5.13/4% _ | s
4s with C directives, there is no line reconstruction of the texts Chapter 6
U, TUnset Parameters directive 4 e S 3 L s
Un. where n is a decimal integer, causes the @%mwo& parameter Pn m_g.\ REMATIIN
to be cbmmm. Further, Un-m unsets from Pn to Pm inclusivee. T

7. Tnd routine directive — In Chapter 3 we described the accumulator and some of the basic

accunulator instructionse

7 indicates the end of a routine. Usually &Sﬁm is 50@ 5mommmmuwn
since a new R directive implies the end of www vwmowm¢sm Hoa&pﬂm.awww o —
program material between 7 and the next R will be assigned to rou o

——=J
- - S S - .

All the accumulator instructions operate on floating-point numbers,
They may be divided into groups as followsi-

(a) Standardised rounded operaticns
(b) Standardised unrounded operations
(c) Unstandardised operations

(&) Test instructions.

The only standardised rounded instruction not so far introduced is
360 Standardise a, round am am’ = a QRE

and check for exponent
overflow

- ’

641 Standardised Unrounded Operations

-—— ——
\\
—— — - -
(- (- (-

In these instructions, L is cleared before the operation, and after
the operation the result is standardised as a double-length number in A,
An interrupt occurs if the exponent overflows.

[[—

300 Add am and s a’=am +s QE
301 Subtract s from am a’' =am -~ s QE
302 Negate am and add s a' = -am 4+ s QF

The instructions are thus similar to 320-322 except that rounding does not
OCCUre

s

The following instructions are like 300 and 301 except that L and
Ls are not cleared initially.

[ﬁ

They provide a limited form of double-length working; limited because
the answer is only correct if ay < sy (i.€e the exponent of s must not be
less than the accumulator exponent)

| —

u@ 0 Add s to a a'=a +s5 QF
\\ (pseudo double-length) (if ay < sy)
, 311 Subtract s from a a'=a~-s QE
— ﬁ (pseudo double-length) (if ay < sy)

Before two numbers are added or subtracted in the accumulator, the
one with the smaller exponent is shifted down into L and its exponent ine
creased accordingly until the two exponents are the same.

-
. -

-
 —-—

(1.65)

=
-

(1.65)

6.1/2

In the 510 and 311 instructions,
correctly, If Sy < ay then sgx will be s
nal contents of L will be spoiled.
311 will be

if ay < sy then agx is shifted down
hifted down into L, and the origi-

30 an’ =am 45, 1 spoiled. QE
511 am’ = am - 5, 1 spoiled. QE

Extracodes are provided for correct double-length working in all
cases and these are described later,

Two store locations are needed

it is conventional to store both numbers as standardised numbers with the
less-significant half always positive and with an exponent which is at
least 13 less than that of the more-significant number,

The contents of mwo accunulator are

em 4+ a8l,8%2

as the floating point number al has an exponent ay which is 13 more than

its true value.

The 355 instruction is provided to position al correctly,

355 Copy the special sign bit of L a’ — ala813 g
(1s) into all bits of M, then :
. 8" = a - an Q
standardise when 1s = 0

Example s

aomwowm¢smmoocsswmaow contents for double-length working in
locations 100 and 101

356 0 0 100 store am
355 0 0 J4 position ap *
36 0 0 104 store al.8*? (Q)

* Note: A1l accumulator instructions make a reference to the store
and obtain a store operand, even if the f unction does not
use ite Any store address within the program is of course
allowed, but as operands are read from the fixed-store very
much faster than from the core~store it is conventional to

mwmowﬂwﬁsowHWm&mnmwmmmMbﬁww fixed-store, J4, in such
instructions.

mxmsmwm"

Locations 100 and 101 contain two numbers to be regarded as a

double-length number, Add this number into the accumulator, using
locations 98 and 99 as so%wwﬁmmwmom.

356 0 0 o8 store am
855 0 0 J4 position aj
320 0 0 101 add less-significant halves,
ﬂ_u in am.
(1.65)

In this case the definitions of 310 and

- L -

6.1/3

356 0 0 99 store partial answer
324 0 0 98 replace original am

30 0 0 100 add SOmdmemSHwHomﬁ& halves,
o result is standardised but
not rounded in a

356 0 0 98 store most-significant part
of this

355 0 0 J4 position the rest
300 0 0 99 add in less~significant sum
310 0 0 98 final answer in a

(This program is extracode 1500)

The following instructions complete the standardised unrounded

operations)
? 340 Standardise a, check for a =a QE
exponent overflow

342 1ultiply am by s, leaving the a' = ames QE
double~length product
standardised in a

343 As 342 but multiply negatively a’' = -am.s QE

366 Cleer L, complement am if a’ = |am| QE
negative, and standardise

367 Clear L, copy the modulus of a’ = |s] QE
s to Am, and standardise

f

If

6.2

64241

6e2e2

6.2/1

Unstandardised Instructions

The unstandardised instructions can be divided into four groups
(a) Those concerned with storing and loading the accumulatore
(b) Multiplications.

(¢) Divisions.

(d) Miscellansous.

The unstandardised instruction which store and load a are described

Unstandardised Multiplication Instructions.

belows~

356 Copy am into S

857 Copy al (that is 1, 1s and ay)
into S

346 Transfer am to S and clear A
(a’ = floating-point zero)

347 Transfer al to S and clear L
and Ls

344 Copy the argument and sign from
S into L and Ls, leaving Am,
including t%=» exponent,
unchanged

345 Copy the argument from S into L
and the sign bit from S into Ls
and &ll bits of M, Leave the
exponents unchanged.

314 Copy s into Am leaving L and Ls
unchanged :

315 Copy s negatively into Am

leaving L and Ls unchanged
(A0 will be set for s = ~1,0)

”m.u.b H.~“O
””8

r .
= 8y, I = sign

of s, ay’ = ay

372

373

352

853

Multiply am by s and leave the
double~length product unstand-
ardised in A, Clear the sign

bit of L. Check for exponent

overflow and accumulator over-
flow

As 372 but multiply negatively

liultiply am by s, leaving the

double=length product unstand=-
ardised in A, and set the sign
bit of L equal to the sign of

the product. Check for E and

A0

As 352 but multiply negatively

(1.65)

= 8lleS

I

= 0 EAO

~alle S
0 EAO

e S

sign of m EAQ

~ Slle8
sign of m EAO

-

[—

e

(e8]
)

,}\ =

R

-

B
~ —

-

6% 22

352 and 353 are identical to 372 and 373 except that they set Ls
instead of clearing it. These instructions (352 and 353) are intended to
form the single-length product of two unstandardised integers and leave the
mantissa in L with the correct sign in Ls; they can therefore be redefined
as

352 1'=m.sxz E
353 1" = -mesxz E
Note, however, that the exponent mtq will be applicable to the double~length

product in A, and that the accumulator overflow will not be set when the pro-
duot overflows into M, but only when the double-length product overflows.

6e2+3 The Division with Remainder Instructions.

There are three division instructions which give the quotient in L
and the remainder in M, However, these instructions only operate correctly
for numbers which obey certain conditions,

There is a large range of division and remainder extracodes provided,
which use these instructions and ensure the required conditions are fulfilled.
For most purposes, it is easier to use these extracodes rather than the basic
instructions. The only exception to this rule is the use of the 375 instruc-
tion for division of positive fixed-point integers, and this special case
will therefore be described first:-

A fixed-point integer ¢ can be represented in a 48-bit word by a
fractional mantissa sx= ¢ X m;.u,.p.u where n is normally 12 or 13, and an ex-
ponent sy, usually + O or +mn. Provided that they are positive and that the
divisor has sx < 5, which even with n = 12 allows integers up to 50,000
million, the 375 instruction can be used to divide one such number into
another. The dividend should first be placed in L, with M clear: this places
the dividend in Ay with an additional scale factor of &*% and ensures
ax < |sx| provided that sx# O. The simplest case of the 375 instruction may

now be defined as follows:=~

375 TFixed-Point Integer Division

"_of|s| E
= remainder)
<ax < |sz| < 2)

Divide a by the modulus of s, i
placing the quotient in L and m
the remainder in M., a and s (
nust satisfy 0 < ax < |sx| < %3 0 <m’ < |sa
the remainder will then lie mw\ = ay - Sy
in the range 0 <m’ < _ms_.

After obeying the 375 instruction the remainder n’ will be scaled by
the same factor as the dividend, and it shonld therefore be assigned the same
exponent. The quotient 1’ will be an integer scaled down by 8*° and it must
be shifted up one octal place if it is required to store it with a scale
factor of &2,

(65)

6.2/3

Examples

Given two fixed-point integers o and d in A5 and 1A5,
each stored with one octal digit after the point; e.gs o is
stored with mantissa 822 ¢ in A 5, Form the quotient and
remainder of ¢/d, in the same form and with exponent 12, and
store them in locations 7 and 8.

345 0 0 A5 az’ = g*® (g* c)
(io€e m' =0 and 1

1 =813 ¢/d
n’ = 8% x remainder

"mxu.u OV
375 0 0 145

121 124 0 12012 ey’ =12
356 0 0 8 Remainder am to location 8
364 0 0 J4 =812 o/a

357 0 o 7 Quotient al to location 7

The full definition of the 375 instruction is as follows:

375 Pseudo Fixed~Point Division
al’ =a/|s| E

Divide a by the modulus of s,

placing the quotient in AL n' = "repainder®

and a form of "remainder", (0 cax < |sz| < 1)
n’, in M, If m’ > O the True remainder

true remainder n" =mn’, but " =mn’if o’ >0
if m’ < 0, which will only =n’ $£1,0if n* ¢ 0
occur when n" > %, then 0 gm" ¢ |sx]

n" =n’ +1,0

a ond s need not be standardised but they must satisfy the resw
triction 0 < ax < |sx| < 1.0s The true remainder m®will then satisfy the
constraint 0 < m* < |sz|. ay’ is the exponent of the quotient. The ex~
ponent of the remainder is ay - 13, iece 13 less than that of the double-
length dividend a before the operation,

If s;<axr< 8 .Ts_ or if sgp= ~1,0 the 375 instruction provides a
quotient and remainder m® which are correot if regarded as floating-point
numbers but which break the rules of fixed~point division. The remainder
may be larger or smaller than with true fixed~point division, its exponent
being as follows:

Condition Exponent of Remainder
|saz| <ax< 8 |sal ay - 12
0 <ax < |sz| < 1.0 ay - 15
s = ~1,0 and maww ay - 13
sp=-1.0 and ax <% ay ~ 14

When _ms_ < ax the adjusted remainder m" may not be exact, because the last
octal digit of the correct remainder will have been lost.

(165)

=N

-

e

—

— —

P — —_— —
—
- -

=

6.2/4

If ax < O then am will be negated before the division takes place

but 1L will not be adjusted.

If a > 1.0 then ax will be shifted down
by one before the operation,

and its exponent increased

If sz=0 or axx 8 |sx|, the 375 instruction will not give a correot

quotient or remainder,

376 Divide a by the modulus of s,
placing the quotient in Al and
the "remainder" in M. The
dividend a must not be negative
and the divisor s must be
standardised before the 376
instructed is obeyed. The
"remainder" is such that:
mantissa of true remainder -— m if

exponent of true remainder = ay -

1

a1’ =a/|s|

(2 = 0) EDO
Remainder

o' =mn’ if n’ >0
=n’ 4+41.04if n’ <0

m >0

Za

m +7.0 ifm ¢ O

13 if _m.H_ < _m..h_

ay - 12 if _NB_ > _m...d_

The quotient al’ is not normally an integer; it is merely the un-
rounded representation of m\ 8 to such accuracy as is possible in the 39
binary digits of L, The true remainder has no special significance other

than that it represents a - s.al’ and is always

positive or zero. VWhen

|ax| > |sx| the true remainder m" may not be exact, because the last octal

digit of a - s.al’ will have been lost,

Exponent overflow is checked for, and division overflow occurs if s
is unstandardised or zero. If a is in standardised form before the division,

al’ will be a standardised quotient, but m’ and

377 Divide the modulus of am by the

modulus of s, placing the quotient

in Al and the "“remainder®, as
defined for 376, in M, Check for
E and DO, The divisor ® must be
standardised. If am is in
standardised form before the
division, al’ will be a stand-
ardised quotient, but m’ and m"
may not be standardised.

n" may not be standardised.

al’ = |am| / |s| EDO
Remainder
Ew I.l..B~ if

n’ >0
= B~ o+ 1.0 if

=
B~Ao

Ge2¢4 Miscellaneous Unstandardised Instructions

3564 Round by adding. Add one to the
least-significant digit of m if

an’ = a.R+ AO

the most-significant digit of 1 ig

a one, Accumulator overflow ocan
occur., The contents of L are
unchanged.,

341 Check for exponent overflow.
a is unchanged.

361 Round am and check for exponent
overflow,

(1.65)

64 3/1

Ged Test Instructions

The following four instructions are tests on the accumulator man-
tissa, and comparable to the tests on bt or bm. Note that bm canbe used
to modify the addresse.

234 Place n in Ba if the accumulator ba’ =n if ag=0
contains zero.

235 Place n in Ba if the accumulator ba' =n if agp£ 0
does not contain zero.

236 Place n in Ba if the accumulator ba’ =n if axp >0

contents are greater than or
equal to zero.

937 Place n in Ba if the accumulator ba' =n if ax < O
contents are less than zero.

A1l these test ignore the sign bit of L.

For the accumulator to contain zero, both guard bits must be zero;
the most-significant guard bit, rather than the sign bit, determines whether
the accumulator is greater or less zero. With standardised numbers this is
immaterial, as the gusrd digits will be copies if the sign bit, and with
fixed point working the correct result might still be obtained even if

accunulator overflow had occured.

Examples:

1. Increase b3 by 0, 1 or 2 depending on whether am is », = or ¢
the contents of store location 16. Let A10 be the address of a
register available for working space.

356 0 0 A0 store am

321 0 0 16 an =.s

234 3 3 1 b3 =13 +1 if am = s
237 3 3 2 b3’ =b3 4+ 2 if am < s
334 0 0 Al0O restore am

2. B1 and B2 contain positive intcgers nl and n2. Form n1 x n2
in store location 5 as a fixed-point integer, r=presented by
mantissa nl1 x n2 x 8*? and zero exponent. Replace bl by the
integer quotient n1/n2, and place the remainder from this
division in B2. Let locations 6 and 7 be available for working

space.
113 1 C 6.4 set b1, b2 in the store
113 2 0 7e4 as floating~point numbers
113 0 0 6 - with zero exponents
113 0 0 7
34 0 0 6 an’ =nl x §*?
%2 0 0 7 a’ =nl x n2 x §2¢
%5 0 0 J4 a’ =nl x n2 x 832°

icee 1’ =nl x n2 x §*°2
357 0 0 5 store 1 = nl x n2 x &%

(1.65)

ST

.
| S

)

—

——

-
-

375

356
564

557
101
101

2
1

0
0

6.3/2

J4

7
Ged
7ol

set n1 in L with n’ = sign
of ml = 0. az' =nl x832°

1’ = (n1/n2) x 8%, n' =
remainder x 8°*%

store remainder anm

shift up quotient to Hs.nmmmwpu
positions 1’ = (nl1/n2) x &

store quotient 1 = (nl/n2) x &*2
set b2’ = remainder
set b1’ = quotient

Note that in this example it is not necessary to set the 8@05@5&)
zero after division because ay is made zoro during the multiplication
and both division operands have zero exponents.

(1.65

)

o

- e .- o L W EE e

7./4

Chapter 7

EXTRACODE INSTRUCTIONS

7e1 Introduction

The basic instructions consist in just those simple operations which
the computer has been designed to execute directly. In the Atlas order-code,
however, there are many complicated operations which the computer deals with
in a special way; these are known as extracodes and are distinguished from
the basic instructions by having a 1 in f , the most-significant bit of the
10-bit function number. Upon mboocadmwwsm an instruction with f_ =1, there
occurs an automatic entry to one of many built-in subroutines, the choice
being determined by the remaining three octal digits of the function numberi,
The exit from the subroutine is again automatic, and the program proceeds in
the usuel way with the instruction next after the extracode, unless the extra-
code subroutine has initiated a Jjumpe.

7ele Uses of the Extracode Instructions.

As their name implies, the extracodes provide an extension of the
basic order-code, including both those complicated operations which are ex-
cluded from the basic instructions, and many of the facilities which on pre=-
vious machines have been obtained by the use of library subroutines.

Amongst the arithmetic instructions provided by extracodes we may
instance those in which the address, interpreted as a floating-point number,
is used as an operand; double-length operations; and a full range of ele-
mentary functions such as logarithm, square-root, sine etc.

An important group of extracodes deals with the special requirements
of input and output and also of magnetic tape transfers; the uses of these
will be discussed at some length in Chapters 8 and 9.

The organisational extracodes comprise extensive facilities designed
to assist the programmer in making efficient use of the operating system of
Atlas. The various aspects of this are described in later Chapters (par-
ticularly Chapters 11 and 12).

7.1.2 To the programmer, extracode instructions appear as basic instruc-
tions. The two types of instruction canbe freely intermixed, and after
each instruction control passes sequentially to the next (except for jump
instructions). It is therefore not strictly necessary to know how the
computer deals with extracode instructions, although this is given for com--
pleteness in the next section.

There are 512 function numbers available for extracodes, 1000-1777.
Of these, 1000-1477 are singly-modified instructions (B-type) and 1500-1777
are doubly-modified instructions (A~type)s In some of the B-type instruc-
tions, bm is used as an operand so no modification takes place.

(1465)

7.%/1

7¢2 The Logical Interpretation of Extracode Instructions

When an extracode instruction is encountered the following action
takes place:~

(a) The content of Main control, 1127, is increased by one to the
address of the next program instruction,

(b) The address is modified according to the type (i.e« N +bm
for B~type, N 4 ba + bm for A-type) and the result stored in Bi49,

(c) The seven Ba digits are placed in bits 15-21 of B121, unless Ba
is B122 in which case B121 is left unchanged; this enables B122
to be used to specify a B-register in extracode functions
exactly as in basic functions.

(d) The function digits £1 ~ £9 are placed in extracode control,
B126, as shown below.

Bit 0 1-9 10 11 12
Value 1 000000000 £1 f2 £3 0 O

13 14 15 16 17 18 19 20 21-23
£4 £5 f6 £7 £8 f9 000

(e) Control is switched from Main (B127) to extracode (B126).

The next instruction to be obeyed is now in the fixed store, under
extracode control, at a location determined by the function digits. It dsin
one of 64 registers (given by £4-f9) in one of 8 tables at intervals of 256
words (given by f1-f3), The tables of 64 registers are called "jump tables™,
In general this instruction will be an unconditional Jjump into a routine
which performs the required function. These routines are permanently stored
in the fixed-store and written in normal basic instructions. Each routine
terminates with an instrtotion in which f1 = £3 = 1 in the function number.,
This is obeyed as if f1 = O and then control is switched back to main control
(eege 521 is equivalent to 121 followed by "extracode exit")e The next ine
struction to be obeyed is then the one whose address is in B127; if no Jjump
has been initiated by the extracode this instruction will be the one immed-
iately following the extracode instruction.

The roubines that perform extracodes can use B-registers 91 to 99
inclusive and always use B119, B126, and B121 (unless Ba = 122).

Examples:

1. Extracode 1714 is defined as am’ = 1/s
Replace the numbers in locations 100 to 105 by their reciprocalss

121 1 0 5 set modifier/count
201714 0 1 100 an’=1/s
356 0 1 100 store
203 127 1 A2 count

Fach time the extracode instruction is encountered b427' = b127 +1,
121’ = 0, p119’ =100 + 1 + b0, b126' = J40034140 = +1804J4 and
control is switched to B126, The instruction in the jump table is

121 126 0 A4

(1.65)

=

e

- e = .

7.2/2

The instructions at Al4 are
14)334 0 0 A96
774 0 M9 0

set am = +\—

374 division 1/s, then reswitch to
main control,

96)+
2. FExtracode 1341 is defined as ba' = ba.2" (arithmetic shift up)
Shift D16 up by 2 more than the integer in B17
1341 16 17 2
This instruction sets b121’ = 16D1, b119' = 2 + 17, eto. (Note

that b16 is not added to b119 because 1341 is a singly-modified
(B~type) extracode).

B« Shif't the contents of B20 to B47 inclusive up by 5 places.

121 121 0 2001 set B121 pointing at B20.

11841 122 0) shift, As Ba = B122, b121 is left
unchanged when the extracode is
entered.,

172 121 0 471 bt’ = b121 - 47D1

220 127 121 A If bt £ 0y b121" = b2 4 Ou4

Exemple 3 illustrates the use that can be made of B121 and B122 in

extracodes; this is the same as their use in basic instructions except that
extracodes with Ba £ 122 will overwrite B121.

(1.65)

7.3/4

Ted Allocation of Functions

The extracodes are divided into sections as shown below, though
there are a few functions which do not fit into this pattern. References
ere given for those subjects described in this chapter.

Functions Sub jeots Reference
1000-1077 Magnetic tape routines, and Input and

Output routines, -
1100-1177 Organisational routines. -
1200-1277 Test instructions and 6-bit character

operations 76 & 74542
13001377 B-register operations. 7e5e1
1400-1477 Complex arithmetic, vector arithmetic

and miscellaneous B-type accumulator .

routinese. Tele® & 7ose7
1500-1577 Double-length arithmetic and accumulator

operations using the address as an

operand. Toeliad & Teded
1600-1677 Logical accumulator operations and half-

word packinge 7e8¢3 & Te4e8
1700-1777 Arithmetic functions (logy exp, sge.rt.,

sin, cos, tan, etc.) and miscellaneous

A-type accumulator operations. Tedod; Tede2 &

7eded

Not all of the 512 extracode functions have been alloocated and,
where convenient, constants and extracode programs have been packed into
the vacant jump-table locations.

This means that the use of an unallocated extracode function
may result in an 'unassigned function' interrupt or may gceuse some extro-
code to be entered incorrectly. The latter case would give the programmer
wrong results,

In particular, the first location in the fixed store, J4, contains
the floating-point number uM. This causes an unassigned function interrupt
if extracode 1000 is encountered, since J4 is the first register of the
first jump-table. Note that floating-point zero is equivalent to the in-
struction

1000 0 .0 O,

There follows a description of many of the extracodes. Where
possible, the actual number of basio instructions obeyed in each extracode
routine is given inthe right hand column.

Appendix E gives an ordered summary of all the extracodes, for
easy references.

(185)

. s s -

=

I8

-— 2

L

7.4

7.4/1

The Accumulator Extracodes

Tedel

The Most Used Arithmetic Functions

operate

The following routines each have two extracode mumberss The first
s on s, which is standardised on entry. The second operates on a,

which is standardised, rounded and truncated to & single-length number on

entry.

For this number we use the notation age The results are always

standardised rourded numbers in Am,

- < am
z

0 <anm’

= < am
2

1700 Place the logarithm to base e of s in Am. am’ = log s

41701 Place the logarithm to base e of ag in Am. am’ = log ag

1702 Place the exponential of s in Am, am’ = exp s 43
1703 Place the exponential of ag in Am, an’ = exp ag = 42
1740 Place the square root of s in Am. an’ = + [s = 42

m.S~" +; agq M&.._
mB.H...._ aq: +s° <0

~m.o_“_.u.o.,ﬁ..sm the two arc sine extracodes, am’ is in radians, with
< T

2

1720 Place the arc sine of s in Am.
1721 Place the arc sine of ag in An.

1711 Place the square root of aq in Am.

1712 Form the square root of (ag® 4 8°)and
place this in Am.

an’ = are sin s
am’ = arc sin ag

Following the two arc cosine ex tracodes, am’ is in radians, with
<

1722 Place the arc cosine of s in Am. am® == arc cos s
1723 Place the arc cosine of aq in Am, am’ = arc cos agq
Following the two arc tangent extracodes, am’ is in radians, with
"e¢m

-
1724 Place the arc tangent of s in Am am’ = arc tan s
1725 Place the arc tangent of aq in Am. am’ = arc tan agq

1726 Divide aq by s and place the arc
tangent of this number in Am. am’ is
in rodians and such that

~

~r<omn’ < m an’ = arc tan (ag/s)
1730 *Place the sine of s in Am, am’ = sin s 4
173 *Place the sine of aq in Am, am’ = sin aq 40
1732 *Place the cosine of s in Am, am’ = cos s 42
1733 *Place the cosine of aq in Am. am’ = cos aq 41
1734 *Place the tangent of s in Am. am’ — tan s 34
1735 *Place the tangent of aq in Am. am’ = tan ag 33

* In 1730 -1735, s and aq must be in radians.

(1465)

"

7.4/2
/ 7.4/3

7e4e2 Other Floating-Point Arithmetic Functions

- 1 Opposite to the denomina
1704 Place the integer part of s in A. a’=intpts QE 5 m@@ eno tor
a 2 ame th t
1705 Place the integer part of a in A. a' =int pt a QE 4 - hgriy m.” &m TARORAO®
. i th t
See also 1300 and 1301. ; pposite to the numerator
S the i

1706 Set a’ =41, 0 or =1 as s », =, a' = sign s Q 5-6 \m sme .88 the. guotient

Or < ZETrOe) 5 Opposite to the quotient
1707 Set a’ =44, O or -1 as a >, =, a’ = sign a Q 45 - 6 Positive

or < zero. 7 Negative ba,
1713 Raise ag to the power s and place ﬁ 1467 Evaluate th 1 . ¢ _ T

the result in am, provided that am’ = aq® QRE — mom +cwpw§ wmmwwmawmw s oobe s B uﬁmloma.pa

ag 2 0, Fault if ag < 0. aq = 0 where sg is the number at ba where mH"u S +4r QRE 64dba
1714 Place the reciprocal of s in Am. am’ =1/s QREDO 4 - S, =# at S 4+ 1, etc. and the order

f th 1, i is gi

1715 Place the reciprocal of am in Am, am’ = 1/an QREDO 4 Ms&omMﬁ@Ms%wame P ETLERE
1754 MMMM@ am by R+, clear L and stan- r 1'—=0 QR+ 6 _ 1466 MHultiply the two numbers at a'=a + C(N4bm)

BEEL5Ce am’ = &, - + addresses (N 4+ Dba +bn) and x C(N4ba+ bm)
1756 Interchange the contents . am’ = s, 8 (N +bm) and add the double- QE 18

of S and Am (with no standardising s’ = am length result into the full

ccunulator,

1757 Place the result of dividing s by ,) MOGBQMSm dMWom place near the

am in Am, am == m\mB QREDO 4 least~-significant end of L.
1760 Square the contents of Am an' = am® QRE 3 (In detail, when the double~

length product has been formed,

its least-significant half is

first added in M to the least-
significant half of the original
contents of A, This addition is
rounded. The rest of the product
and the original contents of li are
then added into A without rounding).

1415 Generate pseudo-random nunbers (PRN's) in A and S (or S¥)
from numbers in S and S¥. This extracode may be used in
several ways.

1. With digit 21 of S equal to 0, the PRN is placed in S
and A,

(a) If s¥y=10, sz >0 and s™x > 0, then s’ will be a PRN
in the range 0 to mmcn rectangularly distributed and
fixed-point (i.es sz’ is a fixed-point PRN and sy’ = sy)e
a' will be a PRN in the range 0 to s*z8°Y (with al’ = s').

(b) If s*y=0, sz <0 and s*z > 0, then as (&) except that
ranges become ~8 ¥ to 0 and lm”.,..&'m_mm..» to O respectively.

41774 Divide am by s and place the result
in Am. The original numbers need
not be standardised. am’ = am/s QREDO 10

1775 Divide ag by s and place the result
in Ams The original numbers need not
be standardised. am’ = aq/s QREDO 9

1774 and 1775, besides providing a division instruction which operates on
unstandardised numbers, store information which enables extracodes 1776 and
9407 to calculate a quotient and remainder.

1776 When used after division extracodes s’ = quotient QREDO 13
1774, 1775, 1574 or 1575, with no am’ = remainder
other extracodes in between and am
unaltered, the definition of 1776
is as follows:

i

Place the quotient of the previous
division in s and the remainder in
Am, where the remainder has the sign
of the divisor.

41407 As 17768 except that the quotient is s’ = adjusted (o) If macﬂ 0 and m”..n.a. < 0, then as (2) except that the
integral and is adjusted according integral quotient PRN's alternate in sign.
i inder, which QEDO .
MM Mwmowwmwnow%&ww MMEWM%HMMW“E . am’ = remainder | - 2, With digit 21 of S =1, the PRN's are generated in S* and

A instead of S and A. The cases are as for 1, interchanging
Ba Sign of remainder , S and S* throughout.

0 Same as the denominabor

&

(165) (1.65)

3. Two successive u

Tn all cases the generation process
and S*xp containing numbers with a ra
digits, but with their least-signific

Tod/%

ses of ths extracode, with digit 21 of S

Pipst — O and then = 1, and with sy= s*y=0, will set
PRN’s in S and S*, both rectangularly distributed in the

renge O to 1.

A will contain th

e product of two PRN’s and

so will be distributed in the range 0 to 1 with the proba-
bility ~log a»d e of being in the neighbourhood dx of ®e

7e4e3 Accumulator functions suitable for Fixed-Point Working

1752
1753

1755

1762
1763

1764

1765

1766

1767

1772

1773

1452

1473

Shift agp up 12 ootal places and sub-

tract 12 from ape

Shift m down 12 octal places in awx

and increase ay by 12.

Force ay to the number ny

given in bits 0-8 of n, shifting ax

up or down accordinglys

Shift ag up 12 octal places leaving

ay unchanged. _

Shift m down 12 places in am, leaving

ay unchanged.

Shift ax up n octal @Hmoo,mu leaving

ay unchanged. If n is negative,

shift agp in the opposite direction.

Shift ap down n octal places, leaving

YN

ay unchanged. If n is negative &
az in the opposite directiona

Place the modulus of s in Am, without
Accunulator overflow

standardising.

will occur if s is =1a0.

Place the modulus of am in Am without
AO will occur if am

standardising,
nmu-n... I.A o o.

Multiply m by swx shifting the H‘.mmcni..
up by 12 octal places to be in ki, and

subtracting 12 from agye

Divide a by s, and force ay equal to =
192, shifting the result, which is in Myay =

if necessarye

Multiply am by s, forming the answer
in Ao Force ay to the number given
in digits 0-8 of ba, and shift aw

accordingly.

Divide axp by sx, forming the answer
in Ape Force ay to the number given
in digits 0-8 of ba, and shif't ax

accordingly.

(1,65)

nust be started with Sz
ndom mixture of binary
ant bits set to 1.

2
E.m = m.&emcu.

4

ay = ay + 8y -12

4

ax == M. S%e

m.@ = ._Qm..t

m.8~ == Am.uv\m.&v.e

mncs] dm.c

ay' = ay - 12 A0 10
m.sw —] aemtu.w
ay' =ay +12 AO B
m.sa = m.aomm..tlﬁr.c
mt~ = ny A0 17
P A0 9
ay’ = ay
* - m 812 A0 5
oy’ = oy
it Ls a7 A0 17
ay’ = 8y
ag = axed D A0 12
ay' = 8y
am’ = |s| AN 4
am’ = —ma_ AO 3
n' = AE.mBVm»u A0 M

n’ mmn\m.dv,o Py Sy-1a
12

A0 27

g2ysyay

A0 19-23

mm...&l mmﬁ..vm.w\

A0 24-28

—

=

-

| J

7.4/5

Fixed=-Point Divisions with Remainder

The three extracodes 1474, 1475 and 1476 each divide some part of
the accumulator by the contents of store location S, placing an unstandar-
dised quotient q in the location whose address is ba and leaving an unstan-
dardised remainder r in Am. In all cases, r retains the original sign of am
and has a mantissa in the range 0 < |rz| < |sz|s The guotient is rounded
towards zero. Division overflow is set if sz = 0 or =1.0 or if
|sz| < | mantissa of dividend |» Both DO and AO are set when the mantissa
of the dividend is equal to =1.0.

If only the remainder is required, one can avoid the need to set ba
by putting Ba = B126 in the extracode instruction.

1474 Divide am by s.

The exponents of

q and r are given by qy= ay — sy

and ry = ay=- 13

OA.GN.V !

quotient (am/s)

¢

DO 20-29
AG

am'= remainder (am/s) E

1475 Divide a by s. The exponents of C(ba)’ = - DO 19-28
q and r are given by gy = ay - sy quotient (a/s) A0
and ry=ay - 13 am’ = remainder (a/s) 2
1476 Divide the integral part of am C(ba)’ = (g int pt am) 4
by s. The exponents of g and r s
are forced to qy= 24 - sy and DO
ry=12. The condition am’ = r{ int pt am E 2837
|am| < 8°* |sz| must be observed, s
otherwise division overflow will
ococur and the results will be
meaningless. The least-signif-

icant octal digit of q is always
zero, and it is intended that
usuaelly sy= 12 so that qy= 12
also and one is working with in-
tegers. (In the case ay < =6
and am.< O, this extracode must
be preceded by 217, 124, 124, 0
to ensure the t rue integral part
is used).

7.4,4 Double-Length Arithmetic

The double-length number s: is stored in two consecutive locations
s and s +1 as two standardised floating-point numbers, where sy - 13 2 s* s
s¥ and al are assumed to be always positive. All arithmetic is standar-
dised, rounded and checked for exponent overflow.

1500 Add s: to a a' =a ¢ st 10
1501 Subtract s: from a a'=a -8 10
1502 Negate a and add s: . a' = ~a + st 14
1504 Copy s: into a a’ = s 4
1505 Copy s: negatively into a a' = -s: 3

(4+65%)

7.4/6
1542 Wultiply a by st a' = ges: 15
1543 Multiply a negatively by s: a’' = =g.s: 19
1556 Store a at S: sit=a 5
1565 Negate a a’ = -a 5
1566 Form the modulus of a a’ = |a| 4-6
1567 Copy the modulus of s: into As a’ = |s:| 5
1576 Divide a by s: a' = a/s: 19

7e445 Arithmetic Using the Address as an Operand

The modified address is taken as a 21-bit integer with an octal
fraction. Fixed~point operations imply an exponent of 12.

»

1441 Store ba in S as a fixed-point sz’ =Dba, sy’ =12 5

number
1520 Add n to am am’ = am +n QRE 10
1521 Subtract n from am an’ = am ~ n QRE 9
1524 Place n into a a’'=n Q 8
1525 Place n negatively into a a’ = -n Q 7
15634 Place n into a, without standardising.

a’'=n 10

1535 Place n negatively into a, without

standardising £ & 9
1562 Hultiply am by n am’ = am.n QRE 8
1574 Divide am by n an’ = am/n QRE 16
1575 Divide aq by n amn’ = ag/n QRE 15

After 1574 and 1575, the extracodes 1776 and 1407 can be used to give a
remainder and adjusted integral quotient. See section 7.4.2e

7e446 Complex Arithmetic

The "complex accumulator" Ca is taken as a pair of consecutive re-
gisters, the address of the first one given by the contents of Ba in the
instruction. If Ba is BO, Ca will be locativons O and 1. As with the double-
length arithmetic, s: is a number peir consisting of the two numbers at
addresses S and S 4+ 1. For Ca and S:, the real part of the number is in the
first location, the imaginary part in the second. Ca may coincide with S:
if' desired, but the two must not parkially overlap, i.e. the dif'ference be-
tween ba and S must not equal 1. The accumulator is used for the arithmetic
so its original contents on entry are spoileds All arithmetic is standar-
dised, rounded and checked for exponent overflow,

1400 Place the logarithm of s: in Ca ca’' = log s:
1402 Place the exponential of s: in Ca ca’ = exp s: 140
1403 Place the conjugate of s: in Ca ca’ = conj s: 5

1410 Place the square root of s: in Ca

ca: = +J s: <17

(1.65)

(z;.“

- - -

-

7.4/7

1411 Place the argument of s: am’ = arg s:

(radians) in Am.
1412 Place the modulus of s: in Ame. an’ = mod s: 53
1413 Form the numbers s cos s*, s sin 4

s* and place these in Ca. (8% is ca’ = s.cos s*, 95

in radians)e Sesin s*
1414 Place the reciprocal of g: in Ca. oa’ =1/s: 15
1420 Add s: to ca ca’ = ca + 83 8
1421 Subtract s: from ca ca' = oa - s3 8
1424 Copy s: into Ca ca’ = s 6
1425 Copy s: negatively into Ca ca’ = -8 6
1456 Copy ca into St s:¥ = oa 5
1462 Hultiply ca by s: : ca’ = ca.st 18

Note: 41400 - the imaginary part of the complex logarithm will lie
in the range - 7/ (not inclusive) to # (inclusive).

1410 ~ of the two possible values of the complex square root,
the one computed here has a non-negative real part; the re-
maining ambiguity about the square roots of negative real
numbers is removed by computing the one whose imaginary part
is positive,

7e4e7 Vector Arithmetic

The following instructions operate on two vectors si and sze Both
veotors consist of lists of floating-point numbers stored in successive
locations. In each instruction the singly-modified address n gives ﬁww
nunber of terms in the vectors (i.e., the order) and Ba gives the starting
address of sis The next B-register after Ba, Ba®, gives the starting

address of sse Address n must be a positive integer.

Besides their uses in vector and matrix arithmetic, these instructions
can be used to manipulate lists of numbers in the store.

The accumulator is used in the arithmetic so its original contents
on entry are lost. All operations are standardised rounded and checked for
exponent overflow.

1430 Add the vector sz, which consists s ' = s + sa 9 4 4n
of n successiye numbers starting
at C(ba™) into the vector s,
which consists of n successive
numbers starting at C(ba).

1431 Subtract s from 8 8 =8 ~ 8 9 4 ﬁo

1432 liultiply each term of sp by am s ' = amess 10 4 4n
and store the resultant veotor
at Si'e

1433 ilultiply sz by am and add this to s =5 * am.s: 10 4 5n
St'e

(1.65)

Te4y/8

! = 13 & &n
1434 Copy 8, to 8, mu. mu *
1436 TForm in Am the scalar product: , n~1
. ees)) ’ am’ = 2 8 8
%10°%0 F +mp?olu_v "2 (0=)’ jopg 2d ei

where s 8 s oele
107 117 T12? ’

s are the numbers in S , and
1(n=) 1
8 5 5 5 eess are the numbers in s
30 21 P] n-1
1437 As 1436 but forming the scalar &' =32 L 10 +13n
product to double-~length 3=0

accuracy in a.

7+4+8 Half-Word Packing

Halfeword floating~point numbers consisting of 8-bit mxwoumb.«m and
16~bit mantissae are sometimes useful for low-accuracy calculations where
it is necessary to reduce store usage.

1624 Transfer the floating-point number a'=s 6
at S into the accumulator, without
standardising,

’

1626 Copy ay and the 16 most~significant s’ = am R 8
digits of ax into S after rounding
this number in Am by forcing a
one in its lowest bit if the rest
of ax is non-zero,

(1.65)

-

7.5/4

745 B-Register Arithmetic

74541 General B-Register Operations

1300 Place in Ba the integral part of ba’' = int pt of s
the floating-point number s, an’ = frac pt of s
Place the fractional part in Am,

1301 Place in Ba the integral part of ba’ = int pt of am
am. Place the fractional part an’ = frac pt of am.
in Am,

The following six instructions provide integer nultiplication and
division of ba by n.

For 1302 - 1304, ba and n are interpreted in the normal way as
21-bit integers with a least-significant octal fraction. In the multipli-
ction instructions octal fractions are rounded away from zero, and over=-
flow of the answer is not detected, The accumulator is used in the calous
lation, but am is preserved,

1302 Hultiply ba by n and place the ba’ =ba x n 25-24
result in Ba.

1303 Multiply ba negatively by n and ba’ = ~ba xn 22-23
place the result in Ba.

1304 Divide ba by n. Place the in- ba’' = int pt (ba/n)
teger quotient in Ba and the 25~-28
¥emainder, which has the sign of 197’ = remainder
the dividend, in B97.

i

For 1312 - 1314, ba and n are interpreted as 24-bit integers, and
the result is again a 24-bit integer.

1512 Multiply ba by n and place the ba’
result in Ba, .

I

ba xn 2524

1313 lultiply ba negatively by n ba’
and place the result in Ba.

-ba x n 22-23

I

1514 Divide ba by n. Place the integer ba’ = int pt (ba/n)
quotient at the least-sigpificant 197’ = remainder
end of Ba and the remainder, which
has the sign of the dividend, as a
24-bit integer in B97,

The following six instructions provide general n-place shifts of
numbers in B-registers. :

In arithmetic shifts, the sign digit is propagatcd at the most-
significant end of the register for shifts to the right (i.ees down).

In logical shifts the sign digit is not propagated.

(1.65)

7.5/2 7.5/53
For both arithmetic and logical shifts the result is cbwn.ocm&mw@ on , 1774 Dummy extracode to set up b121° = Ba,
shifts down. In circular shifts, digits shifted off the somd:mwmg.?bms.w 1 121 and b119. D119’ — N % ba + b
end of the register reappear at the lecast-significant end and vioe-versa. |

n is an integer in bits 0-20 as usual, with no octal fraction, (If n has

an octal fraction the answer may be wrong by a shift of one H.uwmom.v. in
each case, if n is negative a shift of n places in the opposite direction

oCCUrss

7452 Character Data Processing

=y

1131 Search for s in table starting
at C(ba)s If s can be found, ba’
will record its address, otherwise
the sign bit of ba’ will be set to 1,

, Main control is re-entered at ¢’ =

I ¢ + 2, and C(o +1) is used to specify

1340 Shift ba arithmetically to ba' = ba.2 " 10-22
the right by n places.

Eaad
[]

n

] 3 i ! — QM @.INA .J
1341 Shift dw MMHMWE@&HM&HM ke ke by dg paraneters k, 1, m as shown below. Up
wo-ths e y 1 pLaces. , n ﬁ to 1 4 1 half-words are scanned, stars
41342 shift ba circularly to the ba’ = ba.2" ", 10-19 ~ ting with C(ba) and continuing at ine
right by n places. circular shift 4 tervals of k half-words, each being
£ h
1545 Shift ba circularly to the ba' = ba.2", 9-18 3 masked with m before c omparison with s
left by n places. circular shift i bits 0-9 10-20 21-23 0~23
, k
1344 Shift ba logically to the 10-21 . 1 spare m
right by n placess * i) interval count mask
i] 3 9-20 &\ g
1345 mwww.w ba “_.o”_m.“_o..owu.”_..\ to the . ‘». _ In the following two instructions S is taken as a character address,
left by n places. | the octal fraction giving the address of the 6-bit character within the word.
The following are miscellaneous arithmetic instructions on half- & 1950 Place the character s in the ba’' = char s 7-10
words and index registerss least-significant 6 bits of
1347 Perform the logioal "OR" s'=bavs 5 " ww m.wn.w P ePEs DM e
operation on ba and s and
place the result in S 1251 Copy the character from +the s’ = char ba 141-18
. o o B . 125" — & least-significant 6-bits of
YEB5ELI BT AY b :H,anm.m . .wm i, uarsi mph 1253 Ba into the character position
and read the result to Dae then ba’ = .
r..u.. ts ba equel to the at S, leaving the other charac-
This se Q 0 981 i ters in the word unaltered.
position of the most-signi- |

i .ﬂwww.m i MHWMH.M.MWMNVEJ. | In the following two instructions ba is interpreted as a character
of . A@ o 15 0e8 i | _ address, and the content of the next B-register, ba*, is interpreted as a
Chapter 4.) o, 2 . half-word address. n is uscd as a count and its octal fraction must be
1356 Set the B-test register as bt" = ba s ZET0.
the result of non-equivalen- : i -

1252 Unpack n characters. The n 16 4+ int pt (63n)
cing ba and s.

characters, packed in successive
character positions starting at
C(ba), are placed in the least-
significant 6-bits of n succes=
sive ‘half-words starting at
C(ba*)e The other digits in
each half-word are set to zero.

1257 Set Bt as the result of non- bt’ = ba Wﬁ. 5 m
equivalencing ba and ne.

]

1376 Set Bt as the result of ool- btf =ba & s 5
lating ba and s.

-

41577 Set Bt as the result of col- bt =ba & n

lating ba and n. 1253 Pack n characters, Take the n 18 4 5n

characters stored in the least~
significant 6~bits of n succes=-
sive ‘half-words starting at
C(ba™) and pack these into n
successive character positions
starting at C(ba).

1564 Preserve the digits of Ba where ba' = (ba & %) v (bn & n)
there are zeros in n and copy - : 4 :
digits from Bm into Ba where m&.mo 119" =
there are ones in n. (ba #&bn) & 1]

1371 Dummy extracode to set up b1 m_H = Ba,
b121 and 111S. 119" = N & bum.

']

(1,65) (1.65)

BB et | | S | IR

7.5/4

7+543 Logical Accumulator Instructions.

B98 and BY99 are used in these instructions as a double~length

B-register,
1204

1265

1601
1604
1605

1606
1607
1611

1613
1615

1630
1635

1646
1652

This is called the logical accumulator and denoted by G.

Starting at the most-signifi . 10-31
icant end, count the number

of 6-bit characters which are

identical in g and s, con-

tinuing only until the first

dissimilar characters are

MOE&.. Place the result in

2y

Shift g up by 6 places, ba’ = mes. character
writing overspill to Ba, and of

add n. : &' 2 1
Copy s into G. g' = s 3
Add s into G. g' =g +s 7
Add s into G, adding any g' =g +s with 12
overflow carry in again end-around carry

at the least-significant

enda

Non-equivalence s with g g =g#ks 4
Collate s with g g'=gé&s 3
Replace g by its logical g' =% 3
binary complement.

Copy g into S s' =g 3
Copy g into Am, without an’ = g 4
standardising.

Form the logical binary g =g5&% 5

complenent of s and collate
this with gz

Copy am into G. g' = am 4
"OR" s with g g'=gvs 3
Set Bt by the result of bt' =g - s 7-9

subtracting s from g.

(165)

o

= |

L <2

=4

1

e
=

7.6/1

7.6 Test Instructions

7063 Accunulator Test Instructions

1200 Place n in Ba if the Accumulator
overflow (AO) is set. Clear AC.

1201 Place n in Ba if A0 is not set.
Clear .PO.

1234 Increase main control by 2
(instead of by 1) if am is
approximately equal to s.

1235 Increase main control by 2 if am
is not approximately equal to s,

ba’ =n if AO 9
is mmdn
ba' =n if A0 4
is not sete
¢! =c¢ ¢4 2 if 11
mB\...(..\m
5 c 4 2 if 11

C =
m.B\..Nvm

For 1234 and 1235, approximate equality is defined as

am ~ s
< C(ba)

am

am must be standardised on entry. By definition, if am = O then am is not

approximately equal to se

1236 Place n in Ba if am is greater
than zeroe.

41237 Place n in Ba if am is less than
or equal tO zero.

1255 Place n in Ba if m is neither
zero nor all onese.

1727 Depending on whether am is
greater than, equal to, or
less than s, increase main
control by 1, 2 or 3

1736 Increase main control by 2 if
the modulus of am is greater
than or equal to se.

1737 Increase main control by 2 if
the modulus of am is less than s.

ba’ = n if 4-6
an 0

am < O =5
ba’! = n if

nall 1's or all O's
O~“0+Av 7
2, S as am »,

"&Am

¢! =¢c +21if
_m.a_wm.

¢! =0 +2 if
o] < 2

In 1234, 1235, 1727, 1736 and 1737 em is preserved but 1 is not.

74602 B-register Test Imstructions

1206 Place n in Ba if the most
significant 6-bit character
in G is zero,

¢ e85)

