COMMERCIAL-IN CONFIDENCE

SCIENCE RESEARCH COUNCIL RUTHERFORD & APPLETON LABORATORIES

COMPUTING DIVISION

DISTRIBUTED COMPUTING NOTE 386

PERQ

TECHNICAL NOTE 7 PERQ-PERQ Diagnostic Link issued by R W Witty

31 March 1981

Distribution:	F R A Hopgood	
	R W Witty	
	D A Duce	
	W P Sharpe	
	C J Prosser	
	J Brown	
	I D Benest	
	A S Williams	
	R Vinnicombe,	ICL
	E Fredkin,	3RCC

The following documentation was left by Ed Fredkin during his visit 23-25 March 1981. It refers to the diagnostic system which uses one PERQ to debug another by linking their two system buses.

TEST PROCEDURE

PERQ DIAGNOSTICS

Set up procedure using host PERQ with link. Power both machines down and install link boards into I/O option 1. slots. Α. If no I/O board is present in unit under test, jumper must be installed from pin 178 to ground on backplane. Connect links via 2-40 connector cables with P2 connected to 2. P2 and P3 connected to P3. Top to bottom, bottom to top (OUT TO IN, IN TO OUT) Apply power to both systems. 3. (occarsionally remove P2) 4. Boot host system. 5. Insert floppy disk with ODTPRQ.SEG file on it. NOTE: To check if ODTPRQ.SEG file is on floppy, do the following: Insert floppy. Α. Type : PLX (PLX Header should appear) Β. C. Type : DIR 6. After floppy with ODTPRQ.SEG is inserted, do the following at the host system: (PLX Α. Type : PLX Header should appear) Type : Get ODTPRQ.SEG (Upon completion of transfer PLX Β. should appear) С. Type : Q D. Type : Link ODTPRQ ODTPRQ.RUN written (should appear) ٠ E. Type : ODTPRQ Host system is now ready to link to system under test. -7. Push the boot switch on the unit under test, then type: X on the host keyboard. 5 Cleans Screen NOTE: Host should respond with bootstrap successful, interrupts enable loading SYSB.BIN. If host responds with "no done bit on receive" or other such message:

- A. Recheck link connections.
- B. Recheck jumper if no I/O board.
- C. You may have a bad CPU.
- D. You may have a bad memory.
- 8. You are now ready to load diagnostic programs. Type: L Host will then prompt you for the filename you wish to load.
- VSINS PLX GET BIN FILES DELOW DIAGNOSTIC PROGRAMS
- $\begin{array}{c|c} L & \underline{VFY}_{2} & \underline{Set \ R0=3} & (Monitor \ Displays \ Pattern) & \underline{R0/32} \\ \underline{40016} \ program \ runs \ continuously \ (hit \ boot \ switch \ on \ unit \ under \ test \ and \ type: \ \underline{X} \ on \ host \ system \ to \ load \ another \ test). \end{array}$

L SHIFT Type: S to clear monitor. — Bits left on screen indicates memory problem Type: G monitor goes blank - this test runs for approximately 2 minutes and should return with breakpoint 110 or 100 if successful. If failure occurs, a pattern appears on the monitor showing

- result of failing rotate or_shift. To determine failing bit load R3 with pattern to test and type 100G.
- L REGT Type: G Program should return with breakpoint 100 if successful.
- $\underbrace{NEXTOP}_{Type: \underline{G}}$ Load RØ = Ø Program should return with breakpoint 100, if successful.

RASTER OP: L - RAT (Load) O - RO (Overlay) Set R200 = 3 Type: G Runs for about 2 hours. Pattern should appear on screen top. Diagonal line should be continuously expanding from top left to middle of screen. To Terminete Root test machine - type X

Program should respond with breakpoint 100 if successful.

MXXX/ opens memory Loca

M - Lower

You must hit the boot switch on the unit under test NOTE: and type X on the host system to load the next test. Ł LOW& Type: 6000 G Program should respond with breakpoint 100 if successful. NOTE: You must hit the boot switch on the unit under test and type X on the host system to load the next test. L JUMP € Type: 6000 G Program should respond with breakpoint 100 if successful. DISPATCH Type: G Program should respond with breakpoint 100 if successful. STACK Type: G Program should respond with breakpoint 100 if successful. 1_ PARTS Type: <u>G</u> (To be? Program will run continuously until rebooted. Random data pattern will appear on screen following an all white pattern when started. used with Parity Memory Only) DSK2: Type: <u>ØG</u> Initializes write buffer with count Type: <u>7ØG</u> Writes track Type: DG Inits Type: 6ØG Reads 1 sector WR Buffer 3000 R6 specifies track RD Buffer 5000 R7 specifies head R1Ø specifies sector Upon completion check R12 - if lower 6 bits read 20 it was successful. Check 5000 for correct data. DTSTPAR RØ:24 for 24mb disk. Tyle of R371/150000 PAR Watch disk: DTST, writes format on first pass of disk heads over surface and reads (checks) format on second pass. If successful it will then randomly move heads writing and reading. RXX/ Reg XX MXX/ memory Location XX IXX/ memory location 200000 + XX

Page 3

Page 4

After this runs for a while - 10 minutes? - reboot system under tert and start DTST again. After first pass of heads over surface and before completion of second pass, reboot system under test. The disk will now be formatted and ready for booting diskup floppy. If error occurs, R12 contains error type in lower 3 bits. Errors: 1 Phy. hdr. err. 2 CRC Phy. Adrs. 3 Logical hdr. mismatch WD1 4 Logical hdr. mismatch WD2 5 Log. Hdr. CRC 6 Data CRC err. 7 busy not an error O data error (dtst only) Must do 63G to get failing address. R14 MA of failure Rd. Buff: 1000 - 1377 R17: Correct Data R6 TRACK R7 Head RID Sector

Chuck Eckenrode

February 1981 Page 1 of 2

- I. Equipment
 - 1. Untested VMI Monitor (with completed mods).
 - 2. Oscilloscope.
 - 3. Alignment tool ("Diddle Stick").
 - 4. Short #2 Phillips Screwdriver.
 - 5. Small Blade Screwdriver.
 - 6. Crosshatch Generator with Power Supply. +55v 1.7A per Monitor
 - 7. Monitor Test Cable.
- II. Procedure
 - 1. Hook up the crosshatch generator to the VMI, using the monitor test cable. LOAD crosshatch program, type 13, 13, Y
 - Be sure there is a 55V supply connected to the crosshatch generator's D-connector via the black and white wires with eyelugs on their ends. If you use PERQ supply, load +5 to allow regulation.
 - 3. Turn on the power supply and plug in the crosshatch generator. There is a pilot light on the front to indicate the unit is "on" and a switch to allow either: (a) white crosshatch on black background or (b) black crosshatch on white background. Set this for (b).
 - 4. Turn on the oscilloscope set up for 10 V/div and 20 us/div.
 - 5. Refer to figure VMI-A and attach the scope lead to A to ground. This is collector of Z4.
 - 6. Adjust P20 high voltage range for 46 volts.
 - 7. Move the scope lead to "B" to ground. This is the end of R17 that connects to the Q6 collector.
 - 8. Adjust Pl and P2 (Bias and Gain) for a signal of +12V to +38V on the scope.
 - 9. Set the brightness pot on the cable for maximum.

VMI Alignment Procedure Page 2 of 2

- Move the scope to point "C" (Figure VMI-B). This is the R40 R41 10. node.
- 11. Adjust "BRT RANGE" pot (P3) on the circuit board until the R40 - R41 node shows - 55 VDC on the scope. The screen will become fairly dark at this point.
- 12. Adjust G-2 (P4) until black becomes slightly gray and retrace lines become slightly visible around the edges of the screen or as closely as possible. At this point you should have nearly full range adjustability with the brightness pot on the cable.
- 13. Look at the screen. If there is a bright white line down either side or the screen appears to be "folded", adjust the H DLY (horizontal delay) pot until the screen looks centered. (Centered in G2 gray background.)
- 14. Using a small phillips screwdriver in the "H CNT" and "V CNT" pots in the center of the circuit board, position the picture in the center of the pots.
- 15. Center the screen on the picture tube with purity rings. Set L4 to as wide as the picture will go using the diddle stick. Set Pll (V Shape) all the way clockwise + set Pl2 (VL in) for the same size squares from top to bottom. (If unable to match size, readjust Pll counterclockwise and repeat.)
- 16. Using "V SIZE" (P10), "WIDTH" (L3) controls, and purity rings, make the picture be 8½" x 11" (putting a piece of 8½" x 11" paper or mylar over the screen will help in doing this). For finer adjustment, use the V cent (P33) and Horiz Cent (P7) controls. (Do not leave diddle stick in width control L3).
- Place housing on unit and allow to burn-in for 2 hours. Then redo step 16. Top & Left edge will expand a fe" from temp change. 17.
- Play with focus (P5). Adjust for best focus in the center of the screen, 18. then check the corners. If the corners are best when the center is best, the yoke passes. If the corners get better and the center gets worse, the yoke fails. ALL TUBES SHOULD BE MADE BY CLINTON. Set crosshatch lines straight up and down using the cross on the clear plastic by loosening the screw on the yoke and twisting it.
- 19. Remove housing on unit and play with pin cushion magnets to make the picture rectangled. Preferably to push the corners in and not pull the sides out. Start with the (23) gauss magnet. Get picture as rectangular as possible then put housing back on for 2 hours, Remove housing and go on to (5) gauss.
- Complete WIP Tag and return to stockroom. 20.

when done, if characters as keytest shows dark shadows or smear then adjust bias to Dim picture, & 92 to compensate wit until smear is gone.

VMI ALIGNMENT PROCEDURE

Chuck Eckenrode

February 1981 Page 1 of 2

- I. Equipment
 - 1. Untested VMI Monitor (with completed mods).
 - 2. Oscilloscope.
 - 3. Alignment tool ("Diddle Stick").
 - 4. Short #2 Phillips Screwdriver.
 - 5. Small Blade Screwdriver.
 - 6. Crosshatch Generator with Power Supply. +551 1.7A per Monitor
 - 7. Monitor Test Cable.
- II. Procedure
 - 1. Hook up the crosshatch generator to the VMI, using the monitor test cable.
 - Be sure there is a 55V supply connected to the crosshatch generator's D-connector via the black and white wires with eyelugs on their ends. If you use PERQ supply, load +5 to allow regulation.
 - 3. Turn on the power supply and plug in the crosshatch generator. There is a pilot light on the front to indicate the unit is "on" and a switch to allow either: (a) white crosshatch on black background or (b) black crosshatch on white background. Set this for (b).
 - 4. Turn on the oscilloscope set up for 10 V/div and 20 us/div.
 - 5. Refer to figure VMI-A and attach the scope lead to A to ground. This is collector of Z4.
 - 6. Adjust P20 high voltage range for 46 volts.
 - 7. Move the scope lead to "B" to ground. This is the end of R17 that connects to the Q6 collector.
 - 8. Adjust Pl and P2 (Bias and Gain) for a signal of +12V to +38V on the scope.
 - 9. Set the brightness pot on the cable for maximum.

VMI Alignment Procedure Page 2 of 2

- 10. Move the scope to point "C" (Figure VMI-B). This is the R40 R41 node.
- 11. Adjust "BRT RANGE" pot (P3) on the circuit board until the R40 R41 node shows - 55 VDC on the scope. The screen will become fairly dark at this point.
- 12. Adjust G-2 (P4) until black becomes slightly gray and retrace lines become slightly visible around the edges of the screen or as closely as possible. At this point you should have nearly full range adjustability with the brightness pot on the cable.
- 13. Look at the screen. If there is a bright white line down either side or the screen appears to be "folded", adjust the <u>H DLY</u> (horizontal delay) pot until the screen looks centered. (Centered in G2 gray background.)
- 14. Using a small phillips screwdriver in the "H CNT" and "V CNT" pots in the center of the circuit board, position the picture in the center of the pots.
- 15. Center the screen on the picture tube with purity rings. Set L4 to as wide as the picture will go using the diddle stick. Set Pll (V Shape) all the way clockwise + set Pl2 (VL in) for the same size squares from top to bottom. (If unable to match size, readjust Pll counterclockwise and repeat.)
- 16. Using "V SIZE" (P10), "WIDTH" (L3) controls, and purity rings, make the picture be 8½" x 11" (putting a piece of 8½" x 11" paper or mylar over the screen will help in doing this). For finer adjustment, use the V cent (P33) and Horiz Cent (P7) controls. (Do not leave diddle stick in width control L3).

17. Place housing on unit and allow to burn-in for 2 hours. Then redo step 16.

- 18. Play with focus (P5). Adjust for best focus in the center of the screen, then check the corners. If the corners are best when the center is best, the yoke passes. If the corners get better and the center gets worse, the yoke fails. ALL TUBES SHOULD BE MADE BY CLINTON. Set crosshatch lines straight up and down using the cross on the clear plastic by loosening the screw on the yoke and twisting it.
- 19. Remove housing on unit and play with pin cushion magnets to make the picture rectangled. Preferably to push the corners in and not pull the sides out. Start with the (23) gauss magnet. Get picture as rectangular as possible then put housing back on for 2 hours, Remove housing and go on to (5) gauss.

20. Complete WIP Tag and return to stockroom.

Perg Fault Dictionary - The key to the diagnostic display (DDS) 24 Oct 80.

> As of 24 Oct 80, the DDS is meaningful only when booting from the hard disk, not when booting from floppy disk.

> > 1923

12.

Display Description

14

	•	
Ø 0 0	Boot never got going, StackReset doesn't work or	
0.00	other major problem in the processor baord.	
001	Simple Branches fail	
992	Main Data Path Failure	
ØØ3	Dual Address failure on Registers	
ØØ4	Y Ram Failure	
005	Const/Carry Propogate failure	
ØØ6	ALU failure	
007	Conditional Branch failure	
008	Looping failure	
009	Control Store (or Write Control Store) failure	
1		
1919	Hung in Disk Boot	
911	Memory Data Error	
012	Memory Address Error	
013	Disk didn't come ready	
814	Couldn't boot from either disks	
015 - 020	Bad Interrupts Reading Floppy Disk Data	
930	VFY Hung	
859	Bad Error Message from VFY	
951	Empty stack bit not working	
852	Could not load TOS	
053	Push did not work	
054	Stack Empty did not go off	
055	Data error in push	
350	Empty or Full set when that is not the case	
057	Data error in bit 15 of the stack	
958	Stack empty set when the stack is full	
059	Data error on stack	
163	Data error after POP. Bit 14	
061	Data error after POP. Bit 13	
062	Data error after POP. Bit 12	
063	Data error after POP, Bit 📙	
064	Dama acroc ajter PCP. His 10	
065	2919 92001 NÖTER 202. Dit 9	
066	Data error atter POP. Bit 8	
1167	Data archer set un upp $1 < 7$	

PAGE 2

••

Bit 6 Ø68 Data error after POP. Data error after POP. Bit 5 为69 Data error after POP. Bit 4 070 Data error after POP. Bit 3 Ø71 072 Data error after POP. Bit 2 073 Empty wrong. 074 Data error after POP. Bit 1 Data error after POP. 075 Bit Ø 076 Empty not set after all pops. 077 Call test falied Ø78 Odd didn't jump on a l. 079 Odd jumped on a Ø. 380 Byte sign didn't jump on 200. Byte sign jumped on Ø. C19 didn't jump when it should have. Ø81 082 183 BCP[3] didn't jump when it should have. 984 C19 jumped when it shouldn't have. 985 BCP[3] jumped when it shouldn't have. GTR didn't jump. 86 GTR jumped when it shouldn't have. 087 088 GEQ didn't jump. 089 GEQ jumped when it shouldn't have. 090 LSS didn't jump when it should have. LSS jumped when it shouldn't have. 091 LEQ didn't jump. 092 LEQ jumped when it shouldn't have. 093 094 GEQ didn't jump on equal. 095 LEQ didn't jump on equal. 096 Carry didn't jump when it should have. 097 Carry jumped when it shouldn't have. Ø98 Overflow didn't jump when it should have. 099 Overflow jumped when it shouldn't have. 100 And-Not ALU function failed. 101 Or ALU function failed. 102 Or-Not ALU function failed. And ALU function failed. 103 34 Or-Not ALU function failed. 105 Not-A ALU function failed. Not-B ALU function failed. 106 107 Xor ALU function failed. 108 Xnor ALU function failed. 109 OldCarry-Add ALU function failed. OldCarry-Sub ALU function failed. 110 111 OldCarry-Add /w No OldCarry failed. 112 Fetch error on Force Bad Parity. 113 Unexpected Parity error. 114 No parity errors on force bad parity. 115 Wrong address on force bad parity. 115 Upper 4 bit test failed. 117 MDX test failed. 118 Stack upper bits test failed. 119 Dual Addr/Fetch4 cest failed. 120 Unexpected refill.

121 BPC test failed. Fetch4 test failed. 122 Fetch4R test failed 123 Store4 test failed. 124 Fetch2 test failed. 125 Store2 test failed. 126 127 NextOp test failed. 128 Fetch/Store overlap failed. 129 Bad interrupt Loc 4. 130 Bad interrupt Loc 14. 131 Bad interrupt Loc 20. 132 Bad interrupt Loc 30. 133 Memory error on No Dual Addr test. 134 Memory error on No Dual Addr Invert. 135 Field didn't work 136 Dispatch did not jump 137 Wrong Dispatch target 150 Sysb not loaded correctly or hung 151 Sysb did not complete 152 Disk Error 153 CheckSum error in microcode CheckSum error in QCode 154 199 System not entered - calls or assignments don't work. 200 System entered, InitMemory to be called. 201 InitMemory entered. 202 System version number set. 203 Memory manager output file opened. 204 SAT and SIT pointers initialized, StackSegment number initialized. 205 Before marking booted segments in-use. 206 Booted segments marked in-use. 207 Segment created to sit on the unused memory. 210 Before building SIT. SIT entries built. 211 212 SIT entries linked together. Unused segment numbers linked together into the 213 freelist. SIT built. 214 215 InitMemory complete, ready to return to System. 300 InitIO to be called. 301 InitIO entered. 302 IO segment allocated and locked down. 303 Buffers allocated. InitInterruptVectors to be called. 310 329 InitInterruptVectors complete, InitDeviceTable to be called. 330 InitDeviceTable complete, InitScreen to be called.

•••

InitScreen complete, InitTablet to be called. 340 InitTablet complete, InitCursor to be called. 350 360 InitTablet complete. Microcode informed that the device table has been 370 initialized, IO microcode initialization complete, 10 microcode initialization complete, LocateDskHeads to be called. 371 LocateDskHeads entered, buffers allocated. 372 Microcode instructed to consider current position as cylinder Ø. 373 Disk heads at cylinder 0 or disk busted. 374 Disk heads at cylinder Ø (not busted). 375 Microcode instructed to consider current position as cylinder Ø. 376 Dummy read of cylinder Ø, sector Ø complete, about to dispose buffers and exit LocateDskHeads. 380 LocateDskHeads complete, FindSize to be called. FindSize entered and buffers allocated. 381 Size of disk determined, about to dispose buffers)2 (1) and exit FindSize. 390 FindSize complete. 400 Keyboard enabled. 410 EnableTablet to be called. EnableTablet entered, Stanley tablet enabled, 411 buffers allocated. 412 First GPIB command built. 413 First GPIB command sent to 280. 414 Second GPIB command built. 415 Second GPIB command sent to 280. 416 Third GPIB command built 417 Third GPIB command sent to 280. 418 Fourth GPIB command built 419 Fourth GPIB command sent to 280, about to dispose buffers and exit EnableTablet. 420 EnableTablet complete. . 99 Clock enabled, about to exit InitIO. 500 InitIO complete, InitStream to be called. 500 InitStream complete, FSInit to be called. 700 FSInit complete. 899 Command file and Console opened. 999 System fully initialized, system title line to be printed.

