THE UNIVERSITY OF NOTTINGHAM

FACULTY OF APPLIED SCIENCE

Applications
of

Computers

LECTURE 16.

"TECHNICAL PROBLEMS"

(2) AUTO-CODING

by
J. HOWLETT, B.Sc.,Ph.D.

(/NS P,

i G B

w

oy

d—y

AUTOCODES AND OTHER AIDS TO PROGRAMMING

INTRODUCTION

Although electronic computers are now becoming almost common,
there is still a fairly wide acceptance of the view that programming is a black
art, a practice too esoteric for the plain working scientist. Complementary
to this is tﬁe view that only the largest-scale problems are suitable for
machine computation, anything smaller being not worth the effort of pro-
gramming. My experience has led me to very different views, and I feel .
strongly that these machines, which héve most remarkable powers, should
be made to work for us whenever possible; proéramming should be made
easy enough for an:;rone of reasonable mathematical competence to learn
quickly, and to make it worth while to use the machine for small problems.
Just how far down in the scale of problem size one should go can be left
for discussion, but I would say that it turns out very often indeed that
what was started as "just a trivial little calculation" develops into an
extensive survey, admirably suited to a machine. In any even moderately
large organisation possessing a computer there will be many people, not
machine experts, who need to make use of the machine and who therefore
must either wait until a professional programmer has time to take up the
work or write their own programmes; the professionals in every organi-
sation are always under considerable pressure from all sides, so the second
course may be the better one. However, writing a programme in con-
ventional machine code, using the absolute address system of the machine,
demands an intimate knowledge of the machine's logical structure and is

likely to call for more concentrated care and attention to details than the

occasional user can be expected to exert. Thus it seems to me essential
that some simplification of computer programming is made, if only to
make the machine easily accessible to many legitimate if not expert users.
In fact, equally imﬁortant benefits conferred by a well-designed scheme

for simplification are the much increased speed with which even the experts
can write programmes and the much greater ease of finding and correcting
mistakes; both these increase the rate at which problems can be put to the
machine and thus help to exploit its flexibility. -Since one never gets
anything for nothing one must expect to pay for these benefits and the cost

is usually in computing speed; the likely cost is discussed later.

SOME APPROACHES TO PROGRAMME SIMPLIFICATION

It would be vastly inconvenient to have to write an entire'programme
in precise machine language and in fact this is never done, even by the
most dedicated purist. Every machine installation is equipped with some

at least of these aids to programming:-

. gl '€th B2
(i) an input scheme; B Sy =
(ii) a sub-routine library, including standard
programmes for reading and printing
numbers;
(iii) a standard process for organising the entry

to and exit from sub-routines.

The sub-routine library enables one to call in standard functions,
such as Sin x, e%, log x, without giving a thought to the processes by which
they are produced. In a machine with a two-level store it is usually ne-
cessary to keep the sub-routines in the auxiliary store and bring them
‘into the working store as required; this can be a quite elaborate process,
and machines of the Manchester school use a ''Routine Changing Sequence',

a permanently-stored programme which organises all necessary link-

-2-

~ setting and transfers between the two stores, on being given the necessary
cue.

The input scheme can be of any degree of elaboration, and really
defines the whole programming system so far as the machine user is con-
cerned. In earlier machines quite simple input schemes were used,
resulting in'a very close correspondence between the written programme
and what was actually stored in the machine: this has been preserved in
the DEUCE computer. In general, input schemes have increased in com-
plexity as time has passed, so a greater amount of ''processing" is done
on the instructions as the programme is read into thesmachine and the
programme stored in the machine has become increasingly different from
the written form. This has all been done to simplify the programmer's
task, as for example by allowing him to use a simpler language for the
writing of the programme which is translated into machine languaée by the
input programme. One of the most important advances in this field is
the idea of "'floating addresses'', due to Wilkes (Ref. 1, p.127): briefly,
this enables one to label strategically-important instructions in a pro-
gramme, and refer only to these in control-jumps; the effect is that it is
then easy to add or delete instructions between these control points without
affecting the structure of the calculation - in contrast to programming in
what is called "absolute address', in which the location of every instruction
must be known. This idea of labelling is of extreme importance in Auto-
code programming.

In what follows I refer to "simplified", "automatic" or'"Autocode"
programming schemes. By such a scheme I imply a master programme
which operates on the programme written in the simplified language to
produce a programme in true machine language. Thus the method of
working with such a scheme is this. The master programme is first put

into the machine; the simplified-language programme is then read in and,

as it goes in, is translated by the master into a machine-language programme
which is stored; when this process is complete the working programme can
be made to start the calculation at once or can be punched out on tape or

cards (or written on to magnetic tape) for later use.

REQUIREMENTS FOR A SIMPLIFIED PROGRAMMING SCHEME

These are:-

(i) The programming language should be easily
learned, readily intelligible and as close as
possible to ordinary mathematics.

(ii) There should be as few eorreetions as
possible.

(iii) There should be no restrictions on the sizes
of numbers used anywhere in the calculation.

(iv) All the functions and operations one can rea-
sonably expect to need should be provided.

(v) The scheme itself should detect the commonest
types of mistake and should indicate what is
wrong.

(vi) It should be efficient: that is, should not re-
duce the machine's computing speed unrea-
sonably.

These imply that the machine itself should have these features:

(a) built-in floating-point arithmetic;

(b) a large rapid access store; |

(c) a comprehensive set of instructions;

(d) a good complement of 'index' or 'B'-registers.

It is a truism that any machine can be programmed to do any
computation; equally a programme can be written to cause any machine
to produce a working programme from one written in any simplified
language, but the loss in efficiency may be too high a price to pay for
the increased ease in programming if the machine is basically too simple.

-4-

"It is the trend towards fast, large-scale machines with all the above

features that is making automatic programming an increasingly attractive

idea.

EXAMPLES OF AUTOMATIC PROGRAMMING SCHEMES

Innumerable schemes of this kind have been devised: expert pro-
grammers are a race of individuals and the facts show that many would
rather design a programming scheme of their own than accept one produced
by another programmer: there is clearly a great fascination in this work. - -
I shall describe three systems which at least have the merit of being in
regular use: two only briefly, the "Alphacode' for the English Electric
DEUCE, and the matrix interpretation scheme for the Ferranti Pégasus;
in more detail, the system I have used most, the Autocode written by
R.A. BROOKER (Ref. 2) for the Ferranti Mercury.

I have left out what is almost certainly the most elaborate scheme
in existence, FORTRAN (Ref. 3) developed by IBM for use with their
Type 704 and 709 computers; an adequate account of this would take more

time and space than I wish to use.

(1) DEUCE "Alphacode"

This was developed by the English Electric Company and is des-
cribed in full in Reference 4. The introductory paragraph in this account
states that the code "aims at providing a means of writing instructions
for DEUCE in a simple and quick way, as near as possible to plain English;
one which can be learnt in a short time and used without much practice...."

The general principle is that all quantities are written as variables
X1, X2o X3z eeennnen » up to X550, 0r integers NjNp...... up to N 3. _The

computation is laid out as a series of statements of the type

5=

Xp = Xr FUNCTION Xg

or Xp = FUNCTION XS

-

The function can be any of the arithmetical operations + - x -— or any
of the common algebr;':\ic or transcendental function, such as ROOT (for
square root), COS, LOG, EXP etc.
For example to construct
a

y = e ®* cos bx/ 42 + po

one would first replace y, x, a, b by, éay X1, Xy, X3, X4 and then

write:
Xg = X3xXp ax
X5 = -Xp -ax
X5 - EXP Xj | etax
Xe = Xz xXp bx
X = Xg COS X e?*cos bx
Xq = X3xX3 a?
Xg = XqxX4 ' b2
Xg = X7+Xg a2 + b2
Xg = ROOT Xg
Xy = Xq+Xg

Notice that some of these instructions overwrite a variable with a new value,
thus in effect increasing the number of variables available.
There are instructions for reading numbers into the machine and
for printing results: for example, the instruction
3 DATA X,
will read three numbers (punched on cards) and assign them to Xz, X3, X4

in order, thus setting values for x, a, b. If the last instruction is written
FINISH

~ the machine will print (or punch) the value of X; and then stop.

The system works in floating-point arithmetic (programmed,
because DEUCE is a fixed-point macﬁine) and therefore requires no
attention to scale on the part of the programmer. It provides a complete
programming system, including instructions for organising cycles of
operations and performing, on a single order, such elaborate processes

as the integration of a set of differential equations.

2. The Pegasus Matrix Interpretation Scheme

Matrix operations are very commonly required in numerical
mathematical work, the most familiar process being the solution of a set
of linear simultaneous algebraic equations; all computer installations have
found it essential to equip themselves at least with standard programmes for
the routine performarce of such tasks. Ferranti have developed a.master
programme for their Pegasus computer (Ref. 5), which enables such opera-
tions to be called in with very few orders, using floating-point afithmetic
to take care of all scaling. The programme provides for input and output
of matrices, addition, subtraction, multiplication, division and transposition.
As an example, supi)ose we wish to solve a set of 20 simultaneous equations:
if A is the matrix of coefficients and B the set of right-hand sides, the
solution is C, where

c = Alsp

A is a 20 x 20 matrix. B and C are 20 x 1 matrices.

In the Ferranti scheme each matrix is represented by an index number
and its dimensions: thus if we éall A matrix 1, it is described by
(1, 20 x 20) - in general, (N, m x n) means "matrix number N, having
m rows and n columns'.

We call A,B,C matrices 1,2,3 respectively; the label 0 always

refers to the input or output equipment. The programme is as follows,

g

the instructions being punched on tape exactly as written here:-

(0, 20 x 20) = 1 Reads in A
(0, 20x1) = 2 B
(1, 20 x 20),(2, 20 x 1) =3 c = alg
(3, 20 x)(6)=>0 - Output C in floating-point

form to 6 digits.
These few orders organise the whole set of processes which are
needed to solve the system. With such a scheme the solution of linear

equations become an almost trivial operation.

3. Autocode for the Ferranti "Mercury"

A very complete scheme for use with tﬁis machine has been written
by R.A. BROOKER of the Computing Laboratory at Manchester University;
it is in large-scale use at Manchester and at Harwell. The design of this
machine makes it very well suited to automatic ‘pro.gramming 6n quite
an elaborate scale.

The basic principle, as in the DEUCE scheme, is that a programme
is written as a series of equations involving numbers, variables and
functional operations; variablés are represented by letters, with or without
suffixes.

Thus y = aix/by + apy/b, + a3z/bs
is an admissible instruction, mganing just what one would expect. Also is

y = ¢ sin (2mx/a)
where the symbol ¢ is needed as a warning to the master programme
that the group of letters following, and up to the first bracket, defines a
functional operation: the programme then examines these letters to find
which sub-routine has to be called in.

The instruction

x = ¢ exp(-ax)

is interpreted as replacing the variable x by the new quantity e™°*,

-8-

The Autocode vocabulary consists of the letters a b c d e f g
huv wzxy z n (the last automatically set to 3. 14159 unless
specifically altered) with or without suffixes, called variables and used for
quantities of virtually unlimited size; i j k 1 m n o p q r s t called
indices and denoting integers in the range 0-511; a number of functional

orders and a number of directives and control instructions for organising

the layout and flow of the calculation.
To take a very simple example, suppose we wish to produce a table

of cos 8 and sin® at 10° intervals from 0° to 360°, with 6 decimals; and

to record the values of %sz 0 + sin’ @ ; the programme is:

r = 0(10)180

u = ¢ cos(rn/180)

v = ¢ sin(rw/180)
w = @ sqrt(uu+ W)

print (r, 3,0)
space
print (u, 1, 6)
print (v, 1, 6)
space
space
print (w, 1, 6)
new line
repeat
stop
Most of this needs no explanation. The instructions
r = 0(10)180
repeat
are control instructions, and cause all the intervening instructions to be
obeyed with r setto 0, 10,20 - 180 in turn. The print instructions

-9-

are all of the form
prip’c (x, m, r;)
meaning "print the value of x with m figures before the decimal point
and 'n after; follow with 2 spaces'. ''Space'' puts in an extra space and -
"new- line" causes the next printing to start at the beginning of a new line.
As a variation, we might decide to examine‘the value of cos2 2] +sir129
at each step and print only if it differs from 1 by, say, 5 x 10'7; after the
first three instructions the programme then becomes -
w = ¢mod(uu+vv-1)
print (r, 3, 0)
space
print (u, 1, 6)
print (v, 1, 6)
——jump 1, 0.000 0005» w
space
space
w = uu + vv

print (v, 1, 7)

= 1) new line
repeat
stop
The symbol 1) is a label; jumps, that is, departures from the
sequential .obeying of instructions, are always made to labelled instructions.

Here we have a conditional jump, the instructions to print w being skipped

over if | u? + vé -1 '< 5x 107, The general form of a conditional jump is:

jump (n), a = b
or a # b
or a_~> b
or a2 b
where a, b can be numbers, variables or indices,
.05

All that it needed to make this set of instructions from a complete
programme is the addition of some directives. To aid the organisation of
large calculations, Brooker divides each programme into blocks of up to
about 100 instructions, called Chapters and, so far as possible, coinciding
with logical divisions of the calculation. Each chapter is headed, thus -

Chapter 7
and terminated by the directive g}éﬂe; the autocode instructions are
translated into machine code as the programme-tape is read into the machine
and when this final directive is received the assembly is completed and the
working programme of the Chapter written on to the magnetic drum store,
ready to be called down when required. The master programme then con-
tinues to read in more programme tape. Transfers of control from one
chapter to another are made by instructions of the form |

across m/n
meaning ''read chapter n from the drum and start t6 obey it at the in-
struction labelled m'". To start a calculation, the programme having been
read in, one needs only an instruction directing control to the first in-
struction to be obeyed; this is obtained by following the ''close'' directive
of the last chapter to be read in by the instructions

across m/n

close
This final "close' causes the ''across' instruction to be obeyed immediately,
and ﬁence starts the calculation.

The present example has only one chapter; hence the complete

programme is:

-11-

Chapter 1

2) r = 0(10)180
. = cos(rw/180)
etc
stop
close

across 2/1
close
If this is typed exactly as written on é standard Mercury-code
tape perforator, a machine holding the master programme will accept it,
perform the calculation, print out the results and then stop.
Most of the important features of the scheme are illustrated
in this example. Numbers can be read from tape by instructions of the form
read (x)
A string of numbers, say 50, can be read in by a cycle:
i = 1(1)50
read (x;)

repeat

which sets x; first number on the tape

" " "

Xy second "

etc.

Numbers can of course be processed on the way in: if one wanted only the

reciprocals of these numbers one could write

i = 1(1)50
read (xj)
xi = 1/x4

repeat

LS

If suffixed variables are to be used in any chapter, some information
about these must be given at the head of the chapter; thus if one wanted to
use fo,fj ... upto f5 and xo, X . X100, the chapter would start:

Chapter 3

f =225

x —>>100
and these directives would cause space in the fast store to be allocated to
the variables.

As in the DEUCE scheme, there is an instruction which enables
one to integrate any set of ordinary differential equations; behind the
scenes this uses the Runge-Kutta process, in a form which is correct to
the fourth order in the interval of integration.

There is a more elaborate example in Appendix I.

It will be clear that this system is simple, flexible and powerful;
it is fast in operation because Mercury has the required built-in floating
point arithmetic and other desirable features, so that loss of speed comes
only from the use of general programme techniques in all cases, when
in a particular case a technique tailored to fit the problem would be
faster. Brooker estimates the reduction in computing speed is never as
bad as a factor of 2, usually more like 1.2-1,5; the reduction in pro-
gramme writing and development time is very great, probably a factor
of at least 10. The main limitation on the use of the scheme - at least
in its present form - is that it sacrifices some of the machine's flexi-
bility; one has not the same control over the store as in standard pro-
gramming, and it is not easy to perforﬁ logical operations.

The scheme has been used extensively at Harwell with wholly
excellent results; at the moment at least half our machine time is taken
up by autocode programmes, for problems of a very wide range both
in type and in scale. Many scientists who in other circumstances would

-13-

not have considered using the machine have become enthusiasfic pro-
grammers and we have been‘.able to have quite junior staff doing work which
they themselves would have imagined beyohd their powers. The result has
been a very rapid progress of problems through the machine,

In spite of this eulogy I must finish with a warning; an automatic
programming system, however excellent, does not remove the need for
skilled programmers and people who really understand the machine -
and the working of the automatic system. Theré always comes a time ‘
when things go wrong, and then chaos can develop unless there is some-

one to diagnose the trouble and put things right.

X174 -

APPENDIX

The programme given here will evaluate the function
1 [ax-y* _dy
—\,r (x,u) = —'\/ﬁf e Y 1+ y2
. Seo
for any given value of the argument x,u and to any stated accuracy
(limited only by the machine's ability to carry not more than about 9
significant decimal digits). This function plays an important part in
certain branches of theoretical nuclear physics.
The method used is direct numerical integrafion, using Simpson's
rule, in the form

Zh h n 4
J‘ fx)dx = 3 [_fo + 4f; + fz] - g(',—‘fﬁ“‘fl

o

The programme adjusts the interval h at each step, always trying to
increase it but keeping the fourth-difference term less than some stated
quantity: it is assumed that the higher-order correction terms will then
be negligible. It replaces the infinite limits by finite ones, determined
so that the exponential term does not get less than e'25, i.e. about 10-10.

As given here, the programme reads in the values of x,u and the
limit placed on the fourth-difference term; it computes the value of the
integral, prints this and stops; it can be made to continue with another
case by pressing the prepulse button on the Mercury console.. It would
be simple to alter the programme to make it produce a set of values of
Y (x,u) for stated ranges of x and u.

A single calculation takes about 1.0 seconds.

=

1)

2)

3)

4)

5)

Chapter 1

y » 10
f %10
> 10

stop

read (x)
read (u)
read (e)
new line
print (x, 2, 4)
print (u, 2, 4)
new line
new line
z=0

h = ¢ sq rt (u)

@ sq rt (4mu)
=1/m
0.25/u

]

w N
I

x - 10h)
x + 10h)

TP
non

™ = a

i=0(1)4

yi=mw1 +ih - h
ke B

n) = 3)
jump 20)

fi=1f
repeat

c = fo - 4f1 +6fp - 4f3+1f4
d = ¢ mod (hc/90)

jump 4, e>d

h =0.5h)
jump 2)

A

f1+4f2 +f3
z + hv/3-hc/90

v
Z

[T

~—

y = y3+2h)
jump 6, b>y

S

h = 0.5b - 0. 5y3
n) =5

i= 4(1)5

yvi = y3+ih-3h
y=Ji

jump 20

fi="f
repeat
v = f3+ 45+ f5

Notes

Variable directions

Restarted by prepulse

Limit for h&%/90

Starting value for integral

1Wim

1/4u

Effective limits of
integration

Arranges entry into sub-rputine
for computing integral, and return

) 4f2

Halves interval if h&4/90
exceeds limit

Integrates over interval 2h

Tests if upper limit of integral
is within 2 h

Last interval; link for return
from sub-routine

-16-

6)

7
8)

20)

7z =z +hv/3
print (z, 2, 6)
new line
jump 1

y=y3t4h
jump 7, by
jump 8

h = 2h

T = Y3
jump 2

W=Xx-y
w = ¢ exp (-m3wv)

f = ¢ divide (wpv, 1+ yy)
jump (n)

close

across 1/1
close

1.0
0.5
0.0

Data: e.g.

000005

X
u
e

Prints result and
stops

Tests if doubling
interval would over-
run upper limit.
Doubles interval
and continues,

Subtraction for
evaluation integral.

End of chapter.

Starts calculation

N.B. The first order obeyed (1/1) stops the machine, so the
operator has time to insert a data tape.

-17-

HL60/3742,

REFERENCES

WILKES, M.V.
BROOKER, R.A.
I.B.M. CORPORATION
ENGLISH ELECTRIC
CO. LTD,

FERRANTI LTD.

Automatic Digital Computers
Methuen (1956).

Computer Journal 1 (1) April 1958
pp. 15-22.

FORTRAN: Programmer's
Reference Manual.

Report NSy 87 (January, 1958).

List CS 135 (March, 1957).

-18-

" g

S

