
COMMERC1AL-IN (O~~tIDEt~CE
SCIENCE RESEARCH COUNCIL
RUTHERFORD & APPLETON LABORATORIES

COMPUTING DIVISION

D 1ST RIB UTE D COM PUT I N G NOT E 343

PERQ
TECHNICAL NOTE 3
Notes on Programming the PERQ

-

issued by
R W Witty

28 January 1981

DISTRIBUTION: F R A Hopgood
R W Witty
D A Duee
W P Sharpe
C J Prosser
J Brown
I D Benest
A S Williams
RL Support/Comp Faei1s/PERQ/Genera1 file

1. PERQ PERFORMANCE

for i: = 1 to 1000 do
for j: = 1 to 1000 do <statement>;

<statement> repetition time Comment

Null 1 M 12 sees
_K: = K 1 M 15 sees 3 Q codes?
K: K + 1 1 M 15 sees 4 Q codes?
K: = K + K 1 M 15 sees "
K: K * K 1 M 22 sees "
K: = K div K 1 M 27 sees "

2. FLOPPY FORMATTING

Run program TEST FLOPPY
DD? NO
Bttedo? YES
Interface? 5
Seed ? 56345
Format ? YES
Test ? Ynn

(a random number)

- 1 -

...

3. PLUG LAYOUT AT BOTTOM OF BACK

:- r- ,.-
-

~

~ r----_,__ ,_ -
J -

-

Monitor

RS232

Keyboard

Pad

IMPORTANT: ALWAYS SWITCH OFF POWER BEFORE INSERTING OR REMOVING PLUG

Failure to do so can damage hardware!

4. INSTALLATION

A

1. Remove disk transit screw A.
2. Connect +5V, +12V plug B.
3. Connect 60 Hz power plug C.
4. Check all PC boards correctly seated.
5. Check all device plugs correctly connected.
6. Switch on. .
7. Leave for 2 minutes whilst disk runs up to speed.
8. Should boot automatically.
9. If not, hit boot button on back of keyboard.
10. Check LED display for 999 (ok) else error code.

ALWAYS SWITCH OFF POWER BEFORE INSERTING/REMOVING ANY PLUG

(SRC PERQ : Slot 119, Monitor SNI02, Frame (by power plug) SNIIO;
CPU serial no 124).

- 2 -

-
5. FONT LAYOUT

Font layout is given in Module Screen, together·with standard font
associated routines, cursor control and window management.

,-------------------.~

Height
in
pixels ~------------------,

Base in pixels

Base Standard Character is (13),
Width (9).

, r
Width in pixels

Individual character definitions are stored as

o It: Offset .•. 767

l'
Line

1 63

See RASTOP program

Character patterns are stored in this way so that the width of the overall
pattern area is the same (0 ••• 767) as the screen. This is for Rasterop
efficiency.

6. SEGMENTS AND POINTERS

Segment addresses are 16 bit segment numbers plus 16 bit offset within
(216 = 64K) segment. Hence a 32 bit virtual address is constructed. The
Pascal pointer is implemented as this 32 bit virtual address. Sometimes
one must use a pointer (normal Pascal usage) and sometimes one must use a
segment number, segment offset form (rasterop). The relationship between
them is:

t- 32 bit pointer or virtual address~

Segment
number (16 bits)

Offset within
se ment (16 bits)

- 3 -

. ..

•••••

In Pascal the two equivalent forms are handled by a variant record

Typptr = packed Record
case boolean of

true: (segm:offset:integer);
false: (actptr :somepoint~rtype);

end;

eg lines 19-22 in RASTOP program.

Line 145 of RASTOP shows the conventional pointer form in use (actptr)
whilst line 148 shows the segment, offset form of the same virtual address.

It is important to realise that the following are not equivalent

(2) true (segm,offset:integer);

rOffSe~1 segml

tsegm 3foffset>

(1) true (segm:integer,offset:integer);

Due to the internal workings of the computer form (1) will produce the
reverse ordering of the integers, and so cannot be used for virtual
address equivalencing.

7. COMMAND WINDOW

The 'system' window is window zero.

8. RASTEROP

Alignment

Rasterop source and dest~nations must be quad word aligned because rasterop
is 64 bit operation. Alignment is controlled by the extended NEW procedure.
If the 2nd parameter is 4 then the data with the quad word aligned. Scan
lines must be multiples of 4 words.

Efficiency

Rasterop is apparently more efficient if source and destination widths
are multiples of four words and the same length. When rasteroping to/from
screen it is apparently most efficient if both source and destination are
o ••• 767, ie 48 words wide. This is why font definitions are .lines of
48 words (0 ••• 767).

9. COMPILING LARGE PROGRAMS

Programs such as QUEEN require the magic words COM QUEEN/S:12.
The default is 15. This must be reduced for large programs.

- 4 -

-
10. KNOWN COMPILER BUGS

(1) for i:= 1 to 32767 will loop for ever.

(2) end. needs a carriage return after the ,., else "unexpected eof"
will occur.

(3) write(file,char) does not work if file is 'var' parameter.

(4) real numbers are not implemented. The compiler can handle them
(in the latest version) but the microcode is still in preparation.

(Miles Barel has NPL validation suite. I left Unix Pascal VU tests).

11. KNOWN OPERATING SYSTEM BUGS

(1) If one does too many edits then the editor runs out of memory and
crashes (eg replace all spaces in big file).

'- (2) DO NOT UNDER ANY CIRCUMSTANCES do a cntrl-C during the updating of
a file by ,the editor (U) else one will have to hand patch the disk
to recover.

(3) SSetCursor is suspect if X s;10.

12. Z80

Don Selza is responsible for the Z80 code. It is all in assembler.
There are 2 x 4K PROMs but the highest address used is #10466. Might be
feasible to put CRing code in Z80. Z80 physically Located in I/O board.

13. THE WSORT PROGRAM

The WSORT program is a modification of Bill Sharpe's DSORTI program which
runs on the Terak and is a simple animation of a SORT procedure. DSORTI
has been modified in two ways to make it run on the PERQ. Firstly, the
Terak intrinsic 'GotoXY' has been rewritten using the PERQ graphics
intrinsics, and secondly, the WSORT procedure has now been made to run in
two separate windows by illustrating the use of the rather primitive PERQ
window manager. Given below is a commentary on the various changes need
to make DSORTI into WSORT.

Line 2

The import command is used to import type definitions and procedures into
the user's program. It imports the module screeen (note that this is
spelt with 3 e's because of a silly typing error by Three Rivers) from
the file screen. Module screeen contains procedures for positioning the
cursor, reading the cursor, setting the type of the cursor for creating
and manipulating the windows and defining and changing fonts. See page 7
of the PERQ Operating System Programmer's Guide. Program WSORT uses
'set cursor' and 'create window', which are from module screeen.

- 5 -

..

•••••

Lines 11-15

Terak intrinsic 'move cursor routine' called 'gotoXY' is directly
equivalent to the PERQ procedure 'setcursor' and so in WSORT 'goto~Y'
is just expanded to be a call of 'setcursor'. The complex parameters to
'setcursor' just cope with the finer resolution of the PERQ and cope with
the fact that WSORT actually runs the DSORT program in two separate
windows, hence the REPT MOD 2 component which determines which window is
used.

Line 83

Due to a deficiency in the existing PERQ Pascal system, all programs must
include the statements 'reset(input)', 'rewrite(output), as their· first
statements.

Line 85

Character #14 is the form feed character. Using the standard I/O procedure
'write' to output the form feed character clears the screen. In the
context of the standard output channel, form feed clears the screen, end
of line character advances to the next line, and back space erases the
previous character (see module screeen).

Lines 90-94

The statements set up the extremities of the two windows in which the
WSORT program will run. They are in absolute screen coordinates because
the rather primitive screen manager only works in absolute screen coordinates.

Lines 96-103

This is a call to the screen manager which will create a new window which
has a rectangular boarder with a black stripe at the top in which appears
the title given on line 102. Its top left-hand corner will be WXl,WYl
and it will be WWD pixels wide and WXT pixels high. On line 97 the
integer 1 is the window number. Window numbers are in the range 0-15.
The WSORT program creates two slightly overlapping windows, one at line
96 and one at line 104.

Lines 113-126

DSORTI program is repeated 4 times, twice in each window, creating a new
window each time. After each window has been created the statement
'gotoXY (0,0) on line 124' causes the current ~ursor position to be
moved to the origin, ie the top left-hand corner of the window. However,
the screen manager is deficient in the sense that it does not automatically
change the coordinate system when a new window is created. This means
that anything that is written into a window must be absolute screen
coordinates, hence the reason why the 'gotoXY (0,0)' which is relative
to the window origin has to be transformed into absolute coordinates in
the procedure 'gotoXY' so that 'setcursor' will work. See lines 11-15.
Line 126, writing out the form feed character, will just clear the current
window.

- 6 -

••••

14. THE RASTOP PROGRAM

The Rastop program, is a tutorial exercise in using the Rasterop function
directly from Pascal. Rasterop is used to draw an arbitrary pattern and
move it, and is also used to access and draw the standard font.

Lines 3-6

Various PERQ operating system modules are imported.

Lines 9-13

A 2-dimensional array will be used to hold the pattern which is moved
around the screen by Rasterop. It is eOLBIT pixels wide x ROWBIT pixels
deep. Note how eOLBIT is defined as a multiple of 16 x eOLWORD to ensure
that it is word aligned. For greatest efficiency, COLBIT should be a
multiple of 64 to ensure quad-word alignment. PATLEN is a number of bits
needed to store a font. Note that PATLEN is 768 (the width of the screen
in pixels) divided by 16 to give the number of words in a scanline and
multiplied by 64 which is the maximum of lines in the standard font
definition (see the definition of fontptr in module screen.

Lines 19-22

FPTR is pointer type which shows how the 32 bit virtual address, which is
the Pascal 'pointer, is equivalent to the 16 bit segment number plus 16 bit
offset.

Lines 39-40

'Createsegment' is one of the Memory Management procedures from module
memory. Its function is to return to the user program the segment number
of a new segment which can be used for the user's data. The segment
number of the new segment is given by the first parameter SEGNO. The
three input parameters are integers which define the initial size of the
segment as a multiple of 256 words, the increment by which the segment may
be expanded in terms of 256 words to a maximum specified by the third
parameter. Line 39 creates a'new segment whose initial size is 2 x 256
words which may be incremented 512 words at a time up to a maximum of
5 x 256 words. The new segment created by 'create segment' can have data
put into it via pointers which are created by an extended version of the
new procedure described in the Pascal Extensions manual. It takes three
parameters in the extended version. The first is the segment number to
be operated on, the second parameter controls alignment, and the third
output parameter is the traditional parameter, ie it is the traditional
pointer parameter to be returned by the new procedure. The value of 4
ensures that the source pointer will point to an area which is quad-word
aligned which i$ essential for Rasterop operations.

Lines 43-46

This piece of code just sets up the pattern which will be moved about by
Rasterop. It defines a rectangular area which is comprised of a set of
vertical stripes. +

- 7 -

-
Lines 48-60

These statements set up the parameters for Rasterop. Rasterop is described
in the Pascal Extensions manual. The destination for all Rasterop
operations to come on the screen must use the operating syste~ segment
which contains the screen buffer. This is called SCREENSEG. Line 55
shows the use of a PERQ Pascal extension 'makepointer' 'which is a way of
creating an arbitrary pointer from a segment number, so SCREENSEG is the
segment number, 0 is the offset within the segment, and BLKPTR is the
type of the pointer which is returned. Line 54 sets up the number of
words in a scanline. This is 48 when dealing with the screen.

Lines 63-74

This Rasterop draws the pattern at the top of the screen and the delay at
line 77 causes it to stay there for a few seconds. Note the use on line 64
of a neumonic to describe the Rasterop functions. These are imported
from the module raster.

Lines 79-113

This piece of code causes the pattern to be moved from the top of the
screen to the middle of the screen. It is essentially achieved by deleting
the top line from the 50 which make up the pattern, and adding one to the
bottom, which together with the delay at line 83 caused the pattern to
move smoothly down the screen. Note how things are added and removed
from the screen using the same function 'exclusive or'.

Lines 116-151

This section'of the program is independent of the first section and shows
how to manipulate the font. In places it contains alternative ways of
doing things, hence certain. things are commented out.

Line 116

This uses a procedure from the screen module to return a pointer to the
current font. Note the use of the actptr discriminator to show that this
is the 32 bit virtual memory conventional Pascal pointer operation.

Line 117

This is a call to the PERQ extended new operator to create a new data
area of type patn (line 17) which is quad-word aligned (because the second
parameter is 4) and which is in the 'default user data' segment because the
segment number specified for the first parameter is O.

Line 118

This operation copies the current font character definitions into newly
created data area. Later on the code will show that the font can be
painted on to the screen from either the system,area of this newly created
user area. This is shown in line 148 and 149. Line 130 is incorrect and
should be disregarded. The Rasterop of line 119 paints the entire font
up on the screen as two lines of text below which appears a lot of random
dots. This is because the font actually needs less than 63 scanlines to
define it all. From this operation it is clear that it is useful to
define a font as being a set of rows which can be displayed across the screen
as well as being efficient for Rasterop.

- 8 -

•••••

Lines 134-151

This loop paints each individual character on the screen just below the _
entire font and shows how to access,individual characters. Line 136 is a
delay just to allow the character to be clearly seen. Lines 139 and 140
show how the height and width of the character are used in the Rasterop
operation. Line 141 is the absolute screen coordinate for the X position
of the character. Line 142 shows the absolute screen coordinate in the Y
direction for the character. Note how the base value is subtracted from
the Y coordinate. This ensures that the Y coordinate is the bottom left
position of the character. Note one uses base not height, because the
height could be variable for a character with a decending tail. Line 144
'destptr' is the screen (see line 55). Line 145 is the position of the
character's left-most pixel in the scan line. Line 146 computes which
row of scan lines the character starts. Note that this is computed by
looking up which line (first or second in a standard font) of the font
the character appears in, and then multiplying this by height or number
of pixels per line. Line 147 is the number of words in a scanline. This
is 48 for the standard font definitions, the same as the screen. Lines
148 and 149 are alternatives. Line 148 makes a pointer to the actual system
area containing the standard font. However, it uses the equivalence
mechanism to refer to the current font pointer the segment and offset
method rather than the Pascal pointer. The magic number octal 404 is
added to the offset value because 404 words is the number of words to
implement the index array which preceeds the patterns in core. If line
149 was used instead of 148 the source rectangle for Rasterop would be
the copy of the system font which was made by lines 117 and 118.

15. THE QUEENS PROGRAM

-This program is a modification of Janet Malone's animation of the QUEENS
program which runs on the Terak. The program essentially shows how
the Terak intrinsics 'gotoXY', 'drawline' and 'drawblock' can be
implemented by the PERQ intrinsics 'setcursor', 'drawline' and 'rasterop'.

Lines 10-11

These two lines serve to import some definitions of segment numbers using
the 'include' mechanism of the PERQ Pascal Compiler.

Line 28

The Terak program used blocks as a type which were passed to the Terak
screen handling procedures. PERQ Pascal is a little bit more rigorous
and requires PQinters to be passed which point to blocks which have been
quad-word aligned (see line 404).

Lines 29-33

This record type was defined in order to read in the photo file which
gives the bit pattern to draw QUEEN. I never quite got the queen to come
out-right on the PERQ and I never found the reason for this, so this
piece of code is suspect.

- 9 -

..

Lines 53-56

This shows how the Terak intrinsic 'gotoXY' for positioning the cursor
is mimicked by the 'setcursor' routine. The 'setcursor' routine does
not seem to work properly if the X coordinate is less than 10. I suspect
this is just a bug as X < 10 is around one character width. X and Yare
scaled and 'setcursor' works in absolute screen coordinates, not characters.

Lines 75-109

Terak intrinsic 'drawb10ck' is mimicked by Rasterop. Lines 89-96
essentially convert the 'drawblock' mode to its equivalent Rasterop
function. The actual conversion in these few lines is probably not
quite accurate as I could not remember all the exact values of 'drawb10ck'
and Janet had very kin~ly used integers rather than mnemonics in her
program. Line 95 shows the use of the PERQ Pascal extension to the case
statement. For details of the Rasterop function see above. However,
note line 104 making a pointer to the system screen buffer, and line 107
where the number of pixels in the scan line which, supplied by 'drawb10ck',
is converted to words per scan line. The Terak procedure 'drawb10ck'
does not take any cognisance of quad-word alignment and so the source
parameter must be manipulated outside the 'draw block' procedure to
ensure it is quad-word aligned. An alternative to this would be to copy
the contents of the source to some quad-word aligned buffer before doing
Rasterop, but this would seem to be a little slow.

Lines 114-118

The ~erak delay intrin~ic 'throttle' has been simulated by just wasting time.

Lines 122-145

The Terak intrinsic 'draw1ine' (converted to 'drawaline' here to avoid
a name clash) is quite simply re-implemented using the PERQ line mechanism.
This is defined in the line draw module.

Lines 187-198

The Terak routine 'fi1lchar' has no equivalent in PERQ Pascal and so lines
195-198 simulate its effects. These are a little tricky because the '-
version on the PERQ comes out as the inverse of the Terak, ie everything
that is black on the Terak is white on a PERQ. Note how lines 195-198
operate on 32 x 32 arrays to ensure word alignment.

Lines 208-211

These two commands clear the screen and set the Terak screen buffer to be
'screen'. In the PERQ version of the standard write command to clear the
screen and the system screen buffer is always used rather than the user
defined screen buffer, hence the use of 'makeptr (screenseg), in the
Rasterop operations.

- 10 -

•••••

Lines 229-235

This little bit of jiggery pokery reads in the Terak photo file which
defines the bitmap of a Queen. I never did quite get this queen to come
out properly on the PERQ screens. I am sure there is something wrong
with this bit of code. The queen always came out with what looked like
the left third of it missing which seemed to suggest some kind of word
alignment problem and I never solved it. I am sure it is some stupid
error somewhere.

Lines 400-404

Reset and rewrite must appear in every program. Line 401 clears the
screen, and line 404 ensures that the various buffers used in Rasterop
operations are quad-word aligned and appear in the user's default data
segment segment number O.

- 11 - wp

-
APPENDIX 1 -, f-_

NA.I'1E EXTENSION DEPARTMENT ROOM

Bare1, Miles 37 Software 302

Broadley, Bi11 40 Hardware 307

Cercone, Richard 27 Drafting 205B

Crenner, Jim 22 Test Office 107
Eckenrode, Chuck 23 Test Area 106

Fredkin, Edward 34 C. E. O. 209

Gasbarro, Jim 41 Hardware 306

Gilmour, Tom 27 Drafting 2058

Glass, Bill 38 Software 301

Grandey, Connie 21 Assembly Area 104

Hahn, Andy 20 Shipping/Receiving 103

Harrington, John 25 Accounting 204

He er-Hendrick, Jean 21 Assembly Office 105

Heller, Sandy 21 Assembly Area 104

Horner, Jake 21 Assembly Area 104

Horner, Michelle 20 Stockroom 103

Howell, Jeff 24 Manufacturing 204

Janets, Lynne 26 Bookkeeping 203

Letterle, Bruce 29 Personnel 201

Letterle, Karen 0 Receptionist

Manko, Jack- 30 Production 206

Marks, Diane 33 Secretary 208

Myers, Brad 37 Software 302

Newbury, Paul 35 President 210

P sr, Jeff 26 Software Support 203

Reddy, Pradeep 41 Hardware 306

Reid, Jill 20 Stockroom 103

Rose, John 40 Hardware 307

Rosen, Brian 31 Vice President 211

Scelza, Don 36 Software 303

Schultz, Dorothy 21 Assembly Area 104

Software Lab 39 308

Steele, .Guy

Stewart, Rege 23 Test Area 106

Strait, John 36 Software 303

Vavra, Terry 23 Test Area 106

Visnich, Donna 27 Drafting 205S

Williamson, Theresa ?l Assembly Area 104

00001: PROGRAM wsort(input,output);
00002:imports screeen from screen; fed}
00003:const max=11; firstrow=1; cx=35; cy=23; pfac=5; fed}
00004:var n,srccol,dstcol,srcpos,dstpos,
00005: win,
00006: i,j,count,searchcount,a,b,total,rept :integer;
00007: col :array[1••3]of integer;
00008: list :array[1 ••max] of integer;
00009: wx1,wy1,wwd,wht :array[1••2] of integer;
00010: change : boolean;
00011 :procedure gotoxy(X, Y:integer); fed}
00012:begin
00013:
00014:
00015:end;
00016:
00017:
00018:procedure writetotal;
00019:begin
00020:
00021 :
00022:
00023:end;
00024:
00025:procedure delay(m integer);
00026:var i,j integer;
00027:begin
00028:
00029:end;
00030:
00031 :
00032:procedure flash(column, row integer)
00033:var x,y integer;
00034:
00035:begin
00036:
00037:
00038:
00039:
00040:end;
00041 :
00042:procedure shift(n,srccol,srcpos,dstcol,dstpos integer);
00043:var i,m,x1,x2,y1,y2 :integer;
00044:begin
00045:
00046:
00047:
00048:
00049:
00050:
00051 :
00052:
00053:
00054:
00055:
00056:
00057:
00058:
00059:
00060:
00061 :
00062:
00063:
"H/,\",,/: 11_

-
APPENDIX 2

ssetcursor(X*10+Wx1[(rept mod 2)+1]+30,
Y*13+Wy1[(rept mod 2)+1]+50);

total:=total+ 1;
gotoxy(cx+24,cy);
write(total:2)

for i:=1 to m do j: =0

{draw attention to list item}

x:=col[column]-4; y:=firstrow+(row-1)*2;
gotoxy(x,y); write(chr(7),'»>'); gotoxy(x,y);
delay(2500*pfac);
writee , ')

m:=20; y1: =firstrow+(srcpos-1)*2;
y2:=firstrow+(dstpos-1)*2;
if dstcol>=srccol then
begin

x1:=col[srccol];
x2:=col[dstcol];
for i:=1 to n do
begin

gotoxy'(x1,y1); write(' ');
gotoxy(x2,y2); write('*');
delay(1*pfac);
x1:=x1+1; x2:=x2+1

end
end
else
begin

x1:=col[srccol]+n-1;
x2:=col[dstcol]+n-1;
for i:=1 to n do.. _ -.:._ . ..

uuuo'+:
00065:
00066:
00067:
00068:
00069:
00070:
0,0071:
00072:
00073:end;
00074:
00075:funetion next(n : integer) : integer;
00076: {returns next nonnull position in list
00077:begin
00078:
00079:
00080:end;
00081':
00082:begin
00083:
00084:
00085:
00086:
00087:
)088:
0089:

00090:
00091 :
00092:
00093:
00094:
00095:
00096:
00097:
00098:
00099:
00100:
00101 :
00102:
00103:
00104:
00105:
-"'106:
.;)107:

00108:
00109:
00110:
00111:
00112:
00113:
00114:
00115:
00116:
00117:
00118:
00119:
00120:
00121 :
00122:
00123:
00124:
00125:
00126:
00127:
00128:
00129:
, •• "", •• .., 1"\ _

-oeg~l1
gotoxy(x1,y1); write(' ');
gotoxy(x2,y2); write('*');
x1:=x1-1; x2:=x2-1;
delay(1*pfae)

end;
gotoxy(x2,y2)

end

AFTER n}

next:=n.1 ;
if n.1 <=max then if 1ist[n.1J=0 then next:=next(n.1);

reset(input); rewrite(output); led}

write(ehr(U14));

wx 1[1 J: =0;
wwd[1]:=700;

wy 1(1]:=0;
wht[1]:=500;

wx 1[2J:=50;
wwd[2]: =700;

wy 1[2]:=320;
wht[2]: =500;

CreateWindow(
1,
wx1[1],
wy1[1],
wwd[1],
wht[1],
'win one'
) ;

CreateWindow(
2,
wx1 [2],
wy1[2] ,
wwd[2] ,
wht[2],
'win two'
);

for rept := 1 to 4 do
begin
{ChangeWindow«rept mod
win:= (rept mod 2) • 1;
CreateWindow(win,

wx1 [win],
wyl[win] ,
wwd[win],
wht[win] ,
'window');

2).1);}

gotoxy(O, 0);

write (ehr(111 4));
eol[1]:=10;
eo1[2J: =30;
eol[3J:=50;

fed}

•• .!_ .•.•r1' .~..,e ...

UUljU:

00131:
00132:
00133:
00134:
00135:
00136:
00137:
00138:
00139:
00140:
00141 :
00142:
00143:
00144:
00145:
00146:
00147:
00148:
00149:
00150:
00151:
00152:
00153:
00154:
00155:
00156:
00157:
00158:
00159:
00160:
00161:
00162:
{}0163:
,00164:
00165:
Q0166:
00167:
00168:
00169:
00170:
00171:
00172:
00173:
00174:
00175:
00176:
00177:
00178:
00179:
00180:
00181:
00182 :
00183:

OK,

J.J.::H~lI J ; =J,
list[2] :=4;
list[3] :=2;
1ist [4] : =5;
list [5] :=1;
list[6] :=4;
1ist[7] :=8;
list[8] :=6;
list[9] :=9;
list[10] :=10;
list[11] :=7;
for i:=1 to max do

shift(list[i],1,i,1,i);
total:=O; gotoxy(cx,cy); write(INumber of comparisons = I);
count:=max {must deal with all one at a time};
repeat
begin

{find shortest}
searchcount:=count-1 ;
a:= next(O) {first non null list entry};
b: =a;
shift(list[a],1,a,2,a) {pick out};
while searchcount<>O do
begin

delay(1000*pfac);
b:=next(b) {next non null entry};
shift(list[b],1,b,2,b) {pick out};
delay(1000*pfac);
change:=list[b] < list[a];
if change then

begin shiftClistra],2,a,1,a) {putback a};
a: =b

end ,
else- shift(list[b],2,b, 1,b){putback b}

searchcount:=searchcount-1;
writetotal

end;
delay(1000*pfac);

{move shortest to end of sorted list}
flash(2,a);
shift(list[a],2,a,3,max-count+l);
list[a]:=O {delete from list};
ccunt t ecount-ct;
delay(2500*pfac)

end;
until count=O;

end {of outer window changing loop}

end.

.,

-
00001:program rastop(input,output);
00002:
00003:importsmemory from memory;
00004:imports linedraw from linedraw;
00005:imports raster from raster;
00006:imports screeen from screen;
00007:
00008:
00009:const
00010: rowbit=50;
00011: colwrd=20;
00012: colbit=colwrd*16;
00013: patlen=(768 div 16)*64;
00014:
00015:type blk = packed array[1••rowbit,1••colbit] of boolean;
00016: blkptr = blk;

.00017: patn = array[O••patlen] of integer;
00018: patnptr = AApatn;
00019: fptr = packed record case boolean of
00020: true:(segm,offs:integer);
00021: false:(actptr:fontptr);

022: end;
023: var

00024: segno,
00025: i,j,
00026: func,wid,hgt,.
00027: destx,desty,destl,
00028: sorcx,sorcy,sorcl :integer;
00029: destptr,sorcptr :blkptr;

.•.00030: cfptr : fptr;
00031: {cfptr: fontptr;}
00032: patptr: patnptr;
00033:
00034:begin
00035: reset(input); rewr1te(output);
00036:
00037: write(chr(#14));
00038:
00039: CreateSegment(segno,2,2,5);
A~040: new(segno,4,sorcptr);

041:
00042:
00043: for 1:=1 to rowbit do
00044: for j:=1 to colbit do
00045: if odd(j) then sorcptrAA[i,j]:=true
00046: else sorcptrAA[i,j]:=false;
00047:
00048: func:=0;
00049: wid :=colbit;
00050: hgt :=rowbit;
00051:
00052: destx:=100;
00053: desty:=1;
00054: destl:=768 div 16;
00055: destptr:=makeptr(screenseg,O,blkptr);
00056:
00057: sorcx:=O;
00058: sorcy:=O;
00059: sorcl:=colwrd;
00060: {sorcptr}
00061:
00062:
00063:, RASTEROP
00064: (RXor,

00065:
00066:
00067:
00068:
00069:
00070:
00071 :
00072:
00073:
00074:
00075:
00076:
00077:
00078:
00079:
00080:
00081:
00082:
00083:
00084:
00085:
00086:
00087:
00088:
00089:
00090:
00091:
00092:
00093:
00094:
00095:
00096:
00097:
00098:
00099:
00100:
00101:
00102:
00103:
00104:
00105:
00106:
00107:
00108:
00109:
00110:
00111:
00112:
00113:
00114:
00115:
00116:
00117:
00118:
00119:
00120:
00121:
00122:
00123:
00124:
00125:
00126:
00127:
00128.:
00129:
00130:

-
wid,
hgt,
.destx,
desty,
destl,
destptr,
sorex,
sorey,
sorel,
soreptr) ;

for i:=1 to 30000 do j:=j;

for desty:=1 to 500 do
begin

for 1:=1 to 500 do j:=j;

RASTEROP
(RXor,
wid,
1,
destx,
desty,
destl,
destptr,
sorex,
sorey,
sorel,
soreptr) ;

RASTEROP
(RXor,
wid,
1,
destx,
desty+rowbi t,
destl,
destptr,
sorex,
sorey,
sorel,
soreptr) ;

end;

efptr.aetptr::GetFont;
new(O, 4,patptr);
for 1:=0 to patlen do patptrAAii]:=efptr.aetptrAA.pat[1];
RASTEROP

(RRpl,
768,
63,
0,
desty,
destl,
destptr,
0,
0,
48,
{makeptr(O,efptr.aetptrAA.pat,LinePtr)}

00131:
00132:
00133:
00134:
00135:
00136:
00137:
00138:
00139:
00140:
00141:
00142:
00143:
00144:
00145:
00146:
00147:
00148:
00149:
00150:
00151:
00152:
00153:

154:end.

OK,

-
patptr
) ;

for i:=O to #177 do
begin
for j:=1 to 30000 do destx:=destx;
RASTEROP

(RRpl,
cfptr.actptrAA.index[i].width,
cfptr.actptrAA.height,
350,
(desty+100)-cfptr.actptrAA.base,
destl t

destptr,
cfptr.actptrAA.index[i].offset,
cfptr.actptrAA.index[i].line*cfptr.actptrAA.height,
48,
makeptr(cfptr.segm,cfptr.offs+#404,fontptr)
{patptr}
) ;

end;

•

...

00001: PROGRAM QUEENS;
00002:
00003:
00004:imports linedraw from linedraw;
00005:imports screeen from screen;
00006:
00007:
00008:
00009:
00010:const
00011:{$I Segnumbers}
00012:
00013:
00014:TYPE TSCREEN = RECORD
00015: CASE INTEGER OF
00016: 1 (BITS
00017:
00018:
00019:
00020:
00021 :
00022:
00023:
00024:
00025:
00026:
00027:
00028:
00029:
00030:
00031 :
00032:
00033:
00034:
00035:
00036:VAR
00037:
00038:
00039:
00040:
00041:
00042:
00043:
00044:'
00045:
00046:
00047:
00048:
00049:
00050:
00051:
00052:
00053:procedure GOTOXY(x,y : integer);
00054: begin'
00055: ssetcursor(x*10+10,y*13+500);
00056: end;
00057:
00058:
00059:procedure FILLCHAR({blk:block.chrs;}
00060: a,b:integer);
00061:begin
00062:end;

" 00063:

-

PACKED ARRAY[0 ••239] OF
PACKED ARRAY[0 ••319] OF BOOLEAN);

2 : (CHRS : PACKED ARRAY[0 ••9599] OF CHAR)
END;
BLOCK = 'RECORD

CASE INTEGER OF
1 : (BITS

END;

blkptr
queenin

DONE,SAFE
I,N

A
B
C

SOL
SCREEN
BLACK,

CHECK,QUEEN
ANS

quin

PACKED ARRAY[0 ••63] OF
PACKED ARRAY[0 ••63] OF BOOLEAN);

2 : (CHRS PACKED ARRAY[0 ••512] OF CHAR)

="bl.ock;
= record

case integer of
1:(bits:packed.array[0 ••31,0••31] of boolean)
2:(chrs:packed array[O ••127J of char)

end; .

BOOLEAN;
INTEGER';
ARRAY[0 ••7J OF BOOLEAN; { rows}
ARRAY[0 ••14] OF BOOLEAN; { / diagonals}

: ARRAY[-7 ••7J OF BOOLEAN; { \ diagonals}
ARRAY[O ••7J OF 0••7; { row posn. for each column}
TSCREEN; .

blkptr;
CHAR;
queenin;

.'

00065:proeedure
00066:begin
00067:end;
00068:
00069:
00070:
00071 :
00072:
00073:
00074:
00075:
00076:
00077:
00078:
00079:
00080:
00081 :
00082:
00083:
00084:
00085:
"'''1086:
",087:

00088:
00089:
00090:
00091:
00092:
00093:
00094:
00095:
00096:
00097:
00098:
00099:
00100:
00101:
00102:
00103:
00104:

105:
106:

00107:
00108:
00109:
00110:
00111:
00112:
00113:
00114:
00115:
00116:
00117:
00118:
00119:
00120:
00121 :
00122:
00123:
00124:
00125:
00126:
00127:
00128:
00129:

00064:

-
UNITWRITE(a:integer; var sern:tsereen; b:~nteger);

PROCEDURE DRAWBLOCK(VAR SOURCE
SRCROW,

SRCX,
SRCY :

VAR DEST:

blkptr;

INTEGER;
TSCREEN;

DSTROW,
DSTX,
DSTY,
CNTX,
CNTY,
MODE: INTEGER) ;

var
fune:integer;
begin
case mode of

0:fune: =0;
1:fune: =1;
2:fune:=6;
3:fune: =4;

otherwise:fune:=mode;
end;

RASTEROP(fune,
entx,
enty,
dstx,
dsty,
48,
makeptr(sereenseg,O,Lineptr),
srex,
srey,
(srcrow div
source) ;

16),

end;

PROCEDURE THROTTLE(TICKS : INTEGER);
var i,j:integer;
begin

for i:=1 to ticks*900 do j:=O
end;

PROCEDURE DRAWALINE(VAR RANGE : INTEGER;
VAR SCREEN: TSCREEN;

ROWWIDTH,
XSTART,
YSTART,
DELTAX,
DELTAY,

PENSTATE : INTEGER); ,

001~0:
00131:
00132:
00133:
00134:
00135:
00136:
00137:
00138:
00139:
00140:
00141:
00142:
00143:
00144:
00145:
00146:
00147:
00148:
00149:
00150:
00151: PROCEDURE INTRO;
00152:BEGIN
00153: WRITELN(
00154: '
00155:
00156: '
00157: WRITELN(
00158:' Given an N x N checkered board, the aim is to place N queens on the');
00159: WRITELN (
00160: 'board so that no queen may take another (Le. none are on the same');
00161: WRITELN (~
00162: 'diagonal, horizontal or vertical 1ine).');
00163: WRITELN(
00164: 'This may be solved recursively - for each column of the board, the');
00165: WRITELN(
00166: 'queen is moved down each square until a position is found where she is');
00167: WRITELN(
00168: 'safe. If there is no possible square in a column then we return to the');
00169: WRITELN(
00170: 'previous column and choose a new square - this is known as f);
00171: WRITELN(

-
var Ityp:Linesty1e;
begin

case penstate of
1:1typ:=Draw1ine;
2:1typ:=EraseLine;

otherwise:
1typ:=XorLine;

end;
Line(ltyp,

xstart,
ystart,
xstart+deltax ;-
ystart+de1tay,
makeptr(screenseg,O,LinePtr));

end;

THE QUEENS PROBLEM');
WRITELN(

******************');

00172: "'backtracking".');
00173: WRITELN(
00174:' When the last queen is placed safely on the last column then this is');
00175: WRITELN (
00176: 'a possible solution, but if all combinations of squares have been tried');
00177: WRITELN(
00178: 'and failed then there is no solution.')
00179:END; { intro }
00180:PROCEDURE INITIALISE;
00181:TYFE BLOK = FILE OF queenin;
00182:VAR DUMMY,
00183: I,j,X,Y: INTEGER;
00184: CROWN: BLOK;
00185: PROCEDURE SETCHECK; { creates a bl.ock of 24 x 24 checkered dots}
00186: BEGIN { and sets up blank square}
00187: {
00188: FOR I := 0 TO 11 DO
00189: BEGIN
00190: FILLCHAR(CHECK.CHRS[I*8],4,85); sets'
00191: FILLCHAR(CHECK.CHRS[I*8+4],4,170) sets'
00192: END;
00193: FILLCHAR(BLACK,128,0)
00194: }
00195: for i:=0 to 31 do for j: =0 to 31 do

-
., .

Oa196: if odd(j) then checkAA.bits[i,j]:=odd(i)
00197: else checkAA.bits[i,j]:=notodd(i);
00198: for i:=O to 31 do for j:= 0 to 31 do blackAA.bits[i,j]:=false;
00199: END; {SETCHECK}
00200:BEGIN { initialise}
00201: DONE := FALSE;
00202: {initialisearrays}
00203: FOR I := 0 TO N-1 DO SOLEI] := 0;
00204: FOR I := 0 TO N-1 DO A[I] := TRUE;
00205: FOR I := 0 TO 2*(N-1)DO B[I] := TRUE;
00206: FOR I := -(N-1) TO N-1 DO CEIl := TRUE;
00207: {drawboard}
00208: {
00209: FILLCHAR(SCREEN,9600,0);
00210: UNITWRITE(3,SCREEN,63);
00211: }
00212: SETCHECK;
00213: FOR Y := 0 TO N-1 DO
00214: BEGIN
00215: IF ODD(Y) THEN X := 1
00216: ELSE X := 0;
00217: REPEAT
00218: DRAWBLOCK(CHECK,32,O,O,SCREEN,320,24*X+125,24*Y+36,24,24,0);
0021 X := X+.2
0022 . UNTIL X > N-1
00221: END;
00222: FOR I := 0 TO 2 DO
00223: BEGIN
00224: DRAWALINE(DUMMY,SCREEN,20,122,33+I,24*N+5,O,1);
00225: DRAWALINE(DUMMY,SCREEN,20,122,36+24*N+I,24*N+5,O,1);
00226: DRAWALINE(DUMMY,SCREEN,20,122+I,36,O,24*N,1);
00227: DRAWALINE(DUMMY,SCREEN,20, 125+24*N+I,36,0,24*N,.1)
00228: END;
00229: { get queen character }
00230: RESET(CROWN,'rob.QU.FOTO');
00231: quin := CROWNAA;
00232: CLOSE(CROWN);
00233: for i:=O to 31 do
00234: for j:=O to 31 do
00235: queenAA.bits[i,j]:=quin.bits[i,j];
00236:
00237
0023
00239:
00240:
00241:
)0242:
J0243:
J0244:
)0245:
)0246:
)0247:
)0248:
)0249:
)0250:
)0251:
)0252:
)0253:
)0254:
)0255:
)0256: END; { initialise }
)0257:PROCEDURETRYCOL(J:INTEGER);
)0258:VAR I,K,X,Y:INTEGER;
)0259: PROCEDURELINE; { draws lines showing'ifqueen can be taken
10260: if placed on this square }
10261: VAR DUMMY.DX.DY,X.Y: INTEGER;

{ draw N queens above board }
FOR I := 0 TO N-1 DO

DRAWBLOCK(QUEEN,32,0,0,SCREEN,320,I*24+125,9,24,24,O);
THROTTLE(25);

{ write explanation}
GOTOXY(0,14);
W,RITELN('LINES- SHOW WHICH QUEEN');
WRITELN(' ':8,'WOULDTAKE THE NEW');
WRlTELN(' ':8,'QUEENIF HER SQUARE');
WRITELN(' ':8,'ISNOT SAFE.');
WRITELN('**BACKTRACK**- THERE IS');
WRITELN(' ':8,'NO SAFE SQUARE FOR');
WRITELN(' ':8,'THIS COLUMN, SO WE');
WRITELN(' ':8,'MOVETHE QUEEN IN');
WRITELN(' ':8,'THEPREVIOUSCOLUMN.');

.•

00262:
00263:
00264:
00265:
00266:
00267:
00268:
00269:
00270:
00271:
00272:
00273:
00274:
00275:
00276:
00277:
00278:
00279:
00280:
00281:
00282:
00283:
00284:
00285:
00286:
00287:
00288:
00289:
00290:
00291:
00292:
00293:
00294:
00295:
00296:
00297:
00298:
00299:
00300:
00301:
00302:
00303:'
00304:
00305:
00306:
00307:
00308:
00309:
00310:
00311:
00312:
00313:
00314:
00315:
00316:
00317:
00318:
00319:
00320:
00321:
00322:
00323:
00324:
00325:
00326:
00327:

-
. .

BEGIN { line }
IF NOT(A[I]) { rows}
THEN BEGIN

DRAWALINE(DUMMY,SCREEN,20,125,I*24+48,24*N,0,3);
THROTTLE (25);
DRAWALINE(DUMMY,SCREEN,20,125,I*24+48,24*N,O,3)

END;
IF NOT(B[I+J]) { / diagonals }
THEN BEGIN

DX := (N - (ABS(I+J-N+1))*24;
DY := -DX;
IF I+J < N
THEN BEGIN

X := 125;
Y := (I+J+1)*24+36

END
ELSE BEGIN

X := (I+J-N+1)*24+125;
. Y := N*24+36

END;
DRAWALINE(DUMMY,SCREEN,20,X,Y,DX,DY,3);
THROTTLE (25);
DRAWALINE(DUMMY,SCREEN,20,X,Y,DX,DY,3)

END;
IF NOT(C[I-J]) { \ diagonals }
THEN BEGIN

DX := (N - (ABS(I-J»)*24;
DY := DX;
IF I-J < 0
THEN BEGIN

X := (J-I)*24+125;
Y : = 36

END
ELSE BEGIN

X := 125;
Y := (I-J)*24+36

END;
DRAWALINE(DUMMY,SCREEN,20,X,Y,DX,DY,3);
THROTTLE(25);
DRAWALINE(DUMMY,SCREEN,20,X,Y,DX,DY,3)

END
END; { line }
PROCEDURE WIPEOUT(J,I:INTEGER); { removes queen
BEGIN

IF

•

character from square }

ODD(I+J) THEN { black square}
DRAWBLOCK(BLACK,32,0,0,SCREEN,320,24*J+125,24*I+36,24,24,0)

ELSE { grey square }
DRAWBLOCK(CHECK,32,O,O,SCREEN,320,24*J+125,24*I+36,24,24,0)

END; { wipeout }
PROCEDURE SETQUEEN; { sets row and diagonals as covered}
BEGIN .

A[I]:=FALSE; B[I+J]:=FALSE; C[I-J]:=FALSE
END; { setqueen }
PROCEDURE REMOVEQUEEN; { releases row and diagonals, signals

backtracking has occurred }
VAR K : INTEGER;
BEGIN

A[I]:=TRUE; B[I+J]:=TRUE; C[I-J]:=TRUE;
GOTOXY(0,J+2);
WRITE ('**BACKTRACK**,);
FOR K := 1 TO 12 DO
BEGIN

DRAWBLOCK(QUEEN,32,O,O,SCREEN,320,24*J+125,24*I+36,24,24,2);
THROTTLE(6)

END;
GOTOXY(0,J+2); ...

00328:
00329:
00330:
00331:
00332:
00333:
00334:
00335:
00336:
00337:
00338:
00339:
00340:
00341:
00342:
00343:
00344:
00345:
00346: END; { lastcollmln}
00347: PROCEDURE MOVEDOWN; { moves queen down one'square of board }
00348: BEGIN
00349: WIPEOUT(J,I);
00350: DRAWBLOCK(QUEEN,32,0,0,SCREEN,320,24*J+125,24*I+48,24,24,3);

151: THROTTLE(6);
352: WIPEOUT (J, I);

00353: WIPEOUT(J,I+1);
00354: DRAWBLOCK(QUEEN,32,0,0,SCREEN,320,24*J+125,24*(I+1)+36,24,24,3);
00355: THROTTLE(6)
00356: END; { movedown }
00357:BEGIN { trycol }
00358: { remove queen from side of board and place on first square }
00359: THROTTLE(25);
00360: DRAWBLOCK(QUEEN,32,0,0,SCREEN,320,J*24+125,9,24,24,2);
00361: DRAWBLOCK(QUEEN,32,0,0,SCREEN,320,24*J+125,36,24,24,3);
00362: { write next line of solution }
00363: GOTOXY(O,J+1);
00364: WRIT~LN(,(,,J+1:1,")');
00365: I:= 0;
00366: REPEAT
00367: { fill in row of solution }
00368: GOTOXY(3,J+1);
0n~69: WRITE(I+1:1);
'--70: SAFE:= A[I] AND B[I+J] AND C[I-J];
00371: IF SAFE
00372: THEN BEGIN
00373: SETQUEEN;
00374: SOL[J]:=I;
D0375: IF J < N-1
00376: THEN BEGIN
(00377: TRYCOL(J+1);
00378: IF NOT DONE THEN REMOVEQUEEN
00379: END
''00380: ELSE LASTCOLUMN
00381: END
00382:' ELSE LINE;
00383: { move queen down 1 square, or replace above board }
'00384: IF (I < N-1) AND NOT DONE
00385: THEN MOVEDOWN
00386: ELSE IF (I = N-1) AND NOT DONE
~0387: THEN BEGIN
'00388: WIPEOUT(J,I);
'00389: DRAWBLOCK(QUEEN,32,0,O,SCREEN,320,J*24+125,
a0390: 9,24,24,0);
00391: { clear solutionline }
00392: GOTOXY(0,J+1);
:00393: WRITE(CHR(29));

-
{WRITE(CHR(29»}
for k:=1 to 13 do write(' ');

END; { removequeen}
PROCEDURELASTCOLUMN;{ a solutionhas been found. If another

solution is not required then the flag DONE is set }
BEGIN

GOTOXY(0,9);
WRITELN('WOULDYOU LIKE ANOTHER');
WRITELN('SOLUTIONFOR THIS BOARD? (YIN)');
READLN(ANS);
GOTOXY(0,9);
WRITELN(CHR(29»;
WRITELN(CHR(29»;
WRITELN(CHR(29»;
IF ANS <> 'Y'THEN DONE := TRUE

ELSE { remove queen }
A[I]:=TRUE;B[I+J]:=TRUE;C[I-J]:=TRUE

0039lf:
00395: END;
00396: I := I + 1
00397: UNTIL (I=N) OR DONE
00398:END; { trycol }
00399:BEGIN { main }
00400: resetCinput); rewrite(output);
00401: write(chr(#14»;
00402: gotoxy(O,O);
00403:
00404:
00405:
00406:
00407:
00408:
00409:
00410:
00411:
00412:
00413:
00414:
00415:
00416:
00417:
00418:
00419:
00420: END;
00421: GOTOXY(O,30);
00422: WRITELN('DO YOU WANT TO CONTINUE?
00423: READLN(ANS)
00424: UNTIL ANS <> 'Y'
00425:END. { main }

OK,

-
THROTTLE(25)

new(O,4,queen); new(O,4,check); new(O,4,black);

INTRO;
REPEAT

WRITELN('PLEASE TYPE IN N, THE SIZE');
WRITELN('OF THE BOARD (BETWEEN 1 AND 8)');
READLN(N);
IF (N<1) OR (N)8)
THEN WRITELN('BOARD SIZE SHOULD BE BElWEEN 1 AND 10')
ELSE BEGIN

{PAGE(OUTPUT);}write(chr(#14»;
INITIALISE;
GOTOXY(0,0);
WRITELN('SOLUTIONFOR' ,N,' BY ',N,' BOARD: I);
TRYCOL(0);
IF NOT DONE THEN WRITELN('NO SOLUTION')

(Y/N)I);

, ..

