
72

Advanced Continuous
Simulation Language (ACSL)

by
Edward E. L. Mitchell and Joseph S. Gauthier

Mitchell and Gauthier Associates
P.O. Box 685

Concord, Massachusetts 01742

EDWARD E. L. MITCHELL graduated from Trinity College,
Cambridge, England and received his PhD from the
University of Liverpool. His interest in simulation
is of long standing. He was associated with EAI’s
Princeton Computation Center until 1968. After

moving to Raytheon, he was responsible for developing
digital and hybrid missile models. He was program
chairman of the 1971 SCSC and for two years chaired
the SCS Committee on Continuous System Simulation
Languages. Since early 1975 he has been developing
a simulation language with a basic aim of (1) making
its model-definition section machine-independent and
(2) making models written in the language executable
on as large a variety of computers as possible.

JOSEPH S. GAUTHIER is a graduate of the University
of Rochester, where he received his BS in physics.
During college he was introduced to the computer as
a research tool and worked on the computing-center
staff and as a software consultant for a local com-

pany. Upon graduation he joined Raytheon and worked
as a scientific applications programmer on digital
and hybrid missile simulations while taking graduate-
level courses in computer science at MIT. Since

early 1975 he has applied his software systems
experience to the development of a simulation system
capable of meeting the needs of a large proportion of
those in the simulation community.

ABSTRACT

This paper describes ACSL, a continuous system simu-
lation language designed to help the engineer or
scientist with a mathematical model analyze the
behavior of his system. The computer calculates
dynamic responses and interactively provides pictures
(plots) and tabular display of selected variables.
The user has a choice of two Runge-Kutta integration
algorithms and two variable stepsize algorithms
which includes Gear’s implicit method for stiff sys-
tems. Any other programmable algorithm can be
readily incorporated. The main features of the lan-

guage are illustrated by a detailed example.

INTRODUCTION

The ACSL (pronounced &dquo;axle&dquo;) system is designed for
modelling the behaviour of continuous systems
described by time-dependent, nonlinear differential
equations and transfer functions. Typical areas of
application are control-system design, electrical-
circuit analysis, missile and aircraft simulation,
and fluid-flow and heat-transfer analysis. Program
preparation can be from block-diagram interconnections
or conventional FORTRAN statements or a mixture of
both.

Highlights of the language are its macro capability,
independent error control on each integrator, free-
form input, and generation of functions of up to
three variables. Many simulation-oriented operators
such as variable time-delay, dead zone, backlash, and
quantization are included and made readily accessible.

Macro capability allows constructing representative
blocks (for instance, a transistor, an actuator, or
an element in a heat-transfer problem) for systems
containing state variables. Access is possible to
any FORTRAN subroutine either predefined in a library
or included in the ACSL model definition.

The powerful array capability allows breakdown of
partial differential equations into sets of ordinary
differential equations. Macro operations can pick up
array dimensions so that size changes can be kept in
one area in the simulation program. An array inte-

gration operator complements this facility so that
vector and matrix integrations can be set up with a
single statement.

Independent error control on each integrator allows
faster execution by relaxing the accuracy specifica-
tion on high-frequency variables. At the end of each
simulation run the variable-step integration routine
reports the effect each state variable had on control-
ling the integration stepsize so as to allow appropri-

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

73

ate action to be taken. Relative error (MERROR) and
absolute error allowable (XERROR) can both be specified
individually for each state variable. For instance,
relative errors on states A, B, C would be specified
by the statement:

In this statement, the value for the first state
becomes the default for all other unspecified states.

The integration executive picks the larger of the
relative error (state value times fraction) or the
absolute error and adjusts the stepsize so that the
actual error lies within this bound for all states.

Increasing the error allowed usually results in a
larger stepsize and hence the use of less computer
time - until the stability limit is approached.

ACSL is compared with other well-known simulation
languages in Table 1 in a qualitative fashion. CSSL
III is supported by Control Data Corporation and is
available on CDC 6000 and CYBER machines. CSMP is a

product of IBM Corporation and runs on 360/370 sys-
tems. MIMIC is an example of an older simulation
language -it was originally developed by John Sansom
for Wright Patterson Air Force Base in 1964 for an
IBM 7094 but versions exist for most machines. It
was by far the best of all the simulation systems
developed through the 1960’s.

THE ACSL LANGUAGE

The basic structure of ACSL follows the specification
established by the SCi Technical Committee on Con-
tinuous System Simulation Language (CSSL).l

The simulation program is defined in a model-

definition section which consists of four parts:

1. INITIAL - Statements that are performed once;
typically they lead to the calculation of initial
conditions on the state variables, e.g., launch

angles of a missile which depend - after a fairly
lengthy calculation - on target position and
velocity.

2. DYNAMIC - Statements that are performed at every
communication (data output) interval and whenever
the data recording operation takes place. A

simple example would be the conversion of radians
to degrees. Efficiency is improved if those cal-
culations relevant to data recording operations
only are collected into one block and performed
together. Fixed time-step operations (as in

sampled-data systems or digital-computer control
algorithms) can be modelled in this section.

3. DERIVATIVE - Describes the calculations that deter-
mine the derivatives of all the state variables.
This section allows the integration routine
selected to advance the state of the system with
respect to its independent variable, usually time.
The statements in this section need not be ordered
but will be automatically sorted into the correct
sequence so that intermediate values are calculat-
ed prior to their use.

4. TERMINAL - Statements that are performed once at
the end of the simulation run. For instance,
mean and standard deviation calculations for
Monte Carlo sequences and the radial miss-distance
of a missile from a target.

The model definition is processed by the system
translator and changed into a FORTRAN program that
interfaces with an executive library. This FORTRAN

program in execution reads what we call model drive

cards; these are sequences of commands that exercise
the simulation. A complete dictionary of user sym-
bols is built up so that data can be accessed by
name:

With these two commands, the executive is first
asked to print the value currently in the variables
K9, DRAG, and the second element of the vector RT.
Then a value of 0.3 is moved (set) into the variable
Kl and 1.77 is moved into the first 100 slots of an

array called FUNCTN. If sufficient slots are not
available in the array, an error will be reported,
values outside the array bound will not be set and

processing will continue.

Table 1

Relative merits of selected simulation languages

Notes:

(1) Run-time procedures involve the prestoring of collections of com-
mands, i.e., START, PLOT, PRINT..., making these accessible by a
single word. These procedures can be nested to any depth.

(2) Dynamic storage means the allocation of table space according to
need at the time the program is run, rather than compiling in
fixed-length tables that must be sized for the most demanding
task. Storage sharing can reduce total requirements if the space
is needed at different times. For instance, the Gear’s Stiff

Integration algorithm requires an :7 by N array (N is the number
of state variables in the simulation) to store the Jacobean or

lmeansed state transition matrix, which is only needed while the
simulation model is being run (integrating the differential equa-
tions). Printer plotting needs about a 2000-word region In order
to build up the page image since the printer cannot be reversed.
This space is only needed after the simulation run on a PLOT com-
mand so that this area can be shared with the integration routine
requirements. Dynamic tables make this sharing automatic.

(3) A full syntax analysis eliminates the need for understanding the
intermediate FORTRAN program. CSSL III and CSMP/360 rely on the
FORTRAN compiler to catch most of the syntactical and procedural
errors. However, this program typically contains a large number of
generated variables (Z0999 etc.) and is reordered from the original
source statements of the model definition. The average user finds

it difficult to correlate errors reported m this RORTRAN program
with the original text. The full source syntax analysis identifies
errors where they occur.

(4) Fully buffered Input and output (1/0) doe~n’t mean much In terms of

central processor usage but is significant when considering turn-
around time. Using conventional ping-pong buffer techniques, all

the 1/0 operations can be overlapped with central-processor calcula-
tions, leading to a more efficient program.

(5) Most time-sharing systems allow text editing and submittal of jobs
that can write data on the terminal. Time-sharing in this list,
however, implies true interaction where simulation commands can be
issued one by one and data displayed and modified on-line. Good

practice requires means of separating high-volume data - detailed
printouts, line printer plots - from low-volume data - value display-
and a means of routing of the high-volume data to a local line

printer, if available.

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

74

The executive library allows recording of any named
variable in the computer’s memory, changing any sym-
bolic constant, and producing line-printer, pen, or

CRT plots, depending on local equipment.

During model execution, procedures can be defined
that represent a number of statements, each procedure
being invoked by a single user-chosen name. The
simulation run (integration sequence) is initiated by
the command START.

Following this command, the integration routine takes
over and advances the state variables until one of
the termination conditions is met. The integration
algorithm is selectable from four established as part
of the basic system. The user may also incorporate
other integration algorithms of his own choice.

The four integration algorithms included in the sys-
tem are as follows:

1. Runge-Kutta Fourth Order (RK-4). A dependable
fixed-step method that may not be the fastest but
has almost no trouble with stability provided the
integration stepsize is chosen sufficiently small.

2. Runge-Kutta Second Order (RK-2). Similar to the

Fourth Order above but not quite as accurate.
For some systems with small controlling time con-
stants, this can be almost twice as fast as RK-4.

3. Adams-Moulton Variable Order, Variable Step. As

implemented by Gear2 this algorithm chooses the
order (from one to six) and stepsize so as to
take the largest step commensurate with satisfy-
ing the specified error criteria.

4. Gear’s Stiff-Variable Order, Variable Step
(Implicit). Also implemented by Gear,2 this
method is particularly suited to modelling systems
that contain characteristic roots that differ by
many decades. When the higher modes have died
out, the algorithm can take steps many times
larger than the shortest time constant, an opera-
tion not possible with any other method.

Unlike other CSSL languages, no limits exist for any
of the internal tables since they all can grow to fill
the available core space. Most simulation languages
establish arbitrary limits on such things as number
of symbols, number of state variables, labels etc.
These table sizes are typically built into the trans-
lator at compile time and can only be changed by
system programming personnel updating the source
cards and recompiling. In ACSL no such artificial
limits exist. As a corollary small programs can be
executed in a smaller field-length since the simula-
tion program does not have to be configured to accom-
modate the largest conceivable program any user may
submit. Typical program sizes for ACSL are
550008 (22K,O) on a CDC 6000 machine, 700008(28K10) on

a UNIVAC 1108.

THE MODEL EQUATIONS

An interesting example of how ACSL simplifies the
task of solving a nonlinear differential equation is

given by an investigation of Van der Pol’s equation.3
Describing the characteristics of a feedback oscilla-
tor, this equation contains a nonlinear damping term
that causes the self-excited oscillations and limits
their amplitude. Analytical solutions can be made by
the method of successive approximations, but even
when the series representation is obtained, time

response and phase-plane diagrams are tedious to com-
pute. ACSL provides straightforward problem solutions
and easily obtained pictures of the interaction be-
tween the different variables in the system. We
shall follow a Van der Pol program step by step in
some detail in order to illustrate the flexibility of
the run-time commands. At small signal values positive
feedback causes the amplitude of the oscillation to
grow, but the finite output capability of the ampli-
fier means that the amplifier’s gain must become
smaller and so limit the amplitude of the oscillation.
Van der Pol’s equation describes a particular case of
this sort. His equation is usually given in para-
metric form as follows:

where X determines the growth rate of the oscillation
(a is positive and typically ranges from 0.1 to 10.0).
For small x («1), the damping term or coefficient of
x is -X and, since X is a positive number, any
oscillation will grow exponentially. When the ampli-
tude of x becomes sufficiently large, the x2 in the

(1 - x2) term will dominate, changing the sign of the
damping and leading to a stable limit cycle. Since
the oscillator is nonlinear, harmonics will be gener-
ated. The object of the program we shall examine is
to determine the frequency content of the output wave
form. Since we see a continuous oscillation, only
discrete frequencies will be present, and in actual
fact it can be shown that they are the odd harmonics
of the fundamental. In Rogers and Connolly4 an
approximate solution is obtained which shows that the
limit cycle fundamental frequency wo is given by

and the amplitude of the first three harmonics by

When the spectrum analyser is applied to a system
like this, the result is more representative of the
analyser itself, with its associated window, rather
than of the waveform under investigation.

In ACSL, the oscillator equation becomes transformed
into two statements by changing the original equation
into two first-order differential equations, thus:

The corresponding ACSL statements are

XD = INTEGCLA~:(1.ø - X~2)~XD - X, XDIC)

X = INTEG(XD, XIC)

where XD is the first derivative (x)

XDIC is the initial condition on XD

XIC is the initial condition on X

LA is the growth rate parameter (a).

Figure 4 shows the waveform generated for XIC = 0.1,
XDIC = 0.0 and X = 1.0, and the initial growth to a
constant-amplitude limit cycle is clearly seen. Now

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

75

in order to determine the harmonic content of the
waveform, the components in phase with and in quadra-
ture with (90° out of phase) a driving sine wave are
determined. The root-mean-square (rms) value of
these two quantities determines the signal power.
The in-phase and quadrature components are determined
by multiplying the waveform by sin(wt) and cos(wt)
and integrating over a whole number of cycles. The
ACSL statements for this operation are

P = INTEGCX··COSCWNEXT··T~, 0.0)

Q = INTEGCX^SINCWNEXT^T), ~.~)

:::::;:::;:::::;::ADVANCED CONTINUOUS SIMULATION LANGUAGE^^^^^^^^^
ACSL TRANSLATOR VERSION 1 LEVEL 1A 75/04/19.

Figure 1 - ACSL source-model definition statements for
Van der Pol oscillator and spectrum analyser

THE MODEL DEFINITION

If we look at the listing of the simulation program,
Figure 1, the first section defines constants that
are to be used in the model. These are really
parameters since any variable can be referred to at
run-time by name and given another value. Statements

are continued by adding an ellipsis (...) at the end

of the line. Statements that are surrounded by quotes
are treated as comments and ignored.

The communication interval is the interval over
which the integration routine advances the states
before returning for any data logging and executing
the DYNAMIC code section. This interval is normally
considered the smallest observation interval. Its

value is defined in the statement

CINTERVAL CINT = 0.01

which establishes the name CINT for the variable and

presets the value to 0.01. This variable will be

changed later to ensure that the integration for the
spectral density is performed over a whole number of
cycles. The initial section is bracketed by the
INITIAL...END statements and consists of statements

initializing the frequency scan WNEXT to the minimum
frequency WMN and the phase and quadrature base-level
integrals PZ and QZ to zero.

The DYNAMIC section contains embedded within it the
DERIVATIVE section that specifies the state variables
and the code to calculate their derivatives. This
information is used by the integration routine to
advance the state step by step within the communica-
tion interval (CINT). The four INTEG statements in the
DERIVATIVE section specify the derivatives of the
four states XD, X, P and Q. In the rest of the
DYNAMIC section the frequency is advanced geometrical-
ly by the constant multiplier KW, although this is

preset to 1.0

The geometric advance means equally spaced points on
a logarithmic plot using LOGW, which is the logarithm
of frequency (base 10) shown, i.e.,

showing the natural use of standard FORTRAN subrou-
tines. All variables are considered to be real un-
less explicitly named as integer variables. The

power spectral density is obtained from the change in
the integrals P and Q over a communication interval,
which is made to consist of a whole number of cycles
(NCYCLE) of the reference frequency W. The ACSL
statement for this becomes

The base-level integrals PZ and QZ are then set to P
and Q so that the change over the next communication
interval can be obtained.

The next statement shows that the communication inter-
val is made a whole number of cycles when the frequency
is being swept, but with the option to leave the com-
munication interval unchanged. The function RSW (real
switch) has three arguments, and the result is the
second argument if the first is .TRUE. (logical
expressions), else the third argument. Thus the
statement

CINT = RSWCK.EQ.I.pJ, CINT, 2.j~PI~NCYCLE/MNEXT)

will not change the value of CINT if KW is equal to
1.0 (KW.EQ.1.~1 will have the value .TRUE.). If it is

not, then the third argument will be selected; it is
a time equal to NCYCLE cycles of frequency WNEXT.

The last statement of the program determines the

stopping condition. When the argument of the TERMT

operator becomes .TRUE., the simulation run will stop,
and control will revert back to the run-time drive
cards. The statement

TERMT(T.GE.TSTOP.OR.W.GT.WMX)

says to stop on time exceeding a stop time or on
frequency’s being swept up to the maximum value.
Blocks are terminated by the appropriate number of
END’S. It may be noted that more than one statement

may be placed on a line, but if they are, they must

--

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

76

Figure 2 - Run-time drive cards used to
exercise model

be separated by a dollar sign ($). Thus the line:

END$ ’ OF DYNAMIC SECTION ’

is really two statements and since the second is a
quoted string, it is treated as a comment.

The model definition cards are accepted by the ACSL
translator which produces a load module that reads
run-time drive cards via a number of FORTRAN inter-
mediate subroutines and an extensive library. These

run-time drive cards are shown in Figure 2. Figure 3

shows the program output, which includes the echoed
commands. Figure 3 would be a typical sample of the
output generated at an online terminal except that it
lacks a &dquo;prompt&dquo; character-usually a question mark
(?) - which would appear before every input command.
For CDC 6000 machines under the KRONOS operating sys-
tem, this prompt character is issued to remind the
on-line user that the program expects him to type
something.

The executive system makes provision for separating
high-volume output from low-volume output and
routing the former to a nearby line printer if one
is available.

These run-time commands in sequence are as follows:

SET TITLE = ·w^^^ VAN DER POL-S EQUATION ··^··^^’

The Hollerith string enclosed in the quotation marks
is moved into the 120-character title array. This

string will be used on subsequent plot and page
headings.

The command

PREPAR T, X, XD

tells the system to save the value of the argument
variables on a scratch file when the simulation is
run: The interpretation is &dquo;get ready to save.’
Any command statement that is completely quoted, for

example,
’-----EVALUATE RESPONSE OF SYSTEM’

is treated as a comment and ignored.

The SET command

SET XIC = 0.l $ START

changes the value of the initial condition on the

variable X. Remember it was preset to zero in the
model-definition section by a CONSTANT statement.
This SET takes the value 0.1 and places it into the
variable location XIC; it will be left there until

changed again later in the sequence.

More than one command can be placed on a card by
separating the individual statements by a dollar
sign ($). The START command actually runs the simu-
lation, passing control to the INITIAL region of the
model definition. The return to read the next com-
mand occurs only when the argument of the TERMT
operator becomes true; the exception is running on-
line when the interrupt or break-key will regain
control at the command level. The simulation at
this time has KW = 1.0; so the communication inter-
val CINT will remain 0.01, and it will run to a stop
time TSTOP of 50.0 seconds since the frequency W is
not changing and so will never reach WMX. In the

beginning of each communication interval, the values

of the variables listed on the PREPAR list have been
saved on a scratch file.

The next command

PRINT ’NCIPRIN’ = 5~P1, ’ALL’

asks to have the data recorded and listed in column

form.

=tr7~ ‘ °~a >.~~... ~ ~ . ~. R
ACSL RUN-TIME EXEC VERSION 1 LEVEL lA 75/fez4/19.

SET TITLE = ’·········· VAN DER POL-S EQUATION ~~’
PREPAR T, X, XD
’-----EVALUATE RESPONSE OF SYSTEM’
SET XIC = 0.l $ START
PRINT ’NCIPRN’ = 500~ ’ALL’

Figure 3 - Run-time output under the run-time
drive cards

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

77

I

Figure 4 - Line plot of limit-cycle growth.
Displacement (X) versus time (T)

The above command means to print all the variables
saved on the scratch file (those on the PREPAR list)
at the end of each set of 500 communication inter-
vals. Individual variables (instead of ALL) can be
named in this command and printed out every n com-
munication intervals. For this example the print
interval was made very large to reduce the amount of
data.

Next, two line plots are made: The first (Figure 4)
is a time plot in which the x-axis is time. If no

x-axis variable is specified, then the first variable
on the PREPAR list is used, in this case T.

PLOT ’XHI’ = TSTOP, X, ’LO’ _ -5.~, ’HI’ = 5.0

This command specifies that the x-axis maximum value
is to be the number contained in TSTOP (= 5.0 seconds),
the variable to be plotted is X, and scales are
specified by the numbers following the subcommands
’LO’ and ’HI.’ Any number of previously PREPARed
variables can be plotted and scales may or may not be
specified individually. The plot could have been
made by

PLOT X

in which case the system would have chosen its own
scale factors, usually rounded so that they are some
power of ten times 1, 2, 4, or 5.

A phase-plane plot (Figure 5) is obtained by changing
the x-axis variable and plotting velocity (XD) against
displacement (X):

Note that continuation of commands is by the ellipsis
(...) just as in the model definition section.

Next is the changeover so that the model can be used
to determine the spectrum. The list of variables to
be saved is changed by

PREPAR ’CLEAR’, W, LOGW, PSD

The subcommand ’CLEAR’ erases the previous list and
then adds the frequency W, LOGW, and power spectrum
PSD to the list to be recorded on the scratch file.

OUTPUT W, PSD, ’NCIOUT’ = 50

establishes a list of variables whose values are to
be displayed during the simulation run. The subcommand

1B

Figure 5 - Line plot of phase-plane trajectory.
Rate (XD) versus displacement (XD)

’NCIOUT’ (number of communication intervals per output)
reduces the print frequency to every 5(d intervals to
cut down the amount of paper used.

Next the initial conditions on displacement and
velocity are changed by

SET XIC = X, XDIC = XD

Since the previous run was for 50 seconds, the limit

cycle had become well established (see plot, Figure 4).
In order to avoid the initial transient, this statement

says to use the current value in X and XD and place
them in the variable XIC and XDIC, respectively. Now

any subsequent START will continue the limit cycle.

The command

SET TSTOP = I.OE99, KW = 1.01

effectively makes the time stop infinite and sets the
frequency multiplier so that it advances by 1% at

each interval. In this way the frequency W will be
swept between WNW and WMX.

Having set up all the conditions for the run, the
START command transfers control to the model definition
section. For each value of W, the communication inter-

val will be adjusted to be a whole number (NCYCLE) of

cycles, and the integration will result in one value
of the power spectrum. As the program runs, the values
of the variables mentioned on the PREPAR list are
recorded and saved on the scratch file. About 230
communication intervals are needed to sweep the fre-

quency through the range desired. The values listed
for W and PSD are recorded at the OUTPUT frequency,
every 50 intervals.

The system picks its own scale factors for PSD. Note

that the scales of the abscissae are specified by the
subcommands ’XLO’ and ’XHI.’ Where a symbol is used

(as in ’XHI’ = Wh1X), the number contained in the

variable is used (5.0 in this case). The simulation

run is completed by the command STOP, which terminates
the session.

At this point, any named variable or variables could

have been changed by the SET command, and the model
exercised again by START. The window used in the

1 spectral analysis could be extended by

I= ONI

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

78

Figure 6 - Line plot of power spectrum of oscillator
output (PSD) versus frequency (W)

SET NCYCLE = 100.0

which would have the effect of sharpening the spikes
in the PSD plot at the fundamental and third harmonic.
If the spectrum analyser is made too narrow, the

frequency sweep may be too coarse and the peaks may
be missed.

SET WMX = 10.0

would extend the frequency sweep to cover the fifth,
seventh, and ninth harmonics.

Other commands available to help exercise the model
at run-time include the following:

CONTIN - Continue from the last state value

RANGE - Determine maximum and minimum values
of a list of variables

SAVE - Save current state of all variables
and constants

RESTOR - Restore situation to conditions at a

prior SAVE

DISPLAY - List current value of named variables
or arrays

PROCED - Define a collection of commands

(procedures) under a user defined name

To explain the action of the last command, the

PROCEDure, consider making five runs, each time

changing the constant K5 followed by two plots and
two columnar prints. A single run would require these
cards:

Now each subsequent run would require duplication of
five unchanging cards. The PROCEDure feature collects
all these cards into a unit and gives them a name by:

Now the name GOPLOT becomes a new command that stands
for the command sequence within the PROCEDure block-
delimited by PROCED ... END. The command sequence
for the set of runs changing K5 is now:

with a significant saving of input volume. PROCEDures

may refer to other PROCEDures within themselves with
no nesting limitation.

CONCLUSIONS

ACSL has been implemented with the design engineer in
mind so that results can be quickly and efficiently
obtained. On-line debugging is recommended due to
the ease with which the program can be run for two or
three cycles, after which variable values can be
DISPLAYed at will. For full runs, on-line plotters
such as a ZETA plotter or Tektronix scope provide
pictures and help problem solving. With only a simple
terminal, the slower character plots are available,
but these suffer from resolution problems when the
page is only 72 characters wide.

ACSL has been designed to reduce the user’s need to
understand the operating system, but the degree of
success varies. Under KRONOS on CDC 6000 machines,
only two control cards are necessary in addition to
the standard job, account, and charge cards, i.e.,

Under SCOPE on the same computer, about twelve control
cards are needed. For the Univac EXEC 8 about seven
cards are needed.

REFERENCES

1 The SCi Continuous System Simulation Language (CSSL)
Simulation December 1967 pp. 281-303

2 GEAR, C.W.

Numerical Initial Value Problems in Ordinary
Differential Equations
Prentice-Hall Englewood Cliffs, New Jersey 1971

3 VAN DER POL,
On Relaxation Oscillators

Philosophical Magazine vol. 17 1926 p.986

4 ROGERS, A.E. CONNOLLY, T.W.

Analog Computation in Engineering Design
McGraw Hill New York 1960 pp. 146-149

 at PENNSYLVANIA STATE UNIV on March 6, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

