Chapter 2 Running jobs

JOB DESCRIPTIONS

As was described in Chapter 1, the operating instructions that normally would be given to a human operator, in
order to run the job, are presented instead to GEORGE in the form of a job description. A job description is a
series of commands written in the GEORGE command language. The general format of a command is:

label VERB parameters

The label is optional and allows branching within the job description to specific commands. The VERB is present
in all commands and the parameters (if any are present) define the action of a verb. For example, one of the
parameters to the verb LISTFILE describes the file that is to be listed.

COMMANDS

There are two types of GEORGE command, built-in commands and macro commands. A built-in command requests
GEORGE to carry out a relatively simple function; for example, to load a program the user would issue a LOAD
command. As their name implies, built-in commands are implemented by built-in portions of the GEORGE program.
Macro commands are typically used to perform more complex functions such as compiling a program. A macro
command is a command which expands into one or more commands according to a definition stored in a file

(unless the file is empty). The macro command itself is the name of the file which contains the definition of its
expansion. When the file name is issued as a command it may be followed by one or more parameters which give
values to parts of the definition that have been left undefined. Macro commands may be divided into system macros
and user macros. System macros are one of the most important features of GEORGE. They allow the user to run
almost all the standard software produced by ICL for the 1900 Series. Thus as far as the user is concerned the

items of software are part of the system, and may be used by issuing a simple command. For example to call in the
FORTRAN compiler, the user simply issues the command FORTRAN. This command is a system macro. When
GEORGE encounters such a command it finds the appropriate system file and expands the macro into the commands
necessary to perform a complex function such as loading the FORTRAN compiler from backing store, entering it,
running it and dealing with the object program it produces. As new software becomes available it can be simply
integrated into the GEORGE system by the creation of new system macros. System macros may also be created

to provide overlapping facilities with those that already exist, for example the QFORTRAN macro provides a

subset of the facilities catered for by the FORTRAN macro. Thus it is possible to provide a precise interface to

meet the needs of all users of the GEORGE system simply by defining system macros to perform the tasks which

are the workload of a specific installation.

User macro commands are defined and run in the same way as system macros, that is a string of built-in commands
is held in a file and the commands are obeyed when the name of the file is issued as a command. A user macro is
available only to the user who defined it and to other users who have specifically been allowed to access to it.
. System macros are freely available to all users of the system. Full details of how to write user macros are given
later in this Chapter.

Full specifications of built-in commands and system macros which use programs peculiar to the GEORGE environ-
ment are given in Chapter 12. Full specifications of other system macros (those which use only standard library
programs) are given in Chapter 13.

COMMAND CONTEXTS AND PROCESSOR LEVELS
Command contexts

There are only a few commands which may be issued at any stage of a job. Most commands can only be issued in
certain environments; for example, a command to enter a program cannot sensibly be issued until there is a core
image (that is until the program has been loaded) and some commands can only be issued from a paper tape or
card reader or from the operator’s console.

The environments in which commands are issued are known as contexts. GEORGE keeps a record of the contexts
in which each built-in command may be issued and checks the context whenever a command is issued.

4345(1.76) 3

The contexts which GEORGE checks for are as follows:

Context Meaning

USER Within a MOP or background job

NO USER Outside a job

OFF-LINE Within a background job

MOP From a MOP terminal or in a job that is connected to a MOP terminal.

OPERATOR From the operator’s console or by a macro issued from the operator’s console.

READER From a card or paper tape reader or by a macro issued from a card or paper tape
reader

NO CORE IMAGE No core image exists

CORE IMAGE A core image exists

PROGRAM From a program or a macro issued by a program

NOT BREAK-IN Not during a break-in

BREAK-IN During a break-in

REMOTE From an RJE terminal

Commands which are issued before a job has been initiated are issued in the NO USER context. This may be NO
USER and MOP, NO USER and READER or NO USER and OPERATOR. Any command that initiates a job
changes the context from NO USER to USER. When a LOGIN command is issued from a MOP terminal, the
context changes from NO USER and MOP to USER and MOP. If a JOB command is issued from a card reader, the
context changes from NO USER and READER to USER and OFF-LINE. Within either of these USER contexts,
the context will change if a LOAD command is issued (USER, MOP/OFF-LINE, and CORE IMAGE), and again if
a program is entered and a PERI type 60 MODE 1 instruction issues a command (USER, MOP/OFF-LINE, CORE
IMAGE and PROGRAM). If in a MOP job, the user breaks in on a program issued command, the context becomes
USER, MOP, CORE IMAGE, PROGRAM and BREAK-IN. These context changes apply only to the subsequent
commands within the job, for example an INPUT command on another device would still be in NO USER context.

In each command specification in Chapter 11 the section FORBIDDEN CONTEXTS gives details of both contextual
restrictions and command processor level restrictions (see below). Contextual restrictions are described in terms of
the contexts in which the command must not be issued.

If a command is issued in USER context and the installation parameter CONTEXT is set to A, B or C, GEORGE
will also check that the user has the appropriate CONTEXT privilege (see page 156).

Command processor levels

When a job is initiated by a JOB or RUNJOB command, the source of commands to GEORGE changes from a

card reader, paper tape reader or MOP terminal to a temporary or permanent job description file (the command JOB
is usually issued from a basic peripheral but the commands which follow it are stored in a file and then issued from
the file). The change of the source of commands is called a change of command processor level. The JOB command
is said to be obeyed at command processor level zero; the commands in the job description file (for example LOAD,
ASSIGN, ENTER) are obeyed at a level one greater than this, in other words at command processor level one.
Within a given job the command processor level is increased if a command in the job description file issues one or
more commands. Thus if the job description contains a macro, the commands within the macro definition file will
be obeyed at a command processor level one greater than that at which the macro is issued; if the macro is issued

at level one, the commands that constitute the macro will be issued at level two. If one of the commands in a macro
is itself a macro, it will cause a further increase in command processor level. Thus by nesting macros within macros
a hierarchy of command processor levels can be constructed. Every time the source of the commands changes to a
new macro definition file the command processor level is increased by one. When the commands in a macro have
been obeyed the current command processor level will be destroyed and control will pass to a level one less than
this.-Eventually control will pass to level one where the job description file is the command source. When the job

is completed this level will be destroyed.

It should be noted that the deletion of a command processor level does not involve the deletion of the command
source for that level; when a job is terminated a command processor level is destroyed but the job description file
is destroyed only if the job is a once-only job, otherwise the job description file, like any other macro definition
file, may be used as a command source for any number of subsequent jobs. For a full description of handling

4 _ 4345(1.76)

parameter strings of macros at various command processor levels see the section on multi-level jobs at the end of
this chapter.

Two other command sources can cause an increase in the command processor level of a job; these are programs

that issue commands and built-in commands that issue commands. A program can issue a command by means of

an extracode, PERI type 60 instruction. The issued command is obeyed at a command processor level one greater
than the level at which the program was entered. Full details of command issuing programs are given in the section
Command issuing programs on page 40. Built-in commands have an internal mechanism whereby they are able to
issue macros and other built-in commands; such a change of command source increases the command processor level
in the normal way. Normally command issued commands need only concern the user when messages are output,
since certain messages give details of all the command processor levels that belong to the job.

From the above it can be seen that the command processor level at which a command is obeyed normally varies
with the command source. The command sources available are as follows:

Paper tape readers
Card readers
Operator’s console
MOP terminal

Macro definition files (and job description files)

A U AW N -

Object programs
7 Built-in commands

Commands issued from paper tape readers, card readers, the operator’s console and MOP terminals (unless given
during a break-in) are obeyed at level zero. Commands issued from macro definition files (including job description
files), object programs or built-in commands may be obeyed at any level up to the maximum permitted (25).

Note that a job’s command processor level and its context are distinct, though related, characteristics of a job.

Certain context changes do correspond to changes of the command processor level; for example the change from

NO USER to USER and OFF-LINE or from USER and MOP to USER, MOP and BREAK-IN. However, the command
processor level may change many times within a given context; for example a number of macro levels may be created
within a USER context. Similarly a change of context may occur without a corresponding change of the command
processor level, for example the change from USER to USER and CORE IMAGE.

COMMAND DELIMITERS

The purpose of command delimiters is to ensure that parameters in a multi-record command and data in a
composite command (that is a command followed by embedded data, see page 13) are not mistakenly interpreted
as labels or commands by the command processor.

Format of command delimiters

The default values for command delimiters are:
(@ for a starter, and
») for a stopper

When used these must be the first four characters of the line. The value of the delimiters at any macro definition
or job description file level may be changed by using the BRACKETS command.

The characters permitted for command delimiters are any non-alphanumeric characters, with the exception of %
#-, and space characters.

Notes:
1 Command delimiters are only meaningful within macro definition or job description files.
2 A starter only takes effect in the macro level at which it appears.
3 The starter may not be set to the same four characters as a stopper.
4

A BRACKETS command has no effect on the value of the starter or stopper for command processor levels
other than the one at which the command is issued.

4345(1.76) . 5

The command processor and command delimiters

Command delimiters can be used to surround a command together with subsequent embedded data. After reading
the current starter in a macro definition or job description file, the first time the command processor searches

for the next command to obey or for a label specified in a GOTO command, it treats all lines of job source in the
normal way. Once the first command or free-standing label has been processed, any subsequent search by the
command processor ignores everything until the current stopper has been found. Thus an error in executing the
command that followed the starter does not cause the command processor to misinterpret unread embedded data
as further commands; such data is ignored. If the end of file is reached before the stopper has been found, the
effect is as if the last record was a stopper.

As each record is read from a macro definition or job description file, the command processor-notes the reading
of a delimiter. If a stopper is encountered before a starter, an error is reported:

STOPPER FOUND BEFORE STARTER

If a starter is found between delimiters when a verb is expected, this gives rise to the standard command érror
message:

VERB FORMAT ERROR

Notes:
1 Any record in which the first four characters match the current starter or stopper qualifies as a delimiter.

2 The starter must come before the first record of a multi-record command or the command which is to access
the embedded data.

Example 2/1

1 (This example refers to a job description file)
ONLINE *CRO

(((
ENTER

..... Data for ONLINE
)

After the ENTER command has been obeyed, the next command to be obeyed will be that following the
stopper, even if the program does not read all the data.

2«
INPUT :JONES,TAPEDATA ALLCHAR

lines of input
kokokok
)]

3«
SUBJOB SOURCE!,OBJECT1,ASSIGN,*CRO,~

DATI, *CPO,0UT1,SAVEDFILE,TIME —
2 SECS
),

where SUBJOB is a macro command

GOTO and command delimiters

GOTO ignores lines between delimiters except the first one. I hus a label between delimiters will only be recognised
if it comes on the line immediately after the starter.

6 4345(1.76)

O

O

Example 2/2
1 In the following sequence of commands:
GOTO 2

(((

SUBJOB SOURCE,0BJECT1,ASSIGN,*CRO,—
DATA1,*CP0,0UT1,SAVEDFILE TIME —

2 SECS

)

2 ENDJOB
The command GO TO 2 will pick up the label 2 from the
line 2 ENDJOB.

2 In the following sequence of commands:
- GO1

ONLINE *CRO

(((
1 ENTER

)
The command GO 1 will cause a branch to the line 1 ENTER.

3 In the following sequence of commands:

GO TO2

BR <L, >>>>

<L

4345(1.76)

SUBJOB SOURCE1,0BJECT1,ASSIGN *CRO,DATA1,*CP0,0UT1,SAVEDFILE,TIME —
2 SECS

>>>>

2 ENDJOB

if the delimiters are not <<<< >>>> at the time the GO TO 2 is obeyed, the label found will be 2 in 2
SECS.

It should be noted that if terminators are specified to be the same as the current starter or stopper
anomalies may arise when the GO TO command is used (see Modes and terminators, page 175).

TYPES OF JOB DESCRIPTION
Permanently stored job descriptions

The standard way to run a background job under the control of GEORGE is to use programs, data and job
descriptions which have been stored in filestore files. Programs are loaded from the filestore and all peripheral
transfers are off-line transfers between core and filestore files. The alternative arrangements for handling jobs (with
temporary job description files, temporary data files, embedded data or on-line peripherals) can be regarded as
variations on the standard method.

INPUT

To store a job description, a program or a program’s data in a permanent file the user may issue an INPUT command
from a paper tape or card reader, or a MOP terminal (see Chapter 7). The INPUT command informs GEORGE
that the information following the command is to be stored in a serial file, the format is as follows:

INPUT username, filename, terminator

The formats of user names and file names are explained in Chapter 3. If the INPUT command is introducing a job
description, the file name must consist of a local name without internal spaces (for the format of a local name see
Chapter 10), since the file name is issued as a macro when the job is run.

The final parameter of the INPUT command is optional and defines an alternative terminator to the input infor-
mation. If this parameter is omitted GEORGE will expect the input to terminate with a record beginning with
‘four asterisks. If the user specifies that the terminator is to be stored (see the section on terminator formats in
Chapter 10) or if the terminator parameter is not given, GEORGE will read to the terminator and store the
terminator record followed by a blank record. The blank record is stored to allow programs which use double-
buffering to function correctly.

Example
INPUT :JONES,TAPEDATA T####

If the file specified in the INPUT command exists and the user includes the APPEND qualifier to the file name, the
information following the INPUT command will be added to the named file.

For example:

INPUT :JONES,TAPEINPUT(APPEND)

OTHER FORMS OF INPUT

As well as inputting programs and data to the filestore from paper tape, card readers, and MOP terminals, by means
of the INPUT command, it is also possible by using other commands and system macros to store in filestore files
programs and data held on magnetlc tape or discs. To store program data, or non-overlaid binary programs in the
filestore, the FILEIN command may be used (for full details of the FILEIN command see Chapter 12). FILEIN
isin fact a system macro which loads and runs a specially written program. Other cases of magnetic tape or disc to
filestore copying can be dealt with by standard ICL library programs; the system macros which run these programs
are described in Chapter 13. Examples of the cases that are catered for are copying non-overlaid and over-laid
binary programs from a disc, and copying library subroutines from a tape or disc. Since these facilities are provided
by means of system macros it is possible for each installation to develop its own specialized media to filestore file
copying macros using standard ICL software or specially written programs.

8 4345(1.76)

—

E

ASSIGNING PERIPHERALS

To use off-line data, held in filestore files, as input to a program, or to send output from a program to a filestore
file, it is necessary to connect.the input and output channels of the program to the actual source and destination
of the data. The command which performs this function is called ASSIGN. The ASSIGN command must be issued
in the CORE IMAGE context, normally between the LOAD and ENTER commands in the job description.

The format of the command is:
ASSIGN peripheral name, file description

where the file description may be either a file name or a workfile name and may be followed by one or more
qualifiers in parentheses. The file is opened by this command, and it remains open until the named peripheral is
released.

If a qualifier is given in the file description which is incompatible with the peripheral type that this file is to
represent, then the qualifier is ignored. For example

ASSIGN *CPO0, BILL(*ED . KWORDS100)

requests that a card punch file BILL be set up; the qualifiers *ED and KWORDS100, however, indicate a direct
access file and are ignored. Later versions of GEORGE may detect contradictory qualifiers and output an error
message.

A peripheral can be released and its associated file closed in one of five ways:

1 By the deletion of the program

2 ByaREL extracode in the program

3 By an ASSIGN or ONLINE command with the same peripheral name parameter

4345(1.76) 8.1

4 By a RELEASE command
5 By close mode PERI (magnetic media only)

In the standard case that was defined at the beginning of this section both input and output is being handled off-line
by means of permanent filestore files. The following two ASSIGN commands could be used to off-line tape reader
input and tape punch output:

ASSIGN *TRO,TAPEDATA
ASSIGN *TPO,TAPERESULTS

These commands will connect the files TAPEDATA and TAPERESULTS to the program, so that PERI
instructions for tape reader zero and tape punch zero will cause transfers between the program and these files.
When the tape reader is ASSIGNed to TAPEDATA this file must already exist. If there is no such file as
TAPERESULTS when the tape punch is ASSIGNed then the ASSIGN command will create the specified file. Full
details about connecting each type of filestore file to programs are given in Chapter 3.

JOB INITIATION

A job that is defined by a filed job description is initiated by a RUNJOB command. This command may be issued
in any context and at any command processor level. The parameters of RUNJOB specify a name for the job, the
user name (if the command is issued in NO USER context) and the local name of the file containing the job
description:

RUNIJOB job name, user name, file name

An example of a permanently stored job to compile and run a program is given below. The job description source
program and data are input to the filestore from a paper tape reader.

Note: The macro LINGO used in this and many other examples in this chapter is a purely fictitious example of a
compilation macro. The user will find details of the compilation macros currently available under the headings of
the various programming languages in Chapter 13 of this manual, or in the relevant compiler manuals.

Example 2/3
INPUT :JOHN,JOBFILE1
LINGO *TRPTPROG BIN ,ER1FAIL
ASSIGN *TRO,TAPEDATA
ASSIGN *TPO,TAPERESULTS
ENTER
LISTFILE TAPERESULTS, *TP
1FAIL
ENDJOB
deskoksk
INPUT :JOHN PTPROG
lines of source program
Fkskk
INPUT :JOHN,TAPEDATA ALLCHAR,T#4##+#
lines of data
HHH#
RUNJOB ODDJOB,: JOHN JOBFILE1
DISENGAGE

The first INPUT command inputs the lines that follow it, up to the standard terminator (*¥***), and stores them in
a job description file named JOBFILE1. The second INPUT command inputs a source program to the file
PTPROG. The third INPUT command inputs lines of data to the file TAPEDATA. The mode of this input is
ALLCHAR to correspond with the mode that the paper tape reader PERIs in the program require; an alternative
terminator is specified because the last line of the data is a standard terminator.

4345(9.72) ’ 9

The RUNJOB command initiates the job held in the file JOBFILE1. The source program held in PTPROG is
compiled and loaded by means of the LINGO command, the program’s peripheral channels are connected to filestore
files, and the program is run. When the run is over the results held in TAPERESULTS are output to a tape punch,

by the LISTFILE command, and the job is terminated by the ENDJOB command. The batch of paper tape input

is terminated by the DISENGAGE command which frees the tape reader for other input operations.

If this job was to run each time with a different set of data it could be modified to erase the input and output files
when they were closed:

Example 2/4
INPUT :JOHN,JOBFILE1
LINGO *TRPTPROG BIN,ER1FAIL
ASSIGN *TRO,TAPEDATA
ASSIGN *TPO,TAPERESULTS
ENTER
ERASE TAPEDATA
LISTFILE TAPERESULTS *TP
ERASE TAPERESULTS
1FAIL
ENDJOB
KKKk
INPUT :JOHN,PTPROG
lines of source program
Hokokok
The new data would be input before a RUNJOB command each time the job was to be run:
INPUT :JOHN, TAPEDATA, ALLCHAR, T####
lines of data
it
RUNJOB ODDJOB, :JOHN,JOBFILE1

A more practical method of running the same program with different data would be to compile the source program
and store the object program in a filestore file. Then, in a separate job, load and run this program with whatever
data was required. If it was only necessary to compile the program once this could be done in a once-only job,

the run of the program being controlled by a permanently stored job description.

Once-only job descriptions

There is no point in storing a job in a permanent file if the job is to be run once only. Instead the job should be
stored in a temporary working job description file, which will be erased when the job ends. One command combires
the functions of inputting a once-only job to the filestore and initiating the job. This command is the JOB
command, which specifies the job name and user name (like RUNJOB) and has optional terminator and mode
parameters (like INPUT).

When the JOB command has been read and checked for errors, a monitoring file and temporary working job
description file are opened with the name that has been given in the job name parameter of the command. The job
description is read up to the terminator and stored in the working job description file. The name of the file is then
issued as a macro command (as in the RUNJOB command) and the job is run and terminated in the same way as
with RUNJOB. When a job introduced by a JOB command is terminated, however, the working job description file
containing the job description is erased.

The job in Example 2/3 could be run as a once-only job. The job description would be as follows:

10 4345(9.72)

o

Example 2/5

Note that in this example the source program and data are input before the job description, because otherwise
the job would be initiated before the necessary information had been stored.

INPUT :JOHN, PTPROG

lines of source program

deskskok

INPUT :JOHN,TAPEDATA , ALLCHAR T###H#
lines of data

HEE

JOB ODDIOB, :JOHN

LINGO *TR PTPROG BIN ,ER1FAIL
ASSIGN *TRO,TAPEDATA

ASSIGN *TPO,TAPERESULTS
ENTER

LISTFILE TAPERESULTS *TP
IFAIL

ENDJOB

Hkokok

If, as in Example 2/4, the job was required to be run with a different set of data each time, the compilation of the

program should be done in a once-only job. Then each time the program was to be run the data should be input
and a permanently stored job to load and run the program should be initiated. The job description could be as

follows:

Example 2/6

4345(9.72)

INPUT :JOHN PTPROG
lines of source program
dokksk

JOB COMP1, :JOHN
LINGO *TRPTPROG BIN,ER1FAIL
SAVE OBJECT

1IFAIL

ENDJOB

Hokokk

INPUT :JOHN,PROGRUN
RESTORE OBJECT

~ ASSIGN *TRO, TAPEDATA

ASSIGN *TPO, TAPERESULTS
ENTER

LISTFILE TAPERESULTS *TP
ERASE TAPERESULTS
ERASE TAPEDATA

ENDJOB

dkekok

11

INPUT :JOHN,TAPEDATA T####
lines of data

SR

RUNIJOB JOB1, :JOHN,PROGRUN

The first INPUT command inputs the lines that follow it, up to the standard terminator, and stores them in the
file PTPROG. The JOB command that follows, introduces and initiates a once-only job to compile the program;
when the object program is loaded into core a SAVE command is issued, which stores the current state of the core
image in the file OBJECT (the SAVE command will be fully described later in this chapter). The INPUT command
that follows inputs the lines that follow it, up to the standard terminator, and stores them in the job description
file PROGRUN. The second INPUT command stores the lines of data that follow it in the file TAPEDATA. The
RUNJOB command initiates the job stored in the file PROGRUN. The RESTORE command in the job description
loads the object program that is SAVEd in the file OBJECT, the remainder of the job description connects the
peripheral channels off-line, then enters the program, lists the results and erases the off-line files. To run the same
program with a new set of data the job description required is:

INPUT :JOHN,TAPEDATA T###H#

lines of new data

dEEEE

RUNIJOB JOB2, :JOHN,PROGRUN {

Other input/output techniques

In the previous sections peripheral transfers were controlled by ASSIGN commands that connected the
peripheral channels of the object program to permanent data files in the filestore. There are three other methods of
handling input and output operations:

1 Embedded INPUT commands
2 Embedded data
3 On-line peripherals

EMBEDDED INPUT COMMANDS

The user may embed his input in his job description preceded by INPUT commands in the normal way. In this case

the INPUT command and the data introduced by it are read into the job description file with the rest of the job

description. Since the INPUT command is issued in USER context, the command has no user name parameter;

apart from this the command has the usual format. The INPUT command is obeyed only when the job is run; the

action taken is to copy the data from the job description file into the file specified by the INPUT command. The

type of the file created by the INPUT command will be the same as the type of the job description

file. It is essential that the terminator of the embedded INPUT command be different from the terminator)
of the JOB or INPUT command that reads the job into the filestore. If a standard terminator is given for an - K
embedded INPUT command and the JOB command has not specified a different terminator for the job itself, ;
GEORGE will treat the embedded INPUT terminator as the terminator for the job description and will then

attempt to obey the command following the asterisks in the NO USER context. This may cause a context error.

Disadvantages of embedded INPUT commands

Since two data transfers are needed when embedded INPUT commands are used, it is generally more efficient to

use INPUT commands in the NO USER context. If embedded INPUT commands are used in permanently filed
jobs then the same data transfer must be carried out each time the job is run. If the user wishes to run the same
job several times with the same data, this data should be INPUT to a file before the first run of the job.

Advantages of embed_ded INPUT commands

INPUT commands in USER context are more commonly used from MOP terminals. In this case the only data
transfer needed is from the MOP terminal to a filestore file.

The other main use of embedded INPUT commands is to allow users with once-only input data to store the data
in temporary work files in the job’s work file stack. The workfile stack is a collection of temporary files that exist

12 4345(9.72)

for the duration of the job. They are not dumped for security purposes and are referred to by special work file names.
Work files must be created before they are used. The command used is

CREATE'!

This sets up a work file (denoted by !) at the top of the stack for the job. For a full description of work files and
work file names see Chapter 3. When the work file has been set up, an INPUT command to send data to this file
has the form:

INPUT !, terminator

There is no point in specifying modes for the file since the file will have the same modes as the file from which the
command is issued. Since workfiles are organized in a stack, if another workfile is created then the CREATE
command should again have the format

CREATE'!

but if the user should now wish to refer to the first created work file he must specify it as !1 since it is now one
from the top of the stack.

If in Example 2/3 the user wanted to use temporary files he could have used work files instead of using and erasing
permanent files.

Example 2/7
The following is an example of a once-only paper tape job using work files.
JOB PAPJOB, :JOHN

CREATE'!
INPUT !,T?777?
lines of input data
7777

LOAD OBJECT
ASSIGN *TRO,!
CREATE!
ASSIGN *TPO,!
ENTER
LISTFILE ! ,*TP
ENDJOB

sfokkk

In this job two workfiles are used to hold the input and output data. Since the first created workfile is not referred
to in the job description after the creation of the output workfile, the name ! may always be used. If the second
CREATE command had immediately followed the first in the job description, then all subsequent references to
the first created work file would have had to refer to !1. Both workfiles are erased when the job ends or, for the
output file, when the listing of the file is completed if this is after the ENDJOB command has been obeyed.

EMBEDDED DATA

A single stream of input data for a program may be handled by embedding the data in the job description file
and connecting the program’s input channel to the job source. Thus there is no need to transfer the data to
another file. The ONLINE command or the ASSIGN command may be used to perform the connection. Either
command must be issued in CORE IMAGE context; the formats are

ONLINE peripheral name
or

ASSIGN peripheral name

where peripheral name is the name of the peripheral channel that is to be connected to the job description file. If

4345(1.76) 13

such a command is issued in a job initiated from a MOP console, it will connect the peripheral channel to the job)
source for a MOP job, that is the MOP terminal. When a job source is made on-line to a program this is an example
of a pseudo on-line peripheral.

Normally the embedded data and the command which is to access it will be enclosed in command delimiters (see
page 5).

Example 2/8
This could be used in a job description file but never in a macro.
ONLINE *CRO
(¢
ENTER
Embedded data
)
IF FAILED . ..

The use of delimiters ensures that should a program event occur before all the embedded data has been read, the
next command to be obeyed is the one following the stopper. Note, however, that should a program read the P
stopper as embedded data, command processor action will be as if that stopper was omitted. The use of (J

delimiters also ensures that a GOTO command will not accidentally satisfy a label search with a line of embedded
data.

Notes:
1 Embedded data can conveniently serve only one input channel of a program.
2 The following commands all have the same effect:

ONLINE *LP

ASSIGN *LP

ASSIGN *LP,

ASSIGN *LP, %(*LP) where %(*LP) is null

The last example is of particular use in stored job descriptions and macros, since it is equivalent to the
more cumbersome command

IF STR(%(*LP)) = (), (ONLINE * LP0) ELSE (ASSIGN *LP0, %(*LP))

(see also Parameter substitution, page 32).

,/\
b

Advantages of embedded data

‘The principal advantage of embedded data over embedded INPUT commands is that no transfer of data in the file-
store is necessary. This method of handling data is very useful for MOP jobs. In this case single items of data are
input from the ONLINEd terminal direct to the program, thus if the results are sent to the terminal as well it is
possible to use the terminal in a fully interactive mode, supplying data items, receiving the results of the computation
and inputting more data selected because of the previously received results.

ON-LINE PERIPHERALS

Input and output operations can be handled via on-line peripherals in almost the same way as in a conventional
system. These on-line peripherals can be basic peripherals, secure or insecure magnetic tapes or exofiles. GEORGE
performs certain special checks that are not made in an Executive-controlled system, and GEORGE also supervises
certain other operations such as the rewinding of magnetic tapes.

For a full description of using basic:peripherals on-line see Chapter 5 Peripheral handling. For details of the use
of magnetic tapes and exofiles see Chapter 4 Using entrants outside the filestore.

ADVANTAGES OF OFF-LINE INPUT AND OUTPUT

GEORGE provides facilities to hold in filestore files any file which has a serial basic peripheral format, or is
organised as a direct access file, or which has a magnetic tape file format. Thus basic input and output may be

14 4345(1.76)

off-lined via the filestore, and direct access and magnetic tape filestore files grant the user all the filestore’s

organizational controls over these types of file. The specific advantages of using each type of filestore file are
discussed below:

1 BASIC PERIPHERALS

(a) Peripheral transfers between filestore files and object programs are faster than using on-line basic
peripherals.

(b) Since on-line peripheral transfers are slower, the object program has to be kept in core for longer periods
of time.

(¢) On-line basic peripherals tend to be kept in use by one user far longer than when the peripheral is used
for an input to or output from the filestore. If many users handle their input and output with on-line
basic peripherals it is possible for serious peripheral jams to occur.

2 MAGNETIC TAPE

(a) Tape decks are often used to hold tapes that are on-line to programs that are being developed and
are also often used to hold tapes which contain only a small amount of data. Thus there is often
wastage in tape utilisation and in deck utilisation.

Also, if an installation has many tapes that hold a small amount of information this will inevitably mean
that the installation’s tape library is larger than the amount of data in it warrants. Using magnetic tape
filestore files will greatly ease these problems by economising on tape and deck usage.

(b) If worktapes are often used, valuable deck space is taken up and frequent operator intervention is

necessary. If magnetic tape work files are used, worktapes are freely available with no need for operator
action.

(c) Since magnetic tape files are usually held on direct access devices access to them is usually faster and
skips and rewinds take much less time. Also magnetic tape files do not need to be initially loaded and
thus reduce operator mtervention.

(d) Magnetic tapes files are automatically dumped giving file security with tape economy.
(¢) Magnetic tape files may be read by several jobs simultaneously.
3 DIRECT ACCESS

Direct access files are automatically dumped giving file security.

Summary

JOB DESCRIPTIONS

There are two kinds:

1 Permanently stored job descriptions, filed by INPUT and initiated by RUNJOB.

2 Once-only job descriptions, filed and run by JOB.

PERIPHERALS

With both kinds of job description program input/output operations can be handled in the following ways.
Input

1 Basic peripheral files and basic peripheral documents

(a) Data is stored in a permanent file by INPUT (NO USER context). The file is connected to the program
by ASSIGN.

(b) Data is stored in a permanent or temporary file by an INPUT command (after CREATE for a temporary
file) embedded in the job description. The file is connected to the program by ASSIGN.

(c) Datais embedded in the job description. The job description file is connected to the program by
ONLINE or ASSIGN.

2 Magnetic tape files and magnetic tape

(a) The file is connected to the program by ASSIGN.

4345(1.76) 15

(b) The magnetic tape is connected to the program by ONLINE.

(c) The magnetic tape is connected to the program by unanticipated open mode PERI.
3 Direct access files and exofiles

(a) The file is connected to the program by ASSIGN.

(b) The exofile is connected to the program by ONLINE.

(0 The exofile is connected to the program by unanticipated open mode PERI.

Output

1 Basic peripheral files and basic peripheral output
(a) Data is written to a permanent file, created (if necessary) and connected to the program by ASSIGN.
(b) Data is written to a temporary file created by CREATE and connected to the program by ASSIGN.

(c) Data is written to the job’s monitoring file, which is connected to the program by ONLINE or
ASSIGN.

(d) Datais output on a basic peripheral, which is connected to the program by ONLINE.
2 Magnétic tape files and magnetic tape ()
(@) The file is connected to the program by ASSIGN.
(b) The magnetic tape is connected to the program by ONLINE.
(c) The magnetic tape is connected to the program by unanticipated open mode PERI.
3 Direct access files and exofiles
(a) The file is connected to the program by ASSIGN.
(b) The exofile is connected to the program by ONLINE.

(c) The exofile is connected to the program by unanticipated open mode PERI.

THE MONITORING FILE SYSTEM

When a job is initiated by a JOB, RUNJOB or LOGIN command, a file, called the monitoring file, is created to hold
monitoring information produced by the job. The file has the same name as the job, and a language code B1BO.
Information that is sent to a job’s monitoring file in the course of the job is stored in a number of categories; each
category is described below. In the event of a job’s monitoring file becoming full in the course of the job, the

job will be abandoned, as by an ABANDON' command.

Monitoring file categories
BROADCAS
This category contains messages output to the monitoring file by the BROADCAST command.

CENTRAL

This category contains messages sent to the central operator’s console and is a subset of the OPERATOR category.

CLUSTER

This category contains messages sent to the cluster console and is a subset of the OPERATOR category.

COMERR

This category consists of command error messages. The command error reporting system has been designed to give
the user as much information as possible about errors. To make error reporting as immediately informative as
possible, error messages are written in standard English, and each message gives details of both the reason for the
error and the command processor level at which the error occurred.

If there is no monitoring file in existence, because a job has not yet been initiated, command error messages are
output at the operator’s console or, in the case of commands issued in the NO USER and MOP context, at the

16 4345(1.76)

MOP console from which the command in error was issued. In a MOP job all categories of monitoring information
may also be output at the MOP terminal (for details see the REPORT command in Chapter 12 and Chapter 7
Using MOP).

A description of the command error reporting system is given in Chapter 11. Error messages that are common to
a number of commands are listed in this chapter. Error messages that occur only with a specific command are listed
under the appropriate command.

COMMANDS

This category contains a copy of each command, including macros, that has been read by the command processor.
It also contains lines of comments introduced by #.

COMMENT

A number of commands generate special replies, which are stored in the COMMENT category. Replies generated
before the creation of a job’s monitoring file are treated in the same way as command error messages (see above).

DISPLAY

Messages are sent to this category by the DISPLAY, QUESTION, and ANSWER commands. Note that the output
of the PLAN extracodes DISP and DISTY is held in the OBJECT category (see below) rather than in this category.

ENGINEER

This category is a subset of JOURNAL (see below) and contains messages relating to peripheral transfers and
peripheral failures. ENGINEER messages are not documented in this manual.

FILES

This category contains information about filestore changes that occur in the course of a job.

JOURNAL

This category contains all messages relating to the job that have been sent to the System Journal. The latter is
a system file in which GEORGE collects a variety of information that is of interest to the installation manager.
In particular the information is used by the manager in the following areas:

1 ACCOUNTING All the information required by the installations logging and accounting systems
is collected in the System Journal (see also LOGGING, below).

2 MONITORING HARDWARE RELIABILITY Information relating to peripheral failures is stored
in the System Journal (see also ENGINEER, above).

LISTING

The LISTFILE and LISTDIR commands either output a file on a basic peripheral or send the file to the monitoring
file system. In the latter case the file is stored in the monitoring file in the LISTING category. The LISTFILE and
LISTDIR commands are described in Chapter 3.

LOGGING

The information used by the log analysis program to calculate the charge for running a job is held in this category.
This information consists of details of the amount of mill time and core used by the job. Logging messages
generated by a command are listed in the specification of the command that produces them (see Chapter 12 for
the specifications of the commands).

OBJECT

This category consists of information generated by object programs, such as program output directed to the
monitoring file system, extracode messages and reports of program failures. The output of the HALT, FAIL and
DELETE commands is treated as extracode output and is stored in this category. Details of how GEORGE handles
events in object programs are given under Program Events, page 22.2. ‘

ONLINE

This category is a subset of the OBJECT category. It holds information produced by object programs as a result

4345(1.76) 17

of issuing an ONLINE command for a basic peripheral without specifying an output document name. The action
is to divert the output of the ONLINEG peripheral channel to the monitoring file.

OPERATOR

This category contains all messages sent to the operators. It is the combination of the CENTRAL and CLUSTER
categories.

POSTMORT

This category holds the output of the POSTMORTEM and PRINT commands, which are used to print regions of
core image.

The TRACE system

The number of categories which are output to a job’s monitoring file is initially set by installation parameters and
may be varied using the TRACE command. When a background job is started the categories output to its monitoring
file are determined by the installation parameter JOBTRACE (for a MOP job the relevant parameter is MOPTRACE).
The format of the TRACE command is

TRACE action on monitoring file

where action on monitoring file consists of a string of parameters separated by commas, that specify the
monitoring file categories which the job’s monitoring file is to contain. The minimum TRACEing level is set by
the installation parameter MINTRACE and categories specified by this installation parameter will always be
included in the categories set by a TRACE command. Examples of TRACE commands when MINTRACE is set
to LOGGING are:

TRACE ALLBUT, COMMANDS In this case all categories other than COMMANDS will be
included in the monitoring file.

TRACE LISTING, COMERR In this case the categories included will be LISTING, COMERR
and LOGGING.

TRACE FULL In this case all categories other than CENTRAL,

CLUSTER, ENGINEER and JOURNAL will be included
(see also Qutput from the monitoring file, page 176)

TRACE FULLBUT, COMMANDS, In this case all categories will be included except
COMERR CENTRAL, CLUSTER, ENGINEER, JOURNAL,
COMMANDS and COMERR

The user should be certain that he will not require information from any category he suppresses, as such information
will not be available at the end of the job.

Any TRACE command in a job will supersede a previous TRACE command at the same command processor level.
A TRACE command issued in a macro can only include categories which have not been excluded by a TRACE
command at a higher level. If a TRACE command is given in a macro, when the macro ends the TRACE level
reverts to that set by a TRACE command at a level that called the macro, or if no TRACE command was issued at
that level to the set of categories which were included when the macro was called. For a full specification of the
TRACE commiand see Chapter 12.

If a FULLTRACE command is issued in a job then all monitoring file categories are included in the job’s
monitoring file, and no subsequent TRACE commands in the job will have any effect. The format of the
FULLTRACE command is simply:

FULLTRACE
For the MOP user, there is also the REPORT command which enables him to specify which monitoring file
categories should be output to the MOP console during the job. For further details see page 136.
Action on the monitoring file

When the user terminates a job (normally with an ENDJOB or LOGOUT command) he can specify which categories
of monitoring information are to be listed, by means of parameters of the terminating command. For example:

ENDJOB COMMANDS, COMERR
ENDJOB ALL

18 4345(1.76)

F

ENDJOB ALLBUT, FILES, COMMENT
ENDJOB NONE

The terms ALL, ALLBUT and NONE allow users to indicate groups of monitoring file categories. The terminating
command (such as ENDJOB) deletes any core image and calls in the built in log analysis routine if this form of
accounting is in use. For details of how log analysis affects the user see Chapter 9, page 153.

RETAINING THE MONITORING FILE

After the required monitoring file categories have been listed, the monitoring file is erased. However it is possible
to retain the monitoring file by copying it into a named filestore file. This is done by including a RETAIN (local
name) parameter in the terminating command of the job. The format of ENDJOB might then be:

ENDJOB ALL, RETAIN(FRED) .
In this case all the monitoring file is listed and the file is retained by being copied to a file FRED.
Note that since the monitoring file is copied, the standard rules for creating terminal files apply (see Chapter 3).

If the user subsequently wishes to erase the copied monitoring file he should issue an ERASE command with the
file name as its parameter, in the normal way.

4345(1.76) 18.1

The current reply

Each message that is sent to any category of the monitoring file system, except COMMANDS or ONLINE, is set
as the job’s current reply. When the next message is sent this will become the current reply. The job’s current
reply may be used by the IF command and the SETPARAM command, but users should note that the exact
wording of these messages is not guaranteed to remain constant in all future versions of GEORGE. For further
details see the specifications of these commands in Chapter 12 and the descriptions of the use of these commands
later in this chapter.

STANDARD FACILITIES FOR RUNNING JOBS

This section describes the facilities that GEORGE provides to deal with organizational problems involved in running
a job, which under a conventional environment would require operator intervention.

Controlling job and program run times

In order to prevent a job as a whole or an object program from wasting an excessive amount of mill time if it
behaves in an unexpected manner (by looping for example), two timers are provided, the Job Timer and the
Program Timer. These timers are decremented by the amount of mill time used to perform commands and run
programs. If they run out special action is taken by GEORGE.

The Job Timer is used up by running the job. It includes the amount of mill time measured by the Program
Timer, plus an estimated amount of mill time used by GEORGE in performing commands.

The Program Timer is used up by running programs within a job. It includes the mill time used in executing
a program, plus an estimate for the mill time used by GEORGE in performing off-line peripheral transfers,
program-issued commands and in servicing program events and illegals.

THE JOB TIMER

The length of time permitted to a job can be set either by the JOBTIME command or the installation parameter
JOBTIME. If a JOBTIME command is not given, the maximum time allowed will be sent to the current value
of the JOBTIME installation parameter. If the user wishes to set a different limit for a particular job he must
issue a JOBTIME command. (Time used before the JOBTIME command is issued, is subtracted from the value
given by the command). An example of the JOBTIME command is:

JOBTIME 2MINS

If a background job is completed before the time limit has been reached, it is terminated in the normal way. If,
however, the time limit is reached before the job has been terminated naturally, the message

JOB ABANDONED: JOBTIME EXCEEDED

is sent to the monitoring file system and an ENDJOB command with no parameters is obeyed. Once a user has
set a milltime limit on his job with a JOBTIME command, he cannot change it. If he tries to issue another
JOBTIME command, a command error will result.

When a user at a MOP terminal has reached the job limit his job is not abandoned. A message:
JOB TIME EXCEEDED: MORE TIME HAS BEEN ALLOCATED

is sent to the monitoring file in the COMMENT category, and according to whether the user has switched off the
REPORTing of comments, the message is also sent to the MOP terminal. The amount of extra time added for the
job at this point is that equal to the value of the Installation Parameter JOBTIME, irrespective of whether the
MOP user has issued a JOBTIME command of a different value. This means that the MOP user will be sent the
JOB TIME EXCEEDED: MORE TIME HAS BEEN ALLOCATED message every time he has used an amount of
time equal to the Installation Parameter JOBTIME, except in the first instance when he will receive the message
after he has used the amount of time specified by his own JOBTIME command, if he has issued this command.

THE PROGRAM TIMER

The maximum time for which an object program is allowed to run is set by the installation parameter PROGTIME,
but this may be over-ridden by a TIME command in the job description. When a LOAD command is issued the
program timer is set to the value of PROGTIME, and so if the user wishes to alter the time limit, a TIME command
must be given between the LOAD and ENTER commands for the program. Note that any RESUME or ENTER
command (see the following section) will, if the time is not positive, reset it to the value of PROGTIME. An
example of a TIME command is:

4345(9.72) 19

TIME 5SECS

If the program is completed before the time limit has been reached, it is terminated in the normal way. If, how-
ever, the time limit is reached before the program has been terminated, the message

TIME UP

is sent to the monitoring file (OBJECT category), the program is stopped and a program event of the FAILED
(TIME UP) category is generated (see Program events, page 22.2) which may be tested by an IF command.

LOGGING INFORMATION
Whenever a program is deleted, a message of the following format is sent to the monitoring file:
time jobtime DELETED, CLOCKED progtime

The time is the clock time when the program was deleted. The jobtime is the amount of mill time used by the
job since it started. It is equal to the amount by which the Job Timer has been decremented.

The progtime is the amount of mill time used by the program since it was loaded. It does not include the
estimated mill time used by GEORGE in performing functions for the program, and does not therefore corres-
pond exactly with the amount of time measured by the Program Timer.

Compiling and running a program

To compile a program the user should issue the appropriate compiler system macro command, which will call
in a compiler and, in most cases, a consolidator and perform the compilation automatically. These macros
provide the user with a full range of compilation options for each language, and are described in the relevant
compiler manuals.

Loading and entering programs

INTRODUCTION

This introduction gives a brief outline of the process of loading and running programs under GEORGE. It is .
followed by a more detailed explanation of the loading process.

Programs are stored in filestore files or entrants outside the filestore in binary program format. Programs may
be stored by compilers, library updating software or, in the case of a filestore file, by a SAVE command.

Before a program can be run it must be converted to a form suitable for being held in the computer’s core store.
This process is termed loading the program and is initiated by commands such as LOAD or FIND. It should be
noted, however, that the process of loading may not proceed as far as placing the program into core store until

the program is able to run. This is to improve the efficiency of use of core store, the latter being an expensive
resource.

After the loading process has been initiated several things may be done, the most important being to connect

the program’s peripheral channels to filestore files or on-line devices by means of commands such as ASSIGN or
ONLINE. When the program is ready to be run thisis indicated by a command such as ENTER or RESUME. When
such a command is obeyed, the program is entered on a list of programs waiting to be run when system resources
permit. The decision to start the program run is made by the GEORGE routine called the low level scheduler
which then completes the loading process by copying the program into core and allowing it to run, When the
program has run for an interval decided by the low level scheduler, or if it halts for some reason, it will be
‘swapped out’ of core, on to a special area of backing store, to allow other programs to run. When it is again
decided by the low level scheduler that the swapped out program should be allowed to run, the program will

be automatically ‘swapped in’ to core. The process of scheduling by the low level scheduler is designed to allow
GEORGE to run more programs than there is room for in core at the same time, and as a result to optimize the
use of costly system resources such as central processor time.

When a program is no longer required it may either delete itself by an instruction issued within the program, or
be deleted by a DELETE command in the job description. A third method of deleting a program is for the job
to initiate the loading of another program — a job is allowed to have only one program loaded at a time.

A successtul LOAD command puts the job into CORE IMAGE context. The job remains in this context until the
program is deleted. During this period the program is often referred to as a core image. The term core image
originates from the fact that the program retains a format suitable for being in core even if it becomes swapped
out.

20 4345(9.72)

F

INITIATING THE LOADING PROCESS

The GEORGE commands that iniiiate the loading process are LOAD, FIND, LOADENTER and RESUME. The
LOAD command is used to initiate the loading of a binary object program held in a filéstore file in card, paper
tape, magnetic tape, or direct access format. An example of a LOAD command is

LOAD OBJECTPROG

where OBJECTPROG is the name of a filestore file with a suitable format. If the file is in magnetic tape or
direct access format, the program must be the first program in the file or preceded only by a General Purpose
Loader or #TAPE seek program. If the program is in a file produced by a magnetic tape compiling system, the
first program in the file may be:

1 The program required. This will be dealt with by LOAD.

2 A seek program, for example #TAPE. In this case the required program will occur later in the file and the
FIND command (see below) should be used. This is because the LOAD command would only successfully
load the seek program and the required program would never be loaded.

3 A General Purpose Loader (GPL). In this case the required program will follow the GPL and will be in
consolidated semi-compiled form. The LOAD command will load the GPL and run it before returning to

command level, with the consequence that the required program is loaded after completion of the LOAD
command.

4 An overlay loader. The overlay loader can be dealt with by LOAD, but it will require a worktape to use in
the process of converting the required program from consolidated semi-compiled form to binary. The
overlay loader will not automatically be run by GEORGE so in this case it would again be preferable to
use the FIND command.

When the LOAD command is successfully executed, the program becomes the job’s current core image. If the
job already had a core image this will be destroyed and replaced by the new one.

There is a facility that permits the user to override the core or size requirement stated in the program’s request
slip. This is achieved by including a CORE or SIZE parameter in the LOAD command. For example if the
program to be loaded from MYPROG has a core or, in GEORGE 4, size requirement of 7,000 words specified
in its request slip, but the user knows that only 6,000 words will be required on this run, he can issue a LOAD
command of the form:

LOAD MYPROG, CORE 6000

It should be noted that the CORE and SIZE parameters are interchangeable, but that GEORGE 3 and GEORGE
4 execute them differently.

There are also CORE and SIZE commands that can be issued at any time that the job is in CORE IMAGE
context. However, users are advised to restrict their use of the CORE and SIZE commands to when it is

required to modify the core allocation of a program that has begun to run. At the time of initiating the loading
process it is more efficient to use the CORE or SIZE parameter in the LOAD command. Note that the core size
specified by the user in either a CORE or SIZE parameter or a CORE or SIZE command is rounded, in GEORGE
3 up to the nearest multiple of 64, and in GEORGE 4 up to the nearest multiple of 1024. In the example above,
the actual core size allocated would therefore be 6016 under GEORGE 3, or 6144 under GEORGE 4.

If the program loaded has either of the ‘retain load peripheral’ bits set (bits 0 or 1 of the third word of the
request slip), for example in an overlay program, and the filename parameter to the LOAD command is not null,
then LOAD issues an ASSIGN command to connect the file to the program. In this case the user must have both
READ and EXECUTE traps set for the file. If the user is not allowed READ access, the ASSIGN command will
fail. However, the loading process will succeed and when the program is entered and attempts to access the load
peripheral a program event will be caused.

If a LOAD command is issued with a null file description parameter, whether or not the ‘retain load peripheral’
bits are set it is assumed that the binary dump immediately follows the LOAD command and is completely
contained within the file from which the LOAD command was issued. The ‘retain load peripheral’ bits are
ignored and no traps are required on this file apart from those that were required to allow the LOAD command
to be issued. Note that the LOAD command and binary dump may be enclosed within command delimiters
(see Command delimiters, page 5). With this format of the LOAD command, the loading process is completed
immediately.

Several cases were noted above where it would be preferable to use a FIND command. There are also two cases

where it is essential. These cases are when a user wishes to load a program from an on-line magnetic tape or from
an exofile. The format of FIND is:

4345(9.72) 21

FIND program name,device type,entrant description, COREnumber, OVERLAYS magnetic tape
description

Note that CORE may be replaced by SIZE.

A full description of the FIND command is given in Chapter 12. A simple example of loading a program with a
FIND command is given below:

FIND #AL01,MT,PROGRAMVTAPE(45)

#AL01 will be loaded from the tape with the tape name PROGRAMVTAPE with generation number 45. Since the
FIND command is a macro that runs a bootstrap program, the two phases of initiating and completing the loading
process do not apply. FIND completes the loading process leaving a core image in core under the control of the
low level scheduler.

The LOAD command can be used to initiate the loading of a SAVEd core image held in a filestore file. (The
action of the RESTORE command is the same as a LOAD command, and all the conditions specified above also
apply to RESTORE; however LOAD should be used in preference to RESTORE).

Errors in the LOAD command will cause the initiation of the loading process to fail and the appropriate error
message is sent to the monitoring file. No core image will be created.

COMPLETING THE LOADING PROCESS

In the above description it was noted that the loading process was immediately completed in the following cases:
1 If the FIND command was used

2 If a LOAD command with a null file name was used

3 If the program to be loaded was preceded by a GPL.

In all other cases of the load command, it is not necessary to complete the loading process until either the program
is ready to run or a command is issued that makes it essential that the program is in fact loaded into core.
Commands that cause the loading process to be completed are as follows:

ENTER, RESUME, LOADENTER

SAVE

CORE (or SIZE)

IF commands with ON or OFF condition parameters

PRINT

ON, OFF, ALTER

Any command that has a legal [number] parameter (see Numbers, page 163)

ENTER, RESUME and LOADENTER are all commands that indicate to GEORGE that the current core image is
now in a state ready to be run. SAVE copies the current core image to a filestore file named in the command. It

is necessary for GEORGE to have completed the loading of the current core image before it can be written away.
CORE (or SIZE), IF ON, IF OFF and PRINT commands all require GEORGE to read part of the current core
image. Thus loading must be completed before these commands can be executed. ON, OFF and ALTER commands,
on the other hand, write to the current core image. Thus again loading must be completed before these commands
can be executed. Commands with a [number] parameter access the contents of the location number and thus
require loading to have been completed. All these commands that cause the loading process to be completed

should be delayed as long as possible in the job description. In particular the ON, OFF and ALTER commands
should, where possible, be left till just before the program is entered.

~N o AW N

If the size of the program that is to be loaded is in excess of the object program quota OBJECTQUOTA (an
installation parameter) the following message is output to OBJECT category in the monitoring file, and may
also be sent to the MOP terminal:

LOADING OF YOUR PROGRAM MAY BE DELAYED AS ITS CORE SIZE
EXCEEDS THE PROGRAM QUOTA

When the loading process is completed the following logging message is output
time milltime CORE GIVEN number

where number is the size of the program in words.

22 4345(9.72)

It was noted above that if the program to be loaded by GEORGE was preceded by a GPL, then GEORGE would
load and run the GPL, resulting in the required program being left in core, and then halt LD thus returning to
command level. It should be noted that GEORGE recognizes a program as a GPL by the fact that the GPL bit
(bit 0 of the third word of the request slip) is set. Setting of the GPL bit under GEORGE is restricted to General
Purpose Loaders and attempts to set this bit for other programs will have indeterminate results and should thus
be avoided.

The LOADENTER and RESUME file description (that is first LOAD then RESUME) commands cannot be
used to load a program with the GPL bit set. If an attempt is made to use these commands in this way, they
report the error:

z IS A GENERAL PURPOSE LOADER

If the program to be loaded has any of bits 2 to 23 of the overlay directory word, in its request slip, non zero,
then the overlay directory will be set up from the subfile description in the program file. Note also that some
programs which have been overlaid from direct access files have the overlay directory word set to zero and a GO
entry block with the address of a routine to set up the overlay directory. In this case the LOAD command leaves
the program ready to be RESUMEA at this address : this must be done before entering the program in the normal
way. Note that the RESUME command should be issued as late as possible in the job description since it will
force the loading process to be completed.

Errors

Errors during the completion of the loading process will be rare: if such an error occurs it is treated as an error
in the command that forced the completion of the load. All error messages are listed in Chapter 11, and include
the name of the file from which loading was attempted. The job will be returned to NO CORE IMAGE context
and any peripherals ONLINEd or ASSIGNed will be lost.

ENTERING A LOADED PROGRAM

It was mentioned above that between a LOAD command and initiating the run of a program various commands
such as ASSIGN may be issued. When the loading of a program is completed, the program is in a state ready to
be run. The command that initiates the run is ENTER (which also causes the completion of an uncompleted
load). An example of an ENTER command is

ENTER 1,PARAM(128,29)

In this command the first parameter indicates the entry point for the program, in this case word 21. The second
parameter provides 2 run time parameters that will be passed to the program when it asks for them by means
of a special mode of PERI extracode (see Command issuing programs, page 40).

If it is not required to issue any command between the LOAD command that initiates the program loading and
the ENTER command that completes the load and initiates the program run, then the functions of the LOAD
and ENTER command may be concatenated by means of a LOADENTER command. A LOADENTER command
to load a program from the file MYPROG and enter it in the same way as in the ENTER command example
above would be:

LOADENTER MYPROG, 1,PARAM(128,29)

If the entry point parameter in an ENTER or LOADENTER command is null, then the program will be
entered at word 20.

A RESUME command may also be used to initiate a program run. This command can either nominate a file from
which a core image is to be loaded before being run, or can initiate a run of the current core image. An important
point to note is that though RESUME has parameters to indicate the entry point and pass run time parameters

to the program when required in the same way as ENTER, it differs from ENTER in that the entry point is
specified relative to word O of the program rather than word 20. Thus 0 to 9 is the permitted range for the entry
point parameter to the ENTER command whereas the size of the program determines the limit for RESUME

For example
ENTER 9

is equivalent to
RESUME 29

The other important difference between ENTER and RESUME is that if the entry point parameter is null,
RESUME will (as its name implies) enter the program at the address held in word 8 of the program, which holds

4345(9.72) 22.1

the address of the next instruction to be obeyed in the sequence that was under way when the core image was
last activated.

FURTHER FACILITIES FOR GEORGE 4

Appendix 1 introduces the 1900 paging scheme and discusses briefly the concepts of virtual store, sparse and
dense programs, size and shareability. It also introduces the idea of a program’s quota and examines the way
GEORGE 4 controls the running of programs on a paged machine.

GEORGE 3 is fully compatible with GEORGE 4 and all programs, macros and job descriptions that run under
GEORGE 3 will run under GEORGE 4. This means that dense programs may be loaded and entered in GEORGE
4 in exactly the same way as they would in GEORGE 3. However sparse programs may be run under GEORGE 4
only; certain commands have additional parameters in GEORGE 4 to enable sparse programs to be loaded and
entered and there are new commands to enable the sizes and quotas of both sparse and dense programs to be
specified or varied. Quotas have no meaning in GEORGE 3, which ignores such parameters; the same applies to
shareable areas (mentioned below).

Quotas and areas left in core

The quota for a program may be obtained by GEORGE 4 either from the supplementary request slip, or from the
LOAD command or a QUOTA command, described below. In the absence of the quota being specified by any of
these means, the initial quota to a program on loading is deduced by GEORGE 4 from the size of the program.
GEORGE will assume that pages at the low address end of a program will be required in core first and try to
arrange that these will be in core on completion of the LOAD command. For a dense program it is assumed that
the lowest pages referred to in the binary program are those that will be required, and for a sparse program the
lowest pages other than 1, 2 and 3. :

In the case of a sparse program the initial quota given to a program on loading may be specified in the
(supplementary) request slip. However, if the quota so specified is not the quota required, the user can override
the supplementary request slip by including a QUOTA perameter in the LOAD command. For example, if the
program contained in PTOBJECT has a quota of 2,000 words specified in its supplementary request slip but
the user knows that on this particular run the program will require a quota of 4,000 words to run efficiently, he
can issue a LOAD command of the form

LOAD PTOBIECT,QUOTA 4000

The quota specified will be rounded up to the nearest multiple of 1024. In the example above, the actual quota
given would be 4096.

There is also a QUOTA command which can be issued at any time after a program has been loaded. It performs
the same function as the QUOTA parameter of LOAD andcan be used to alter the quota of a program (sparse
or dense). Thus, in the example above the same effect is achieved by issuing the two commands:

LOAD PTOBJECT
QUOTA 4000

It is however recommended that, where possible, the QUOTA parameter of the LOAD command should be used
in preference to the QUOTA command.

GEORGE 4 is normally free to adjust a program’s quota whilst the program is running. However, a quota may be -
fixed by specifying a FIX parameter to the QUOTA command (see the QUOTA command).

Loading and entering shareable programs

In GEORGE 4 there is an additional parameter to the LOAD command, the character string PRIVATE which
enables a user to load his own private copy of a program that has been marked as shareable by the GEORGE 4
compiling systems (see also The PRINT and ALTER commands, page 28).

PROGRAM EVENTS

GEORGE provides powerful facilities for monitoring object program runs. Various commands can be given after
the ENTER command in the job description to tell GEORGE what action to take if a program event occurs. A
program event is an occurrence in an object program run that causes GEORGE to terminate the current run and
read the next command at the current command processor level. Normally a program event is caused either by
obeying a control extracode (SUSWT, SUSTY, DEL and DELTY) within the object program or else when the
program goes illegal in some way. It is also possible for the user to specify that program events are to be generated
in circumstances in which GEORGE would normally take some other action. This is done by issuing a MONITOR
command, the significance of this facility being that it enables the user to regulate or supplement the standard

222 ‘ 4345(9.72)

.

a~

program events and thus increases the user’s scope in monitoring a test program. Finally, the user can bring about
the effects of program events of various kinds by issuing HALT, FAIL and DELETE commands. These commands
generate pseudo program events.

Associated with each program event there is a category, a message and a member number. When a program event
occurs a message is sent to a special area of core reserved to hold the current program event message. Together
with the message, the category of the event and the number of the program member in which the event occurred
are stored in this reserved area. A job can have only one program event message at a time; the message is unset at
the beginning of the job and is set and unset by various commands and extracodes during the job. Note that the
message is unset by all commands that load or enter a program, and it is set or reset by all program events or
pseudo program events.

The current program event message can be examined by the IF command to determine the action to be taken after
a program event has occurred. It can also be used by a SETPARAM command to make a parameter of a command
dependent on the contents of the message. Both these facilities are described in full later in this chapter.

When a program event occurs the category, message and member number are also sent to the OBJECT category of
the job’s monitoring file. In the case of a program failure, additional information about the failure is also sent to

the monitoring file. This information, which includes the address of the failing instruction, is immediately available
to a MOP user who may then take whatever action his job requires. A background user may examine this information
when the job is terminated and the monitoring file is listed. The effects of program events and the messages
produced by them are described in detail in the section Description of program events in Chapter 14.

A program can indicate that its illegals are to be monitored by itself rather than by GEORGE. In this case if the
program goes illegal, instead of causing a program event, GEORGE will cause the program to enter its own
monitoring routine.

CATEGORIES OF PROGRAM EVENT

Depending on the cause of the event, a program event will belong to one of four categories. The four categories
are as follows:

1 HALTED events

These are caused by SUSWT and SUSTY extracodes. The message associated with the event consists of the
message generated by the extracode.

2 DELETED events

These are caused by DEL and DELTY extracodes. Again the message consists of the message generated by the
extracode.

3 FAILED events

These are caused by program failures, for example an illegal instruction, a peripheral failure or the program
running out of time. The message associated with the event gives details of the cause of the event whenever
this is possible (see Chapter 11, page 179 for details). If the event is caused by an illegal instruction, no

guarantee can be given that the instruction has had no effect. In this case the event message will begin with

ILLEGAL
This will be followed by as accurate a description as possible of the cause of the illegality, for example:
ILLEGAL:RESERVATION VIOLATION

In some cases GEORGE will not attempt to identify the cause of the illegality and will give the general
message:

ILLEGAL INSTRUCTION
4 MONITOR events

These are events that have been specified in a MONITOR command issued between loading and entering
the program. There are four types of MONITOR command that cause specified incidents in a program to
bring about program events of the MONITOR category:

(a) MONITOR ON, DISENGAGED, peripheral name

This causes the job to return to command level if a PERI for a named on-line peripheral is encountered
in the program, and the peripheral is disengaged. The message associated with the event is

DISENGAGED, peripheral name

4345(9.72) 22.3

{b) MONITOR ON, DISPLAY

This causes DISP and DISTY extracodes to generate program events. Normally DISP and DISTY (and

the DISPLAY command) do not cause program events; the message generated is sent to a special area

of core reserved for the current display of the job (analogous to the current program event message

or the current reply), and the program run continues without interruption. When the job has returned
to command level because the program run is over or an event has occurred, the current display can be
tested by an IF command.

If, however, a MONITOR ON, DISPLAY command has been given, a DISP or DISTY extracode will be
set as the current display, and the message DISPLAY will be set as the current program event message.
The job will return to command level and the command processor will read the next command at the
current level.

(c) MONITOR ON, DELETE

This causes DEL and DELTY extracodes to be treated as SUSWT and SUSTY respectively. If this
command is issued, a DEL or DELTY extracode will not delete the current core image, but will cause a
program event of the HALTED category. The program event message is as for normal HALTED events.

(d) MONITOR ON, monitoring expression

This causes the job to return to command level when any of the types of extracode specified in
monitoring expression are encountered. The extracodes that can be monitored in this way are: REL,
DIS, CONT, certain types of ALLOT, and open, close, extend or rename PERIs (including write \
after rewind). The format of the monitoring expression is described in the specification of the

MONITOR command in Chapter 12. If an illegal extracode is encountered after a MONITOR ON

command has been issued for extracodes of the same type as the iltegal one, the effect is indeterminate.

The program event generated will be of either FAILED or MONITOR category.

The program event message will include as many of the following fields as are relevant:
(i) Type of extracode monitored
(ii) Device involved

(iii) A single character Y or N (for YES or NO) to indicate whether or not the device has been
allocated to the program

(iv) Address of the control area (PERI extracodes only)
(v) Mode of PERI
(vi) Filename, if any, associated with the PERI

The event message has a fixed format to enable its individual fields to be accessed by the SETPARAM
command or the % ; ; substitution facility (see page 32.1). This format is given in the description
of program events (monitor category) on page 505.

A monitor event is also generated by the MONRESUME command when the first parameter of that
command is STOP (see the MONRESUME command). A previously monitored instruction is obeyed
again with monitoring suppressed and a MONITOR event is generated with the message.

MONRESUME COMPLETED

Monitoring can be turned off for any one of the above event types by a command of the form:
MONITOR OFF, event type

or MONITOR OFF, monitoring expression

MEMBER NUMBERS

Normally a program event is generated as a result of a single instruction obeyed by a particular member of a program,
and so a unique member number can be associated with the event. When an event is not the direct result of a
single instruction, for example:

1 When a program exceeds the mill time allowed to it
2 When a peripheral that is on-line to a program fails

3 When a pseudo program event is generated by a HALT, FAIL or DELETE command

22.4 4345(1.76)

the member number of the current program member is associated with the event.

The IF command can be used to discover which program member has generated the most recent program event.

THE STATE OF THE CORE IMAGE

The state of the core image after a program event has occurred depends on the cause of the event. There are the

following possibilities:

1 The core image will have been deleted.

This will be the case if the event is of the DELETED category.

2 The core image is left ready to obey the instruction after the instruction that caused the event.

This will be the case if the event is of the HALTED category or if it is of the MONITOR category and has
not been generated by a PERI for a disengaged on-line peripheral.

3 The core image is left ready to obey the instruction that caused the event. This will be the case if the event
is generated by an illegal instruction or by a PERI for a disengaged on-line peripheral when monitoring is set
for this occurrence. Illegal instructions include PERIs that are not accepted, but not PERIs that are accepted
and fail during transfers.

Note: No guarantee can be given of the state of the core image after an instruction has been detected as
illegal by hardware. In particular the instruction may have been partly obeyed. This danger does not apply
in the case of extracodes other than CONT.

4 The core image is left ready to obey the next instruction in the natural sequence.

This will be the case when the event is not generated by a particular instruction, as when the program’s mill
time allowance is exhausted, and also when an on-line peripheral fails after the PERI instruction has been
accepted. In the latter case a number of instructions may be completed after the PERI is accepted and before
the failure occurs, as in the case of a transfer failure.

When a program event has occurred, the address of the instruction that the core image is left ready to obey is held
in word 8. The user can restart the program at this instruction by issuing a RESUME command with no parameters.
If he wishes to restart the program at some other point this can be done by issuing a RESUME command with the
address of the required restart point (relative to O rather than 20 as in the ENTER command) as the first parameter.

After certain MONITOR events, the user can either restart his program at the instruction after the monitored one
by means of the RESUME command, or he can restart at the monitored instruction itself by means of the
MONRESUME command. For example, after having monitored an attempt to rename a magnetic tape, the user
could either resume without renaming the tape or carry on and rename it, perhaps after altering the PERI control
area to specify a different name. The MONRESUME command inhibits monitoring of the first object program
instruction obeyed after it has been issued.

THE IF COMMAND AND PROGRAM EVENTS

The IF command may have any of the following formats:

1
2
3

IF condition, (command,) ELSE (command,)
IF condition, (command,)

IF condition, command,

where command, and command, may be any commands, including further IF commands, but may not be

labelled, and where the condition parameter can be the name of one of the program event categories described
above, for example:

IF HALTED, . ..

4345(9.72) 225

