
-
SCIENCE & ENGINEERING RESEARCH COUNCIL

RUTHERFORD APPLETON LABORATORY
COMPUTING DIVISION

D I S T RIB UTE D COM PUT I N G NOT E 572

VISITS issued by
Dr D A Duce

Notes on a visit to Dr J Darlington
Imperial College 5 February 1982. 15 February 1982

DISTRIBUTION: R W Witty
D A Duce
Miss G P Jones
F R A Hopgood
J Monniot

PRESENT: Dr I Watson, Manchester
Dr D A Duce
Dr J Darlington, Imperial College
M Cripps, Imperial College
V Wu. Imperial College
I Moor, Imperial College
M Reeve, Imperial College

1. INTRODUCTION

The visit formed part of a Panel visit to Dr Darlington to discuss a
proposal from Dr Darlington to construct a general purpose application
language machine and applicative programming environment. The formal
Panel visit is to take place on 8 February, but Dr Watson being unable
to attend on that day kindly agreed to visit Dr Darlington beforehand
and to relay comments to the Panel through the Academic Coordinator.

The Visiting Panel will formally report through the Chairman of the
DCS Panel to the CCSC Meeting 16/17 February. Professor Needham was
invited to be a member of the Panel but had prior commitments on all
possible dates for the meeting. He was however able to discuss the
application with Dr Darlington on 3 February.

The application was first considered by the DCS Panel in October 1981.
There was no doubt as to the scientific excellence of the proposed
project but Panel Members were concerned about the ability of the
group to undertake what looked to be a major constructional project.
The Visiting Panel were specially charged to investigate this aspect.

- 1 -



-

2. BACKGROUND

Dr Darlington gave an overview presentation of the project.

Five people are directly associated with the project:

John Darlington
Martin Cripps, Senior Lecturer and

Director of Wolfson
Microproc~ssor Research

Unit
Victor Wu,
Ian Moor,
Mike Reeve,

RA
Teaching Assistant
Final Year PhD Student

Curricula vitae were provided. The project crucially depends on the
excellence of the people engaged in the work. Mike Reeve (one of best
Firsts for a long time) and Victor Wu both have hardware experience,
Mike worked with IBM during his vacations on various hardware projects
and received an IBM Special Contribution Award.

A number of people also contribute to the project:

Tony Field, PhD Student (electronics
background) Networks, Load
Sharing.

John Goodchild, PhD Student (first year)
Expert Systems for
Program Development

Microprocessor Support Unit
Westfield College,
Lecturer

Sue Eisenbach,

Roger Bailey,

In addition the whole of the Logic Group (Bob Kowalski, Keith Clark,
Krysia Broda and others) cooperate with Dr Darlington's project on a
broad front. The Logic Group regard cooperation as essential and
fruitful.

The present grant application is seen as the development of an
integrated applicative programming environment· and ultimately as a
solution to the 'software crisis'. Applicative languages are
particularly pertinent to this problem as they are side effect free,
have clean mathematical properties, allows software to be developed by
transformational techniques (making proof much simpler) and admit the
possibility of parallel evaluation.

The work of the group is based principally on the language ~OPE which
is a higher order recursion equation based, strongly typed, :unctional
language. The precursor of HOPE was NPL developed at Edinburgh by Rod
Burstall and John Darlington, which grew out of work on program
transformation.

- 2 -

...



-
As an example of HOPE, -consider the factorial function. This may be
written in HOPE as:

fact (0) <=1
fact (n+l) <= n+l fact n

New date structures can be defined by constructors, eg list:

append (nil,y) <=y
append (a::x,y) <=a::append (x,y)

(::is an infix operator for cons)

As an example of higher order functions consider:
map (nil,f) <=nil
map (a::x,f) <= f(a)::map(x,f)

map applies f to every element of a list. The first equation
specifies the action for a null list, the second for a list of the
form a consed onto x. A case of map is in the function double, which
doubles every element of a list:

double (1) <= map (1, lanbda x => 2.x)

The language supports strong polymorphic typing as developed by
Milner, for example:

data tree (alpha) niltree
++ constree (alpha,

tree (alpha)
tree (alpha»

where alpha is a type variable

HOPE is claimed to be a usable functional language, for example it
includes:

modules
local variables
infix, distfix operators
lazy evaluation (allowing infinite

datastructures to be
manipulated)

(A distfix operator is a general name with holes for operando, eg if
then-else). Tools and anenvironment to support HOPE are building up.
A compiler for HOPE, written entirely in HOPE has been written which
generates Alice Compiler Target Language (CTL). Alice is the name
given to the applicative language machine.

The construction of the compiler was very illuminating as a software
engineering task. It was easy to construct and get right first time.
Higher functions were absolutely essential for this task, as were
types. The compiler essentially works by definin a HOPE object
program as a datatype of HOPE and then defining functions which walk
over this structure. It is a highly parallel multiphase compiler.
The code size is roughly 3,500 lines of HOPE. A paper summarising
this work has been accepted for the Boston Compiler Conference; copies
were provided for the Panel.

- 3 -

,.•



-
The compiler has been implemented on the Edinburgh DEC1o. The code
files produced can be transformed over SERCnet and Metronet to the IBM
machine at Imperial College where they can be run on an Alice
simulator (see later).

The compiler also illustrates another benefit of the applicative
language approach in that by changing cons to lazy cons, a good
improvement in space utilisation was achieved without affecting the
correctness of the compiler. Work is in hand to bootstrap the HOPE
compiler to a Pascal compiler; currently HOPE runs over POP2.

v Wu has written a Pascal HOPE interpreter. This is a straightforward
HOPE source interpreter which borrows ideas from Alice. The system
has been used in teaching applicative languages and has stood up
extremely well. The interpreter supports higher order functions and
lambda expressions; type checking is currently being added.

Sue Eisenbach at
based HOPE system.
runs on an 8-bit
activity.

Westfield College is developing a microprocessor
This compiles to ~~ abstract 3 address machine and

microprocessor. This is not seen as a mainstream

Collaboration with the Logic Group is very fruitful. CUrrently there
exist designs for parallel implementations on Alice of:

( i) the relational language of Clark and Gregory hopes to use
applicative anaolgue of Dijkstra6s "don't care" non
determinism (once made a choice cannot backtrack over it)

(ii) full PROLOG with and/or parallelism (Broda)

In addition the SERC funded project of Clark and Gregory hopes to use
both the Manchester Dataflow Machine and the Alice Simulator.

Program transformation work is also in hand. The nutaon if program
transformation lies at the heart of the systematic development if
correct efficient software and forms an essential part of the
environment:

(i) write clear initial version of program ignoring questions of
efficiency;

(ii) systematically transform to a more efficient version using
transformations guaranteed to preserve correctness.

The basis of this work
Burstall and Darlington.
six rules, guaranteed to

is the unfold/fold operators
Application of the operators

pressure (patial) correctness.

developed by
is governed by

This has lead to the development of the Metalanguage Transformation
System by Darlington, Moor and Wu, cf Milner's LCF project. The user
can explain to the system how he wants the transformations to be
carried out. This is done using a metalanguage to describe
transformations in a structured way in terms of unfold and fold. This
system is novel in that HOPE is used as its own Metalanguage, rather
than using a separate Metalanguage as in LCF.

- 4 -

..•



-
"

Work is now commencing on higher level tactics (in the LCF
terminology) which· are built out of the first level, and involve
limited search to achieve their goals and use Hope modules for
security. They are guaranteed never to be wrong. Examples of use
would include the removal of recursion, change of data type, merging
loops etc.

This work was written up as an invited paper for the Amsterdam
Conference on Algorithms, October 1981.

Dr Darlington summarised the group's plans as:

(i) Complete Hope compiler;
type checking
evaluation strategies (stated separately from text
and giving control over use of resources and way to
go about computation)
modules

(ii) develop PROLOG Compiler

(iii) develop applicative programming tools
(a good student is developing A HOPE structure editor)

(iv) develop transformation system, particularly higher level
tactics and application to significant programs

(v) build Alice

3. Alice

Mike Reeve; then gave a detailed presentation of Alice.

The motivation behing Alice is that applicative languages are a good
thing but traditional implementations are inefficient. The approach
taken is Alice is based on graph reduction.

Consider the binary algorithm:

f (n) <= fb(o,n)
fb(i,i«=i
fb(i,i+l
fb(i,j)<fb(i,mid)*fb(mid,j) where mid integer divide (i+j,2)

- 5 -

• '9



-
The evaluation of f(5) can be viewed as a series of reductions applied
to the expression represented as a graph:

f(s) => fb(0,s) => *
fb(0,{( \fb (2,5)

=> * => * =>
/*"",/~

* * 2 *
/ \ /\ I

2 3 * 3 *
.>: /\

fb{3,4) fb(4,5) 4 5

/\
* */\ .>:

fb(0, 1) fb(1r 2) fb(2 r 3) fb(3,5)

=> 2

*/\
*1\

*

=> 1\ => 120

2 60
3 20

This can be modelled
dataflow archeticture.

using packets, stemming
A packet has the format:

from the Manchester

ID FUNC ARG STATUS SIGNAL REF
LIST LIST COUNT

ID is a unique name for the packet, FUNC is the function name (*,f,fb
etc) and ARGLIST the list of arguments. The other fields are used by
the evaluation mechanism.

The above computation could thus be represented as:

i f x
integer
literal

~
i fb [0] [5] where [n] is the identifer of a packet

{} containing the integer literal n

i * j k -A

j fb [0]- (2) which can run in parallel
k fb (3) [5)

~
etc

At point A the computation cannot proceed until the computation
ofpackets of j and k is complete. Rather than have the processor
enter a busy wait state, a processor picking up packet i will note the
interest in packets j and k and will place the identifier of i in the
signal fields of packets j and k, and i is marked 'asleep'. When j
and k have been rewritten, i is awoken.

- 6 -

...



-
The evaluation schemepresented is eager evaluation. There is a user
definable tag in the packet allowing eager of lazy mode evaluation
which permits infinite data structures to be supported. Consider:

cond (P,Q,R)

, cond' is conditional evaluation of Q or R as P is true or false.
Eager evaluation in this situation is not always safe (Q or Rmay not
terminate) • Lazy evaluation is always safe, but inefficient when
eager evaluation. The user maywrite:

cond (P, "suspended" Q, "suspended" R)
cond (TRUE,Q,R)(= "activate" Q
cond (FALSE,Q,R)(= "activate" R

Note that user in this context maybe the system (compiler say).

Natively input/output could be defined as:

printlist (x::L) (= print (x):: printlist (L)

The problem with this definition is that one cannot guarantee
execution in the right order. The correct definition which preserves
sequencing is:

printlist (x: :L) (= print (x,X)::X

where X="suspended"printlist (L)
print (x,x) (= send to vdu, "ect.Lvat.e"x

Packets can be treated as variables, with assignment at the machine
level which provides for logical variables, in place updating (an
optimisation) and implementation of imperative languages (sequencing
allows full von Newmanstyle).

First order functions are supported directly, higher orderly on the
fly function definition. Turner's SASLcan be supported and in fact
Turner's Combinator machine has been implemented in Alice CTL(about
two and a half pages). David Turner is hoping to movehis SASLsystem
into Alice.

Languages with "don't care" non-determinism can be
variety of. arbitration methods are available for
rewrite rule applies. Alice is really a production
classical AI sense. Logic languages can be supported
graphs or direct manipulation of and/or trees.

supported. A
deciding which
systern in the
via connection

3.1 Abstract Architecture

The abstract architecture of the Alice machine is a set of computing
agents accruing a commonpool of packets. If all the required
arguments of a packet are available, the packets corresponding to the
right hand side of the rewrite rules will be generated and put into
the pool. Garbage collection is done by reference count.

- 7 -

...



-
The computing agents are packet rewrite engines (look up function
definitions in table and produce appropriate packets) and are fairly
straightforward. It is the packet pool that is difficult.

A more concrete architecture is the following:

Communications
Interface

Interface
Packet
Processor

J

Processable Pkts

~

2 slotted communicae:" tions rings

empty locations

1

,,-----;;;:;;=====::::;:;;:::;===:;-' bus
Comms ilf
Packet Pool

This is the
indentifiers,
When an agent
When an agent
from the outer ring.

desk top machine. The outer ring contains unused
the inner ring identifiers of rewriteable functions.
is free it picks an identifier from the inner ring.
wants to produce a new packet it takes an identifier

A performance estimate may be given:

Assume agent rate is 128
packet pool rate 1

sec per rewrite
see per transaction

Approximately 6 packet pool
simulations)

128
6 x 1

Effective system rate

accesses taken per rewrite (from

20 agents before real bus contention problems
arise

128 see per rewrite macro 6 sec
20

170K rewrites per second

There is a scale up factor of 15-25 to the equivalent
so the approximate equivalent is two and a half Mips.
orders of magnitude better than HOPE on the DEC10.

von Newman rate,
This is about 2

8

...



-
Bigger machines can be built by interconnecting desk top machines:

interconnection
network

Local packet pools are linked by a delta network to prqvide a global
address space across all machines. A delta network performs best with
a large number of nodes and random accesses (better than localising
references).

I

A performance estimate for a machine with 4K ports (roughly 8 agents
per port) is about 100M reductions per second.

3.2 CTL

CTL is an intermediate code for compilers and a high level assembler.
It forms an implementation independent stable base for the software
projects.

The execution cycle of Alice is:

1. extract processable packet
2. decide whether it is rewriteable,if not leave signal

requests in argument packets
3. determine rewrite rules to be applied
4. increment appropriate reference counts
5. generate packets representing RHS
6. deposit RHS packets in pool
7. decrement appropriate reference counts
8. go to 1

Consider an example:

data list (alpha) = nil
+ + cons (alpha, list (alpha»

dec append: list (alpha) x list (alpha) list (alpha)
append (x,nil)

(=x
append (x, cons (a,l»

<='cons (a, append (l,x»

9



-
This generates the CTL code:

Constructor nil, cons
rewriteable append
rules for append

requires arg (2)
rule arg (2). function = nil
rhs
@ synonym (arg(1»
negative-deltas arg (2):-1

rule arg (2). functions=cons
rhs
1 append (arg 1 arg(2) arg(2»
@ cons (arg(2) arg(1) &1)
negative-deltas arg(2):-1

and rules

The 'rules' clauses behave as guarded commands. Any number of
'requires' clauses are permitted which may be disjoint.

3.3 Concrete Architecture

Rings RAM RAM

--:~::-{:::::~~::-~---~:~::-~:::~~::_,
ring interface ring interface

1
} rewrite rule tablepacket processing ROM

engfne rur
packet pool interface
network interface

Packet Pool
network interface
packet pool controller

RAM

The slotted communications rings are implemented as stacks. When an
agents local stack is exhausted or overflows, it will propagate its
request to its neighbours stacks. Optionally intelligence in ring
controller can spread load in idle time.

The architecture is modular and suited to IC implementation. It is
feasible to implement functional units in LSI with smooth transition
to VLSI. The design can be made homogeneous at the sub-component
level and Mike Reeve has discovered a way to build the machine from a
single type of chip, called a Champion (cf Baron's transputers).

10

...



-
A Champion consists of:

finite state machine controller
ACU
Scratch pad RAM
2 x 16 bit bi-directional ports (vertical links - 2 control

per port)
2 x 8 bit bi-directional port (horizontal links - 4 control

lines per port) also use to do bus arbitration on
vertical links)

This can be packaged in a 64 pin package:

i/o ports 60 pins
interrupt
clock
power 2

64

The finite state controller has to be custom designed for each unit
but the other components are standard across all units in the machine
and also should be readily available from a component library.

Mike estimates that refinement of the ~esiEn of the single chip
building block will take about 9 months. Writing or the microcode can
take place in parallel with. this. It is anticipated that the LSI
implementation of the chip will be complete 2 years after the start of
the grant, the first trial chip should be ,readyafter 18 months. Then
construction and commissioning of the desk top Alice can commence.

Mr Portman asked how much memory was allocated to the ring RAM6s.

Mike Reeve replied that the prototype will have a packet pool of 64-
128k packet and the ring RAM6s will be 2-4K. The packet pool
controller will be able to perform high level access to the pool, for
example get the second argument field of a given packet or is a given
packet a constructor function. The packet pool interface also has
intelligence and can do some caching. A packet may safely be cached
if the reference count is one as then no other agent can be using it.

Mr Portman asked how many Champions are needed to build the machine.
There are 8 chips per agent and 2 for the packet pool: thus about 200
working chips are necessary.

3.4 Current State

The Compiler Target Language, the central theme of the project is
stable. A HOPE to Alice CTL compiler and Alice CTL to machine code
translator have been implemented. A simulator for Alice at the
functional unit level is operational (written in Pascal). A register
transfer level simulator (written in PATH Pascal) was written but has
been made redundant by Mike Reeves' realisation that the machine could
be constructed from one type of superchip rather than the 6 different
types originally envisaged.

II

...



-
Work in progress includes:

extensions to simulator
caching
large scale machine

VLSI implementation of desk-top machine
operating system
HOPE programming environment
meta-language drives transformation system
PROLOG compiler

4. DISCUSSION

Dr Watson asked for confirmation that construction of the machine
relied on producing one chip many times. Mike Reeve said that this
was so. He also pointed out that the chip is of a complexity close to
the limit of what is possible with current SERC facilities. The find
fall back position is to use AMD bit slice logic to emulate the chip.

Dr Watson then asked for more details of how the packet format maps
onto the hardware structure. Mike Reeve explained this. There are no
problems with associative matching because when an agent seeks a
packet from the ring, the packet's identifier is known. The packet
identifier field is in bits (16 or 24 on prototype) wide. The
agreement list is restricted to 3 entries (allowing Cond); Currying is
used to deal with more arguments. The status and function fields fit
in one n bit field. The signal list on on a bit field, but further
entries can be chained into extra packets. The reference count is an
n bit field. Thus the packet size is 6n fields. 5n signal requests
can be accounted per extension packet. Access to the packet pool is
through an n bit date path, because frequently only one field needs to
be extracted to do useful work. Each agent holds a table of function
definitions, loaded from the packet pool when the function first
occurs.

5. HARDWARE FACILITIES AT IC

Martin Cripps gave a presentation on facilities for hardware
.development at IC.

Martin joined IC in 1969 as a research student. He came to the
department as 'the hardware man' and is responsible for hardware and
data communicaions activities. During 1972-3 he was involved in a
Hardware Laboratory project. The department has two excellent
technicians, whose. chief skills are woodworking and metal working.
The department wanted a hardware laboratory that could be left open 24
hours per day and would not need a technician in attendance.

Martin conceived the idea of simulated hardware systems. The system
runs on a Texas 960 mini to which are connected a series of units
looking like logic boards. 16 boards can be run from one mini
simulation from gates to registers to complete microprocessors.

12

, .•



-
Martin is now engaged .in the construction of a cheap departmental
terminal network called Sonet, which runs over 3 screened twisted
pairs with crimp connections for each terminal. The network will
support up to 128 terminals running at up to 19.2K baud (guaranteed).

An electronics Workshop has been built up, staffed by two ZRA grade
people, one is a Chartered Engineer, the second is almost. A third
may be taken on next year. The Workshop suggests hardware work in the
Laboratory.

Martin is both a Senior Lecturer in the department and Director of the
Wolfson Unit for Microprocessor Research.

Microprocessors are supported in several ways:

IC
/

Microprocessor Advisory Committee I
~ ',~

Unit Teaching Unit Computer
I I

Hardware Teaching Software

Centre UnitWolfson
I
I

Research Support Teaching
bias bias

The Wolfson Unit supports any research that might be of use to
industry and hence its resources would be available to the Alice
project. The Unit has one and a half RAI s (the half is a joint post
with the Teching Unit). One has a PhD, the other is a graduate. The
Unit tries to provide linked hardware and software testing
environments. Emulation facilities are available for most types of
microprocessor, using HP64000 series equipment. The Unit also has
logic state analysis and one very high quality storage oscilloscope.

6. FURTHERDISCUSSION

Dr Watson asked howmany boards they expected to have to construct.

The desk top Alice has 24 agents, each requiring a single card (double
eurocard). The packet pool is between 4 and 8 cards. It is likely
they will have to build about 40 boards, but many will be the same.
They would like to use pcb construction but have no design facility
in-house.

Dr Watson, speaking from experience with the Manchester Dataflow
machine, strongly advised them to look to subcontracting pcb layout
and construction. A number of companies now offer such services, and
the investment is we1i worthwhile. John Darlington said they would be
only too pleased to follow this advice.

Martin Cripps commented that he had considered renting a CADsystem
for 1 year with a view to purchase thereafter.

_ 13_

...



-
I

7. DEMONSTRATIONS

A very impressive set of demonstration was mounted. The HOPEcompiler
and Metalanguage Transformation System were seen in operation on the
DEC10with a variety of examples ranging from the binary factorial
algorithm to Dijkstra's algorithm for calculating the digits of e
(based on the fact that the i'th digit is 1 in base l/i!). The source
of the HOPEcompiler in HOPEwas also available for inspection and
seemed extremely well written. Various examples of Alice CTLwere
displayed.

Mike Reeves' Alice simulator and statistics analysis suite were seen
in operation on the departmental IBM4341 machine. All other users
were removed fromthe machine for the demonstration so that response
would be reasonable. John Darlington and Mike Reeve use more computer
time running the simulator than the rest of the department (staff and
students) together. The binary factorial example and a number of
other examples (including list doubling) were executed and simulation
results were displayed. l'1.ikeReeve seemed to have done a thoroughly
professional job of work.

8. PRIVATEDISCUSSION

Dr Watson and Dr duce then had a private discussion to agree feedback
to the main Panel meeting on 8 February.

1. Dr Darlington's group are extremely impressive. All are research
workers of the highest calibre who have done a thoroughly
professional design study to date.

2. The key person in the project from the hardware side is clearly
Mike Reeve, who combines software and hardware talents to a rare
degree.

3. 'The group would be well advised to cor.tract out artwork and board
manufacture. Dr Watson estimated this could be done for about
£20-30K (rough estimate). This could save an enormous amount of
time.

4. The one point of concern is that the project stands or falls on
the ability to produce the chips. The risks have been reduced by
refining the design to one chip, much of which is standard (ALU,
RAM,i/o ports) and should be available in a library manufacture
however remains a risk.

Ways should be sought to reduce this risk, possibly by involving
an industrial concern as a fall-back source.

The group should also be encouraged to organise the design such
that if chips cannot be manufactured, the machine can be built
from conventional components.

5. Dr Watson was of the view that in spite of the risks, it is right
to take as a startig hypothesis 'Alice can be implemented
efficiently in VLSI'.

14

...


