|

12.2/1

12,2 Optimization of Program Loops

The following table gives the approximate times in microseconds
achieved on Atlas for various instructions. The figures are averages for
obeying long sequences of each instruction, with the instructions and oper-
ands in different stacks of the core store.

Number of Address

Type of Instruction Modifications Time
an’ = am 4 s 0 1.6

1 1.9

2 2.4

em’ = am x s 0, 1 or 2 5.9
an’ = an/s _ 0y 1 or 2 2245
ba’ =ba + s 0 1e7
1 2.0

It is not possible to time a single instruction because, in general,
this is dependent on

&) the exact location of the instruction and operand in the store;
ww the instructions preceding and following; for whenever possible
one instruction is overlapped in time with some part of three
.~ other instructions,
o) whether the operand address has to be modified,
@w for floating=-point instructions, the numbers themselvess

This is illustrated when evaluating a polynomial, using a central
loop involving a singly modified accumulator addition, an accumulator
multiplication, and a test, count and jump instruction. The average time
for this loop is €,3 usec, of which the accumulator operations would take
748 psec if their individual times are simply added. This leaves only
0s5 psec for the test, count and jump, although the average figure for a
series of Jjump instructions on their own night be ten times as large.

We shall consider those factors which control the time taken to
obey instructions, to show what advantage can be taken of them in optimizing
a program loop which has to be exeouted many times.

12.241 Store Access

The main ocors store consists of pairs of 4096-word stackse. Iach
stack can be regarded as a physically independent store, and sequential
address positions occur in the two stacks of a pair alternately, the even
addresses in one sbtack, the odd in the othere. The cycle time of the core
store is 2 ps., that is, the time after reading or writing a number before
another number can be read from or written to the same stack is 2 ps.

To reduce the effective access time, instructions are always read
in pairs and held in two buffer registers called Present Instruction Even
(PIE) and Present Instruction 0dd (PIO) whilst waiting to be obeyeds In-
structions are executed from PIE, the odd instruction being copied from

(465)

-

(<UD

- o

__

L

12.2/2

PIO into PIE as soon as the even instruction has been initiated.

Because of the 2us cycle time for each stack the programmer should
separate instructions which refer to operands in the game stack,

For example, the instructions
121 1 0 0
524 0 0 A4
362 0 0 A4
would be executed more quickly if written as
524 0 0 Ad
121 1 0 0

562 0 0 AL
The maximum overlap is obtained when alternate operands come from alternate
stackse

The Supervisor attempts to organise the store so that instructions
and operands are placed in different pairs of stackse On the Manchester
University Atlas, wherever possible, instructions are kept in pages 0-18&
and operands in pages 16~31. The programmer can assist the Supervisor to
do this by using the extracodes described in 12.1. These are of most use
for jobs with a large amount of datas It is then useful to request drum
transfers in anticipation, and to release from the oore store blocks which
will not be wanted again for some times

12202 The overlapping of Instructions

Instructions on Atlas are overlapped as far as possiblee For ex-
ample, in a sequence of singly-modified accumulator instructions, the
computer is obeying four instructions for one quarter of the time, two inw
structions for one fif'th of the time, and three instructions for the re-
mainder of the time,

This overlapping is possible beczuse the accumulator arithmetic,
the B-register arithmetic, the function decoding, the B-store, and the
main core store are independent of each other to a large extent. A number
of rules which enable the programmer to gain as much advantage as possible
from the overlapping are given below, It should be noted that these rules
cannot always be guaranteed to establish the best way of arranging any
particular loop, as in some cases this can only be done by actually running
the program; nevertheless the application of these rules, as far as pos-
sible, will normally lead to a time reasonably close to the optimum peing
obtained,

(a) Instructions writing to the main store (usually referred to as
store-write instructions) should normally be in odd-numbered
locations, -

(b) In general, B-type instructions oan be obeyed whilst accumulator
operations (other than store-write instructions) are going on.
Only one accunulator operation can be queued up whilst a pre~
vious one (e.ge @ division) is proceeding. If a third accumu-

(\1o65")

12.2/5

lator operation is encountered, nothing further can be done
until the first one is finished., This third accumulator oper-
ation should therefore be delayed until all B-instructions and
B-tests which can be obeyed before the first accumulator in=-
struction is completed, have been initiated.

(¢) Following a store-write instruction, no further instructions or
operands can be extracted until the writing operation is com=
pleteds Many typicel program loops, however, include such an
instruction, It is usually possible to have this instruction
at the beginning of the loop, and this enables the B~-type in-
struction and return jump to be obeyed and overlap any accumu-
lator arithmetic still going on. As mentioned in (a) above,
the store-write instruction should preferably be in an odd-
numbered address, From these two rules, two possible ways of
arranging a loop, depending on whether it has an odd or an even
number of instructions, emerge.

mxmsmwmmu

1e 0dd number of instructions

—

Even

0ad > LStore-write

Even TEccunulator instruction
0dd | Accunulator instruction
Even [Step B-line

0dd | Return jump

2. Even number of instructions

Even 1mwmm B-line

0dd | Store-write

Even { [Accumulator instruction
0dd | Return jump

(4) Instructions are extracted from the store in pairs, and, subject
to the above rules, a loop with an even number of instructions
should begin at an even address, so as to minimise the number of
store references.

(e) Test instructions cause more delsy when successful than when
unsuccessful, and it is usually best to arrange the uncommon
case (if it can be determined) to be the one which changes ba.

(f) Jump instructions where the jump will frequently not take place,
should preferably be placed in an even-numbered address., Note
that this does not apply to return jumps in loops, as these
fail to jump only when control leaves the loop.

Amv Singly-modified A-type instructions should always be modified by
bm, not ba.

(h) A delay occurs if a B-register is operated on in the Ba position
and then used as a modifier in the next instruction, This should
therefore be avoided if possible e€e.g. by inserting some other

(1.65)

.
e
-

| =

=]

=

et

, [-

(S
-

- EE .l
e

S
—

-
.

q
 —

- u

- - ..

12.2/4

instruction in between. Note, however, that
124 1 0 1
300 1 2 0
is preferable to
124 1 0 1
300 2 1 0

(i) Given a pair of accumulator instructions, one modified and one
not, the unmodified one should occur in the even-address, and
the modified one in the odd-address, if possible.

(J) Given an accumulator operation and a w:meWm&mw.omemé%os as
an even/odd pair, they should be in this order if possible.

Where the above rules conflict, the order in which they are given
should be taken as the order of importance.

(1465)

12.3/1

123 Branching

Branching is a facility which enables different parts of the same
program to operate in parallel, using the time-sharing process. Such
parallel operation is of value if some parts of the program are liable
to be held up waiting for peripheral transfers whilst other parts are still
able to proceed. It is important to note that simple operation of peripheral
devices in parallel with computing is available without recourse to bran-
ching; normally, the program itself is only held up if it attempts to refer
to the locations involved in a transfer before the transfer has been com=-
pleted. Branching is an additional facility which is intended to permit
parallel operation of two or more different processes which are liable to
be held up by peripheral transfers, where each process involves some com=
putation or organization and does not consist merely of peripheral transferse

120341 Existing Parallel Operations

When a block transfer to or from a drum or magnetic tape has been
initiated, by means of a drum or tape block transfer extracode, the program
is allowed to proceed as long as it does not refer to the main store block
involved in the transfer, If it does refer to that block, it is held up
until the transfer has been completed.

Variable length tape transfers operate by using part of the main store
as a buffer. It is usually possible to keep sufficient information in the
buffer to permit the actual transfer, between the buffer and the specified
store address, to take place as soon as the transfer instruction is encoun-
tered. Otherwise the program will be held up until the transfer is complete.

Other peripheral devices, apart from the drums and magnetic tapes,
are not normally controlled directly by the program. Instead, the input
documents are read and stored on a system magnetic tape before the program
is initiated, and output documents are stored on a system tape and printed
after the program has been completed.

120322 The Branch Instructions

1103 Permit Ba Branches (2 < Ba < 32)
Before any branching can take place, the program must obey an 1103
instruotion, which enables the Supervisor to prepare for branching.

This instruction normally takes the form
1103 Ba 0 pD1

After obeying it, the program is permitted to have up to Ba live
branches, including the main program, in progress at any one time; the main
program is defined as branch O. When the Supervisor switches from one
branch to another it will preserve certain standard information and also
the contents of index registers Bp, B(p + 1), B(D + 2),ecverssesccace; B
Note that if the Neaddress is zero all index registers are preserved, and
if p = 91 only the extracode index-registers are preserved (these are
« usually essential.

(1.65)

= i

g 2 = =

—e

[a— —_——

12:5/2

1104 Start Branch Ba at n (0 < Ba < 63)
The current branch of the program continues at the next
instruction, but a new branch, with number and priority Ba,
is started at address n. The highest priority is given to
the highest-numbered branch: if other branches with the same
number Ba have been defined previously, they will take higher
priority than the new branch, The main program is initially
defined as branch number O,

1105 Kill Branch Ba or Current Branch

Kill all branches with the number Ba., If Ba = 64, kill the
current branch. This prevents any further instructions being
obeyed in the specified branches, but peripheral transfers al-
ready requested will be completed.

1106 Wait until Branch Ba is Dead.
Halt the current branch of the program if any branch numbered
Ba is still live, Proceed to the next instruction when all
branches numbered Ba are dead.

1107 Jump if Branch Ba Live.

Transfer control to address n if any branch numbered Ba is

still live. Otherwise proseed to the next instruction.

12.3.,3 The Use of Branching

A branch is usually started at some point in a program where it is
required to carry out two different processes, at least one of which is
liable to be held up by peripheral transfers. Usually, the more severely
peripheral limited process is put in the new branch, and this is given
higher priority. When the program is obeyed, the higher priority braach
is allowed to proceed until it is held up waiting for a peripheral transfer;
control is then transferred to the other branch, which proceeds either until
it is held up, or until the higher priority branch is ready to resume.
Similarly, if there are several branches, the Supervisor ensures that oon-
trol always passes to the highest-priority branch able to proceeds Each
time control is switched from one branch to another, the Supervisor stores
and restores the contents of the following registers and indicators:

The Accumulator

B119, B121, B124, B126 and B127,

The Index Registers specified in the 1103 instruction.
The Selected ilagnetic Tape Number.

B-Test, B-Carry, Accumulator Overflow (V-store Line 6).
Extracode Working-Space.

Thus, each branch czn use these registers as though it were one single pro-
gram uninterrupted by other branches, It is, however, necessary to ensure
that two branches which may operate sigultaneously do not use the same

main store locations, or index registers which are not preserved, It should
be noted that the selected Input and Oubput are not preserved, and therefore
input and output can each take place in only one branch at a time.

(1.65)

12.3/3

Once a branch has been started it can be regarded as a ‘live’ branch,
and it remains live, even when it is held up, until its task has been com-
pleteds When a branch has completed its task, it must die, and this it
does by obeying an 1105 instruction, usually with Ba = 64.

When one branch of a program is ready to make use of the work done
by another, it must first ensure that the work has been completed. This
may be done by obeying an 1106 instruction, which causes the current branch
of the program to be held up until the specified branch is dead, having
completed its task,

A simple example of the need for branching arises when it is required
to scan a magnetic tape in order to process a selected sample of the in-
formation on it. The processing routine and the tape-scanning roytine ocan
then be written as two separate branches, with the tape-scanning routine as
the higher~priority branch.

Example: _

~ It is required to scan sections 1 to 3000 of tape 4 and to
apply a lengthy processing routine R3 to the informetion in about
25% of these sections. The sections to be processed are to be
identified by having a number greater than 0.32 in the first word
of the sestion. The program to do this could be written as follows:

Branch O

1103 2 0 89D1 Prepare to use 2 branches,
preserving b89 - 99,
1001 4 0 1 . Search for section 1, tape 4
121 89 0 2999 Set count for 3000 sections
121 16 0 0 Clear marker in B16
1104 1 0 A8 Start branch 1 at A6
5) 1106 1 0 0 Wait until branch 1 dead
215 127 16 M2 Exit if last section processed
124 10 0 4
1164 10 0 3) Rename block 3 as block 4
1104 1 0 A7 Start branch 1 at A7
121 90 0 AS Set Link for return
121 127 0 A1/3 Enter R3 to process block 4
Branch 1
6) 1002 4 0 H Next section to block 3
324 0 C GH First number in section
321 0 0 1A8 Subtract 0.32
236 127 0 A8 Lxit if number > 0,32

7) 203 127 89 A6
121 16 0 7

(Program continues on following page)

Count tape sections

Mark b16 non-zero

(1.65)

" W - - .

E == B . [

- .

- - - . -

S

F_

[p— = - -—

= @ e=

G O o e

12.5/4

8) 1105 64 0 0 Kill current branch

40¢ 52

R3 R3 (Part of Branch 0)
Av L] . ° ov

) Routine to process the
* W information in block 4

The chart below shows how control would pass from one branch
to the other in a typical sequence of operations when the program
is obeyed. Interruptions from the Supervisor and higher-priority
programs have been excluded because they would complicate the chart
without altering the sequence significantly. The sequence of oper-
ations starts at the top with the beginning of the program, runs
through the first entry to branch 1, and then cycles round a loop
in which branches 0 and 1 operate in parallel. The chart shows
branch 0 completing its work before branch 1 has found the next
section to be processed, but branch 1 might equally well be finished
first, *that is, a further required section may be found during pro=-
cessing. It should be remembered that each entry to branch 1 takes
only a few microseconds, whereas 64 milliseconds must elapse between
successive entries to branch 1 to read one more tape section.

See Chart on following page.

(165)

LOWER
PRIORITY
PROGRAM

12.3/5

PROCESSING PROGRAM

BRANCH 0O

IEnter Program
Start Branoch 1

BRANCH 1

Initiate Tape

Transfer
mamww for Branch 1 niedl
Other Computing| | L _
Section not)
required. Initiate
_ Tape Transfer
Other Computing [N ‘ " 64 msec

(Required section found)

Required section
found. Kill
current branch

Start Branch 1

AI
! MWWHUH&Hmdm Tape
! Transfer
' [Erocess 2 t
| ocess block 4 m@mmo.
1 Section not
i required. Initiate]
i Tape Transfer
” Continue Processing mAwamoo.
i Section not
| required. Initiate
! Tape Transfer
“ End processing N
, | Plock 4. Wait
q for Branch 1 LSE0e

Other Computing

Notes:

A, This loop will be repeated until a required section is found,

B,

If a required section is found, then Branch 1 will be killed.
When the current block has been processed, Branch O will
start Branch 1 again, and then process the required section.

(165)

See
Note

See
Note

- e - = e

e

B ©

|
-

| S—

e =

—

e J

12,3/6

12434 Store Requirements

When an 1403 instruction is obeyed, the Supervisor assigns sufficient
storage space for the specified number of branches, This storage space is
taken out of the main store allocated to the program, either by the job des-
cription or by a subsequent use of the extracode 1171, and will be counted
in the estimates made by extracodes 1172 and 1173; it is therefore necessary
for the programmer to know how much store is required by the Supervisor for
branching purposes. Many cases should be covered by the following table,
showing the maximum number of branches that can be accommodated in 1, 2 or
3 blocks, depending on the number of index registers preserved.

Index Storage mwmmw Alloocated

Registers 1 Block 2 Blocks 3 Blocks
s liaximum Number of Branches Permitted e
BO to 99 3 10 18

B30 to 99 4 14 24

B50 to 99 5 17 29

B70 to 99 6 22 32

B80 to 99 8 27 32

B90 to 99 10 32 -

If it is necessary to estimate the store required in some case not
covered by the above table, it is probably easiest to do this by considering
the way in which the Supervisor allocates this store. It takes 300 words
at the beginning of the first block to store branching routines, and follows
these by 5 words for each branch requested 4n the 1103 instruction. Each
branch is then allocated a further (11 ;.WBV words, where m is the number
of index registers in the range O to 99 that are to be preserved. The
(11 + wsv words for one branch must all be in the same block, and if less
than (11 + 2m) words are left at the end of a block the (11 + 2m) words
for the next branch will start at the beginning of a new block.

(1465)

12.4/1

42,4 Instruction Counters

As each basic instruction is obeyed, an instruction counter is
stepped on, normally by one, but by two for multiplication orders, and by
four for division. ZFach time the counter reaches 2048, an interrupt occurs,
and an instruction interrupt counter is stepped on by one. This latter
counter is used by the Supervisor in monitoring the program, but may also be
read by the program using extracode 1136,

1136 Read instruction count.
Set am’ to the number of instructions obeyed from the start of
the program; this will be a fixed-point integer with exponent
16, and will be a multiple of 2048..

Besides this count, the program may also use a local instruction
counter. A trappable fault will be recognized when this count expires, which
may provide a convenient way to end an iterative loop, since the counter may
be set as well as read by program.

1123 Set local timer.
Set the local instruction counter to
n x 2048 instructions. The Supervisor
will override any attempt to set the
counter to a figure in excess of the
anount of allotted time remaining.

Read local timer.
Read local instruction counter into
Ba in units of 2048 instructions.

local timer’= 2048n

1122
ba’ = local timer

(1.65)

— |

f
!
.

-

(=]

s

- |=

— — — p—

_—— =

[

. E .

12,5/1

125 Re-entering the Compiler

Most programs are compiled completely before they are entered, and
therefore it is not normally necessary to retain the compiler in store during
the @ﬁomﬁms~m execution. The E=type of directive is the only enter directive
which deletes the compiler from the store before transferring control to the
object program, and so is the most commonly useda

In some ciroumstances, however, it is necessary to enter the program,
and then compile more program later. The first entry may be to actually
execute part of the object program, or it may be enly to set certain para-
meters. The compiler must be retained in store for these purposes, and so
either an ER or EX type of enter directive must be used. The compiler uses
store locations J3 (3/4 x 2°°) and above which should not normally be altered
by the program, although no check is made except when actually compilinge

The EX-directive is intended for obeying 'interludes’ during compiling;
an interlude would normally consist of a few instructions only, or of none
at all. For example, if it were required to have any ABL fault printing on
some output stream other than Output O, then a one instruction interlude to
’select output’ would suffices If it is only required to set parameters,
then the address specified in the EX-directive should cause immediate re=
entry to the compiler; such a directive in fact occurs near the beginning
of 1100, the genmeral input routine, to determine the various optional
parameter settings. The EX-directive does not call down any library rou-
tines; if these are required in the interlude, they nust be called by one of
the L-directives before obeying the EX entry. No distinction is made by the
Supervisor between compiling proper and obeying an interlude, i.e. the
'Compile/Execute’ switoh is not changed.

The ER-directive is designed to allow part of a program to be compiled
and executed before reading more program, and provides most of the facilities
of an E-directive, including the compilation of any library routines men-
tioned but not called earlier in the program. The routine current when the
BR-directive is obeyed will be terminated before more programn is Hmm@n (The
EX-directive does not do this.) The Supervisor recognises that an Qwumnw.
progrem is being executed, and as with the E-type of directive, the Ooswpwa\
Execute’ switch is set to 'Execute’s :

Two types of list within the compiler are used in connection with
parameters in a program. The parameter lists contain all those parameters
which are determinate, and if the program refers to a set parameter, these
lists are used to replace the parameter by its value. If a program refers
to a routine or global parameter before it has been set, then this is bo&wp
on a forward reference list, from which it is deleted when the parameter is
determinate, and hence, so long as this list is not empty, there are some
parameters still to be set. When the compiler is retained in store, these
lists also remain, in the same state as when the enter directive was obeyede
If more program is to be read which uses parameters to refer back to the
program compiled previously, then it is essential that the lists remain
unaltered. If, however, the subsequent sections of program are to be
compiled independently of the earlier part, or if the same parameters are to
be used again with different values, then the lists must be cleared on re-
entry to the compiler. Different re-entry points provide for both require-
ments, and are listed below. In every case, re—entry to the eompiler does

(1.65)

12.5/2

not alter the sooB@MHm\mxooc&o~ switch., After compiling program, B1~B88
will be cleared, and B89 will contain the final transfer address, The other
B-lines may be destroyed.

P120 When the compiler is re-entered at address P120, all para~

™ nmeters, forward references after EX, and * (the transfer
address) are left unchanged, and more program is read from
the current input stream. If there is no *~directive
before the first items are read, these will be placed in
store sequentially in the usual way, after the last item
of progrem before the previous enter directive. After an
ER~directive, library routines may have been compiled into
locations beyond the end of the written programe

P120B Re-entry at this address causes the oompiler to behave as
it does when first called by the Supervisor, but the con=
tents of the store below J3 are left undisturbed. Hence
* =110, and the forward reference list and parameter lists

are cleared.

The compiler may also be used as a subroutine by a program, control
returning to the main program when no more items are to be read. Again
there are two modes of entry, depending on what is required of the com-
piler lists.

If the transfer address is written to location Y4P121, and the link
to 120P121, then re-entry to the compiler at P120 will read more program,
retaining the compiler lists. Return to the link address in the main pro-
gram is effected by

EP129
ERP129
or EXP129

If the transfer address is written to B69, and the link to B90,
when the compiler is re-entered at P120BY6, more progzram will be rezd as if
the re-entry were to P120B, except that an attempt to compile into store at
an sddress less than b89 will be faulted, and that the transfer address will
be taken as * = b89 unless b89 = 0, when * = 110, Return to the main pro-
gram is again by iP129 etc.

P120, P121, and P129 are examples of speciel preset parameters, which
are described in the next section.

(1465)

- =

s s e

> g ww———

e

B 2 2

12.6/1

12,6 Special Preset Parameters

Although for normal purposes only Preset Parameters O to 99 may be
used, some above 100 do exist and these are used in special ways for speoial
purposes. In some cases use of them causes special action by the compiler;
in other cases they are used to convey information between the compiler and
the program,

P100 to P109 are in many weys like ordinary Preset Parameters; they
oan be reset by the programmer and no special action is taken by the com-
pller on encountering them. However, they are initially set by the compiler
at the start of compilation and they are referred to by the compiler during
the course of compilation.

P110 to P119, if defined, may be reset by the programmer but will
have initial values set for them by the compiler., However, whenever an
Equation Directive for resetting them is encountered, special action is re-
quired by the compiler. An attempt to set one of these parameters not
listed below is faulted.

P120 to P129 are preset by the compiler, but may not be reset by
program. An attempt to do so is faulted. They are used to convey infor-
mation from the compiler to the program.

P100 ~ Optional Printing

At the start of ocompiling ABL sets P100 to zero., Non-zero settings
of P100 cause ABL to print various kinds of information during compiling.

P100 is treated by ABL as made up of 8 octal digits abodefgh. Each
octal digit controls the printing of one kind of information, as indicated.

If the least significant bit of an octal digit is 1 the information
controlled by this digit will be printed -~ on a new line if the middle bit
of the digit is 1 and on the same line if the middle bit is C, If the least
significant bit is 0, then the other two bits are ignored. If the most
significant bit of the second digit (b) is 1, then printing on a new line
will occur when a library routine is compiled., Otherwise the most signifi-
cant bits of the digits are ignored.

P100 is preserved and set to zero before compilation of each library
routine and restored afterwards, so that there will be no other optional
printing, unless the library routine contains a '"P100 =" directive.

The kind of printing controlled by each octal digit is as follows.
A1] printing is preceded by a space, except Re L is printed on a new line.

(1.65)

12.6/2
Octal ABL prints when it Bmm&m this
digit this
8 *=p * — expression
b Ra * =g Ra ,
Lasb N *=g¢q Library routine named N compiled
c Z*=q Z
a this digit is unassigned and ignored
e o P 111 = expression (see P111)
£ Ep E expression
g ERD ER expression
h EXp IX expression

where p is the value of the expression met,
q is the ocurrent value of asterisk

a and b are integers.

Some examples of useful settings of P100 are

P100 = ~Y4 ABL prints on R, L, ¥, Z and all types of E,
each item on a new line

P100 = J03 ABL prints on R only

P100 = JO&1 ABL prints on R and Z

P101 ~ Permitted Number of Errors

At the start of compiling ABL sets P101 to 0.2. This is equivalent
to infinity since for each error met ABL reduces P101 by 1, and when it
reaches zero stops compiling and ends the run after printing

TOO MANY ERRORS

The program may set P101 = n where n is any expression, Compiling will
stop when n 41 errors have been met. P101 = 0 causes ADL to stop on the
first error met, which may be useful for a developed program.

No matter how many lsbels remain unset when the E directive is met
ABL lumps them ell together as one error for the purpose of ocounting errorse

P102 -~ Entry Despite Faulls

At the stert of compiling ABL sets P102 = 0,2. If any errors have
been found, an EX directive will be obeyed, but an E or ER will not, and
ABL will print

ERRORS DO NOT ENIER

(1.65)

7SS

=

i

=J

12.6/53

and end the run.
P102 = 0 sllows all 3 E directives to be obeyed despite errors
P102 = 0,3 forbids all 3 E directives after errors
P102 = 0,1 allows E and ER but forbids EX af'ter errors

P104 - Setting Private Monitor

P104 is the address of a private monitor routine, which is set up
each time any Enter Directive is encountered. Thus if any monitors occur
after the Enter Directive (including an immediate entry to an address holding
an Illegal Function due to a wrong Enter Directive address), these will give
rise to an entry to Private Monitor according to the rules of extracode
1112 (see section 11.3)s If P104 is negative any current setting is ter-
minated.

P140 ~ Change of Program Location

At the start of compiling, ABL sets P1410 = 0o A non-gzero setting of*

wééo.mwmowﬁwmm the difference between * as evaluated in expressions (say *AV
and * indicating where items are to be stored (say umv

i.ee P110 =", - g
Setting WAAQ&O permits the compiling of program into one set of store)
addresses = am - for later execution in another set of store addresses = %;

(eege after ‘Renaming’ or after storing on magnetic tape)s Thus, for ex-
ample, a program which is to be executed starting at address J3 but com=
piled initially into store starting at J1 would have the directives

P140 = J2

* = J3 at its start

P4141 -~ Expression printing

When ABL meets the equation
P141 = expression

it eyaluates the expression and sets P111 in the usual way. If the
appropriate bit of P100 is set, the value of the expression is immediately
printed oute.

P112 ~ Unused

This parameter is used by ABL on Atlas 2. No fault will occur if
the program sets P112, the value being assigned in the usual way, but the
remainder of the line on which the setting occurs will be ignored. The
compiler initially sets P112 to J3. P412 should not normally be used
with ABL on Atlas T

P115 - Change of' Input Stream

The equation P115 = n(n is any expression) causes ABL to start
reading program from the @womﬁmssma~m input stream n. The rest of the
line on which P115 occurs will be ignored.

(1,65)

12,6/4

P120 - Re~entry to the Compiler

This is described in the previous section.

WAM4.J Preset Parameter List

P121 is the address of the start of the compiler’s Preset Parameter
listes Halfword P1214n contains the value of parameter n if it has been
sete This list can of course only be referred to by a program entered by
an ER or an EX directive. This is a'list of alternate halfwords, the other
halfwords of which are used for other purposes by the compiler and should
not be disturbed.

P122 - State of Preset Parameters

P122 is the address of the start of the compiler’s list which in-
dicates whether the Preset Parameters are set or not. Bit 1 of halfword
P1224n is a 1 if parameter n is unset, 0 if set, This is a list of al~-
ternate halfwords, and neither the other bits of the halfwords, nor the
other halfwords should be disturbed if subsequent use of the compiler is
intended.

Example: An ‘interlude’ to set P47 = 0 if P35 = 0 and to
leave P17 unaltered otherwise

5) 121 1 0 P35
25 127 1 P120
113 0 0 P47
121 1 0 Ja’
117 1 0 P122¢17
124 127 0 P20
EXA5

P123 «~ Characters Count with C directives

P123 indicates the number of characters read by means of the pre-
vious C directive, described in section 5.10.

P129 ~ Return from Compiler

P129 is the return address when the ABL compiler is used as a
subroutine (see previous section).

(1.65)

L = ol bt s RS

= |5 [

- . -

- O R R s =

12,7/1

12,7 Private Library Routines

12471 Library Routine Titles

Library routines are given numbers and names; the program refers to
them by number, but the name may be useful to indicate their purposes The
standard input and output routines, described in Chapter 8, have been given
names as follows:

1 GENERAL QUTPUT

1100 GENERAL INPUT
1199 LINE RZCONSTRUCT ION

L1199 is used by L100, and hence, if the library routine is being comw
piled implicitly, (whether by an 'L’ directive or by an Enter directive),
1199 will automatically be compiled with L4100 because the latter refers to
it, but, if it is required to compile the ‘input Library’ explicitly into a
part of the programmer’s store area, then it is necessary to use both of
the directives

100

1199

12.7¢2 Undefined Library Routines

A1l undefined library routines have the name NONEXISTENT and there is
a special device to make the optional printing as described for P100
(section 12.6) compulsory for non-existent routines. Tor example, output
such as

, 10 NONEXISTENT * = 2:36.3
will result from either an attempt to call for L10 explicitly or when an
attempt is made to compile it by an L or Inter Directive when it has been
referred to implicitly. The latter would also result in monitor printing
about unset labels.

Any defining of a Private library routine (see below) will cause
suspension of the NONZXISIENT monitoring for that routine.

12,743 Preparing a Private Library Routine

Private Library Routines may be incorporated in the normal program
input stream and may be referred to in the progrom in the same way as publioc
library routines,

The routine is headed by two lines:

RLc
< Name »

where ¢ is the number assigned to the library routine and ¢ Name » is the
name of the routine., If no name is required, this line must be left blank,
and then a blank title will appear in any optional printing. The Name must
not consist of the two-character record ZL.

The routine is terminated by the two-character record ZL., This is
not line-reconstructed and may not contain any spaces, erases, backspaces,
tabs etoc,

((1885)

12.7/2

The library routine may consist of a single routine (routine 0) or of
one or more routines headed by routine directives and optionelly terminated
by Z directives in the usual way. It may contain any of the normal ABL
forms except the directives

L, La, La.b, ER expression, E expression, RLc

All will be monitoreds No T or C directive within the library routine may
be followed by the two character. record ZL.

When the RL directive is emcountered, the library routine following is
simply copied character by character into the compiler’s store area. The
routine is not, at that time, compiled or placed in the programmer ‘s store
area. This is achieved in the normal way, by an E, ER or 'L’ - type of di~-
rective,

If a private library routine is given the game number as a public
library routine, it replaces the public one for the remainder of that pro-
gram. This is convenient for the development of new versions of existing
public routines,

Private Library Routines must precede any calls for them in the body
of the program. The best place for them is at the beginning of the progrem
stream.

A private library of routines required by people working in some
limited field (e.g. properties of steam) may be formed by putting the rou=-
tines on to a titled paper tape (as pseudo-data) and terminating them by
P115=0. The master programmer may then write, for example,

INPUT

15 STEAM LIBRARY
in his Job Description, and

P15 =15
mw the head of his program to incorporate these routines effectively as
above,

Each private library routine incorporated in the way described in
this section counts as one line from the point of view of line counting for
error monitoring of the subsequent program.

The directive

P115 = expression

within a library routine, will not cause monitoring, although it should
never normally be needed or used. Its effect is in fact to cause switching
of the input stream after completing the compilation of the current library
routine or routines at the point where these are compiled (ise. at an L or
Enter directive).

(1,65)

[S—

et

- - .- -

e

)

— - -

- . e

- v

-

S e e =

| ——

- e © A

[<80” |

L N N

= ==

12,73

124744 Incorporating a new Library Routine into the Public Library

This is done by means of a special job, using a standard program of
the system. Essentially, the routine to be incorporated is put at the head
of the program stream in the normal way, as described above, and is followed
by the standard program. This program uses no labels as the non-emnpty para-
meter list would otherwise become part of the compiler, :

If the routine being incorporated is a new version of an already ex-
isting routine, then this latter is not destroyed or overwritten on the com=-
piler tape, The reference to it in the compiler’s library routine list is
simply changed and so it becomes ‘dead”s A separate special program (or
prelude to the above program) may be used from time to time to clear out all
'dead’ library routines, but this clears out all live ones as well, so that
after this clearing out operation all public library routines must be re-
incorporated,

12,7,5 Conventions

The f ollowing conventions are recommended for library routine writers
and users:-

(1) Communication of parameters and addresses for use at compile
time should be by routine parameters of routine 0 of the library
routine, since

(a) using routine, global or preset parameters of the master
program could easily lead to clashes with other library
routines if allowed, and

(b) the master programmer will not be interested in the
breakdown of the library routine into sub-routines.

(ii) If preset parameters are used within the library routine, they
should be high numbered ones, say PS0-99, and should be unset at
the end of the library routine, Their use should be mentioned in
the specifieation for the library routine.

(iid) Any special preset parameters used (except P100 and P123) should
be preserved and restored.

12.7.6 Referring to the master program from within a library routine

A routine parameter of the master program can be referred to within
a library routine by treating the master program as if it were library rou-
tine 0, e.g. AG6/3L0 is A8/3 of the master program.

(1.85)

12.8/1

128 Correction of Programs, and System Peculiarities

12.8.1 Program Alterations

To corrcct a small program, it is usually simplest to re-punch the
tape or cards, making alterations as nccessary. This is impracticable for
larger programs,but the facilities of ABL may be used to help make cor-
rections.

Very often it is possible to make corrections by overwriting certain
store locations, using a *-directive. The corrections, however, must be
compiled after the faulty items, or the faults will overwrite the alter-
ations. Henoe, the corrections are normally placed just before the enter
directive. An enter directive may cause library routines to be compiled
from the current transfer address, and so to prevent the program being
overwritten from the faulty item onwards it is necessary to insert the cor-
rection in one of the following wayse

a) 1) <lLast item of program properjy
* = 6a10/4
<Corrections
* =M1
EA40
b) <Last item of program propers
L
* = 6A10/4
<Corrections
1) EA40.
In case b), however, if data is read to Al onwards, this will also
overwrite program when the correction is inserted.
It may be convenient to end a program with
R10 :
1) <Last item of program proper:
P115 =15
* = 4a1/10
EA40/3
so that corrections, if any, will be read from input stream 15, which ends

When routine parameters are mentioned in a correction, without
specifying any routine, i.e. \5 is omitted, the routine to which they Hmwww
will be that current before the correction, rather than that at the location

to be corrected.
Difficulties may be encountered when using ‘*=' to overwrite an
item containing forward references. The result can be predicted from the

(1.65)

- e

- e e) SN e

- - - . .- .

o

[

- Il

e

b
—

i
[—d

12.8/2

following notes on ABL’s handling of forward references.

Two lists are concerned, the forward reference list in which are

partly evaluated expressions containing forward references, and the para-

meter list in which are all parameters found i . :
values if set, P s fo in the program with their

(1) The forward reference list is initially empty.

(1i) When an expression is read it is added to the end of the forw
ward reference list, which is then condensed starting from
that expression. In the case of indeterminate parameters which
Smmm to be evaluated before compiling continues, i.e. after EX,
?y "=, Pa=, and Pa%= when Pa has not been set earlier (a is an
integer), then the expression will be faulted as EXPRESSION IN-
DETERNINATE (see section 11.6).

(1ii) Whenever a routine or global parameter is set the forward re-
ference list is condensed from the beginning.

(iv) On reading an E or ER directive all necessary library routines
are read, any outstanding ‘A%=’ or ‘G2’ directives are im-
@Hoﬂms&m@ in the order in which they occur in the program
(this may lead to further settings of parameters and so further
condensations of the forward reference list), and if the for-
ward reference list is not empty its contents are output as
Indeterminate Expression errors.

(v) On reading EX, A%= or G2= are implemented as in (iv).

Condensation of the forward reference liste

1s For each expression in turn, each set routine or global parameter in it

is replaced by its value and the expression is partly evaluated. If no
wmwmso@mwm remain unset the expression is completely evaluated; in that
case, if the expression is not the right-hand side of an ‘A%=’ or 'G2=’
directive, it is planted in the program area or the parameter list and
deleted from the forward reference list. \

If, on reaching the end of the forwerd reference list, any parameters
have been set during 1, the process is repeated from the beginning.
For example, suppose the program begins

*=0, HA3

A3=A4-1]

*=0, HA3~1

Ad—t

On ummowwbm the 4th line the forward reference list will contain the
expressions A3, A4-1, A3~1. When the 4th line is read the list becomes

A3, Ad~1, AB~1, 4;

the ‘4’ is evaluated immediately and A4 becomes set; the list is then
completely re-condensed:,

A3 is not yet set and so remains.
A4~1 is evaluated and A3 gets sete

(1.65)

12.8/3

A3-1 is evaluated and planted.

The 1list now consists of only A3 and since a parameter was set in the
last condensation the list is re-condenseds.

A3 gets evaluated and planted.

It is seen that in this case the half-word ends with the value of >m~
ie€a 30

If a routine or global parameter is optionally set more than once,
but is not set otherwise, then the first optional setting will be imple-
menteds The subsequent opticnal settings will not be checked for faultss

A different mode of correction uses the library facilities of the
ABL compiler. A copy of the compiler would be dumped initially onto a pri-
vate magnetic tape, and subsequently used to compile routines as a library
on to the tape. As these routines are corrected, the new versions are in-
troduced, replacing the faulty library routines as described in section
1247040

1268, 2 Further Peculiarities

- Floating-point numbers may be represented in the form mAduov"a or
Ka(b:c):d as described in section 5.11, Although the number may be within
the range of the accumulator, compiling it may cause exponent overflow un-
less the following three limitations are observed.

(1) [oso] < 100
(i1) [b| < 1000
(iii) a consists of not more then 20 digits
When a parameter optionally set by a 2= directive is actually set

elsewhere, the right hand side of the equation for the optional settings
nay not be checked,

After the final ABL fault printing, no new line is outpute

ABL will read program incorrectly after 8191 = 2'° - 1 printcd lines
without the implicit setting of a routine parameter by labelling.

In fault pointing, the line count will be taken modulo 2*%,

No check is made that function codes exist. One and two digit
functions are right justified into the function bitse.

When obeying program, the compiled value of * willk be different from
the current value of control, as 127 is stepped on by 1 before starting
to obey an instruction. Thus

121 69 127 -
would set ¥69' =1,
121 127 127 -1

causes a loop stop.

For the same reason

(1.65)

- W .]] i - - — - b—d

v -

—

-

W oy .

| ——

e e G A e Bl D EE e

S EE e (4 S S - -

4 S

[S—

12.8/4

When more than twelve digits in a number are printed by the general
output routine I1, digits after the twelfth may be wrongs L1 also pay give
exponent overflow attempting to print the following numbers:-

Non~zero Mantissa Exponent
- A +127
.....;NAummm_v =127
+ X ~128

(1.65)

12,9

12.9/1

Compiler and Supervisor Ixtracodes

The cxtracodes given below are used mainly by system programmerse

They complete the list of Atlas 1 extracodcs.

1126

1127

bits 16-23 may be read, being set from the enginecr’s handswitches.
bits are read as zero.

.<.Ns”u5.
and hoot if the least significant integer bit of n is 1. (bit 20)
ba’' =v7 & n

Mask the digits of the engineer’s handswitches with n, and rcad them
to bits 16-23 of Ba.
Line 7 of the mentral computer V-store consists of 8~bits. Only
Other
Bit 20 controls the hooter and may be set by pro-

gram; writing to the other bits is ignored.

1140

1141

Read ’parameter’ Ba of program to store starting at location S.

Ba Parameter
0 Job title (10 words)
1 Computing time estimate, in seconds, in digits
0-23 (One half-word)
2 Ixecution timc estimate, (One half-word)
3 Number of store blocks required, in digits
1~11 (One half-word)
4 'Parameter’ in Job Description (One-half-word)
5 bomwomw tape numbers defined (8 half=-words)s
The P digit (O < J <15) of the i'P
half-word is a 1 if tape nuwber 16 i 4+ J is
defined.
6 Inputs defined (One half-word).

The i'F digit (0 < i <15) is 1 if input

strecam 1 is defined.
7 Outputs defined (One half-word) As 6.

Def'ine Compiler
Da = Tape Number to which the compiler is to be written. If Ba = 127,
and if the ocompiler mname specified (see below) appears in the Super-
visor Directory, the compiler will be writtem to the current Super-
visor tape. In this case there will be two loop stops with J70707070
in B120 since this extracode will use 1143, 0, C, 0.1 and 1143, 0, 0, 0.2
(see below).
The five half-words S to S+2 contain the following parameters:

a) First four characters of name.

b) Second four cheracters of name.

c) liain store starting Address (of where the compiler is now)s

d) Main store finishing Address (of where the c ompiler is now)a

(1465)

-
e E e B B el mew s S

- =

Dk

v

.uii- H

1142

1143

12,9/2

e) Actual main store starting Address (of where the compiler
is to be placed when in use).

Notes:

1)

iv

The compiler name should be right justified within each half-

word, but the first four characters should be put in the first
EeBe ABL = J00414254, O

HARTRAN = J50416264, J00624156

If the first four characters are zero, the second four will be
used as the starting block address (digits 0 to 21) of the com-
piler on tape, This facility cannot be used when Ba = 127,

The starting address and the actual starting address should have
bits 12 to 23 zero, and the starting address must be greater
than zero, since the block before this is used to set up the
compiler title block.

The following fault indications may be printed:
COMPILER NAMFE NOT LISTED
COMPILER NOW U/S TAPL FAIL
COMPILER TOO BIG

WRITING TO SPECIFID BLOCKS ON SYSTEM
TAPE IS PROHIBITLD

The first and third can only occur if Ba = 127, The fourth
implies the facility described in Note (ii) has been used with
Ba = \—N_N-

End compiling

(1)

If Ba #£ 0, set Compile/Execute,switch to Execute, and reduce
store allocation to that specified in Job Description. Lose
all store bl.cks with block labels greater than or egqual to
digits 1-11 of ba, unless ba less than O, in which case lose
no blocks. Transfer control to address n, unless n less
than 0, in which case End Program.

) If Ba = 0, do none of the above; the only effect of this
extracode is then 4o inform the Supervisor that the copy of
the compiler being used has been, or may have been, spoilt,
so that a new copy must be brought from magnetic tape for any
subsequent job. The Compile/Execute switch is not changed.
This extracode is useful where a compiler may have been spoilt
by an intverludes, :

Reserve Supervisor Tape

Ba

should be zero

n should be 0.1, 0.2 or 0, with the following meanings:

n = 0.1 The Supervisor will come to a loop-stop with J70707070 in

B120 waiting for the Write Permit switoh to be switched on
on the Supervisor tepe. When this has been done, the

(Xes")

1147

12.9/5

progbam will be allowed to write to, or read from, the
Supervisor Tape (logical number 427), and normal use of
the tape (e.gs reading compilers) will be halted.

n = 0.2 The Supervisor will come to a loop-stop with J70707070
in B120 waiting for the lrite Permit switch to be switched
off on the Supervisor tape, after which normal use of the
Supervisor Tape will be resumed.

n=20 The Supervisor Tape will be reserved as with N = 0.1.
but for reading purposes only. There will be no loop
stop, but 1143, 0, 0, 0.2 must be obeyed after reading,
in order to release the %ape for normal purposes. This
facility is used if it is necessary to print out part
of the Supervisor tape.

An operator request will be necessary before using this extracodes

Call Compiler

(1) If nis even (digit 23 = 0), then n will be interpreted as a
compiler number, and the compiler in question will be called
from the Supervisor Tape and entered at the address specified
by ba. The numbering of the standard compilers is given in
Part 1 of the Operator’s HManual (CS5 411), This facility is
used by the Supervisor, and by programs using compilers as
subroutines.

(i1) If n is odd (digit 25 = 1), the compiler willbe called from
block b of tape a, where a = digits 15 to 21 of n
b =digits 2 to 14 of n

It will be entered at ba.
In both cases, if ba = 0, the standard entry point will be used.

With 1150 and 4151, ba, P and K are as defined in sedtion 12.1.

1150

1151

1156

1157

Assign ba blocks, labels P to (P + ba ~1) to overflow K.

This extracode enables a program or compiler to temporarily hand
blocks to the Supervisor, which may write them to the system dump
tape. Subsequent use of these labels in the program causes new
blocks to be assigned, The block labels are retained in the ‘over-
flow’ region and additions to this reglon must bear distinct labels.
If ba = 0, one block is transferred.

Set up ba blocks, labels P onwards, from overflow K.

This extracode recalls blocks previously written to the overflow
region by use of 1150. Any existing blocks having these labels are
overwritten, If ba = 0, one block is recalled. If these blocks do
not exist in the overflow region, the program is monitored.

Enter extracode control at n if the ‘In Supervisor’ switch is set.

This extracode is used by various Supervisor Extracode Routines
which are obeyed on main control, If the ’'In Supervisor’ switch
is not set, the program will be monitored.

Enter extracode control at n if the ‘Process’ switch is sete

This may only be used by Supervisor routines such as the monitor
called in during the running of a main program.

(165)

- - - - - - - - S - B - S Y - - W .

e oBm TEm Gua DEN DN BB BES Gad DN W B LG BN e B

[”:’“1

