THE UNIVERSITY OF NOTTINGHAM

FACULTY OF APPLIED SCIENCE

Applications
of

Computers

LECTURE 7
"THE TASK OF THE PROGRAMMER"

by

S. GILL,M.A.,Ph.D.







THE TASK OF THE PROGRAMMER

PROGRAMMING TECHNIQUES

We have already seen the part played l?y programming in controlling
the operations to be carried out by a computer. The programmer'stask
is to preparea set of instructions for a given problem, according to the
instruction code and other characteristics of the computer available. In
this, and the following lecture we shall consider what this task entails.

In order to illustrate a few simple programming jobs, we shall
imagine a machine with a single store containing one hundred registers,
numbered from 00 to 99, each containing seven decimal digits. The
instruction code will be of the three-address type: the first decimal digit
of an instruction will indicate the type of function (e.g. one for addition,
two for multiplication, etc.), and the remaining six digits will be taken
in three pairs to represent three addresses in the store. In the case
of addition and multiplication, the first two addresses will be the addresses
of the registers containing the operands, and the last address will be the

address of the register which is to receive the result.

SIMPLE ARITHMETIC

Suppose that at some stage in a calculation, the numbers p and q
have been formed and placed in registers 10 and 11 respectively, and the
number x is in register 0. It is then required to form px + q and to
place this in register 1.

This task requires two machine operations: a multiplication,

followed by an addition. Two instructions are therefore required as

-1-



follows: -

EXAMPLE 1.

2100001 put px in register 1
1011101 put px + q in register 1

Assuming that the computer takes its instructions from con-
secutive registers, these two instructions should be placed consecutively.
Any two consecutive registers will do, provided of course that they are
not already reserved for data or for another part of the programme. The
programme must be designed so that, at the moment at which this piece
of calculation is to be performed, the machine arrives at the first of these
instructions.

Suppose now that the number r has also been formed in register
12, and it is required to put px2 + gx + r into register 2. This prob-
lem illustrates in a simple way the need for a little preliminary planning.
The machine could be made to form px2 and gx separately, but this
would require it to perform three multiplications. The amount of work can
be reduced if px + q is first formed as in the last example, the complete

task being Programmed as follows:

EXAMPLE 2.
2100002 put px in register 2
1021102 put 'px + q in register 2
2020002 put px~2 + gx in register 2
1021202 put px2 + gx + r in register 2

A COMPLETE PROGRAMME

In addition to performing a calculation, the computer must also
read the data for the calculation, and cause the results to be printed or
punched out. This input and output is also controlled by the programme,

which must therefore include the necessary instructions for it.

-2-



Owing to the variety of forms in which data is commonly presented,
the programming of input and output operations in practice tends to be a
little complicated. For simplicity, however, we may assume that the
machine has an input instruction that will cause a number to be read from
cards or tape and placed in one of the storage registers, and an output
instruction that will print or punch a number from a storage register.
These types of instructions will be distinguished by the function digits 3 and
4 respectively, and the first address part of these instructions will denote
the storage register involved. The remaining address parts are not re-
quired and will be ignored.

For example, a complete (if trivial) programme might cause the
computer to read in succession the numbers p, q and x and to print the

quantity px + q. The programme would be as follows: -

EXAMPLE 3

3100000 read p into register 10
3110000 read g into register 11
3000000 read x intp register 0
2100001 ] compute px + q
1011101 as in example 1
4010000 print result
When the machine is required to execute this calculation, it is
first necessary for these instructions to be loaded into a suitable part of the
store. When this has been done, the machine is directed to begin obeying
the programme at its first instruction.
For loading, the programme must first be prepared in a suitable
form on tape or cards, following certain established conventions. The
actual loading operation is then itself controlled by a special "programme

input" routine, which is used for all programmes. Various means are

used to get the programme input routine into the store initially.



SOME COMPLICATIONS OF PROGRAMMING

In the simple examples given so far, the instructions were merely
carried out as given in the sequence in which they appeared in the store.
There are two complications which characterise programmes in practice,
and which lead to a tremendous degree of flexibility in the operations which
a computer can be made to perform.

The first complication is the fact that the sequence in which the
instructions are actually obeyed can be interrupted by certain special
"jump'" or "transfer of control" instructions, and that these breaks in the
sequence can be made to depend upon the numbers which are being computed.
Thus we can envisage a jump instruction, distinguished by the function
digit 5, which causes the machine to take its next instruction from the
register whose address is given by the first address part of the jump
instruction. Furthermore we may suppose that this jump is conditional
upon the values of two numbers in the store, i.e. that it will occur only
if the first number is less than the second. The addresses of the registers
containing these two numbers may be specified in the last two address
parts of the jump instruction,

The other complication is the fact that, since the instructions look
and are stored exactly like numbers, and any storage register may con-
tain either a number or an instruction, there is nothing to prevent the
programmer from writing instructions that will cause the machine to carry
out arithmetic on another instruction. The result is a programme which
changes itself as the calculation proceeds.

Both of these techniques are in common everyday use. Unfor-
tunately there is not space here to illustrate them by means of simple
individual examples, but the following example combines them together
and also illustrates the way in which a programmer proceeds to construct

-4-



one of the commonest patterns that appear in programmes: the cycle
of instructions..

~ Suppose that a vector of order 50 has been read into the machine,
and that its elements are stored in the registers 50 to 99 inclusive. It
is required to read another similar vector, and to print out the scalar
product.

The programmer does not approach this problem at the beginning,
or at the end, but in the middle. The body of the calculation consists of
a few simple operations which are obeyed repeatedly, once for each
successive term of the scalar product. He therefore uses the same set
of instructions for each repetition, and causes the machine to obey them
repeatedly by jumping back from the last to the first. He begins by
considering the essential instructions which are to be repeated.

The operations which must be carried out for each term are: to
read one element into the computer, to multiply it by one of the elements
already in the machine, andto add the product to the partial sum obtained
so far. Suppose that the element which is read in is put into register O,
the product is formed in register 1, and the partial sum is kept in register
2. Then the following instructions aré required.

EXAMPLE 4

10) 3000000 read element into register 0
11) 200--01 multiply by one of elements in 50 to 99
12) 1020102 add product into register 2
It will be seen that the middle address part in the middle instruction
cannot be filled in yet, because it must vary from one repetition of these
instructions to the next. In fact it must be increased by one at each

repetition. The programmer therefore attends to this next, and adds

the instruction:

" EXAMPLE 5.. 13) 1110311 increase middle address in instruction
in register 11 by 1, assuming that the
following constant is stored in register 3.

3) 0000100
-5-



The next matter for the programmer to attend to is the closing of
the cycle, i.e. arranging a jump instruction to cause the cycle to be re-
peated. This jump instruction must be given careful attention, for it must
cause repetition only on the first 49 occasions when it is encountered, and
not on the 50th. If care is not taken, the machine may find itself obeying
this same cycle of instructions indefinitely. @ The jump is therefore made
conditional upon the value cf a number which is changing. In this instance,
the second instruction is itself already changing, and can therefore be uéed
as a subject of test. If we assume that a suitable constant, e.g. 2009950,
is stored in register 4, then the following jump instruction will compare
the changing instruction with this constant and cause a jump under the
required conditions.

EXAMPLE 6.

14) 5101104 jump to instruction in register 10
if changing instruction is still less
than 2009950
Finally, the programmer may consider any preparations that are
necessary before the cycle is entered (in this case none), and the operations
which must succeed the cycle. He then writes down the initial state of

all the relevant registers as follows:

EXAMPLE 7.

2) 0000000 scalar product added in here
3) 0000100 ] constants (not instructions)
4) 2009950 used by programme

10) 3000000

11) 2005001 cycle, as composed above
12) 1020102

13) 1110311

14) 5101104

15) 4020000 print out result

It will be noticed that two instructiens in the above example are con-

cerned with operations which are purely incidental to the main calculation.

~b-



These are known as "'red tape' operations. The proportion of red tape
instructions is often even higher, and one of the main tasks facing machine
designers is the reduction of time taken by red tape operations. Many
devices are employed, including the idea of "modifier" registers, which
complicate the instruction codes of real computers in varying degrees.

The chssification of instruction codes according to the number of address
parts in an instruction therefore gives only a rough guide to their structure.
However, whatever the instruction code, the above techniques for con-

structing programmes still apply.

PROBLEM DEFINITION

We turn now to some of the broader aspects of the work of a pro-
grammer. He is not merely a high priest attending the machine, but
must rather act as a link between the machine and the person posing the
problem. His first task therefore is to obtain a clear idea of the problem
itself.

It is rare for a problem to be couched in unambiguous terms divorced
from the peculiar phraseology of the subject of origin. The programmer
may therefore need to be familiar with this subject in order to be able
to understand the problem that is presented to him. Familiarity with
the subject may also be of great help to the programmer by enabling him
to anticipate the behaviour of the solution.

Often his knowledge of the capabilities of the computer may lead a
programmer to suggest a reformulation of the problem, in order to take
full advantage of the facilities offered. The final formulation may then
be a result of discussions between the programmer and the originator of
the problem.

Obviously such discussion can be eliminated if the originator of the

problem also does the programming, and a more efficient utilisation of

-7-



the machine is then likely to be obtained.

DECIDING ON THE METHOD OF SOLUTION

When the problem is formulated, or perhaps while it is being formulated,
the programmer must work out the method of solution to be adopted. Some-
times a problem is stated in a way which implies that a particular method
of solution will be used. If this has been done by a person who is not familiar
with the characteristics of computers, it may be necessary for the pro-
grammer to re-trace the steps back to the original problem and to investi-
gate other ways of tackling it.

A satisfactory method is one which works, which produces the required
degree of precision in the results, and which is cheapest (taking into
account both the programmer's time and computer time). If there is already
a method which is known to work, this may well be the best one to adopt,
since developing a new method may very well absorb large and unpredictable
amounts of the programmer's time. If furthermore the method has already
been used on that computer, it will often be possible to make use of parts of
the programme again.

Once source of trouble which can take up a great deal of programming
time is the possibility of overflow of numbers beyond the values accommodated
in their registers. In most programmes it is possible in theory at least to
assign scale factors to all numbers in such a way that they do not exceed
capacity, and yet remain large enough to be represented with sufficient
precision. However, working out such scale factors can be a very tedious
task, at least in scientific calculations. Hence, even if it is not strictly
necessary, the ''floating point" method of representing numbers is often
used. Considerations of number representation, and of rounding-off errors,

may affect the choice of mathematical method to be employed.

-8-



Another practical consideration, which is even more likely to affect
the choice of method, is the allocation of storage space within the computer.
The programme must be so arranged that at no time is it necessary to store
within the computer more than a cert:':lin amount of information (remembering
also that there must be room for the programme itself in the store). Often
the storage space requirements may be reduced at the expense of more
input and output operations; it must be remembered however that these
extra input and output operations will consume more computer time.

The choice of method is therefore bound up intimately with the
formulation of the problem itself, the characteristics of the computer, and
the available programming techniques. The programmer himself must
weigh up all these factors and come to a reasonable decision.

In the case of the scientific calcultion, the method of solution can
usually be described quite simply in a few sentences and equations. With
more complicated calculations, however, such as those foundin business,

it may be necessary to draw up a flow chart to depict the sequence of the

various parts of the calculation.



Fﬂ.,a.n!,

o s




