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Notes on "Image Methods in Electrostatics" (A Computer-Animated Film)
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(Received 30 October 1967; revision received 15 January 1968)

The computation and production of a computer-animated film is described. The film depicts
a point charge slowly approached by (1) a grounded conducting sphere, and (2) an ungrounded
(net charge equals zero) conducting sphere.

INTRODUCTION

The human organism is not a digital machine. It
continuously monitors its environment by means
of its senses, notably sight, a sense which is
remarkably well adapted and acute. In conceptual
areas as well, we instinctively rely upon pictures
to develop and coordinate ideas; extremely com
plicated relations can be comprehended literally
in einem Augenblick through the use of a picture.
In addition to these obvious formal advantages,
there is a fundamental fascination with images
which seems to underlie the current rapid develop
ment of computer animation. Many a scholar
opens his Sunday newspaper to the colored comics
section first. One may speculate that the time is
not far distant when the "average" research
scientist will be able to program complicated
three-dimensional stereo representations in motion
with the same ease with which he would attempt a
sketch. As a possible antidote to the paper explo
sion, filmed computer output is already in use,
while the advent of small, portable cartridge
loading film projectors may be expected to lead to
vastly increased use of short film loops as educa
tion and information-storing devices.

One topic in physics which lends itself to a
pictorial treatment is the concept of fields and
field lines. This concept is widely used in electro
magnetism and plasma physics, yet direct physical
observation of field lines is generally limited to
sprinkling iron filings on a bar magnet, although
more sophisticated techniques exist.1 Hence this
film, "Image Methods in Electrostatics," designed
to demonstrate, on the level of junior-year physics,
something of the nature of field lines, their
elasticity, and the way in which they can form and
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re-form. The film, produced at Argonne National
Laboratory on a Data Display 80A cathode-ray
tube (CRT) on line with a CDC 3600 computer,
depicts the familiar problem of a point charge in
the vicinity of a grounded conducting sphere, and
the less-familiar problem of a point charge and a
conducting sphere which is not grounded, but
maintains a net charge of zero." During the ani
mated sequences the spheres are shown slowly
moving toward the point charge-so slowly that
time-dependent effects may be ignored.

F1a. 1. Grounded conducting sphere.

I. POINT CHARGE AND GROUNDED
CONDUCTING SPHERE

In the case of a grounded conducting sphere of
radius a separated from a point charge Q by a
distance D (see Fig. 1) one must solve Laplace's
equation for electrostatic potential WV, in the region
outside the sphere, with a singularity at Q and
vanishing potential on the boundary of the sphere.
This is accomplished by replacing the sphere with
an image charge Q' = - aQ/D located a distance
D'=D--a?/D from Q. This is the physical equiva
lent of constructing Green's function for the

Copies of the film will be loaned or sold at nominal cost
to those interested, through the Argonne Film Center.
Four-minute 8-mm loops are available as well as 16-mm
film.
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Laplacian in this geometry. The obvious con
ceptual simplicity of the problem generally pre
cludes any serious attempt to construct the field
lines, so the analysis will be presented in some
detail.
In mks units the equation for the potential is

4noV=(Q/r)+(Q'/r'), (1)

and for the electric fields E =

(2)

where we use the notation µ=cos0, o-=sin0 for
convenience. The field-line equation

steradians about the polar axis must end on
Q'a check on the correctness of the calculations.
The fact that there are two different types of

field lines emanating from Qthose which end at
infinity and those which end on the sphere-causes
no embarrassment, because the explicit depend
ence r(0) is known. When the dependence is
only implicit the distinction is important, as is
shown next. It is important to note the behavior
of the limiting field line, uo, (see Fig. 1) which
"splits" at N. A good tactic when dealing with
problems of this sort is to look immediately for
neutral points in the field. Nmust be such a point,
and by solving the neutral-point equations Er=
0 =Ee one finds:

r(do/dr) =E/E, (3)

is easily integrated by noting that, since 7.E = 0
implies

(4)

i.e., the integrating factor of the field-line equation
is ro-, its solution, for a=l, is

F(r,@)=u+[(D'-r)/Dr]=B, (5)

where the constant B determines the particular
field line. If the field line leaves Q at an angle 0,
then

(6)

The field-line equation gives rise to a quadratic
in r which has the solution, for O0< nr,

r==D'(A?°)[(A?--1)+AG(1-A")VJ, (7)

where A=D(Bu). If A=Eu, r=D'/2; if
A=-, r=o. For real solutions,-1<A1,
orau+2/D for the field line characterized
by ; for- no<O replace the (+) sign before
the radical in Eq. (7) with a (-) . The result is
symmetric about the axis; hence this region is not
shown in the film.

As r, r'oo, Eq. (5) shows that the field lines
asymptotically approach

(8)

(9)

When these values are substituted back into Eq.
(5), one finds that o=1-2/D=c, as expected.

II. POINT CHARGE AND UNGROUNDED
CONDUCTING SPHERE

This case is mathematically very similar to the
previous case, but with a fundamental difference:
the sphere is ungrounded and so must have a net
charge of zero although the potential on the sphere
is positive due to charge separation induced by
the point charge Q. 'To do this we require two
image charges, Q' = +aQ/D and Q= +aQ/D.
The first charge is placed as before and serves to
fix the sphere at V=0; the second charge is placed
at the center of the sphere, thus achieving charge
neutrality while maintaining the sphere as an
equipotential at V=aQ/AnD. Furthermore, the
net amount of electric flux entering the sphere
must be zero; i.e., every time a field line is pulled
into the conductor from one side it must emerge
again on the other side.
The electric fields and the equation of the field

lines are given by (see Fig. 2)

Q Q'(r D') Q"(r D)4 E = - + -µ + -µ (10)
Tr@, vr 4 '3

implying that for some o?uo,=1-2/D the field
lines never arrive at oo, but end on the image
charge instead. This is another way of saying that
field lines originating in a solid angle of 41r (Q'/Q)

4ra,E» = (Q'D'a/r") +(QDa""+) (11)

F(r, 0) =µ+[(D'-µr)/Dr']-[(D-µr)/Dr"]

=a, Const, (12)
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coordinates. It was necessary to depict the sphere
slowly (quasistatically) approaching the point
charge Q, lines of force emerging from Q at inter
vals 0=0°, 10°%, 20°, ..·, 180°, and the image
charges as the sphere moved in toward Q from off
screen. Instead of using some fixed value of o0
or or as the increment for describing a field line,
it was decided to take a fixed value of arc length

(16)

Fm. 2. Ungrounded conducting sphere.

where µo determines the particular field line
leaving Q at angle 0.
From the equations E,=0 = E,, it is not difficult

to show that

as increment to insure uniformity in the drawing
and a more consistent relationship between dis
tances on the screen and the number of iterations
in the program. The increment os was chosen small
enough to give a smoothly continuous representa
tion of field lines, but not too small. The CRT
screen is divided into a mesh of 1024 X 1024 raster

and

points; as a general rule, an arc of length less than
(13) 1020 rasters can give rise to a jagged or "lumpy"

effect.

where =D'/D<1. Thus, the neutral point is on
the surface of the sphere. Substituting into Eq.
(12)shows that the critical field line is given by

uoeN (1) <N (15)

and divides up the region outside the sphere into
three separate portions (see Fig. 2):

(I) >uo, r<r, containing field lines from Q
which terminate on the sphere;

(II) >oc, r>r, containing field lines leaving
the sphere and going to infinity;

(III) <uoc, containing field lines which do not
touch the sphere but go on to infinity,
although with more or less visible distor
tion.

Since Eq. (12) could not be solved for r(0)
directly, iterative solutions were obtained by the
NewtonRaphson method, using a simple pre
dictor to hasten convergence. Consequently, it
proved necessary to test for and treat the three
regions separately in the computations.

III. COMPUTATION

The animated sequences were to show the dis
tortion of field lines for varying positions of
grounded and ungrounded conducting sphere!'<
relative to a point charge fixed at the origin of

A cardinal rule for economy in computer anima
tion is to substitute intelligence for computation
whenever possible. A useful tactic when changing
configurations by small amounts is to avoid calling
library functions by using recursion relations,
identities, calculus of finite differences, and storage
of frequently used function values. In the present
case, trigonometric functions of 0 were avoided by
treating cos0 = µ as the angle variable. As the com
putations proceeded, the field-line equation was
solved for r(u) or (r), either exactly or by the
Newton-Raphson method to within 0.5% ac
curacy, as the occasion warranted, and increments
chosen from

6= ±6s[(or/6)°+(r/a)]-we (17)

6r =±s[1+(r/0)"(6/6r)"11/%, (18)

In order to begin the calculation for a given field
line starting from Q, we note that the field lines
must be approximately radial, so that the first
point on the field line has coordinates (08, ,).
The variation in the cosine is second order in as,
and expanding r' and r' around the origin, re
taining terms in os,

grounded sphere,

u=u+ (a6"/2DD)(1),
ungrounded sphere. (19)
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The film was made in three sequences: (a) the
grounded sphere moving from D= 20 to D = 1.4
in steps of 6D=0.05, slowing down to 6D=
-0.025 at D=8, 6s=0.3. The CRT screen scale
was chosen to be 10.1<10.1,-3.1y<17.1
and plotting was restricted to the region -10.0:::;;
z<10.0,-3.0y<17.0 by appropriate tests; (b)
the ungrounded sphere moving from D = 12 to
D=3 in steps of 6D=-0.05. 6s=0.3, with the
same scale as in (a) ; ( c) the ungrounded sphere
moving from D = 7 to D = 1.4 in steps of 6D=
-0.02, 6s=0.15. At D=3 the step was changed to
6D=0.01, and the scale was shifted and en
larged to0.4<8.1,-1.0/<7.4. The time
rate of change of D is irrelevant, except that it is
much less than the speed of light.

D- 4. 0 0

Fm. 3. Sample negative, sequence (a).

In the case of the ungrounded sphere, a field line
uo>a, which enters the sphere from region I must
emerge again in region II, and approach a radial
asymptote at angle a. This condition plus the
condition r' 1 yields the starting point for the
continuation of the emerging field line in region II:

=D(a-1)+1;

r°- (1+D42D)r+2DD' =0, (20)

where the second equation is solved for r, by
iteration, starting from

as a first approximation.
Figures 3, 4, and 5 show negatives from se

quences (a), (b), and (c), respectively. The effect
of animation is to fill up blanks and smooth out

Fm. 4. Sample negative, sequence (b).

nonuniformities, giving a more polished appear
ance than indicated by these figures.

IV. PRACTICAL MATTERS

The major questions which arose in making the
present film were: what to do about titles; how
many frames (individual pictures) to compute;
how much discontinuity was tolerable between
frames; how will the end result look on 8-mm film
loops? It is preferable to have titles and textual
material done in one strip by professionals. One is
thus spared the tedium of reading in, storing, and
displaying titles on the CRT, a fruitful source of
programming errors. The author of a title is
also apt to make only half as many frames as his
audience requires for comfortable reading. All
characters should be filmed at high intensity, in
either medium or large size; in this film all line
segments were redrawn three times, and charac
ters from three to six times in order that they be
sharp and clear after reduction to 8 mm (and they
still left something to be desired). No title or text
is short enough to be read in less than 5 sec.

Q 0-3.42
FIG. 5. Sample negative, sequence (c).
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At the beginning of each animated sequence,
an "establishing shot" is desirable; i.e., repeating
the first frame for about 5 sec or so to give the
audience time to orient themselves. It is best to
do this on the CRT, because doing it manually
from a single frame is expensive, while the coor
dinates for a single frame can be stored in core or
on tape and recalled each time the frame is plotted.
If one wishes to have one sequence fade into
another, a minimum of 20 extra frames should be
left at the end of the first sequence and the be
ginning of the second for a "lap dissolve." In this
optical process the light is dimmed while exposing
the end of the first sequence, turned on while ex
posing the beginning of the second, and the two
films are overlapped and printed together.
The question of how much discontinuity is to

be allowed between frames depends upon the
nature of the individual motion, how long it is
desired to keep the sequence before the audience,
and the cost of computing each frame. The most
widely used projectors are 16 mm. With sound
they run at 24 frames/sec (40 frames= 1 ft of
16-mm film), silent at 16 frames/sec, as do 8-mm
projectors. The faster the apparent motion, the
more discontinuity one can allow. It is common
practice in animation to duplicate each frame in
printing ("double framing"), which can decrease
computation time by a factor of two. However, if
the motion is very slow, this may give rise to a
noticeable jerkiness. For a very rapid motion one
may be able to double frame twice, decreasing
computation time by a factor of 4, without notice
able degradation of the continuity. Processing
equipment also may allow for "skip framing,"
printing every other frame in order to shorten a
film, and "every-other-frame-twice" printing,
which produces a sound version from a silent 16-
mm film (not a recommended procedure). In
the present film approximately 1000 frames were
computed to total, after double framing, two
minutes of viewing time (16-mm silent). If single
frames are very expensive to compute, one may
give the illusion of motion by duplicating, for
example, a dozen separate frames enough times
so that separate configurations can be connected
by lap dissolves. The effect is roughly analogous
to that of neon signs which simulate motion.
Another tactic is to interpolate between computed
configurations. If a film is to be distributed, the
original should not be viewed on a projector be-

cause it will acquire scratches, sprocket wear, and
other damage.
In general, a film will need processing, par

ticularly if the original is a black line on trans
parent background, since black lines on the origi
nal tend to "wash out" in processing. One must
make a reversal print or negative to obtain white
lines on a black background. A colored filter can
be used, as in the present case, to make the picture
more attractive. The result is edited and spliced
together with titles and texts to make a work print
which is duplicated to make a splice-free master
print and a viewing copy. If there are many
splices, better quality can be obtained by making
two work prints, an "A" and a"B print. These
prints show complementary alternating sequences
with blank spaces between them. They are then
matched up by edge numbers on the film and
made into a single splice-free master print. One
beneficial result of all this processing is that it
increases the contrast and makes the white lines
more intense.
In some installations the CRT may be unstable

or the camera may not have "positive" or "pin"
registration; in that case the picture will not ap
pear to remain in the same place when viewed. One
may avoid the issue by providing some small fixed
marks on the frame, or a pair of fixed coordinate
axes, for example, so that the film can be manually
registered frame by frame when it is duplicated.
This is expensive and not to be recommended, but
it is possible.
One final word about esthetics: The artistic

scientist or educator must keep an open mind
about his mathematics. Often one may save
significant amounts of time and trouble by taking
advantage of the latitude which the visual process
allows; accuracy must not be a sacred cow. In the
present film it was found that terminating field
lines at r" =0.97, rather than 1.00 (the surface of
the sphere) gave a better image near the sphere,
and that drawing straight lines left of the point
charge in the second sequence gave results not
visibly different from the correct formula. The
intense glow around the point charge Q, which
appeared as the result of too many field lines con
verging on one point, was purposely left in for
"dramatic effect." With a bit more courage on the
part of the author, 2% accuracy would have been
good enough for the NewtonRaphson computa
tions, rather than 0.5. Pedagogically, the im-



COMPUTER ANIMATED FILM 417

portant point is not to draw a mathematically
accurate image, but to convey a physically accu
rate idea.
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The density of states for the solutions to the wave equation are derived for a spherical and
a cylindrical volume. The number of states per unit volume, in the limit of short wavelength,
is known to be independent of the shape of the surface enclosing the volume. It is hoped the
general result, first proved by Weyl, will appear more plausible if explicitly proved for several
different shapes.

The density of eigenvalues, or states as it is
often called, for solutions of the wave equation is
of use in many contexts. Probably the most
famous occurrence is in the derivation of the
Rayleigh-Jeans and Planck radiation laws. Con
ventionally the derivation is based on counting
the number of solutions found to the wave equa
tion in a parallelepiped either with periodic
boundary conditions or with the requirements that
the functions vanish on the boundary. If the
wavelengths of interest are much smaller than
the smallest dimension characterizing the volume
containing the waves, the resulting number den
sity should be of the form1

with p>0, dN the number of eigenvalues lying
in the range dk about k (k=2r/=a/c), V the
volume containing the waves, and L is a charac
teristic linear dimension of the cavity. The lead
ing coefficient Co has been shown, in a rather

1 E. A. Power, Introductory Quantum Electrodynamics
(Longmans Green and Co., Ltd., London, 1964).

sophisticated proof to have the value 1/2n inde
pendent of the shape of the volume. As an alter
nate to the rather inaccessible general proof, it
seems worthwhile to give explicit proofs for the
sphere and the cylinder since these shapes, in
conjunction with the parallelepiped, will tend to
make the general result more plausible. It should
perhaps be mentioned that this work was the
result of assigning the problem to a class with the
thought that the derivation must be reasonably
accessible. For the sphere a solution utilizing the
WKB method has been given by Pauli but it is
felt that an alternate solution, not requiring the
WKB method, would also be useful.

I. SPHERE

The solutions of the wave equation in spherical
coordinates which are regular at the origin are

·H. Weyl, Math. Ann. 71, 441 (1912). See also R.
Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Theorem
18, p. 442.

• W. Pauli, Handbuch der Phsik, S. FIugge, Ed.
(Springer-Verlag, Berlin, 1958), Vol. 5, p. 92.


