
-rI, .~,~
SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

D I S T RIB UTE D COM PUT I N G NOT E 524

VISITS
Notes on a visit to R Milner and G Plotkin
18 November 1981

issued by
D A Duce

25 November 1981

DISTRIBUTION: R W Witty
F Chambers (Logica Ltd)
D A Duce
Miss G P Jones
Investigators/Plotkin and Milner

STL COOPERATIVE GRANT

Robin Milner started by describing the STL cooperative grant.

This work is concerned with the application of CCS to switching systems.
5TL are providing a number of non-trivial case studies. The project
started in October 1980 and funds one RA, Mike Shields.

STL use the CCITT descriptive language Systems Description Language
(SDL) as a design aid. Mike has discovered that this maps fairly directly
to CCS.

As an example consider a telephone system:

subscriber rece1ver exchange
»>:

"
" ,,

receiver " ,

subscriber

Consider a description of how the exchange + receivers looks to
subscribers.

Think of the rece1ver as a black box, transmitting messages transparently
but interpreting some messages. This can be described by a state
transition diagram.

An SDL description consists of a number of boxes representing state linked
with other boxes representing the transmission and reception of messages.

The receiver can be described by the following signals (simplified!)

- 1 -

offhook offhook

dialtone dialtonereceiver

ringbegin ringbegin

subscriber exchange

This could be represented 1n SDL by the diagram:

ringbegin /

offhook

where

represents an input message and:

CJ
an output message.

In CCS, IDLE is a behaviour expreSS10n consisting of two possibilities:

IDLE ¢= () + ()

The '+' operator means sum of possibilities; precise sumantics can be
given.

The other notation necessary to complete the description 1S

a.B

where a is a label and B an expression standing for a behaviour. Inputs
are represented by a, outputs by u. To distinguish signals on the
subscriber and exchange side of the receiver, the latter are primed.

- 2 -

... .

-
The description of the above model then becomes:

IDLE <== (offhook. offhook~ • WAITDIALTONE)

+ (ringbegin~ • ringbegin • RINGING)

There is a mismatch between SDL and CCS in the way message boxes'meet:

buffering between transmitter and receiver is implicit 1n SDL, but is
not a primitive in CCS.

SDL is a purely descriptive aid. The manual contains about 1 page on the
meaning of the language and 5 on the proportions of boxes!

,~

Mike is interacting with SDL on the semantics of the language.

Designers of switching systems are seeking formalisms which are amenable
to verification etc but no one knows what these should be.

Mike is also looking at the relationship between Petri nets (also used
by STL) and SDL/CCS.

DeS"GRANT

Two RA's have now been recruited for the new DCS grant, starting early in
1982. One RA, Colin Sterling has a PhD in modal and temporal logics.
In his view most of the work done in the USA on proof techniques for'
parallel programs has been done in ignorance of recent work in temporal
logic and is based on inadequate formalisms. A deep understanding of
logics is a necessary prerequisite of the next phase of the work on proof
techniques as it is not yet clear what logic should underpin the theory as
it is not clear what assertions need to be made. Gordon Plotkin then
described their recent work in operational semantics.

This is based on the abstract machine approach to operational semantics
(Landin's SECD machine, VDL etc) but with the important difference that
configurations are to be kept simple.

To execute a command c, one starts with an initial state a; combining
these one obtains an initial configuration:

y = <c,a>o

The execution proceeds through discrete stages, represented by further
configurations, which have either the form:

y' = <c ' .o">

waere c' represents the remaining computation, or

y~ a~

- 3 -

...

-
where o~ is the resulting state at termination of c.

An execution is formalised as a sequence:

~y -+ y -+ ••••

of configurations.
another.

The arrows represent transitions from one stage to
)

Consider an example, the semantics of c ;Cl ie execution of c followedo 0
by c i .

Execution of c begins from an initial state o. Consider the transition
<c ,0> -+ y~. °There are two cases according to the form of y~. First
suppose it is <cl,O~>. Then the initial state·of the second stage of the
execution of co;c1 must be o~. The rest of the execution of co;c1 is the
rest of the execution of Co (represented as c"')followed by c... Thus y~o 1
can be taken as

and the following rule has been informally justified: I

(a)

(b)

which is a rule of inference that if (a) is known then so is (b). The
second case is that execution of Co terminates in state 0"', in which case:

<c ;c ,0> -+ <c ,o~>o 1 1

For example:

<z:=x; x:=y; y:=z, {x=l, y=2, z=3}>

assuming assignment l.S an atomic connnand, ie

<z:=x, {x=l, y=2, z=3}> -+ {x=l, y=2, z=l}

by case 2 above:

<z:=x; (x:=y; y:=z), {x=l, y=2, z=3}>

-+ <x:=y; y:=z, {x=l, y=2, z=l}>

-+ <y:=z, {x=2, y=2, z=l}>

-+ {x=2, y=l, z=l}

- 4

-
An atomic command always demolishes itself on execution. In general
assignment is not atomic but involves some expression evaluation, eg:

<e,a> -+- <e'"0''''>

<z:=e,a> -+- <z:=e"',a"'>

Note that the semantics of ';' are invariant, it is the semantics of
assignment that become complex!

As a second example consider a while loop. Assume boo1e~n~ evaluate to
time (tt) or false (ff) with no side effects. Then:

<b,a> -+- ttlff

<while b do c,a> -+- <c; while b do c,a>la

To handle say jumps requires the addition of a configuration abort which
leads to the rule:

<c ,0'> -+- aborto

These ideas can handle sequential languages nicely.
extended to non-deterministic languages.

They can also be

Consider communication:

<pIx, {x=S}> -+- {x=S}

where pIx means send x to p. This operation does not affect the state o.
Without knowing p, one cannot see how to change the state, so "outputting
5 to p" is written as:

<p!x, {x=S}> p!5 ~ {x=5}

labelling the transition with a description of the interaction of pIx
with its environment.

To give a semantics for Hoare's CSP requires the addition of status abort
and fail.

Syntax:

Q!3
P,Q!3
P?4
P,Q?4

send 3 to Q agent unknown
P sends 3 to Q
P gets 4

- 5 -

-
Semicolon remains safe:

a
<co,o> -4 <c~,o'> I0'1 abort I fail

a
<co;oc1,> -4 <c';c ,0"'>I<c,0'>1 aborto 1 1

fail

Consider the parbegin operator:

<c IIc ,0>o 1

II
_1

;U;

we have:

... ... I ...<c ,0> + <c ,0 > °o 0

Introducing the configuration fail into the discussion leads to
argument about what the failure of one component should mean.
fails, should c1 continue or fail also.

a delicate
Hc o

If labelled transitions are introduced (ie P sends a message and Q
receives it)

P,Q!M ..•...I ...
<c ,0> <c ,0 > °o 0

P Q?M ... I<c 0> ' . <c 0"> 0"
1 ' 1 ' -

e
<c IIc,0> ----7o 1

<c"'11c...0">
o 1 '

Points to note:

Sending something does not affect the state.
proven that 0...·= 0.

It needs to be

2 In the infered transition the label ~s £ because the communication
is internal to c ,c .o 1

If c and c swapped values, the final state would be 0'"+ 0" and one has
to cgnsider1carefully what state this is, by considering local stores etc.
The constraints that Hoare intuitively places on his language avoids
these difficulties (by not allowing output commands in guards).

One can attempt to apply these semantics to any language. The more
realistic the language the harder it becomes. A student has been looking
at the task parts of Ada (primitives and exception raising). Many
problems arise because it is not clear what the Ada document means, eg
if two tasks each raise an error in the other, can both succeed?

- 6 -

-
Gordon has produced a paper on the operational semantics of CSP (copy in
file).

DISCUSSION

Original goals of the project included integrating Petri nets, Flow
Algebras, CSP, actors etc.

Consider:

disc controller

I --
teletype

/
buffer

CPU

A system can be viewed as some arbitrary graph, showing where rather than
when communications can possibly occur. Flow algebra was limited to
saying how such structures could be manipulated algebraically.

Think of a third dimension normal to the above plane, representing time.
The question then arises how to deal with the dynamics of such a structure
algebraically and integrate this with the flow algebra static description.
CCS is the result.

The project has' succeeded in relating CCS and CSP, but hasn't really
succeeded in elucidating the link with Petri nets. However, parts of
CCS have been translated into Petri nets, sumantics given and proved
correct.

Part of the problem with elucidating links to Petri nets and especially
Hewitt's actors is that the internal theories of these systems are not well
developed. In the actor model for example the linkage structure can
evolve through time in a very rich way.

A student is looking at an architecture to implement CCS.

The original version of CCS was asynchronous and couldn't handle eg time
outs, .though real time might have been handled by adding clocks as
fictious agents.

A synchronous version, SCCS, has been described which makes the assumption
that there is a global time. This gives a very nice albegra from which
the asynchronous algebra can be derived.

The problem of fair computation is now being considered. CCS has
ol?erations '+' where' B+C means do B or C (may be non-deterministic) and
'I' where Blc means do B in parallel with C. In the expression (BIC)IA
it is not determined which of Band C communicates with A if A only wishes
to communicate with one of them. Non-determinism is thus not represented
by a single operator.

In the synchronous calculus' I' is replaced by 'x' which has no element
of non determinism. In Blc non determinism arises because of
indeterminate delays involved. Explicit delays are represented 1n the
synchronous calculus bye. Thus:

Blc = (Bxec + eBxc)

7

...

••••

Non-determinism is confined to the operator '+' and parallelism to 'x'.

The concepts of action, composition, alternation, scoping etc are
represented almost by single constructs. Urgency and fairness are
not however represented. The expression

OB = B + 1: oB

where 1 is a unit time step admits infinite delays. An operator £
satisfying this equation but where the infinite path is ruled out is
sought. £ is beginning to look consistent and manageable, but this is
still an open question. Fairness is generating a lot of interest in
many groups.

Hewitt's actors assume that you will get a message sometime.
sufficient of a fairness assumption that it is intractable.

This 1S

Robin and Gordon are looking for proof techniques, but these are still
a long way away. It is still not clear what logic should underpin
proof techniques.

MISCELLANEOUS

Robin, Gordon and Rod Burstale have a 3 year grant from the BP venture
unit which ~nables them to spend I year each doing nothing but research.
The order in which the year will be taken is as above. Robin started his
study leave in October this year.

The only other grant given in computer SC1ence to date was to one of
Dijkstra's students.

- 8 -

