of two digits only.

When a number 1s written to Bt, one of these digits is set to show
whether the number is = O or # 0, and the other to show whether it is > 0

OHAO-

Py

Instructions are provided to write numbers to Bt, to test the above

mentioned conditions, and to count. These are:~

Function Description

152 Set the B-test register by writing
to it the contents of Ba minus the
contents of Se ba and s are
unchatged.

150 Set Bt by writing s minus ba to it.
s and ba are unchanged.

172 et Bt by writing ba minus n to it.

170 Set Bt by writing n minus ba to it.

224 If Bt is set equal to zero place
n in Ba

225 If Bt is set not equal to zero
place n in Ba

226 If Bt is set greater than or equal
to zero, place n in Ba

227 If Bt is set less than zero, place
n in Ba

220 If Bt is set non-zero, place n
in Ba and add 0«4 to bm. If Bt
is set- zero, do nothing

221 If bt #£ 0, place n in Ba and add
1 to bm

222 As 220 but subtract 0.4
from bm

223 4s 221 but subtract 1

Note: In instructions 220, 221, 222, 223 ,

Notation
bt =ba - s
bt’! =s ~ ba
bt =ba - n
bt’ =n - ba

If bt =0, ba’' =n
If bt #£ 0, ba’' =n
If bt > 0, ba’ =n

If bt < 0, ba’ =n
If bt £ 0,
bm' = bm + 0e4
and bal =n
If bt £ 0,
bm’ =Dbm +1
m.Bh._.. ._um...u =n
If vt £ 0,
bm’ = bm - 0.4
and .Umkus.
If bt £ 0,
bm’ =bm - 1
and ba' =n

if Ba and Bm

are the same B-line and the test succeeds, its final contents
are n. If Bm is B127 (but Ba is not), these instructions

give an unpredictable result.

(1.65)

-
a

=)

f

[onl

b

-

Pl e)

[e
_; 71

[

B -

[

\

¥

s e

e~

8,7/2

Bt is not directly addressed; Bt instructions are recognised by
the function digits. The instruotiens to set Bt are useful for comparing
numbers, as the operands are not altered.

The conditional transfer instructions, 224-~227 are used to cause
a conditional jump, and as bm does not take part in the instructions it
can be used to modify n, giving a modified address for the conditional
Jjumpe

Examples

In 100 to 199.4 inclusiwe there are 200 half-words. Find the
lowest address of this range which contains the number -3 and store this
in 99.4, If no such number exists, set 99,4 = ~0.,1

0 121 1 0 -3 set required number in Bf
1 121 2 0 100 first address in B2
2 152 1 2 0 bt’ =ba = s
3 224 127 0 7 Jump- if bt = 0, i.ce 5 = -3
4 170 2 0 199.4 Dbt' =199.4 - ba
5. 220 - ~#9FLria@ if bt £ 0,
b2’ = b2 + 0e4, jump back
6 121 2 0 -0.1 if search fails, set =0.1

7 113 2 0 99.4 store result

(1.65)

