THE UNIVERSITY OF NOTTINGHAM

FACULTY OF APPLIED SCIENCE

Applications
of

Computers

LECTURE 6.
"BASIC PRINCIPLES - CONTROL"
by

A. S. DOUGLAS, B.Sc.,M.A.,Ph.D.,A. Inst. P.




e




"BASIC PRINCIPLES - CONTROL"

INTRODUCTION

Fast arithmetic and rapidly accessible storage naturally require
rapid control if the resulting operating speeds are to take full advantage
of the components, Such a control can readily be achieved by making
suitable connections between stores and the arithmetic unit, on the
principle of a telephone exchange system. This approach was in fact
followed in the first electronic calculator, the ENIAC. However, the
necessary plugging up for a particular job takes a long time, and it is
desirable that there should be a high degree of flexibility in operation.
As was shown in the report of Burks, Von Neumann and Goldstine of
1946, this can best be achieved by controlling the sequence of operations
by 'instructions' held on rapidly accessible storage, the actual set
being employed at any time being able to be changed rapidly when required.
We shall now indicate how such a set of instructions may be stored on

elements similar to those used for number storage.

CONTROL OF ARITHMETIC OPERATIONS

Standard arithmetic operations such as addition, subtraction, multi-
plication and division involve the processing of two numbers to produce a
single resultant number. When we specify such an operation, therefore,
we normally supply two numbers, a and b say, and, denoting the result
by c, write, for instance:

a + b = ¢
Any such specification involves two numbers and a function, and must
also detérmine what is to be done with the result. Except in certain
limited contexts this is not convenient within the computer, since, among

==



other things, each instruction would require considerable space. It is
customary, therefore, not to specify the numbers themselves but only
where they are to be found within the computer. Our fundamental
instruction thus becomes:

c(A) + C(B) » C,
where A, B and C are positiens or 'locations' in the computer storage,
and C(A) stands for ‘contents of A'.

It is easily seen that the locations can be labelled with numbers,
called 'addresses’, according to some convenient scheme, and that these
labels can be stored in the same way as numbers in the computer. Further-
more we may designate the various operations which an instruction can
cause to be carried out by a numbering scheme also, 01 standing for +
for instance, and these 'function digits' can also be stored readily.

If we store instructions in the computer in the form indicated, then
control must also know in what sequence the instructions are to be called
upon, and thus our complete instruction must also include information as to
where the next is to be found. A full explicit instruction must thus be of the
form A,B,C; F;N, where A,B,C are numerical addresses, F consists of
one or more function digits, and N is the address of the next instruction.
Such an instruction would be termed 'four address' or 'three plus one
address'. On reasonable assumptions about the length of number-words
and of the addresses necessary in such an instruction it is usual for one
instruction to occupy about the same number of digits as a number. Very
few computers in fact employ this system.

By adopting suitable conventions we may reduce the number of addresses
required in the typical instruction. Thus we may automatically extract
instructions from addresses in some determined sequence, e.g. from

consecutively numbered locations, thus eliminating N altogether. Further

-2-



we may impose the condition that either A or B is the same as C.

If this convention is adopted, then C is termed an 'accumulator’,

since it may readily be used to accumulate totals. It is in fact adequate,
and even in some cases desirable, to provide a single accumulator in a
computer. In this case C itself need not be specified at all, and only
the address A(or B) need be given. A control operated in this way is
termed a 'one-address' system. In this case it is common for two or
more instructions to be stored in the same number of digits as a number-
word.

Between the extremes of one-address and four-address systems
lie a large number of compromises, which allow, for instance, for more
than one accumulator, or for a limited selection of locations from which
the next instruction may be drawn. Machines with fairly large working
stores are commonly one-address or nearly so, whereas those with a
small working store and a large backing store are often two address,
although one of the two addresses is usually restricted. Machines with
a working store with anisomeric access, such as a drum or long delay
lines, normally use a system embodying a timing number or an explicit
address for the next instruction, so that successive accesses can be
suitably adjusted to give a minimum of delay.

In the analysis given above no greater degree of complexity in one
instruction than of the simple operations of arithmetic has been considered.
Any more elaborate system would involve more addresses per operation,
and would greatly complicate the control for carrying out arithmetic.
Nevertheless in future machines more elaborate individual instructions

may be provided, and we shall discuss how this may be done.



FUNDAMENTAL CONTROL OPERATIONS

Within the computer it is possible to regard each location in the
working store as being connected to one of two or more inputs of the
arithmetic unit, and also to the one or more outputs provided. Information
in a location remains there and takes no part in operations unless it is
fed to the arithmetic unit. This may be done by opening a 'gate' on the
output of the location which is normally kept closed. Similarly information
in a location can be replaced by opening a gate into the location from one
of the arithmetic unit outputs, allowing new information to flow in and
destroy the old. Control of the store and thus of computer operation is
therefore done by selecting and opening, in a suitable sequence, gates
throughout the computer, coupled with specification to the arithmetic
unit by means of the function digits what operations are to be carried out
within it.

Selection of the requisite gate, given an address A is done by means
of a decoding 'tree'. To illustrate the operation of this device we consider
the problem of constructing a switching system such that when a pulse is
fed in it comes out on one of eight output lines, the line being selected by
a 3-bit number. Let us use two-way switches, the state of each of which

is controlled by one of the 3 bits, arranged according to the following

diagram.

Yvvy

Neud Wwhb—0

v #! v J!

We suppose that switch 1 is operated by the state of bit 1, and connects

with 2 if bit 1 is 0 and with 3 if bit 1 is 1. Similarly 2 and 3



are controlled by bit 2, the connections being 24, 3-»6 for bit 2 = 0,
25, 337 if bit 2 = 1. Switches 4,5,6, and 7 are controlled by bit 3 in
a similar way. We note that, if the number in the controlling position is
010, for instance, switch 1 is connected to 2, which is connected to 5,
which is set so that output is on line 2 (the settings of 3,6 and 7 are
immaterial, since 1 is not connected to 3). Inspection assures us that

a binary number in control selects the output appropriate to its value.

In this way, therefore, we may express an address number in terms of a
selected gate. The time of opening of the gate will, of coure, depend
upon the timing of a pulse through the tree reaching the gate, and this

is determined by the phasing of operations in the camtrol. Clearly
several gates can be attached directly, or through delays, to the

output wire and their opening thus controlled in a suitable sequence.

A similar system can be used for selection of a particular function
to be performed within the arithmetic unit, and, by a suitable arrangement-
of connections the output wires can alter the setting of the controlling
number. In this way a whole sequence of elementary gating instructions
can be carried out automatically without further reference to the store
for instructions. The details of construction of such a system are
complicated, but the sequences of gating operations are analogous to
sequences of instructions in the computer. These sequences are, there-
fore, sometimes known as 'microprograms’, after the terminology of
Dr. M.V. Wilkes, who first introduced the subject.

It is seen from the foregoing that the designer of the control has a
wide choice of possible systems. The simplest control to engineer is one
which throws the whole burden of timing of gating operations and
selection of positions directly upon the programmer. Such a system would,

however, require a considerable knowledge of engineering on the part of

-5-



the programmer and would require much detail in programming. The
programmer, however, is mainly concerned with using the machine to solve
problems in arithmetic, logic, or organisation and these already involve
much detail in terms of the arithmetic operations described above.
Greater complexity in operation is possible, and, by using techniques
such as micro-programming, may even be made relatively easy to
engineer. But it involves much equipment which is both expensive
and liable to failure, this liability becoming increasingly important the.
more equipment is used. There are, therefore, powerful arguments for
engineering simplicity, and it is usual to adopt a compromise, which
combines reasonable simplicity in instruction coding with minimal equip-

ment and maximum speed in control.

SEQUENCING OF INSTRUCTIONS

It was pointed out above that some indication, either explicit or
conventional must be given to the control of where instructions are to be
found and in what sequence. If no explicit indication of where to find the
next instruction is included in each instruction, then certain special
instructions are necessary which enables breaks in sequence to be made.
These are called 'jump instructions'. Such jumps enable a group of
instructions to be obeyed repeatedly and thus increase the power of the
computer without increasing the storage demand. A system repeating
a group of instructions without cessation would be of little practical value,
however, and it is necessary to provide a method of getting out of the
sequence upon the occurrence of some event, such as the completion
of a specified number of repetitions. . Instructions are therefore provided

which break sequence except upon the occurrence of such a condition;

these are called 'conditional jumps'. The condition tested is often the

-6-



setting of a particular bit in the store, such as that representing the
sign of a number in a selected location, or that indicating that overflow
has occurred, but any condition for which a test can be devised is
acceptable. As well as simplifying the use of repeated sequences,
conditional jumps enable us to select one of two (or more) possibilities,
according to some criterion, and thus give the machine a function of
decision, provided that the criterion applied can be suitably formulated.

This is of the utmost importance in control applications.

MODIFICATION OF INSTRUCTIONS

Whilst the repetition of fixed sequences of instructions is useful
under many circumstances, it is more usual to wish to carry out the
same operations upon a sequence of numbers. For instance, let us
form the sum of the set of integers 1 to 100. We take 1 and 2 and add
to form 3, next we take 3 and the preceding result (also 3) and add to
form 6; the latter procedure of adding the result to the next number
may then be repeated until 100 is reached, and theresult then given
is the required total. Using machine language let us put the numbers
1 to 100 in locations 0 to 99. We will store the result each time in
100. Our sequence of operations reads:

c(o) + C(1) — 100
C(100) + C(2) —» 100
C(100) + C(3) — 100
etc.

Obviously the latter instruction could be contracted to a repeated
sequence of the form C(100) + C(i)— 100 if we can arrange that
the value of i is increased by one at each repeat. This requires
only that the address be increased by one, and, since the address is

=~



held in numerical form, this can be done by adding a suité.ble number
to the instruction. Such an addition canbe done through the arithmetic
unit or by a separate adding system and can take place either by changing
the instruction in the store, or during the processing of the instruction
within the control unit. The simplest system engineering-wise is to
store instructions as if they were numbers in the computer and to process
them through the arithmetic unit when it is desired to change an address.
In this case any address in the instruction or the function digits them-
selves can be changed by adding suitable constants to the instruction-word.
Integrating storage of numbers and instructions in the way indicated has
the advantage that the best use can be made for a particular problem
of the storage available, an appropriate division being possible between
instructions and numbers. In this system, however, the machine makes
no distinction between the two in storage, and a number sent by mistake to
the control unit will be treated as an instruction, with possibly interesting
results. This, in fact, causes little embarrassment as a rule, but may
make fault finding in programmes slightly more difficult.

From a programming point of view direct alteration of the
instruction in the store by arithmetical processing is less desirable
than modification of an address within control. It is frequently
found that several instructions in a sequence are to be altered by
similar amounts throughout a calculation, although each refers to a
different position initially. Consider the operation of multiplication
of two vectors each of 100 elements. This involves forming xi x yj
for successive i values from 0 to 99. Let the xj be stored in 100 +j
and the yi in 200 +i. Our repeated sequence uses the instruction
C(100 + i) x C(200 +i) —» 300 +1i, say. Thus three addresses are to

be tied to the counter i as it proceeds from 0 through 99. It would

-8-



clearly be wasteful to process each address separately, and it is better
to keep i in a special index counter, the contents of which can be added
automatically to the address or addresses of any instruction suitably
marked. If such an automatic system is provided, the index location is
called a 'modifier', and we speak of 'modification' of an instruction.
This method was originated in Manchester on the first machine built there.
The marking of an instruction to select a particular modifier may involve
a further address or addresses being included in the full specification.
If the machine is fundamentally one-address then a single modifier is
appropriate, and if more addresses are included it is still usual to pro-
vide modification facilities for one of them only.

It will be seen that modification methods applied to arithmetic
instructions might also be applied to jumps or indeed to any other type
of instruction. Furthermore the index counts are themselves sufficient
to provide criteria for the conditional jump instructions, since control
numbers can be compared with the counts, and jumps made conditional
upon the count reaching these control numbers. In our example we would
increase the count, i, after each multiplication operation and then test
whether i had reached 99 or not. If not, then the operation would be
repeated with the increased value of i; if so then the repetition would
be regarded as finished. It will be seen that this technique implies that
the instructions within the store are not altered throughout the repetitions.
If i is held in location I, the instructions would consist of the sequence

(1) C(100) x C(200) —»300; all addresses modified by C(I);

(2) Increase C(I) by 1 ;

(3) Test C(I) and jump back to (1) if not equal to 99.
The contents of I are altered, and this 'index' or 'counter' position must

have an adder (at least) associated with it or must form part of the working

-9-



store for numbers. Whilst there are still advantages in being able to
process instructions arithmetically and in having a unified storage system
for numbers and instructions, this is no longer essential if modification
is used. It is thus possible to use special storage for instructions which
has very rapid access for reading only. A particularly interesting
possibility, first attempted on EDSAC II, at Cambridge, is that of storing
certain frequently used instruction sequences on permanent storage of this
nature, thus extending the effective instruction code of the machine to
cover complicated operations without complicating control, and also

reducing the actual storage requirement for those sequences.

ADDRESSING THE BACKING STORES

So far we have been concerned only with arithmetic operations and
the techniques of controlling the working store and of handling instructions
relating to them. The control system of the computer has, of course,
the wider task of co-ordinating the operation of all sections of the computer.
This is complicated by the varying methods and times of access to the
storage and other devices involved. If every control operation is completed
before a new one is begun much time is necessarily wasted in waiting for
the slower moving parts to complete their operation. By suitable autono-
mous arrangements much of this waiting time can be eliminated, but the
central control must then be capable of initiating operation of the autono-
mous systems and of sorting out the signals of completion issued by them
or of timing their operation suitably. One method of carrying out this
which has been discussed elsewhere by Dr. Gill is that of arranging a
system of priorities for dealing with such signals which can then 'break-
in' to the fundamental operation of the computer. This may well be
suitable for the operation of very high speed systems which have to con-

trol much slow peripheral equipment.
-10-



The backing stores are typical examples of equipment which are
normally autonomous or partly so. Thus the drum or tape mechanism
will arrange to extract information, of which the address is given, into
a buffer quite independently of the behaviour of the rest of the computer.
However, before the information can be used we must allow time for
location of the address and for reading out to the buffer. Unless some
break-in procedure is employed, the time allowed would normally have
to be the maximum possible, or else the timing would have to be left
to the programmer.

In order to simplify this problem it is usual to arrange the trans-
ference of information in blocks large enough that the waiting time is
not a large proportion of the total transference time. Block transference
of this kind poses a difficulty in arranging instructions such that they are
commensurate in length with other types of instruction. A typical
transference instruction will comprise an address referring to the backing
store block and another referring to the working store (or other backing
store if direct transference is possible between them). The nﬁmber of
blocks in the backing store may be very large, and thus the address of
this will be long compared with working store addresses used in
arithmetic instructions. Various techniques have been used to overcome
this difficulty, should it prove impossible to keep a transference in-
struction within the normal corfxpass., Sometimes special provision has
been made for linking pairs of instructions so that the double length is
available for a transference specification. Another system used has been
to use the modification facility to extend the effective instruction in the
control, the modifier being added to the instruction, but shifted relative
to the end of the instruction so that the total length is greater than that of
a single instruction. Yet another method is to arrange that the transference
instruction is of normal type, specifying an address, the contents of this

-11-



address containing a special word which contains any additional addresses
required. Any of these techniques or all of them may be included in a
particular machine.

One of the effects of the use of block transfers is to make it
convenient to refer to parts of the working stores in terms of the blocks
which can be transferred to them. Thus we may divide our working store
into blocks of 64 words, each of which can be fed from one of the half-
tracks on the drum. The transference instruction will thus be of the
form 'read half-track A onto block B'. However, for purposes of
arithmetic we require to refer to the individual words of block B. This
can most conveniently be done by specifying the word in the form B. p,
where p lies between 0 and 63, rather than considering the working
store as a set of words numbered serially from 0 upwards. Naturally
the two numbering systems are equivalent in principle, but the actual
system in the control will often be most conveniently arranged according
to the block and position scheme and this is frequently adopted. Trans-
lation from one system to the other can be arranged during input if
desired in a manner similar to that described for decimal to binary con-
version.

Instructions need not, strictly speaking, be of fixed length, but
if not then each instruction must contain some indication of its own length
in a conventional position, and the start of the next instruction must be
indicated. Such a system overcomes the difficulty of transference
instructions, but introduces complications in the decoding system for
addresses, especially if numbers too are of flexible length. An address
must consist of a reference to the starting point of the word required and
an indication of its length, unless the latter is conventionally contained
within the number-storage. Whilst machines using variable word length
do exist, the advantage of this over fixed length systems has not been

-12-



clearly established as yet.

PROGRAMMING AS AN EXTENSION OF THE INSTRUCTION CODE.

It has been pointed out above that the fundamental control operations
of the computer consist of selection and operation of gates throughout the
machine, whereas the operations required by a user are often complicated
sequences of these fundamental motions. Some discussion has been given
of the design balance between carrying out such sequences automatically,
however complicated, and carrying out only fairly simple sequences
automatically, leaving the sequencing of these simple operations to be done
by the programmer so as to produce the required result.

The point at which automatic operation leaves off and programming
begins is to a certain extent arbitrary, and we may thus think of programming
as alternative to hardware in building up an instruction code for the user.
For instance, in certain work the trigonometric functions, cos and sin
are frequently evaluated. This can be done by hardware or by programming
the operations of multiplication and addition on numbers stored in the
computer. A sequence prepared for a specific purpose such as this, and
capable of being called upon for some simple instruction or pair of
instructions is called a 'subroutine’, and is capable of returning control
to the original sequence on completion of its operation. It thus behaves
in every way as if the instructions used to call it in were a part of the in-
struction code of the machine devised to evaluate the function specified.
The subroutine differs from the hardware required only in speed and in the
occupation of storage. Nevertheless the loss of speed by programming
may not be great, and the storage occupied may in fact take less equip-
ment than the hardware. There is certainly a degree of complexity in
a subroutine for which the price in hardware would be too high to pay in

order to obtain additional speed, unless the computer is to be a special

purpose machine.
-13-



Using programming techniques to supplement the formal machine
code, the aim is to make specification of a problem as natural as possible
for the user. Experience shows that a user with engineering or mathe-
matical training takes kindly to a mathematical notation, and it is on this
assumption that a system of 'autocodes' have been built up by Glennie,
Brooker and others (but notably by Brooker at Manchester), based on
the translative techniques described for input (originally developed by
D.J. Wheeler at Cambridge). Brooker's autocode which will be dealt
with in a later lecture consists of an instruction code utilising minor
changes from and additions to standard mathematical notation together
with a 'symbolic addressing' system within the computer (location
addresses are referred to not as numbers, but symbolically). The
computer is used to translate this code in terms of a number of sub-
routines and of the basic machine code so as to perform the operation
specified. For convenience such codes are always applied to numbers
in 'floating point' form, thus concealing any difficulties due to magnitude,
and they are thus peculiarly suited to machines providing floating point
facilities in the basic code.

For uses not directly connected with mathematical work other
types of codes have been developed, though none yet so universally
satisfactory to users. These employ various techniques, notably those
of 'interpretation', 'generation', 'compilation' and 'assembly'. In inter-
pretation systems the machine is programmed to simulate a control
system with a simulated arithmetic unit, working stores and so on.

The system simulated has an instruction code different from (or the same
as) the computer itself, and may provide additional facilities not offered
by that code. It is possible to provide an autocode in this way, but it

would be slower than the translative system usually employed, which

-14-



does not involve simulation of a machine but only translation of the
given instructions in terms of the basic code. The techniques_of com-
pilation and generation are used to avoid excessive programming
preparation where basic code is to be used. By the supply of a few
symbols it may be possible tospecify a required operation the instruction
for which can then be 'generated' by a simple process determined by a
subroutine. In a similar way we may 'compile' a complete operation by
bringing together its constituent parts arranged as small sequences of
instructions stored in various places. The complete operation required
can then be carried out by 'assembling' the sequences compiled or
generated. The details of these techniques have been highly developed
in the United States by Dr. Grace Hopper for application to commercial

work.

-15-






