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Preface

This volume is based on papers presented at the Final Conference of the
U.K. Science and Engineering Research Council's coordinated programme
of research in Distributed Computing Systems (DCS), held at the Univer-
sity of Sussex, Brighton, U.K. in September 1984,

Chapter 1 explains the origins and history of the DCS Programme and
gives an overview of the technical development of the programme, emerg-
ing research themes and achievements.

Chapters 2 and 3 are concerned with two approaches to local area net-
works. The Sussex network is a coaxial cable network using the broad-
band approach, whereas the University of Manchester's Centrenet is a
high bandwidth network using optical fibre as the transmission medium.

Chapter 4 is a review of the major imperative languages (including Ada
and variants of Pascal) which have been applied to, or developed for,
distributed computing.

Chapter 5 describes a strongly typed, distributed virtual memory
developed at UMIST. This paper shows how it is possible to extend the
data abstraction facilities of modern programming languages to include
all data, both volatile and persistent, local and distributed.

Chapter 6 describes the Conic system, an integrated set of tools for
constructing and managing large distributed computer control systems. A
key feature of Conic is the ability to manage evolving systems. A sys-
tem built using Coniec can easily incorporate new functionality in
response to evolutionary changes and existing components can be reorgan-
ized in response to operational changes.

The problem of specification of distributed systems introduced in
Chapter 6 is taken up in the next two chapters. Chapter 7 describes the
COSY system, a system to support rigorously reasoned design, development
and analysis of concurrent systems. Chapter 8 introduces the Z specifi-
cation technique and explores its application to distributed operating
systens.



xii Preface

Chapter 9 is a review of techniques for modelling distributed systems
mathematically. Systems discussed include distributed databases and
local area networks.

Chapter 10 introduces the DTL language for specifying and developing
concurrent systems. Programs are expressed as structured networks of
translations which communicate data on fully synchronized streams.

Chapter 11 discusses the design and performance analysis of parallel
algorithms. Both numerical (eigenvalue problem, heat-conduction prob-
lem) and non-numerical (sorting, merging) problems are explored.

Chapters 12 and 13 describe current research work at Queen Mary's Col-
lege, University of London. The first presents the active memory array
concept for the design of high-performance, high-integrity machines.
The second describes a solution to the problem of updating raster graph-
ics images at high speed, based on a regular two-dimensional array of
simple processor/ memory pairs.

The remaining chapters are concerned with declarative languages and
non-von Neumann computer architectures. Chapter 14 reviews current
directions in functional programming research. Topics covered include
languages, program transformation, evaluation order and implementations.
Chapter 15 describes the ZAPP project, which demonstrates how it is pos-
sible to "buy speed" for a significant class of problems by linking
together a large number of computing elements. Chapter 16 concerns the
Manchester dataflow project. Some of the technical problems encountered
in the construction of the prototype dataflow computer are described
along with their solutions. Software and performance evaluation issues
are also covered. Functional operating systems are discussed in the
final chapter, and it is shown how the shell (the component responsible
for structuring the interaction with the system user) of an operating
system can be built as a composition of purely functional programs.

The preparation of this volume has involved a great deal of work on the
part of the contributors, to whom I owe a deep debt of gratitude. This
volume also owes much to my secretaries, Janice Gore and Lilian Vallen-
tine for handling the mountain of correspondence that has crossed my
desk; and to my colleagues Fred Chambers, Gill Jones and Elizabeth
Fielding. Finally, I should like to thank Dick Grimsdale and John Golds
at the University of Sussex for hosting the Conference which provided
the incentive to produce this volume.

May this volume be a reminder of the enthusiasm and spirit of coopera-
tion which has existed in the DCS Programme and may it serve as a source
of encouragement to present and future workers in the field.

Feast of St Peter and St Paul David A. Duce
1984
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Chapter 1

The distributed computing systems programme
1977-1984

R. Newey

This volume forms the proceedings of a conference on Distributed Comput-
ing, sponsored by the U.K. Science and Engineering Research Council
(SERC) at the University of Brighton, Sussex 5/6 September 1984, The
conference was the culmination of SERC's Distributed Computing Systems
Programme (DCSP), 1977-84. The papers in this volume come from
researchers funded by the programme. Some papers describe individual
research projects, others review particular areas in the field.

This introductory paper describes the background to the programme,
its modus operandi, and technical development.

1.1. BACKGROUND

The body principally responsible for funding computer science research
in U.K. Universities and Polytechnics is the SERC. This responsibility
is discharged in the main by the awarding of research grants to institu-
tions. Funds may be requested for staff, travel and equipment, and in
addition investigators may .request access to the council's own facili-
ties, for example computing resources, typically located in one of the
council's laboratories. Research grant applications are considered by
the council's committees, whose members are drawn from academe and from
industry, together with assessors from other government departments.
Thus the principle of peer review is adopted, within a context which
evaluates the intellectual potential of the proposed research together
with the possibility of, eventual, industrial value.

The council operates mainly in a responsive mode, responding to
applications submitted by its clients, rather than a directive mode in
which the initiative for new projects rests with the council. Prior to
1977 Information Technology was funded purely in this responsive way,
although examples of different ways of working could be found in other
areas of the council's activities. There had developed a strong feeling
within the council committees concerned, that it would greatly enhance
the state of computing research in the U.K. if there could be identi-
fied a common focus for new activity. At the same time, it was becoming
increasingly obvious that a principal barrier to further development of
computing systems, was the inability to manage the power becoming avail-
able from cheaper, faster hardware; particularly when many processors
were grouped in complex, concurrent networks: that is, distributed com-
puting. The Computer Science committee, recognizing the importance of
distributed computing as a research area, appointed a panel in June 1976
under the chairmanship of Prof. I. Barron, to consider what action was
necessary to encourage, coordinate or direct research in Distributed
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Computing. This panel was asked to take particular account of the
potentially high cost of such research and the avoidance of unnecessary
duplication of effort.

In its report to the committee in October 1976, the panel recom-
mended that a coordinated research programme should be established and
that additional funds should be sought for the programme. When a draft
programme was circulated to relevant academic departments for comment,
more than 50 replies were received, the great majority expressing a
desire to participate and offering useful criticisms of the proposed
mechanics and content of the programme. A one-day Workshop, in March
1977, provided an opportunity for a direct exchange of views on the ori-
ginal proposal and on the research problems to be addressed. The panel,
in response to these helpful interchanges of views, revised a number of
its original proposals.

The eventual proposal to set up a coordinated programme of research
into Distributed Computing Systems was warmly welcomed by the Engineer-
ing Board of SERC. Approval in principle for the programme was given by
the Board in June 1977; the programme was initiated in the academic year
1977-78. DCS was the first attempt by SERC to establish a long term,
extensive, coordinated programme of research in Information Technology.

The primary scientifiic objectives of the programme were to seek an
understanding of the principles of Distributed Computing Systems and to
establish the engineering techniques necessary to implement such systems
efficiently. These broad objectives reflect the relative immaturity of
the subject when the programme was founded. In particular the programme
sought to establish an understanding of parallelism in information pro-
cessing systems and to devise ways to take advantage of this.

The practical objectives of the programme can be summarized [1] as:
to achieve results of practical value to the U.K. industry by directing
research to a key area for the future; to promote relevant Computing
Science research of high quality in academic departments by coordinating
the efforts and achievements of individual research teams, and to ensure
a cost effective research programme.

A Distributed Computing System was considered to be one in which
there are a number of autonomous but interacting computers cooperating
on a common problem. The essential feature of such a system is that it
contains multiple control paths executing different parts of a program
and interacting with each other. Such systems might consist of any
number of autonomous units, but the more challenging problems involve a
large number of units. Thus, the spectrum of Distributed Computing Sys-
tems includes networks of conventional computers, systems containing
sets of microprocessors, and novel forms of highly parallel computer
architecture with greater integration of processing and storage.

The motivations for and importance of research into distributed
computing systems are many and varied. Some major ones are:
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- Performance: eventually it will be impossible to increase the speed
of a single processor and retain commercial viability. Several pro-
cessors, cooperating on a single task, will be the only way to
greatly enhance performance.

- Reliability: a fully distributed system should be able to tolerate
faults caused by either software or hardware. Hardware faults can
be tolerated for example, by having more than one of each critical
element. Software faults can be reduced by running different algo-
rithms in parallel and checking the validity of results.

- Clarity: many problems are naturally parallel. Some problems are
inherently simpler if expressed as a set of interconnected and com-
municating processes. If a problem's solution is expressed in this
way it could be easier to provide a proof of correctness for the
whole solution by breaking the proof task down, first proving the
correctness of individual processes, and then proving the correct-
ness of their interconnection.

- Distribution: in areas such as real time control it is often impor-
tant that processor power is available where it is required in
order to minimise the bandwidth requirements of data paths.

- Cost: the low cost of microprocessors allows certain tasks to be
performed more economically on sets of microprocessors than on a
single main frame processor.

1.2. MANAGEMENT OF DCS

We have already mentioned two extreme ways in which SERC operates,
responsive mode and directed mode. In responsive mode the initiative
for new projects rests entirely with investigators. Submissions are
made to SERC as new ideas are conceived and support becomes necessary.
The committees reviewing grant applications can only exercise control at
bottom, by accepting or rejecting applications. The other pole to this
model is a totally directed programme in which essentially, the Direc-
tor, issues invitations to research groups to work on particular prob-
lems. The initiative for new work then rests entirely with the Direc-
tor. In practice, of course, neither extreme is fully adopted - any
research programme which is to be successful must take account of the
talents and interests of the research community, and equally the commun-
ity must understand that the availability of 1limited funds makes it
impossible to pursue all lines of research that, at first sight, seem
promising; priorities must be established.

Within this scheme, a coordinated programme falls mid-way between
the two extremes. The aim of coordination is to establish a symbiotic
working relationship between the committee responsible for the manage-
ment of the programme, whose chief concern lies in the proper adminis-
tration of limited resources, and the researchers whose concern is the
pursuit of knowledge in their chosen disciplines. It is essential to
create an atmosphere of mutual understanding and cooperation among the
researchers themselves, and to create an enviromment in which research
ideas can be discussed and priorities agreed.
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There were two main reasons for adopting a coordinated approach to
research in distributed computing. First reflecting the importance of
the subject to the progress of computing and information technology, it
helps to ensure a reasonable balance of SERC support across the various
areas concerned; and a framework facilitating take-up of research
results by industry. Second the substantial costs of much research in
this field, and the limits of funds available, make it essential to pro-
vide support in a cost effective way - without impinging on the neces-
sary freedom of investigators in carrying out fundamental research.

The idea of a fully directed programme was explored but subse-
quently rejected. (The idea of a directed I.T. programme has now been
realized in the Alvey programme.)

What then are the practicalities of coordination? Coordination has
been achieved at two levels. First within the programme itself, there
has been continuing contact with investigators, starting with assistance
in formulating research proposals, and throughout the research period,
by regular interchange of information both spoken and written. Second,
outside the programme, links have been fostered with industrial organi-
zations (including government establishments etc.) likely to make use of
the research in some form.

The coordination team includes an Academic Coordinator (drawn from
the staff of SERC Rutherford Appleton Laboratory), responsible princi-
pally for liaison with and monitoring of the research projects; and an
Industrial Coordinator, (from industry) who is also charged with expand-
ing the external contact range of the research, with a view to colla-
borative research and technology transfer. The coordinators are sup-
ported by a Technical Secretary and by various support and development
staff maintaining and enhancing the programme's infrastructure. When
the programme was established it was envisaged that coordination would
not be a very demanding activity and so the first coordinators were
employed on a part-time (1 day per week) basis. It rapidly became clear
that this premise was false and that coordination is a very demanding
activity indeed. Since the earliest days of the programme the Academic
Coordinator has been employed on a full-time basis, but the Industrial
Coordinator has remained a part-time appointment.

The programme has been monitored and controlled by a panel of
researchers and industrialists, appointed by the council, to whom the
coordinators report. The panel has both evaluated and recommended award
of research grants in DCS subject areas, and considered regular six-
monthly progress reports from each group in the programme.

1.3. INFRASTRUCTURE ACTIVITIES

A major factor in the development of the DCS programme has been the
recognition of the need for a well appointed infrastructure on which to
build research programmes. The infrastructure provided by DCS has
included a meetings programme of workshops and conferences, a community
wide mailshot, Annual Report, an equipment pool, and a high level of
backup technical support.
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1.3.1. Meetings programme

To be successful, a coordinated programme must engender a sense of com-
munity in its participants. It must also bring together disparate
groups of researchers in a constructive way, to foster the germination
of new ideas or new approaches to traditional problems. The single most
influential factor in bringing this about within the DCS programme has
been the workshop programme. Some of the most significant pieces of
research in the programme can be traced back to particular gatherings of
researchers. Considerable experience in organizing workshops has been
built up in DCS. The most fruitful meetings have typically been of 1
1/2 days duration and limited to 25-30 participants. As the programme
evolved and research themes became established, meetings of researchers
in each area were held at regular intervals, to monitor and discuss pro-
gress.

1.3.2. Conferences

As the programme matured, it became appropriate to hold an annual
conference, attended by all the research groups within the programme
plus other interested researchers and practitioners from both industry
and academe. In March 1983, as well, a special conference was held at
the NCC in Manchester entitled Distributed Computing - A Review for
Industry {2], to acquaint senior technical management in U.K. industry
with the work of the programme.

1.3.3. Mailshot

From the earliest days of the programme a monthly mailshot was sent to
all participants. The mailshot is a collection of papers submitted by
the participants themselves and its contents ranged from draft technical
papers for comment through to announcements of forthcoming meetings. A
particularly valuable feature has been the inclusion of trip reports.
It was made a condition of overseas travel that a trip report should be
produced for the mailshot. This has proved a very valuable way of keep-
ing the programme abreast of developments overseas.

1.3.4. Annual Report

From the start, the programme has produced an Annual Report, containing
an overview of each project within the programme [1]. This has proved a
very valuable introduction to the programme for both industry and
academe.

1.3.5. Equipment Pool

At an early stage the DCS panel decided to establish an equipment pool
from which investigators could borrow. Initially the pool was stocked
with magnetic tape decks, VDU's and modems to improve communications and
software interchange between research groups. A key decision was to
provide Unix (TM) licences for the programme. As time has passed the
pool has grown and now includes local area network equipment (Cambridge
f(iing), X25 connections and high performance single user workstations
Pergs).
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Electronic communications between projects within the programme
have steadily improved, through the provision of hardware to 1link to
either the Universities/ Research councils X25 network, JANET, or Brit-
ish Telecoms PSS network. X25 software for the Unix operating system
has been produced by the University of York. This is a good example of
one of the benefits of coordination: recognizing the need for this
software, the DCS panel funded just one site to produce it. Without
coordination there would have been a real danger of many sites embarking
upon the same project with consequent wastage of effort.

1.3.6. Technical Backup

SERC operates a number of laboratories to provide specialized services
and facilities to SERC funded projects. Within the computer science
area, SERC's Rutherford Appleton Laboratory (RAL) provides, for example,

large mainframe computers and microelectronics design and fabrication
facilities.

The DCS programme has been supported by RAL since January 1978,
The Academic Coordinator and Technical Secretary are on the staff of RAL
and other RAL staff provide software and hardware support for the pro-
gramme. RAL support has included:

- Support for the Unix operating system used by the majority of DCS
investigators.

- Provision of software to couple the Unix troff text formatting
software to SERC's III FR80 microfilm recorder.

- Assembly and distribution of software to drive the Cambridge Ring.

- Construction of 6 Cambridge Rings for the DCS equipment pool and
procurement from industry of a further 10 6-node ring systems.

- Procurement, distribution and maintenance of the equipment pool.
- Support and operation of the programme's electronic mail faeility.

1.4. RESEARCH THEMES

When the DCS programme was first established, the DCS panel categorized
the research into five major topic areas, representing a progression
from fundamental theory to novel applications. The areas were:

- Theory and Languages: An adequate theoretical basis for Distributed
Computing Systems.

- Resource Management: Distribution of control, allocation, schedul-
ing and organization.

- Architecture.
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- Operational Attributes: Particularly reliability and performance.

- Design, TImplementation and Application. Hardware and software
techniques for development and implementation.

As the programme evolved, projects have clustered around emerging ways
in which to structure distributed systems which may be claimed reason-
ably as emerging ground themes:

s Loosely-coupled distributed systems. Such systems are multicom-
puter configurations that do not share immediate memory and can be
dispersed over wide geographical areas. Research in this area has
been concerned with the overall structure of such systems, require-
ments for operating systems appropriate to this environment and
related programming languages.

2. Closely-coupled distributed systems. Typically systems which do
share a common memory. Again research has been concerned with
architecture, operating systems, programming languages and applica-
tions.

3. Non von-Neumann architectures. Research in this area has been con-
cerned with alternative ways to provide high speed numerical com-
puting and with architectures to support the efficient evaluation
of declarative languages.

A fourth major theme in DCS has been concerned with theories of parallel
computation and with the development of notations and techniques for
specifying and verifying such systems.

The work on loosely-coupled systems can be traced back to the work
of Wilkes, Needham and others at Cambridge which led to the construction
of the Cambridge Distributed Operating System [3]. A key component in
this work was the design of the Cambridge Ring local area network, the
design study for which was published in 1975. This work commenced prior
to DCS, but later Cambridge work was DCS funded. From Cambridge, this
approach spread to the University of Kent and other sites, including
York, Keele, Oxford, Strathclyde and Newcastle; all of whom have made
their particular contribution to knowledge in this area. A particularly
important step came early in 1980 when DCS constructed 6 Cambridge
Rings, each of four nodes, to the Cambridge Mark 2 design. The demand
for this equipment from research groups was considerably in excess of
supply and the panel, recognizing the opportunity to foster the take-up
of this result by industry, placed a contract with U.K. industry for the
construction of further Ring hardware. This was a formative step in
establishing the supply of Ring equipment in the U.K. The availability
of common hardware for the pursuit of research in this area had a very
beneficial effect in drawing research groups together.

Work in the tightly-coupled systems area can be traced back to pro-
jects in Evans' group at Loughborough and Aspinall's group at Swansea
(now at UMIST). Grimsdale's group at Sussex were subsequently funded to
work in this area. Dixon at Hatfield Polytechnic and Evans have
explored the application of such systems to various classes of numerical
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problems.

The non-von Neumann architectures work can be traced back to pro-
Jjects at Manchester, Newcastle and Westfield College, concerned with the
dataflow approach. A seminal event in this area was a Workshop at New-
castle in 1979 which brought together the dataflow researchers and
researchers in the fields of applicative and logic languages. This led
to a number of proposals for ways to exploit parallelism for efficient
execution of such languages and for further language development work.
DCS has been largely responsible for the creation of the strong U.K.
research community in this field.

Our fundamental understanding of concurrency has been greatly
enriched by the work of Milner and Plotkin at Edinburgh and Lauer at
Newcastle. It is only proper to acknowledge the great contribution of
Hoare's group at Oxford to this field, though this was not funded
entirely by DCS. The recent work by Hoare's group on the specification
of distributed systems has been funded by DCS and is described in the
chapter by Morgan and Gimson. Cunningham, Kramer and Abramsky at
Imperial College have also made significant contributions to this area.
Design methodologies for distributed systems are discussed in the papers
by Hughes and Powell, and Sloman and Kramer.

Performance modelling of distributed systems has been extensively
investigated by Mitrani at Newcastle and a review of the area appears
later in this book.

1.5. INDIVIDUAL PROJECTS

It is useful to describe a small number of the projects funded by ICS,
by way 'of illustration and to set in context the subsequent chapters in
this book. Descriptions of all the projects funded may be found in [1].

The Manchester Dataflow Project has demonstrated the viability of a
parallel computing system based on the dataflow model of computation,
which exploits irregular parallelism at the instruction level. It
allows a wider range of applications than the more rigid vector and
array processors. The prototype machine has demonstrated performance
improvements through concurrency almost lineal for up to 10 processing
elements. This project has delivered concrete results where previously
there was only speculation. The prototype hardware is being used both
by research institutions and by industry to assess the direction of
future dataflow products.

In the declarative architectures field, the ALICE Project is inves-
tigating the development of applicative languages, their use in real-
world problems, formally based development systems and implementations
on highly parallel architectures. This project has received a great
deal of public interest and has produced signifiicant papers on language
design, programming methodology and computer architecture.

Turner (Kent) has made great contributions to the areas of declara-
tive language design (SASL, KRC, Miranda) and evaluation (combinators).
Henderson (Stirling) has explored the problems of producing purely
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functional operating systems. Sleep (East Anglia) has also explored the
distributed evaluation of applicative languages.

Within the loosely-coupled systems field, the Unix United work of
Randell's group [4] has received wide acclaim. This development was
funded by DCS and is being exploited commercially. Distributed file-
stores and operating systems have also been investigated at Keele (Ben-
nett), York (Wand), and Strathclyde (Shepherd). Bornat and Coulouris
(QMC) have investigated one approach to the construction of such systems
(Pascal-m)

The main groups in the tightly-coupled systems area are those of
Aspinall (UMIST), Evans (Loughborough) and Grimsdale (Sussex). Each has
constructed a model system and explored its applicability to a range of
problems.

The work of Milner and Plotkin on theoretical models of concurrent
systems has received world-wide acclaim, Several U.K. companies are
exploring the applications of these techniques to their application
areas. Cunningham's group (Imperial College) and Hoare's group (Oxford)
have made significant advances in the specification of concurrent sys-
tems.

16,

SOME STATISTICS

The box (Fig 1.1) illustrates the scale and breadth of involvement which
DCS has created and managed over the past few years. In particular, we
believe that the investment which the programme has made in infrastruc-
ture and coordination, amounting to about 27% of the funds expended, has
enhanced the overall value of the activity enormously.

1.7. ACHIEVEMENTS

The major achievement of the DCS programme has been to create a strong
research community in the U.K.

It is not too strong to claim that without DCS the discussions
which lead to the formation of the Alvey programme could not have taken
place. DCS has also established new research groups where none previ-
ously existed and has enabled a number of young researchers to become
established in the field much more rapidly than otherwise would have
been the case. The human interface between the management panel and its
clients through the coordinators has been a key factor in bringing this
about .

The establishment of the U.K.'s strong position in declarative sys-
tems research owes much to DCS.

Now that the DCS programme has ended, the work funded by DCS will
continue through either the Alvey Directorate or the SERC's Computing
Science Sub-committee as appropriate. Research ideas fostered by DCS
are appearing in products through the Alvey programme.

Many of the lessons learnt in the DCS programme have been
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Normal research grants awarded 103
Cooperative grants awarded

Visiting Fellowships awarded 20
Universities holding DCS grants 23
Polytechnics holding DCS grants 3

Number of research staff employed (approx) 150

Total value of grants awarded 6.3M
Expenditure on coordination 0.1M
Expenditure on infrastructre 2.0M
Total expenditure 8.™
Fractional spend on infrastructure 23%
Fractional spend on coordination 4.6%

Fig.1.1

incorporated in the Alvey programme, for example the need for full-time
technically competent staff to manage the programme and the need for
infrastructure both in terms of a workshop programme and computing
resources.

This book, plus the research publications of the participants in
the programme, mark the intellectual achievement of the programme. In
terms of contribution to knowledge, the programme should claim, for
example: the advance and earliest use of local networking technology
through the Cambridge Ring; the development of new architectural tech-
niques, particularly for Dataflow and Graph Reduction systems; creation
of some of the first techniques for specifying and describing concurrent
computation; and methods for performance modelling and analysis in com-
plex systems.

Technology transfer to industry is much harder to estimate. The
main products of the DCS programme are ideas and demonstrations of
ideas, rather than systems that can, and should, be turned directly into
commerical products. Trained manpower has also been a major product of
the programme, and it is through this avenue that technology transfer is
best being achieved. More than one company, has benefitted directly
from DCS manpower!

1.8. ACKNOWLEDGEMENTS
The DCS programme has involved a very large number of talented research-
ers, whose contributions to the programme I wish to acknowledge globally
here. I also wish to acknowledge the contributions made by the former
chairmen of the DCS panel, Iann Barron, Ian Pyle, and Roger Needham,
together with all who have served on the panel; and above all the coor-
dinators of the programme, Bob Hopgood, Gill Ringland, Rob Witty, Jeremy
Tucker, David Duce and Fred Chambers.
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Chapter 2

The Sussex broadband LAN project

F. Halsall

2.1 INTRODUCTION

This project evolved from a study conducted some time
ago into the provision of a flexible data transmission
system for use on the University campus. All the existing
data transmission services on the campus at that time had
been provided by installing ad hoc wire systems as each
requirement arose with the effect that each new requirement
necessitated the installation of a new set of cables. The
planned expansion in the type and range of computer services
to be provided over the next few years meant that it was
essential to investigate the provision of a flexible under-
lying data transmission system which, ideally, could support
not only the existing and planned services but also have
sufficient flexibility and capacity to allow for future
requirements to be met without the major uvheavals that are
currently involved.

At the time the early investigations were being made,
there was much interest being shown into exoloiting the use
of coaxial cable networks similar to those already in wide-
spread use in the Community Antenna Television (CATV)
industry as the basis for providing a wide range of alter-
native data transmission services on a single cable network.
Unfortunately, however, most of the svstems being offered at
that time were of overseas origin, even though much expertise
in this field was available in this country. This project
evolved, therefore, as a collaborative venture with a local
company - Rediffusion Engineering - aimed at providing the
various additional equipments which are necessary to exploit
the use of a CATV-based coaxial cable network to meet the
planned and future data transmission services of an estab-
lishment similar in size to a university campus.

2.2 REQUIREMENTS

Before describing the Sussex network, it is perhaps
helpful to first outline the data transmission r-equirements
of an establishment like a university campus. The tradit-
ional and still the major service supported at most uni-
versities is concerned with providing a distribuvated community
of low bit rate (<9607 bps) terminals accessing one or more
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computer systems which are normally located in a centralised
building known as the Computer Centre. To add flexibility,
many Centres have installed Terminal Switching Exchanges
(TSEs) which then allow the terminals to gain access to any
of the Centre's machines on switched basis.

As the cost of computing hardware has fallen over the
past few years, there has been a trend for some of the
larger computer user departments to acquire their own
systems can normally meet most local computing needs, how-
ever, there are also instances when a user connected to one
of these systems also requires access to the more extensive
range of services provided on one of the Centre's machines.
To meet this type of requirement, either those user term-
inals which require this facility are connected, not directly
to their own local computer, but rather to the Centre's TSE
together with a number of terminal ports from the local
computer. In this way the user may then login through the
TSE either to his own local machine or to one of the Computer
Centre's machines. This assumes, of course, that the cen-
tral TSE has sufficient spare capacity. An alternative
solution, certainly if the demand for this type of service
is high, is to install a spare satellite TSE in the remote
building which is then connected by means of a high bit
rate link (typically 1.5 Mbps) to the central TSE. In this
way, a user may login either to his own local machine (s) or
to one of the Centre's machines via the central TSE.
Multiple satellite TSE's may be installed and used in a
similar way.

More recently, there has been a trend towards individ-
ual users and departments obtaining various personal comput-
ers (PCs) to Isupport word processing and other services.
Although these are currently being used as single-user stand
alone systems, local user communities with such systems are
already planning to be interconnected to share some local
resource such as a printer or file system. Moreover, some
users are also expressing a wish to use their systems to
gain access to wider computing resources from, say, one of
the Computer Centre machines. The currently favoured
approach to meet this type of requirement is to install a
local basedband network-Ethernet, token ring, etc. in each
building to allow users in that building to communicate and
access local shared resources and then to provide a
bridging node into a campus-wide high bit rate (10 Mbps) net-
work. The latter will then also be used to provide a campus-
wide facility for computer-to-computer communication.

In summary, the data transmission requirements of a
university campus are extremely varied but, it is felt,
typical of many similar establishments. When planning a
data transmission system to meet the range of services out-
lined, therefore, it is essential that the selected system
has a high degree of flexibility and capacity to ensure that
it meets not only the existing and planned requirements but
also possible future requirements. The use of a broadband
coaxial cable network of the type to be described has this
capability.
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2.3 BROADBAND DATA NETWORKS

There is currently much interest in exploiting the very
wide bandwidth available in a coaxial cable to derive a wide
range of data transmission services form a single coaxial
cable network. With a baseband cable network-Ethernet,
Token Ring, etc. the available bandwidth is used to provide
a single, high bit rate channel typically of 10 Mbps. The
latter is then time shared between multiple users using a
particular media access method. The major use of baseband
coaxial cable networks, therefore, is for interconnecting
distributed communities of computer-based equipments which
can operate and exploit this high bit rate capability.

An alternative way of utilising the high available
bandwidth of a coaxial cable, is to use frequency-division-
multiplexing (fdm) techniques to divide the total available
bandwidth into a number of sub-frequency bands or channels
each capable, with the aid of a suitable pair of r.f.
modems, of satisfying a particular data transmission service
This approach is known as broadband working and the same
principle is currently in widespread use in the CATV indus-
try to multiplex a number of TV channels onto a single
coaxial cable. A schematic of a typical CATV system is
shown in part (a) of Figure 1. Each TV channel is allocated
a particular frequency band, typically of 6 MHz bandwidth,
and the received video signals are then used to modulate the
selected carrier frequencies. The modulated video signals
are then transmitted over the cable network and received at
each subscriber outlet.

In a similar way it is possible to derive a range of
data transmission channels from a single cable by allocating
each channel a portion of the total bandwidth; the amount
of bandwidth for each channel being determined by the
required data rate. For data communication, however, a two-
way (duplex) capability is normally required. This may be
achieved in one of two ways: either the transmit and
receive paths are assigned two different frequency bands on
the same cable - single-cable-system - or, two separate
cables are used, one for the transmit path and the other for
the receive path - dual-cable system. A schematic of each
type of system is shown in parts (b) and (c) of Figure 2.1.
The main difference between the two systems is that a dual-
cable system requires twice the amount of cable and cable
taps to install. Nevertheless, with a dual-cable system
the total cable bandwidth - typically 5 to 440 MHz - is
available in each direction. Moreover, the headend equip-
ment is simply an amplifier whereas with a sing le-cable
system, a frequency translator is required to translate the
incoming frequency signals associated with the wvarious
receive paths to the corresponding outgoing frequencies used
for the transmit paths.

2.4 THE SUSSEX NETWORK

A schematic layout of a cable network suitable for the
Sussex Campus is shown in Figure 2.2. Althoughh in principle
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a single coaxial cable is used, as can be seen, in the
planned system the basic trunk network is a tree topology
with the Computer Centre at the root node (headend). The
layout of the distribution cable in each building will vary,
of course, and hence the aim in the first instance will be
to establish a campus-wide trunk network of the type shown
with trunk solitters and local distribution amplifiers at
the entrance to each building. Sufficient spare signal
capacity will then be provided at the entrance to each
building to support both the current and projected data
transmission requirements in that building. Hence once the
trunk cable network has been layed, all future cabling will
be constrained to within each building.

Most of the equipment shown in Figure 2.2 is readily
available from any of the many manufacturers of CATV com-
ponents. The major part of the work associated with this
project, therefore, has been concerned with the design and
production of a range of r.t. modems suitable for use with
this type of network. The prototype modems currently being
evaluated are:

- a low bit rate (<19.2 Kbps) asynchronous/synchronous
duplex modem for use with a set of dedicated point-to-
point or multidrop channels;

- a low bit rate (<19.2 Kbps) microprocessor-control-
led frequency agile modem for providing a switched
communications facility between a community of devices;

- a high bit rate (10 Mbps) CSMA/CD modem to provide
a high bit rate channel suitable for computer-to-com-
puter communication.

The design of each type of modem will now be described.

2.4.1 Low Bit Rate Fixed Frequency Modem

For ease of implementation and minimum cost, this mod-
em uses simple FSK modulation. Each 19.2 Kbps full. duplex
modem requires a total of 80 KHz of bandwidth - 40 KHz for
the transmit path and teh same for the receive path. Thus
a 6 MHz band - as used for (U.S.) television =~ can support
75 such modems. To achieve flexibility, the transmit and
receive frequencies of each modem are derived from a
frequency synthesiser whose freguency is controlled by a
suitable binary control word set on a pair of DIL switches
within the modem.

A schematic of the r.f. circuitry within this modem is
as shown in Figure 2.3. The data to be transmitted are
first modulated - part (3) - onto a fixed intermediate
carrier frequency and the resulting modulated signal is
then band-limited and filtered. This signal is then mixed
with the output of the frecuency synthesiser whi¢h shifts
the mixed signal into the desired output frequency band.

A bandpass filter is then used to suppress the unwanted
mixing products.
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A reciprocal process is used in the receiver section.
The receiver takes the form of a superheterodyne: the in-
coming signals are mixed with the frequency synthesiser
which places the desired signal in an I.F. 'window' after
which F.M. demodulation takes place using standard phase-
lock~-loop techniques. Such a system, tuned by a single
frequency synthesiser, would mean that the receiver would
also be tuned to the transmitter frequency. For full-duplex
operation, however, two separate frequencies must be used as
shown in part (b) of the figure. To achieve this, a dual
conversion is performed in the demodulator - part (c). The
second local oscillator is switched up or down in frequency
by one channel spacing by means of a switch within the modem
thus providing the necessary shift between the transmit and
receive frequencies. The receiver design shown is intended
for a dual cable system but a single-cable design is readily
achieved by down-converting the receive frequency band to
its original transmit frequency before demodulation. A
standard RS-232C interface is provided at the user interface
to the modem.

2.4.2 Frequency Agile Modem

This design of modem is intended to provide users with
a low bit rate (<19.2 Kbps) switched communication facility
between a community of devices which support a basic RS-232C
interface port; in this instance the cable is being used to
provide a form of distributed switch.

The r.f. section of this modem is very similar to that
just described except that the transmit (and hence receive)
frequency is controlled by a microprocessor rather than
simple switches. The control protocol of the modems is
similar to that used for CM radio: there is a common signel-
ling channel - operated using CSMA/CA technigues - to which
all other modems are tuned when not in use. Each modem has
a unique network-wide address and, whenever a user wishes to
communicate with another user, the user enters the required
destination address. The controlling microprocessor (with-
in the modem) first scans the available channels to find a
free channel. It then creates a frame with the required
destination modem address and the selected channel number
within it and broadcasts this on the common signalling
channel when the latter is free (quiet). It then controls
the r.f. circuitry to move to the selected channel to wait
for a response.

Assuming the called modem is not busy, it receives the
calling frame on the common channel by detecting its own
address in the frame header and then causes the r.f. cir-
cuitry to move to the selected channel. It then responds
with an acknowledgment frame on the selected channel.

Both micorporcessors then connect their RS-2320 ports to the
input of the r.f. section and communication between the two
user devices can then commence, the presence of the r.f.
modems being transparent to both users. Either user can
close the connection at any time simply by pressing a key
on the modem. Also, there is a timeout mechanism operated
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by the microprocessor: if there are no transmissions on
either channel for a set period of time, the connection is
automatically cleared and the user informed.

Contention on the common signalling channel is resolved
using a technique known as Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA). When in the calling
state, both the transmit and receive sections of the modem
are tuned to the signalling channel. The receiver is used
therefore to provide the carrier sense signal. When the
originating modem has found a free channel and wishes to
send a connection request frame on the signalling channel,
it first waits until the carrier sense signal becomes false.
It then waits a further short random time interval and, if
the channel is still free, sends the frame. In addition,
the calling modem remains on the signalling channel until
it receives the connection request frame back via the cable
headend. Then, if this is corrupted, it will repeat the
calling procedure again. If it is correct, however, it
moves to the previously selected channel to await the receipt
of an acknowledgment frame from the called modem.

If a correct acknowledgment is received the procedure
is as above. If no acknowledgment is received within a set
time interval, the called modem is assumed to be either busy
or disconnected. The calling procedure is therefore repeated
a second time but if the called modem does not respond to
the second connection request a 'destination~-not-available'
response is fed back to the user.

2.4.3 High Bit Rate Modem

The two previous types of modem are intended for low bit
rate applications. In addition, however, it is the aim to
produce a range of high bit rate modems (<1 Mbps) suitable
for both dedicated point-to-point applications and also
switched applications. With respect to the latter a pro-
totype modem design is now operational which supports a
10 Mbps CSMA/CD (Ethernet) channel on the cable and its
design will now be outlined.

The aim of this design is for the modem to present a
transparent interface to the host system; in practice, the
user interface is the same as that used for a tranceiver
unit connected to a baseband cable. An important aspect of
the modem design, therefore, is to perform the collision
detect function. With a baseband system this is readily
performed since simple electronics within the tranceiver
detects if the signal present on the cable is di fferent from
that being transmitted and, if it is, the collision-detect
control line is activated and the host ceases transmission.
In the broadband system, however, the transmit and receive
channels are different. Moreover, data transmit-ted on the
transmit channel are not received until the sigrial has
propagated through to the headend of the cable and back
again; collision detect by instant comparison of the trans-
mitted and received signal is therefore not posssible.

One obvious solution is to retain a copy of a certain
number of bits transmitted in, say, a shift regi.ster and to
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compare the contents of the shift register with the bit
stream being received. Problems arise with this method,
however, since the received signal levels of the two (or
more) colliding modems (stations) may differ by as much as
6 dB - a feature of the cable design. This means that the
modem with the higher signal level still receives the data
correctly as it dominates the channel and hence only the
modem with the lower signal level can detect the collision.

The solution adopted, therefore, endeavours to over-
come this problem by exploiting the modulation technique
being used. High bit rate channels such as Ethernet - which
employs Manchester encoding - require a significant portion
of the cable bandwidth. To minimise the amount of bandwidth
utilised, therefore, ducbinary AM-PSK modulation is used.
Normally, with this method only the amplitude of the demod-
ulated signal is recovered to derive the baseband data. By
also examining the phase variations of the received signal,
however, a reliable method for determining non valid - and
hence corrupted - duobinary AM-PSK signals can be obtained.

A block schematic of the CSMA/CD modem is shown in
Figure 2.4 and Figure 2.5 illustrates a typical set of wave-
forms produced by the modulation and demodulation circuitry.
The baseband data are first passed into the precoder. The
funciton of the latter is to count the number of 1's in the
incoming data stream; when there is an odd number, the out
put is high (1) else it is low (0). This signal is then
passed to the PSK generator which produces a bi-phase PSK
signal corresponding to the states of the precoder output.
Finally, the PSK signal is fed to a bandpass filter. The
filter is an important element in the modulator since it
performs the function of adding the PSK signal of the pre-
vious bit to that of the current bit. This has the effect
of producing an AM signal whose amplitude corresponds to the
baseband data. Another function of the filter is to limit
the bandwidth to a minimum; for example, a 10 Mbps channel
requires only 5 MHz (3dB) of bandwidth.

The recovery of the baseband data from a duobinary
AM-PSK signal is straightforward and hence needs no further
explanation. As has been mentioned, however, it is also
possible to use the phase variations associated with this
type of signal as a means for detecting a collision. Care-
ful examination of the waveforms shown in Figure 2.5 will
show that the phase variations of the encoded waveform are
related to the data stream: when there is an odd number of
1's between two strings of O's, there is a 180 degree phase
shift in the carrier representing the two strings of O's;
if there is an even number of 1's there is no phase shift in
the carrier. Hence, by recovering the phase variation infor-
mation from the received signal and comparing this with the
recovered baseband data, it is possible to detect when a
corrupted AM-PSK signal has been received. Since the noise
level of a broadband cable is very low, this can reliably be
interpreted as an occurrence of a collision on the cable.

2.5 CURRENT STATUS AND DISCUSSION
At the time of writing this paper (April 84), a number
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of modems have been built based on the outlined designs and
are currently being tested on a laboratory experimental
cable system. When these tests have been completed, it is
planned to test the modems on a skeleton trunk cable net-
work which effectively links two buildings to the Computer
Centre. All indications to date are that the modems will
operate satisfactorily and coexist on a more substantial
network. Since most of the trunk and feeder cable compon-
ents are know to be very robust, it is strongly felt that a
broadband coaxial cable distribution network of the type
outlined offers a viable alternative for meeting the wide
and diverse data transmission requirements of an establish-
ment like a university campus.



Chapter 3

Implementation of a high performance LAN
—Centrenet

D. A. Edwards, R. N. Ibbett, T. P. Hopkins

3.1 INTRODUCTION.

Historically, there have been two main motivations for
the interconnection of processors to form a network.
Firstly, users on different machines, often on different
sites remote from one another, have had the need to exchange
data on an irregular basis. This has led to the development

of wide-area-networks (WANs) of varying complexity,
typically using telecommunications technology for the
interconnections. Such 1links have tended to be slow and

used primarily for file transfer operations; latterly
electronic mail and "bulletin board" activities have become
increasingly important.

The second motivation for networking has been that
users, local to one site, have wanted to be connected
together in order to increase the facilities or computing
power available to all. The local interconnection may be
that of a number of processors tightly-coupled in order to
form a high speed multi-computer system. An example is the
MU5 computer system (Morris and Ibbett (1)) designed and
built in the Department of Computer Science. In other
cases, the local interconnection is a loose coupling of a
number of processors to provide a sharing of expensive
resources (fast line printers, archiving facilities,
number-crunching CPUs etc). This form of network is
generally referred to as a local-area-network (LAN), and has
become increasingly important as the cost of processing
power has decreased, and computing resources have become
more decentralised. LANs have generally traded the speed of
tightly-coupled multicomputer systems for increased size and
flexibility. The differences in use between WANs and LANs
have become blurred. Wide-area networks support resource
sharing either of hardware or of software packages; for
example SERC's Rutherford Appleton Laboratory provides VLSI
design facilities for remote users. On the other hand, LANs
are used for file transfer between disparate machines and
operating systems and for network mail. An aspect of
networking which should not be overlooked is the extent to
which a user community is fostered.
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The Department of Computer Science has a long history
of the design and implementation of hardware and software
for large computer systems (Lavington (2)). The successor
to the MU5 system is a hierarchical multicomputer complex
known as MU6 (Edwards et al (3)). The MU6 proposal required
high speed interconnection of processors, but with more
flexibility than that provided by the MU5 switching scheme,
the MU5 Exchange. An investigation into the hardware
required, and an examination of existing LAN technology
(Hopkins (4)), resulted in a realisation that a more general
approach should be adopted.

3.2 CENTRENET PHILOSOPHY.

The MU6 project is but one of a number of many research
activities in progress in the Department. Each research
group typically makes heavy demands on its own set of
resources but occasionally needs to attach itself to other
computers or peripherals. The situation existing within the
Department is a reflection of that existing on the campus
generally. Here there are many groups of users who are
concentrated in a number of buildings, which are scattered
over several kilometers. Most have computer facilities of
their own but need to communicate with UMRCC (the University
of Manchester Regional Computer Centre). A network capable
of catering for all these users would have to provide not
only a large number of machine connections, but also a very
large number of terminal connections. The environment
described above is also true of many large industrial sites
which have computing units in different buildings.

In addition, therefore, to meeting the needs of the MU6
complex, it was decided that any network chosen should
reflect the actual topology of usage: localised clusters of
users requiring communication with other clusters. Higher
transfer rates are required for local traffic (i.e. within a
cluster) than for remote communication (intercluster
communication). Thus both high connectivity, in order to
accommodate the potentially large number of terminal
connections, and high localised bandwidth is required. It
was felt that existing LANS such as the Cambridge Ring
(Wilkes and Wheeler (5)) and Ethernet (Metcal fe and Boggs
(6)) did not reflect the real topology of usage described
above. They have the disadvantage that, for wvarious
practical reasons, large numbers of connections may only be
obtained by linking together subrings, or subrets by means
of gateways or network bridges. A further drawback of both
these systems is that bandwidth is shared amorg all users.
This may be of little consequence if the main purpose of the
network is file transfer, even if the files involved are
large, but the origins of Centrenet were in the tightly-
coupled multicomputer system where bandwidth sharing could
be a severe disadvantage. Indeed, one of the purposes of
the network was to act as an enabling technology to allow
other groups to investigate fully~distributted computing
including such aspects as demand-paging across the network.
Concurrent with these investigations into pos sible network
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architectures, interest was being shown in the Department in
the emerging technology of fibre-optics. Data transmission
by optical fibre has a number of advantages. In the context
of civilian computer traffic, the most important are the
absence of ground-loops, electrical isolation, the absence
of induced noise on long cable runs and for links between
building, the freedom from lighting-strikes. Conventional
copper wire systems across the campus have suffered from all
of these problems. An additional benefit of optical fibre
transmission is a greatly superior bandwidth-distance
product compared with co-axial cable systems. High speed
communications can be maintained between sites several km
apart without the need for repeater stations. Cambridge
rings have been implemented with optical fibre and an
interesting version of Ethernet known as Fibernet (Rawson
and Metcalfe (7)) has been built, but neither of these
networks is especially suited to fibre-optic technology,
which is best adapted to point-to-point links. For these
reasons it was decided to investigate the design of a new
LAN incorporating optical-fibre technology which would
enable the Department to gain some expertise in this area.

3.3 CENTRENET ARCHITECTURE.

Centrenet is organised as a tree-structured hierarchy
of high speed packet switches as shown in Fig. 3.1. Each
node of the tree is known as a Starpoint. Connections
between Starpoints are serial and based on optical fibre
links; processors may be attached either directly to a
Starpoint or by an serial 1link. Until recently star-type
networks have not been very popular, presumably because of
fears that should the central node fail, the whole network
ceases to function. Interest in this topology of network
has increased and a number have been described in the
literature (Sikora and Franke (8), Lee and Boulton (9)).
The Centrenet architecture has the following properties:

1. It is modular.

2. It supports "computing clusters". Clusters may be
several km apart.

3. It has high localised bandwidth.

4. It has high potential connectivity.

5. It 1is suitable for implementation in fibre optic
technology.

6. It should have high reliability. Furthermore, should a
Starpoint fail, the effect is to partition the network
into two parts. Only communications which pass through
that Starpoint are affected.

7. Each node incorporates "intelligence" .

8. There is only one route between any two connections.

9. The network is asynchronous; different 1links in the
network can operate at different speeds.

10. Handshaking of each packet occurs at each stage of its
transfer across the network. There is an optional
facility whereby a packet may cause an end-to-end
acknowledge and/or echo of the packet. This facility is
built into the hardware and requires no overhead on the
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part of the attached device.

In order to achieve high bandwidth at the nodes,
parallel switching of packets is required. This is achieved
by a conventional bus design which is easy to implement.
The bus may be designed so that in the event of a particular
port on the bus failing, normal operation of the rest of the
system 1is unaffected. The reliability of such a system is
high, being similar to that used in many computer systems.

The choice of a parallel switching node influences, because
of engineering constraints, much of the rest of the network
architecture. The Starpoints are built around 4-layer
treble Eurocard (9U) PCBs. This large board size has become
a Departmental standard allowing high-complexity systems to
be partitioned on to one PCB, and gives a reasonable number
of connector pins (3 sets of 64 signal pins). Nevertheless,
if parallel switching is employed the packet size is
limited. Increasing the packet size increases the cost of a
system by increasing the number of connector pins required
and the number of integrated circuits required in the packet
registers. A packet must contain addressing information to
identify both the source of the packet and its destination,
a number of control bits associated with flow control and
error checking, and the user data itself. These fields are
conveniently manipulated in multiples of 8 bits. An 8 bit
address field limits the number of connections to 256 which
is too small for with the environment envisaged. A 16 bit
address allows 65536 connections which is probably adequate.
It was felt that at a Starpoint no error checking bits were
required and thus the control field is only 8 bits -
concerned mainly with handshaking of packets across the
network. A Centrenet packet therefore has an "overhead" of
40 bits. A large data field increases the efficiency of
block data transmissions, but is inefficient for single
character traffic such as that generated by terminals.
However, in the context of the high performance anticipated
from Centrenet, such inefficiencies are irrelevant. Thus it
is desirable to make the data field as large as is possible.
If the data content were to be 16 bits, the packet
utilisation efficiency would be only 28.5%, whereas a 32 bit
data field would increase this figure to 44.4%. A 64 bit
data field would be even Dbetter, but the cost of
implementation would then become too high. The Centrenet
packet size is therefore a compromise, consisting of a 16
bit source address, a 16 bit destination address, a 32 bit
data field, and an 8 bit control field.

A Starpoint consists of 15 ports, 1 uplink port, a
Network Intelligence Module (NIM) and a microprogrammed bus
controller card which also acts as a NIM interface card.
The NIM is a single board microprocessor concerned with
set-up procedures, fault-reporting and 1local name-serving.
It does not stand directly in the path of any packet
switching. A Starpoint may be used in a stand-alone
configuration, or may be connected to another by linking the
uplink port to the port of another Starpoint. In a fully
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connected system, a 4-level tree is constructed allowing
50,625 connections at the 1lowest Jlevel. In a partially
populated system, the tree need not be symmetric. The link
between two Starpoints is known as a "remote link", since it
is anticipated that Starpoints could be spread across the
campus . The Starpoint concept and implementation has
changed since the start of the project and it is interesting
to note its evolution.

3.4 MARK-1 STARPOINT DESIGN.

Connection between processors and the Starpoint is via
a "port card". A port-card 1is essentially a set of
registers under microprogram control. The port-card can
receive a packet either from the Starpoint bus or from the
device attached +to the port-card. Two interfaces are
provided on the mark-1 port-card: a 72 bit parallel packet
port and an RS232 serial port. If the device attached to
the parallel port wishes to send a packet to another port on
the Starpoint, it must first load the packet to be
transmitted into its own transmit packet-buffer register.
The transmitting device must then assert a "Tx Request" bus
control line. This instructs the Starpoint interface of the
port-card to place the packet on the Starpoint bus the next
time the port is polled by the bus controller. One of the
other ports in the Starpoint will recognise the packet
destination address and accept the packet. This port will
send a "Frame Ack" signal back along the bus a fixed number
of clock periods later to indicate the receipt of the
packet. The transmitting port-card will then assert a
"Packet Sent" signal to the attached device, which must then
de-assert the "Tx Request". The port-card then deasserts
"Packet Sent" and the port is then ready to send another
packet.

When a packet is received from the intermnal bus by a
port-card, it asserts an "Incoming Packet" signal to the
attached device. The device interface must assert a "Busy"
interface signal and the port-card will write the received
packet into the device's receive packet-buffer register.
The device must then remove the packet before de-asserting
"Busy" . The 1incoming packet handshake sequence is then
completed.

The essential feature of this mechanism is that each
packet transfer across the Starpoint is explicitly
acknowledged, and this principle is extended t o each stage
of a packet's transfer across the network. If no
acknowledgement 1is received, the transmitting port-card
retries at the next opportunity. Eventually, 1if the
transmission can not be carried out the port-caxd times-out,
reports the error to the NIM and discards the packet.

If the attached device uses the serial imterface, the
mechanism is essentially the same, however onl y one byte of
the data field is used.



High performance LAN-Centrenet 31

The rate at which packets may be routed between any
pair of ports will depend on the speed at which the
receiving device can react to the "Incoming Packet" signal.
Also, transmissions will be slowed down if more than one
port is sending to the same Starpoint port. However
transmissions which do not have either source or destination
addresses in common will not degrade one another's
performance. The mark-l port-card is not able to support
simultaneous transmit and receive to/from the same pair of
ports so that a maximum of eight transfers may take place in

parallel without affecting the system's performance. The
time taken for an individual transfer depends on precisely
when "Tx Request" is asserted. Under the most favourable

circumstances 20 clock cycles are required (=3.2 microsecs),
however if the request just misses the previous bus slot,
the port-card must wait wuntil it 1is polled again. At
present polling is carried out on a round-robin basis so
that a further 17 clocks are required before the device is
able to transmit. It should be noted that the actual
polling sequence is table driven and can be dynamically
changed by the NIM allowing the possibility of adaptive
polling. The average transmission rate is therefore 15.8
Mbits/sec giving a maximum throughput across a Starpoint of
126.4 Mbits/sec.

3.5 MARK-2 PORT-CARD

The mark-1 port-card has a number of disadvantages.
Much of the logical complexity of the port card is due to
the fact that there 1is both a serial interface and a
parallel interface on the same card. Whilst direct terminal
connection on to Centrenet 1is <considered important,
dedicating a port-card to a single serial channel is an
extremely expensive method of achieving this goal. In order
to reduce the cost of terminal connections, two terminal-
multiplexing designs have been investigated. One is a 16
channel bit-slice processor design and the other is a
cheaper, more flexible, microprocessor design supporting 8
channel operation but with inevitable performance
limitations. It seems likely that the latter design will be
adopted. Since a separate terminal-multiplexor was
available, it is sensible to remove the serial channel from
the port-card. The board has been redesigned taking
advantage of more recent semiconductor technology; this has
reduced the chip-count for the packet registers by a factor
of four. The control logic has been redesigned using PAL
technology, which has allowed both a further reduction in
the chip-count and the number of clock cycles required for
the packet switching operations. The Starpoint clock at
present runs at 5 MHz. Only 4 clock cycles are required for
a transmit sequence and 6 cycles for a receive sequence.
Since these operations are performed in parallel, the
transmit time is dominant, and +thus under best-case
conditions, a packet may be transferred in 1.2 microseconds,
giving a maximum bit-rate through one port of a Starpoint of
60 Mbits/sec. The calculation for the maximum throughput
across the Starpoint with all channels active is slightly
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different from that of the mark-1 Starpoint. Firstly it is
now possible to support simultaneous duplex transmission
between a pair of ports, and secondly the round-robin
polling time (=17 x 200 nsec) is greater than the time taken
to switch a packet. Thus, under the most favourable
conditions, 8 sets of two-way transfers could be occurring,
giving an overall capacity of 338 Mbits/sec.

The reduction in the number of chips required for the
packet switching function has meant that board area has been
freed for other uses. The new port-card logic has been laid
out in an extremely compact manner on a 4-layer printed
circuit board; it consumes only about 10% of the board area.
The rest of the board is a general purpose wire-wrap board
so that a variety of processor interfaces can Dbe
accommodated on the same design of port-card. Some
interfaces need to be replicated several times. In these
cases a printed circuit board is designed in which the
port-logic layout may be incorporated without change.

3.6 THE SUPERPORT.

In order to achieve high speed data transfer from a
processor to a Starpoint, hardware is needed to interface
the processor bus to the Starpoint port-card. So far one
such design, known as a Superport (Hopkins (10)), is
operational and provides an interface to the DEC PDP11
Unibus. A Superport provides a multiplicity (16) of network
addresses to a processor via a single network connection.
The multiple channels may be wused to support either
terminal-to-processor connections or processor-—to-processor
connections. A Superport has three modes of operation:

1. Block Mode, is used to transfer large blocks of data
(i.e. files) at high speed. A header packet is sent
giving details of the transmission to follow. On
receipt of an acknowledgement from the receiving device,
the transmitter transfers the data in "short blocks" (4
bytes packed into one packet). When the packets are
received, they are autonomously transferred into a
buffer area using DMA techniques. The final packet of
the transfer contains a Cyclic Redundancy Check (CRC) to
ensure the integrity of the transmitted data. Once the
transfer is complete, the processor is interrupted and
if the data is correct, an acknowledgement packet is set
to the originating processor.

2. Character Mode is wused for terminal traffic that
requires single character transmission - When a
character 1is received, it 1is placed in a buffer in
memory and the processor is interrupted. Only when the
character has been processed 1is the acknowledgement
packet sent.

3. Line Mode is a variation of Character Mode; transmission
is similar to Character Mode, however tke receiving
Superport only interrupts the process Or when a
predefined end-of-line character occurs.
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The observed bYbit rate from a Superport is 3.0
Mbits/sec. Whilst this 1is much less than the available
channel capacity of the Starpoint, it should be pointed out
that the Superport hardware and microcode were designed for
ease of commissioning and a primary objective was to gain
experience of such a device 1in an operating system
environment. Several conclusions can already be drawn. The
device needs to more programmable than it is; the microcode
should be both wider and deeper than at present. Secondly,
it has proved difficult to take advantage of the multiple
channel block-mode facility. The problem is in the
complexity required in the operating system software of the
host machine. On the the other hand, the ability to support
both a single-channel block-mode transfer and multiple-
channel single-character transfers has proved valuable.
These points are discussed in more detail elsewhere (10).

3.7 REMOTE LINKS.

While a Starpoint may be operated as a stand-alone
network, more generally it will be connected to other
Starpoints. The distances between Starpoints within the
same building may not be large, but connecting different
buildings on the campus may involve distances of several km
because of the lack of suitable direct ducts. The Remote
Link (Train (11)) has therefore been designed with the
following objectives.

1. The 1link should be an integral part of Centrenet and
should follow its design philosophy:; in particular each
packet should be explicitly acknowledged.

2. The link should be a high speed serial link which should
not slow down the operation of a Starpoint.

3. The 1link should be capable of operating over distances
up to 1.5 Km.

4. The 1link should be based on optical f£fibre technology
using readily available components.

5. The link should incorporate error-checking and recovery.

The remote 1link was designed concurrently with the
mark-1 port-card and was designed to be able to deal with
the situation of one port requesting transmission every
cycle when polled on a round-robin basis, i.e. every 2.72
microseconds (17 x 160 nsec). In practice the link runs at
40 Mbit/sec, with the Centrenet packet enveloped into a
remote link super-packet (RLSP) of 112 bits, and a request
can be serviced every 2.8 microseconds. The time of
transmission over 1.5Km of optical fibre is %12
microseconds. If transmission of the next packet had to
await the return of an acknowledgement packet, (i.e. a total
delay of 14.4 microseconds) the system performance would be
grossly degraded. However, in order to be consistent with
Centrenet philosophy, each packet has to be acknowledged at
each stage of its transfer through the network. The
solution is to provide buffering at both receiver and
transmitter. At the receiver buffering is required because
a Starpoint port can only hold one packet at a time. If no
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buffering were included, any delay in placing the received
packet on to the Starpoint bus would result in lost packets.
At the transmitter, a buffer is required to store packets
that have been sent, but which have not yet Dbeen
acknowledged. The Remote Link super-packet contains a
checksum; if an RLSP is found to be corrupted, an error RLSP
is returned to the transmitter and a retry is initiated.
The transmitter has an 8-deep buffer, allowing up to 8
packets to be sent over the remote link before awaiting an
acknowledgement. The 1link is thus kept full, with no
penalty imposed by the time-of-flight of the packet.

The protocol used by the remote link is based fairly
closely on the HDLC procedures [ISO76]. The remote 1link
super-packet contains the following parts:

1. A flag, which is a unique sequence (01111110) of bits
indicating the start of a packet frame. In order that
this bit pattern cannot occur anywhere other than in the
true flag, an extra 0 has to be inserted during
transmission after five consecutive 1's have occurred.
This process is known as bit stuffing. At the receiver
a complementary operation, unstuffing, has to be
per formed.

2. A frame-header, which contains address and control
information. The address field is actually irrelevant
because the remote link operates on a point to point
basis, and therefore there can only be one address for
the super-packet. The control field identifies the type
of packet that is being sent, i.e whether it contains
genuine data or 1is an acknowledgement packet, and
provides a labeling scheme to number each packet. A
numbering scheme is required in order to be able to
acknowledge or to reject individual frames.

3. The data field containing the Centrenet packet.

4. A CRC for error checking.

The packet buffers required by the remote-link operate
on a first-in, first-out (FIFO) principle. BAn eight-deep
FIFO is used for both transmit and receive buffers, and is
constructed from TTL RAMs with a controller built from
discrete MSI parts to simulate a true FIFO.

The use of optical fibre for the transmission medium
has several implications for the systen. One of the
advantages of wusing optical fibre is noise immunity.
However while problems of electrical interference are
eliminated along the length of the cable run, the problem is
exacerbated at the receiver. The signal current from the
receiving diode is very small (of the order of microamps).
Early attempts to mount the receiver circuitry on the PCB
proved rather susceptible to noise generated by the large
switching currents generated by the TTL logic. It became
necessary therefore to fabricate a receiver module in its
own shielded metal box; this solved the immediate problem
but caused a packaging problem in that the rodules were too
large to be directly mounted on the PCB. In order for the
superpacket to be sent serially down the f£ibre, it has to be
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encoded to include sufficient timing information to

regenerate the clock at the far end. Furthermore, the
average DC level of the encoded signal should vary as little
as possible. This restriction arises because the small size

of the received current constrains the receiver amplifier to
be AC-coupled. Any shift in the average DC level of the
signal effectively reduces the noise immunity of the level

discriminator at the receiver. An obvious coding technique
to employ is Phase Encoding (PE) or Frequency Modulation
(FM); both schemes are relatively easy to implement.

Unfortunately, both methods are expensive in their use of
bandwidth and a 40 Mbit/sec transmission rate would not have
been obtainable with the optical components (Honeywell
"Sweet-Spot" LEDs) which were used. A variety of coding
schemes were investigated in detail (MFM, 2/3 codes), but
the simplest scheme is to encode a 'O' by a transition
(NRZI-S coding). The bit-stuffing, which limits the number
of 'l's ensures that sufficient timing information is
included and limits the amount of DC-wander to an acceptable
level.

The NRZI-S scheme requires minimal logic to implement.
Effectively, the complexity of coding has moved to the bit-
stuffing system. Overall, about 200 integrated circuits on
two treble Eurocards, were required to implement a
transmitter-receiver station of a remote link.

3.8 LOCAL LINKS.

Processors may be physically attached to the Starpoint
via an appropriate interface such as a Superport. This
arrangement, while giving maximum performance, is rather
inelegant, involving the extension of the processor's bus to
the Starpoint. In a tightly-coupled computer environment
this may acceptable, but in general machines will be further
apart than the maximum distance that a processor's bus can
be extended. The local link is a point-to point serial link
which allows processors to be placed some distance from the
Starpoint to which it is connected. The 1links have been
implemented in both optical fibre and co-axial cable in
order to compare the two technologies. Like the port-card,
the local link has been redesigned. The experience gained
in the implementation of the remote 1link suggested that a
much simpler, more cost effective scheme was required. The
philosophy behind the 1local 1link was that it should be
invisible to any of the existing hardware or software. 1In
other words, it should be possible to connect a Superport
either directly to a Starpoint, or indirectly through a
local link, without any other changes to the network.

In order to simplify the 1link, the buffering and
packet labelling used in the local link is omitted. In the
first version, however bit-stuffing, the NRZI-S coding
scheme and a primitive form of automatic error recovery were
retained. A second version of the 1link 1is even more
simplified; the need for flags has been eliminated and
consequently so has the need for bit stuffing. The coding
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scheme used on the new local links is Phase Encoding. The
handshaking sequence for the port-card described earlier is
simulated by the link; further packets may not be sent until
the acknowledgement has been returned from the far end.
Consequently, the serialisation time of both packet and
acknowledgement causes an extra delay. At the link rate of
15 Mbits, this adds an extra 8.9 microseconds to the minimum
time between successive packets. The cable delay over the
distances likely to covered by a local link is comparatively
insignificant. The serialisation delay is inherent in any
scheme without buffering which retains the hop-to-hop flow
control of Centrenet.

3.9 CONCLUSIONS.

At the present time hardware for a pilot Centrenet
system has been implemented and connects 2 PDPlls to a
single Starpoint via two local links. A VAX running the
MUSS operating system is to be attached shortly and will
give experience in realistic traffic rates. The reliability
of the present network appears to give an error rate of
better that 1 error in 2 * 10%*10. The local 1links are
switchable to either co-axial cable or optical fibre. No
significant difficulties have been found with the optical
system, its reliability appears to be at least as good as
that of the co-axial cable. A prototype remote 1link has
been demonstrated over a distance of 1.2 Km. The aim of the
Centrenet project was to achieve a high performance LAN.
This was to be achieved not only by raw hardware speed and
parallel switching techniques, but also by putting as much
functionality as possible into the hardware. In one
respect, this latter approach has not proved cost-effective.
An attempt was made to provide extensive error-checking. In
particular attempts were made to guarantee, in hardware, a
packet's arrival. This has proved difficult to engineer
successfully. Reducing the specification +to provide a
reliable transport mechanism, and shifting the burden of
error recovery to the software of the atttached processor
greatly simplifies the hardware required.

The existence of two varieties of serial 1links is
rather unsatisfactory, and arises because increased
performance can only be achieved by the provision of
buffering. Recent advances in semiconductor technology in
the form of high performance cascadable FIFOs have greatly
reduced the cost of providing a buffering scheme. This,
together with the simplification of the hardware protocols,
will allow the development of a new serial conmnection common
to both local links and remote links.

Work is proceeding in a number of areas-. An IEEE-488
interface is being built which will allow machines with this
bus to be connected to Centrenet. Work has started into the
transmission of voice and video traffic over Centrenet. As
a result, one of the bits in the control field of the
Centrenet packet now allows the receivimng device to
interpret the rest of the packet as it choo ses. In this
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manner datagram activity is supported by Centrenet. The
transmission of voice over the network has been successfully
demonstrated, and work has started into a new interface to a
port-card which will allow the transmission of video data.

This paper has concentrated on the hardware aspects of
designing a high-performance LAN. This does not mean that
the software issues have been neglected. Studies (Bondi and
Jackson (12)) have been initiated into the means by which
Centrenet protocols may be matched to the layers of the OSI
model (13). Work in this and a number of related areas, is
still continuing. and will be published in the near future.

Acknowledgements.

The authors would 1like to thank Professor D. B. G.
Edwards for provision of funding and support for the
Centrenet pilot project. Some support has also been
received from GEC and current work is being funded by the
SERC as part of its Distributed Computing Systems programme.

References.

T Morris, D., and Ibbett, R. N., 1975, 'The MU5 Computer
System', Macmillan, London, England.

2. Lavington, S. H., 1975, 'A History of Manchester
Computers', NCC Publications, Manchester, England.

Sre Edwards, D. G. B., Knowles, A. E., Woods, J. V, May
1980, from a Mini-sized Computer', ACM Conference
Proceedings, Seventh Symposium on Computer
Architecture, 161-171.

4. Hopkins, T. P, 1980, 'An Investigation of Hardware
Requirements for the Implementation of Communications
within a Multi-Computer System', M.Sc. Thesis, Dept of
Computer Science, University of Manchester, England.

155 Wilkes, M. V., and Wheeler, D. J., 1979, Symposium,
Boston Mass., 47-60.

6. Metcalfe, R. M., and Boggs, D. M., 1976, CACM, 19 7

161-166.

e Rawson, E. G, and Metcal fe, R. M., 1978,
IEEE Trans. on Comms., 26 983-990.

8. Sikora, J. J, and Franke, D. C., 1983, 'A LAN Based on
a Centralized-bus architecture', Proceedings of

Localnet '83, New York, 1983, 147-157.

9. Lee, E. S, and Boulton, P. I. P., 1983 IEEE Journal on
Selected Areas in Communications, SAC-1, 5 711-720.

10. Hopkins, T. P., 'The Design of a Local Area Computer
Network'. Ph.D. Thesis, Dept. of Computer Science,



38 High performance LAN-Centrenet

151s

152

138

University of Manchester, England - to be submitted.

Train D. A., 1982, 'An Optical Fibre Communications
System for a Campus-Wide Local Area Network'. Ph.D.
Thesis, Dept of Computer Science, University of
Manchester, England.

Bondi, D, and Jackson A. R., 1984, 'Low Level Centrenet
Protocols'. Internal Report, Department of Computer
Science, University of Manchester, England.

IS0, 1981, ISO/TC97/SCl6é Data processing -~ open systems
interconnection - basic reference manual,
Computer Networks, 5 81-118.




Chapter 4

Imperative languages in
distributed computing

Richard Bornat

4.1. INTRODUCTION

There isn’t very much distributed computing about -
certainly I found less than I expected to while researching
this review. To the programmer ‘distributed computing’ is
still a problem, not yet a solution. We can’t use
‘distributed computing’ as a tool or a description device in
solving our programming problems in the way that we can use,
say, recursion, repetition, conditional choice - or even
concurrency. Instead it is a puzzle set for us by others,
inspired mainly by advances in hardware design and
production.

The problem is to control concurrency in a system which
includes several processors. This is by no means a new
problem, but solutions to it began to be practically
important when it became cheap to print processors on
silicon with very little labour input. It seemed
immediately possible to use concurrent programming
techniques to make a collection of cheap slow(ish) printed
processors perform as fast as an expensively soldered and
wired conventional machine. Networks of machines have
existed for years, especially in finance and banking: cheap
hardware made it seem reasconable to build smaller-scale
networks which would behave as a single ’‘system’. Our
experience so far seems to show that these things are
certainly possible but are surprisingly difficult to bring
into use.

Somehow or other “imperative’, when attached as an
adjective to ‘programming’, seems to have acquired something
of the meaning of ‘pragmatic” or “practical ~ - though
adherents of other programming traditions might choose less
flattering adjectives to describe our eager adoption of
other people’s objectives. We take it as the task of the
language designer to help programmers solve problems which
the ‘real world” - of hardware designers, in this case - has
thrown up. .

Different uses for concurrent action could be expected
to point different directions in language design. At the
two ends of the hardware spectrum there are the
multiprocessor and the geographically distributed network.
The multiprocessor - in which processors share memory and
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may share an input/output interface - is intended to run the
parts of a single program concurrently; the problem is to
make the processors behave together as if they formed a
single ‘machine’. The geographically-distributed network -
many machines with no shared memory and non-reliable
communication hardware - is intended to provide a reliable
computing service in several places while sharing
information and hardware resources; the problem is to permit
each machine to use the rest of the network as if it is an
extension to its own capacity.

In practice language development has been held up by
difficulties of implementing mechanisms of communication.
Few languages have contributed much in the way of
program-structuring ideas and most designers seem to have
concentrated on how to balance the advantages of
implementing particular mechanisms against the costs of
doing so. Much of my review, therefore, concentrates on
those mechanisms and on the restrictions and caveats in
language design, often put there for the sake of an
efficient implementation.

4.1.1. Program structuring

Most of the languages reviewed here (occam (3) is the
most important exception) are developments of Pascal (27).
In Pascal, as in any ‘procedural’ language, the important
units of execution are the program, the procedure and the
instruction. At a particular level of description a program
execution is a collection of procedure executions. If an
instruction calls for a new procedure execution then one is
created and starts operating; meanwhile the calling
execution pauses and waits for the new one to terminate.
Thus only one procedure execution can ever be operating at
one time. Even coroutine languages, like Modula-2 (15) or
BCPL under TRIPOS (14), are sequential according to this
model (although the procedure executions don’t wait in line
in quite the same way there can only be one of them
operating at any time).

In concurrent languages more than one thing can happen
at one time. Every language uses a different texrminology to
describe those executions which can be operating
concurrently: I have chosen to use the word process. A
concurrent program execution may contain more than one
operating process execution.

One particularly simple extension of the procedural
model identifies a process as a collection of procedure
executions. This is the approach of Martlet (9}, of
Pascal-m (4) and of Conic (7): processes in such languages
are each the same as an ordinary sequential progxram except
for the way in which they communicate with their
environment. There is a simple hierarchy of executions from
program through process and procedure to individual
instruction executions.

An alternative approach allows an operating execution to
“fork” into several concurrent executions which Jlater “join’
back into one. This is essentially the approach of
PascalPlus (26) and Ada (10). There is no longex a simple
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hierarchy of executions: instead procedure and process
definitions can be seen as alternative structuring
mechanisms.

Occam (3) takes this second approach farther than any
other of the languages reviewed here. The instruction
execution is the basic unit, just as in the more
conventional languages, but instructions can be composed as
easily in parallel as in sequence. Iteration and guarded
commands are alternative ways of composing executions.

In scoping and visibility rules most of the languages
are rather old-fashioned. Martlet, Path Pascal and Pascal
Plus use Pascal scoping; occam uses straightforward
hierarchical scoping. Ada is of course more adventurous but
its ’‘package’ and ‘generic’ mechanisms are too well known to
require discussion here. Conic and Pascal-m have a ‘module”
mechanism which constrains the interconnection of processes.
Modula-2 has modules, BCPL, Coral and C are just ordinary
procedural languages.

4.1.2. Communication mechanisms

It is normal to make a distinction between language
mechanisms and implementation devices. In principle any of
the mechanisms used in any of the languages could be
implemented in terms of any of the others. But designing
the implementation of particular mechanisms -~ i.e. finding a
device which fits a chosen mechanism - has often affected
the choice of mechanism and has been an important influence
on the design of most of the languages reviewed. To
understand the designer ‘s choice of mechanism it is usually
necessary to understand what devices have been invented.

The presently popular language mechanisms are shared
memory (including monitors in PascalPlus and objects in Path
Pascal), Remote Procedure Call, buffered message-passing and
synchronised message-passing. Each of these mechanisms
involves the transmission of information, though some
procedure calls in Path Pascal can be used as pure
synchronisation operations.

Shared memory, or more strictly shared information, is
the oldest of the mechanisms. If the “naming space’ of
several processes simply overlaps so that the effect of an
assignment by one is visible to the others then
communication between them is obviously possible. It is
always essential to ensure that assignment and access
actions never overlap because in general they can’t be made
atomic operations of the underlying hardware. Both
PascalPlus monitors and Path Pascal objects wrap shared
memory object declarations with definitions of procedures
which must be used to update or access the value of those
objects; then they control the use of procedure executions
so as to constrain or eliminate overlap. The monitor
mechanism makes critical procedure executions effectively
atomic, while Path Pascal allows the description of a degree
of concurrency between executions. Shared memory
communication isn’t synchronised, though processes must
often wait to be permitted to create or to complete a
procedure execution. Communicating processes aren’t paired
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- information is genuinely shared between whatever process
puts it there and whatever processes inspect it.

In a Remote Procedure Call one “sender’ process provides
the parameters for a procedure execution created by another
‘receiver’ process. The sender communicates with the
receiver by providing parameter information and by receiving
results. The receiver communicates with the sender by
sharing memory with the procedure execution. The two process
executions each wait for the completion of the procedure
execution. Processes are obviously paired and communication
is synchronised in that a sender is delayed until the
receiver offers to create the execution; conversely a
receiver is delayed until there is an appropriate sender.

In buffered message-passing a sending process fires off
a message and doesn’t wait for a receiver to be ready to
accept it. Conceptually the receiver holds a queue of
messages sent to it but not yet inspected. Sometimes there
may be a priority scheme to order messages in the queue and
often a receiver may be able to detect whether its queue is
empty and hence may be able to choose whether or not to
suspend execution so as to wait for a message. Processes
need not necessarily be paired: there can be more than one
receiver process for a single send, as in Conic (7,29),
which will produce a limited kind of ’‘broadcast’ effect.

In synchronised or unbuffered message-passing a sender
must wait until a receiver is ready to accept the message;
conversely a receiver must wait for a sender. This kind of
message-passing is synchronised and paired though typically
a receiver may choose between many potential senders before
communication occurs.

Buffered message-passing can cause a problem of memory
starvation because each message sent requires buffer space.
It is easy to see that over a period every process in a
system might send more messages than it receives and the
system might then deadlock because buffer space is
exhausted. Synchronised communication - either
message-passing or Remote Procedure Call - has the advantage
that sending a message usually needs no storage apart from
that allocated in the participating processes: the
compensating disadvantage is that it can be difficult to
synchronise processes on different machines, though language
restrictions can help to reduce this difficulty by
restricting the ways in which synchronisation can come
about.

4.1.3. Making connections

Languages which don 't exclusively use shared information
must allow senders to name receivers and/or vice-versa. The
issue is how to name a process execution and whether to do
so directly or indirectly.

In all the languages reviewed which use Remote Procedure
Call a sender names the receiver process dirxectly, names the
procedure to be executed within the receiver and gives
argument values; a receiver offers to create an execution
for any sender naming the correct procedure. It is
unnecessary for the receiver to name the sender and the
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connection pattern in every language is therefore
any-to-one. The receiver’s offer may be continuous, as in
Ada ‘task procedures’, or intermittent, as in Ada ‘task
entries’. In principle a sender might name a receiver
indirectly, giving only the procedure name and argument
values so as to be paired with any receiver offering to
create an execution of that procedure - i.e. any-to-any
connection. This isn’t a facility of any of the languages
reviewed but something like it has been provided in the
MINAS operating system (17).

All the message-passing languages reviewed here use some
form of indirect channel addressing (called ‘ports’ in
Conic, ‘mailboxes” in Pascal-m, ’‘channels’ in occam).
Communication is sent to or received from a channel and the
partner is whatever process makes the opposite communication
on the same channel. Channels can be typed to constrain the
messages which may be sent or received through them. A
channel mechanism makes it possible for a sender or a
receiver to select between different sets of potential
partner processes. In occam the decision to use channels
may have been made because the design of the language makes
it impossible to name a partner execution. In Conic and in
Pascal-m process executions can be named directly but in
each case the designers adopted a channel mechanism to
facilitate dynamic reshaping of the process-connection
pattern.

Indirect naming, whether by channels or by procedure
names, has an analogy with information-hiding. If sender
and receiver have a client-server relationship, as they
often do, then directing communication to a process means
that the programmer who designs the client process must have
more information about the server than is strictly
necessary. Directing communication through channels gives
far more potential for modular programming.

Both Conic and Pascal-m use a form of module construct
to control the connection of processes to channels. Conic
uses a configuration description to link ports on different
modules and, potentially, to unlink them again. Pascal-m
modules use an import and export mechanism to control the
visibility of mailboxes across module boundaries.

4.1.4. Non-determinism

Non-determinism is inherent in a concurrent program with
several operating executions because the program text
specifies only a partial order of program events.
Non-determinism arises when processes are connected
any~-to-one because a receiver cannot control which of all
the potential senders will succeed. Similarly in one-to-any
connection a sender cannot control which receiver will
accept and in any-to-any connection neither partner has
control.

Non-determinism can also arise in languages using
synchronised communication from the program construct called
a guarded command, first introduced as a communication
construct in CSP (26). A guarded command allows a process
to make several simultaneous offers to communicate. Each
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offer is written so as to label, or guard, an instruction;
the first offer to succeed triggers execution of the
instruction it guards and all other offers are cancelled.
The guards themselves can be protected by Boolean formulas
to control which of the offers are actually made in a
particular execution of the guarded command. So, for
example in occam (3) a guarded command with three
alternatives could be written as follows:

ALT
X /\ y<0 & clz2f
11
C220;
L2
z=3 & c3?h
13

Communication is offered on channel c2 by every execution of
this command, on channel c¢3 only if z=3 and on channel ¢l if
x 1s true and y is negative. Whichever communication
happens first causes the instruction following it to be
executed and then the guarded command completes.

4.2. IMPLEMENTATION INFLUENCES

Pseudo-concurrency, in which a concurrent program is
executed on a single processor, is rather easy to implement.
It s easy because on a single processor only one thing
happens at a time, so that implementing a virtual machine
which provides concurrent communication primitives becomes
rather like implementing a coroutine machine.

On concurrent hardware the trick isn’t so easy, and here
we can distinguish two distinct difficulties. The first is
that there is no global clock. Since information travels
between machines at a finite speed it is impossible to
decide in general whether an event in one machine occurs
before or after a different event in another. The problem
arises naturally when deciding whether an offer of
communication made from one machine has been accepted in
another and affects the design of languages using gquarded
commands and also those which use so-called “time-out’
limits on the duration of a communication attempt. A second
difficulty arises because some distributed systems are
organised so that part of the system may break down while
the rest is capable of continuing without it.

4.2.1. Timing problems

If several processes make offers of communication to
each other at about the same time there is a prolkolem of
arbitrating whatever conflicts arise. If process A offers
to communicate with B and C, B with A and C, C wdith A and B
then at most one of the three possible pairings can take
place. The problem isn’t too hard to resolve on a
uniprocessor because there can be a single arbiteer and while
it executes the processes don’t. With several pax-ocessors -
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one each for A, B and C, say - the difficulty is that none
of them knows the current state of any of the others, but
only their states in the recent past.

It is possible to avoid the timing problem and recreate
the communication characteristics of a uniprocessor
implementation by having some controlling hardware device
such as a section of shared memory or an arbitrating
processor which acts as a global synchroniser. So, for
example in the implementation of Martlet (9) each
multiprocessor station contains a shared memory, a control
processor and a number of application (task) processors.
When a process, running in a task processor, offers a
communication a marker is deposited in the shared memory and
the task processor waits. The control processor arbitrates
its next action - typically, it schedules some other
process for execution.

Synchronising hardware can obviously be a bottleneck in
execution if too many processes consult it at once or if it
takes too long to consult. The hardware is also uniquely
important to the system as a whole: if it breaks the whole
system stops.

An alternative is to establish some protocol conventions
by which autonomous processors negotiate to decide which
communication to perform next. This becomes difficult if an
offer once made can easily be withdrawn. If an offer from
process A, running on one machine, is sent to process B on
another machine that offer will take some time to reach B.
B’s acceptance, if the offer is eventually accepted, will
take some further time to return to A. During that time
process A may have received alternative, perhaps more
attractive, offers to communicate or the interval may be so
long that it simply decides to “time out” (i.e. to give up
the attempt). Then B’s acceptance may have to be rejected.

Without care in the design of a protocol there is the
possibility of “livelock” in which processes never agree.
Taking the example of processes A, B and C once more:
suppose that A decides to accept B’s offer (in effect
withdrawing its offer to C), B decides to accept C and C
decides to accept A. Each process will send an acceptance
to one which has already decided to reject its offer and
there will be no pairing and no communication. Even if they
start all over again from the beginning the situation can be
repeated indefinitely.

Protocols have been published which use
process—-numbering to avoid livelocked cycles of processes -
for example recently (30) - but they are relatively
complicated to implement and expensive to operate. Most
language designers have restricted their languages to avoid
the problem. If only one sort of communication - typically
receive - can be offered in a guarded command then only that
sort of communication can be withdrawn. The other sort of
communication - i.e. the send - must be offered
unconditionally, without even a time-out alternative. Then
a process executing a guarded command can examine the send
offers made to it without any need to negotiate: whichever
it decides to accept will still be in forxce when it accepts.

Yet another alternative solution is to ignore the problem
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and to push it back onto higher-level software - for example
in (7,29) and (19) an offer to send which is withdrawn by
time-out may already have succeeded, undetected by the
sender.

4.2.2. Hardware failure

The difficulty of programming a system which may
partially break down concerns some language designers. In a
uniprocessor system if one component stops the whole machine
stops. Then programmers don’t have to consider what to do if
part of the machine, carrying part of the program, should
break down or be isolated from the rest by communication
hardware failure. If any computing system, distributed or
otherwise, is seen as running a single concurrent program
and doing it concurrently because that is just a nice way to
program a solution, then component failure can be treated
just as on a uniprocessor. But if a system is made up of
potentially autonomous machines, or if concurrency is being
used to provide a reliable computing service, then component
failure must not stop the system. (7,29), (4), (17) and
(19) address this issue in different ways.

4.2.3. Shared memory

Shared memory seems a rather unlikely implementation
mechanism for a geographically distributed system. The
monitor, the most commonly-used mechanism for interleaving
access and assignment in a pseudo-concurrent implementation,
seems to have no intrinsic advantages over the Remote
Procedure Call. Path Pascal provides an alternative
interleaving and synchronisation mechanism which does claim
some advantages over the RPC so perhaps shared memory may
have a future after all. The UMIST experience of
implementing PascalPlus (23) leads that group to conclude
that shared information rather than shared memory is the
useful linguistic notion.

4.3. THE LANGUAGES

In this section I consider how some of the languages
which have received a significant implementation effort, or
which are used to a considerable extent, match up to my
Procrustean criteria. Non-mention of a language here
shouldn’t be taken as a mark of criticism in itself, merely
as evidence for the damage caused by my own myopia.

I concentrate mainly on the communication mechanisms
which the languages use. Most of the languages are
developments of Pascal in any case, so that their
program-structuring facilities are broadly similar.
Naturally I try to point out important points of difference.
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4.3.1. Ada and Martlet

A group at the University of York (11,12) have used Ada
(10) as the basis of the PULSE distributed computing
project; a group at the University of Sussex (9) has
incorporated some of the Ada language into Pascal, producing
Martlet. Because the languages are so similar I discuss
them together, giving most attention to Ada. Martlet is
Pascal without i/o and file types, plus some of the Ada
communication mechanisms and some of the its exception
mechanism. Crucially Martlet does not include Ada
conditional and timed entry calls and it prohibits pointers
in arguments to entry calls - that is, it leaves out just
those features which may make Ada unsuitable for use as a
distributed computing language.

As to Ada then: it is difficult to give a fair review to
a language whose main claim to acceptance must be the active
support of one powerful computer purchasing organisation,
but I shall try. The size of the language means that I can
review only a tiny part of it.

The process-structuring construct is the task. 1In
Martlet a program is a set of tasks, so that in effect the
language has the program, process, procedure instruction
hierarchy described in section 4.1. Ada tasks can be
created more freely, in procedures, packages, blocks and so
on. The creating execution can’t terminate before the task
it creates have also terminated, so the mechanism is a sort
of fork-join.

The communication construct is remote procedure call.
Task definitions define ‘procedures” and ‘entries’:
procedures may always be called, entries are in effect
procedures which can be called only when the task is
executing an appropriate accept instruction. Task type
definitions have two parts: the header declares the
procedures and entries which the task type provides, the
body gives definitions of the actions of those procedures
and entries. So, for example

task A is
procedure P(a: out integer);
entry U(b:in y);
entry V(c:out z);

end;

defines the interface of a task-type A. The body of A shows
how it permits sequences of UV and VU pairs; procedure P
returns the number of pairs that have completed. The first
of the accept entries for V is inside the accept for U;
likewise the second U is inside the second V. The accept
entries act like procedure declarations and the scopes nest
in the normal way.
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task body A is
count: integer:=0;

procedure P(i:out integer) is begin i:=count end;

begin
loop
select accept U(g: in y) do .. g is in scope ..
accept V(r: out z) do
.. g and r are in scope ..
end V;
end U;
or accept V(s: out z) do .. s in scope ..
accept U{(t: in y) do
.. s and t in scope
end U;
end V;
count:=count+l;
end loop;
end A;
Other tasks can now communicate with A using procedure calls
such as A.P(j) - which always succeed - or entry calls such
as A.U(f) and A.V(g) - which will only succeed in this

example if used at the right time. Because the accepts are
nested the process which succeeds with the first U entry or
the second V entry is held in synchronisation until the
matching entry in the UV or VU pair is made by another
process. This extended synchronisation is a peculiar
feature of the remote procedure call mechanism: the select
statement could be rewritten to use procedure calls more
like message operations, though with different effect:

uc:=0; vec:=0;
loop
select when uc<=vc =>
accept U(g: in y) do .. g is in scope ..
ucy=uc*l;
end U;
or when vc<=uc ->
accept: V(¥: out 2) do .. ¥ I8 1h scope &~
vc:=vctHl;
end V;
count:=count+l;
end loop;

As defined in Ada the communication mechanism is adapted
to a shared memory implementation: pointer (‘access’) values
can be passed as arguments in remote procedure calls and
there are conditional and timed versions of the entry call

select <entry call> else <instruction sequence> end;

- the <instruction sequence> is executed if the
entry call can’t be immediately accepted
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select <entry call> or delay <interval> end;

- the select terminates if the entry isn’t
accepted before the interval expires

Use of pointer values requires some other form of
communication underneath the rendezvous mechanism - shared
memory seems the most likely candidate. The language
provides no mechanism to restrict or control simultaneous
access or assignment to memory shared in this way though the
language definition, under the heading of ‘aliasing’, warns
the programmer to take care. The conditional entry call
would seem to be of doubtful utility inappropriate in a
geographically distributed implementation because the time
it takes to find out whether a receiver is ready to accept
an entry call will often be comparable with the time it
takes the receiver to change state from unready to ready.
The timed version of the entry call is difficult to
implement for the reasons given in section 4.2.1 above.

The naming mechanism of Ada forces sender to name
receiver task in an entry call. An important criticism of
both languages must be that this makes the process
connection pattern much too fixed. A more abstract
interface, some kind of port mechanism perhaps, would make
it possible to decouple the request for service initiated by
a sender from any particular receiver task.

The use of procedure call as a communication mechanism
ties sender and receiver together for the duration of the
call. It has the advantage that the receiver can give
replies to the sender via out parameters in the entry call
without knowing the sending task identity. It has the
further advantage that no process-switching is required to
transmit a reply from original receiver to original sender.
It makes it impossible, though, to receive a reply from any
but the process to which the entry was made. And in (12)
the York group show how difficult it is to program a
receiver which may not want to make an immediate reply to
every send.

Using procedure calls in the style of messages might
overcome some of these problems but would require a receiver
to know the sender ‘s identity, which can be tricky to
arrange even with shared memory and pointers to tasks.

Ada as it stands seems to be a pseudo-concurrent
language or at best a language for multiprocessors with
shared memory. I 'm sure it would be possible to implement
the full language for a more loosely coupled system but I'm
equally sure that it wouldn 't be easy and that the
implementation wouldn 't be particularly efficient. Without
the nasty bits an implementation is much more feasible - as
shown by the Martlet implementation, which has been running
for some years.

Either language makes it possible to write fully
type-checked programs for a multiprocessor machine, whether
network connected or shared-memory. They don’t aim at the
construction of multi-program systems for a multi-computer
network (a fact, not a criticism: those are distinct aims
and certainly no language reviewed in this paper solves both
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problems). Fixed process connection patterns make it
difficult to see how to cope with any sort of partial
hardware failure or dynamic network configuration.

The PULSE project aims at the construction of an
operating system for a multi-computer network, thus using
Ada for a purpose to which it is manifestly unfitted. As a
result the York group have had to resort to the standard
subterfuge: they use Ada as a pseudo-concurrent language
within each station of the network and use buffered
message-passing between stations. To communicate with a
distant station a process makes an entry call on one of
several special tasks, called “Mediums’, which are in effect
network handlers. The types of message which can be passed
between stations are necessarily fixed - one for each kind
of special task - and can’t be varied at the whim of the
programmer.

dra82s  [Conile

Conic (7,29) is a language designed for a particular
problem area, a certain kind of physical-process control.

It is a development of Pascal. It is in use at Imperial
College and being evaluated by more than one industrial
backer for commercial use. It was partly funded by the
National Coal Board for use in mines where horrible things
happen to electrical machinery - hence perhaps the
designers’ attention to network reconfiguration and
communications hardware failure.

In a Conic network each machine is reasonably reliable
but the system as a whole is less reliable: it may be
reconfigured at the whim of its human controllers or it may
partially break down. Some machines observe measuring
devices and report their value at intervals to other
machines. Some machines control physical devices according
to a defined tactical program. Some machines have strategic
responsibility, altering the tactics of others according to
information received from devices or from other machines.
Some machines have all three functions.

A crucial point is that the machines in a Conic network
should be viewed as potentially autonomous and should be
programmed to continue alone if they become isclated, either
by hardware failure or by reconfiguration of the network.
An isolated observing machine should then continue to
observe and continue to try to send its reports until it is
re-integrated into the network. An isolated controlling
machine can do something useful if it obeys the last tactic
it was ordered to follow. An isolated strategy machine must
sit on its computational thumbs until the fault is repaired.
The kind of messages exchanged - status reports and
change-tactics commands - are by their nature idempotent, so
repeated transmission is a reasonable behaviour.
Unreliability of hardware and the impossibility of
completely ordering events are burdens which seexrm to be
bearable within this problem domain.

The process-structuring constructs are the module and
the task. A Conic program is a collection of modules,
each of which is a collection of tasks. A task ds like a
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Pascal program in that it consists of a collection of
procedure executions, only one operating. Tasks within a
module share an address space but can only share memory if
they pass messages to each other which contain pointers.
Pointers are prohibited in messages between modules.

Tasks communicate through ports: a task definition
declares certain ports and all its communication must be
directed to its own exitports or from its own entryports. A
separate configuration specification describes how the ports
of one task are linked to those of another. So, for
example, a simplified Conic module which reports a
temperature setting at defined intervals and which can be
ordered to change the interval:

task thermometer(i:interval);
entryport interval: integer;
exitport report: temperature;

begin
repeat
select receive i from interval => skip
or timeout i => send temp to report
end
until false
end;

The select instruction is a guarded command which allows
several receive alternatives: here it is used trivially with
a single timeout alternative.

The configuration specification can now connect the
thermometer task to another task, or even to two different
tasks, provided that the port types match. Tasks
communicate if they address matching communications to ports
joined by the configuration description. Potentially, but
not yet in practice, the port connection pattern can be
altered while the system is running. Separation of
configuration description from operational description is
claimed to make for modular programming and certainly seems
to do so.

There are two kinds of communication ports. One is a
notify port, clearly designed for the reporting and
broadcasting of status information. Both ports of the
thermometer example above are notify ports. The connection
pattern is one-to-many: a single notify exitport can be
connected to several notify entryports and all those
entryports will receive any message sent. The messages are
buffered, but the splendidly eclectic design of the language
avoids the problems of buffer exhaustion and the overheads
of buffer allocation by making each receiver allocate space
for a fixed number of messages. So, for example, a module
which was connected to the thermometer module might have
declared an entryport

entryport heat: temperature queue 5

and be able to buffer five incoming messages. New messages
just overwrite the oldest ones if necessary, so that a
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receiver can see only the newest messages in a sequence sent
to it, and only the latest message if it allocates a single
buffer, which is the default. It seems that accurate
up-to-date information is more important than a complete
history in the world of process-control. Senders are never
suspended on a notify port: receivers may be if the queue is
empty but a process can discover whether the queue is empty
or not by using a special form of select instruction.

The second kind of Conic port is the request-reply
which has two types, one for the request and one for the
reply. So, for example

exitport faster: speed reply boolean

allows a process to send a message of type “speed’ and
receive a boolean reply, indicating perhaps whether a
distant process was able to alter some device to work at
that speed. 1In operation a sender sends a message to an
exitport and waits for a reply or a failure through the same
port:

send <message value> to <exitport>
wait <reply variable> => <instruction sequence>
fail <timeout interval> => <instruction sequence>

If it gets a reply it executes the instructions following
wait; if the timeout interval expires, or the communication
hardware breaks, or the exitport isn’t linked to any
entryport the second instruction sequence is executed
instead. The program can discover the reason for failure if
necessary.

A receiver accepts messages, constructs a response and
sends it back through the same port:

receive <message variable> from <entryport>
... <instruction sequence> ...
reply <reply value> to <same entryport>

Communication is synchronised and unbuffered: a sender can’t
proceed until its offer is accepted or until its delay
expires or the connection seems to fail. Request-reply
receive instructions can be used in a guarded command.

Timeout occurs in a sender if the reply doesn’t arrive
in time (cf. Ada in which the timeout occurs if the entry
isn“t accepted in time), which by no means implies that the
message wasn’'t sent or wasn’t accepted. Evidently a message
might be sent, actually get through, be processed and a
reply be transmitted but the sender timeout before the reply
arrives. Such delayed replies are by definition discarded,
and programmers are warned that a timeout doesn’t mean a
message wasn 't sent. Likewise, communication failure may
have occurred before, after or during message transmission.
In the world of process control this sort of uncertainty is
apparently acceptable.

Conic is too ad hoc for my taste, but I am impressed
with the way that it tackles the practical problem of how a
language should treat reconfiguration of a network, failure
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of the network hardware, failure of a receiver to keep up
with its senders and the impossibility of synchronisation of
processes on different machines within a particular universe
of application. Conic is fine if you want to program the
sort of system its designers envisage and it certainly
allows you write type-secure programs for process control
networks. If you are running on reliable hardware then
obviously some features of the language become less useful.

Because communication is indirect through ports then, if
modules can be written to operate autonomously when they
become isolated, it is potentially possible to reconfigure a
running system to cope with partial hardware breakdown. I
understand that Conic will continue to be developed in that
direction.

4.3.3. ocean

I feel impelled to say that occam (3) is a beautiful
language. Indeed nothing so lovely has happened in language
design for ten years. It is so nice that I feel
irresponsibly light-hearted about it. So, some
irresponsible jokes: why do I have to write occam with a
small o? -~ because it’s a natural naming-progression from
FORTRAN through Pascal. And why must I write each
instruction on a fresh line? - so that the compiler-writers
can measure the compilation speed in lines per minute and at
last compete with IBM FORTRAN on level terms (as an
ex-compiler-writer myself I half believe that one).

Seriously, though: occam isn’t based on Pascal, which is
a fine relief for this reviewer. The language is amazingly
simple: the official definition is about fifty pages, most
of which is taken up by blank space and example programs.
Most of all it resembles a productive cross between BCPL
(24) and CSP (26). It inherits from both its parents
elegance and simplicity of design and an intense
concentration on ease of implementation within its chosen
area. Everything is pared down to ensure that occam
programs use a fixed amount of space: this is a language
targeted at arrays of microprocessors running a concurrent
program with the minimum of ‘underlying mechanism’.

So occam prohibits recursion because, when there are
several programs running in a machine, recursion needs an
underlying mechanism which can rearrange the allocation of
memory whenever execution stacks collide. It uses
synchronised communication because that mechanism requires
no buffering, and hence no global buffer-allocation
mechanism. Its channels are one-to-one connections because
that means no queuing - again, no underlying mechanism
required. Its guarded commands have receive guards only
because that simplifies implementation of synchronisation.
The number of processes in every parallel composition, and
the number of guards in every guarded command, is fixed and
can be counted by the compiler and therefore it can allocate
fixed space to every process no matter how complex its
execution structure.

You might expect that such concentration on efficiency
would produce a linguistic straitjacket. Not so: what you
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get instead is a language in which parallel composition,
because it is so efficient, can be used as freely as
sequential composition. So every instruction-execution is
an occam ‘process’ and you write each basic instruction on a
separate line to emphasise the point. There is no
bracketing: instead you write a composition-phrase like SEQ,
PAR, ALT or WHILE on one line and the instructions it
composes on following lines, indented to show their
dependence. Lifting an example from the occam manual:

CHAN c[n+1]:
PAR i = [0 FOR n}
WHILE TRUE
VAR X:
SEQ
cli]?x
H B 5

- which describes the parallel composition of n+l processes,
the ith of which which takes input from channel ci and
passes it to cj4]. Together they form a sort of n-stage
shift register. Longer examples are equally easy to parse:
here is one of my own, which is part of a protocol
description

CHAN alldone:
PAR
SEQ
SEQ i = [1 FOR n}
ms[i]!CNCL
alldone!ANY

VAR finished, x:
SEQ
finished:=false
WHILE NOT finished
ALT
ALT i = [1 FOR n]
glil & mr{i]?x
gl[i]:=false
alldone?ANY
finished:=true

- a composition of two parallel processes, one of which
sends n messages on channels msj and then signals to the
other that it has finished; its partner waits in a guarded
command listening to some of the n channels mr; and
simultaneously awaiting the termination signal.

The language has straightforward hierarchical scope - no
fancy module syntax here. There is a top-level
configuration language, which allows processes to be
allocated to individual hardware processors within the
system and the inter-processor channels to be declared.
Processes are then hierarchically decomposed: if a process
forks into several parts then they all run on the same
machine, as you would expect.

Because the language has hierarchical scope the
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name-spaces of two processes composed in parallel will
overlap. Indeed they must overlap if they are to
communicate over a shared channel, as in both the examples
above. But sharing memory objects (variables) is trickier.
Processes may freely access a shared memory object provided
that none of them assigns a value to that object, says the
language definition. No compiler can enforce such a
restriction completely, because of the tricks a programmer
can play with array indices, so it is just an exhortation
requesting the programmer to behave properly, rather like
the Ada exhortation to avoid the bad effects of aliasing.
Equally the restriction to one-to-one channel connections is
an unenforceable exhortation. Thus occam inherits from BCPL
not only simplicity but also something of its character as a
‘high-level assembly code’, a sharp tool with which you can
easily cut yourself. This is perhaps an inevitable
characteristic of any systems implementation language.

With or without Justice in This World, I would vote
occam the Language Most Likely to Succeed. I fear only that
it might be overtaken, as its ancestor BCPL was before it,
because it is word-based although so much computing practice
has to do with strings of bytes and byte-structures of
various sizes. Occam allows vectors of words or of bytes,
but makes no other concessions to data structuring: like
BCPL it recognises only the vector. C (25) superseded BCPL
for many reasons, one of which was certainly that C
accomodates the byte-addressing structure of modern machines
in a way that BCPL doesn’t and C gives some superficial
recognition to data structuring. It would be a shame if
occam, like BCPL, is superseded by something as nasty as C
and for the same sort of reason.

4.3.4. Pascal-m

I shouldn’t say too much about this language (4) because
it is partly my own invention. Another development of
Pascal, like Conic it has processes which are collections of
procedures. It has a module syntax which groups process and
channel declarations and which restricts the visibility of
channels and thus the initial interconnection pattern.

The language s main innovation is the mailbox: a form
of any-to-any channel connection. Mailboxes have
identifications (effectively addresses) which can be sent in
messages so that the initial interconnection pattern, set by
the way in which modules import and export mailboxes, can be
dynamically reconfigured. We succumbed to the temptation to
make processes dynamically invocable - a process can create
another almost as easily as it can call a procedure within
itself. Examples of programs in the language are given in
(851 Wke

Pascal-m was designed to make a certain kind of
programming easy, with rather less than half an eye kept on
the difficulties of implementation. So mailboxes are
any-to-any channels, guarded commands allow both receive and
send guards and mailbox identifications can be sent in
messages. These features together make it easy to describe
solutions to some problems, but impossible to give Pascal-m
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message-passing a simple implementation. Becase mailboxes
are any-to-any channels, there must be some queueing of
offers to communicate. Because guarded commands are
bidirectional offers once made can at any time be withdrawn
and an expensive protocol is required. Because mailbox
identifications can be sent in messages it is impossible to
determine the set of processes which can communicate over a
mailbox.

A pseudo-concurrent implementation has existed for
several years, but true concurrency on distributed hardware
has so far eluded us - in part because we wish to produce an
implementation which is both distributed and fair. We have
for some time known of one protocol which would permit a
distributed implementation and recently we have developed a
second; we are still determined to ‘distribute the
language”.

Our intention was to provide a language for networks
which require an expanding population of processes and even
of process types. So in a network of office workstations we
envisaged that a novel application program could be compiled
and incorporated into a running system, as securely
type-checked as if it had been compiled at the same time as
everything else. Mailbox identifications which can be
passed in messages make this kind of extensibility
potentially possible. We didn’t take enough account,
perhaps, of the problems of machine failure and network
failure.

I think, though, that I am falling over backwards not to
be seen to be favouring my own work. Together the group at
QMC has written a filing system in Pascal-m, a UNIX-like
operating system and several sample user-interface systems
providing a multi-window screen interface. The project
continues with industrial support from Texas Instruments.
The problem of programming Flexible Manufacturing Systems
seems to be an application area where problem descriptions
are complicated, message rates are fairly low and flexible
extension of running systems would be very useful. We think
the language has a useful future.

4.3.5. Path Pascal and PascalPlus

PascalPlus (23) was a very early concurrent language.
Its communication mechanism is the monitor and its obvious
implementation technique is shared-memory. Its current
guardian tells me it deserves little more than a footnote in
this review. Nevertheless it has had a true distributed
implementation at UMIST (32) and another is undexway at
Sheffield (33). The UMIST implementation used a shared
memory and control processor on a Cambridge Ring - i.e. a
sort of geographically distributed version of the Martlet
multiprocessor (9).

Monitors are a means of interleaving assignment and
access to shared memory objects: control is by making
procedure executions mutually exclusive. Path Pascal (5)
uses a similar notion. Executions need not alwazys be
exclusive but the amount of concurrency can be controlled.
So, for example, given definitions of procedures put and get
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entry procedure put(i:t);
begin b[in]:=i; in:=(in mod n)+1 end;

entry procedure get(var j:t);
begin j:=b[out]; out:=(out mod n)+1 end;

the path expression
n:(1l:(put); 1l:(get))

expresses the restriction that there can be up to n
concurrent executions of (put;get) but that within that
concurrency, executions of put are mutually exclusive as are
executions of get. This gives all the information required
to control insertions and deletions of an n-place buffer.
The procedures can be defined more simply than usual,
because the underlying mechanism counts to make sure the
buffer is never overfull or less than empty.

So far as I know the language doesn’t yet have a
distributed implementation, though one is envisaged (6).
Clearly it would be possible to implement a Path Pascal
program so that each object was on a separate processor of a
network, or to implement server processors written in Path
Pascal within a heterogenous network. The path expressions
give some of the implementation advantages of occam, in that
the space requirements of an object can be worked out in
advance in many cases.

4.3.6. Programming in unhelpful languages

All of the languages dealt with so far have provided
some facilities to help with concurrent programming -
guarded commands and type-checking of messages, for example.
A good deal of distributed computing - in fact practically
all the non-experimental distributed computing in this
country is done in languages which give little or no help
to the programmer. For example: telephone exchanges, which
are typically collections of machines, each a
multiprocessor, are programmed in CORAL (1,2). The
Cambridge Ring installation at the University of Cambridge
is programmed in BCPL (14). The Newcastle Computing
Laboratory network is programmed in C (20) as is the network
at Strathclyde (17). Kent use both BCPL and C (33). Oxford
program in Modula-2 (15).

Every one of these installations in effect uses the same
solution. A coroutine language provides a kind of
pseudo-concurrency on a single processor - Modula-2, BCPL
under TRIPOS, Post Office CORAL, C under UNIX (C gives no
help at all but UNIX(35) gives pseudo-concurrency). Messages
which are all of a single type - byte-sequences in every
example except in the telephone exchanges, which use a fixed
record type - are transmitted between machines. Typically on
each machine designated processes handle outgoing and
incoming messages: the use of pseudo-concurrency means that
the incoming-message process can be scheduled to operate
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whenever one arrives.

The York PULSE project (1l1), although I treated Ada as a
genuine concurrent language above, is really another example
of a programming system where a concurrent language is used
to give pseudo-concurrency on a single processor and
messages of fixed type are transmitted between Medium
processes (effectively message buffers) on different
machines.

UNIX doesn’t lend itself well to message-passing, but
procedure call is the fundamental means of communication
with the operating system and hence with other processes in
a conventional single-processor implementation. Both at
Newcastle (20) and Strathclyde (17) there have been
implementations of Remote Procedure Call which allow UNIX
systems to be linked by a network - initially a Cambridge
Ring in each case. The Strathclyde implementation provides
interprocess communication across machine boundaries, with
port descriptors as an indirect process-addressing
mechanism.

It would be wrong to criticise these implementations
because they didn’t use a language capable of describing the
‘program” which is running on their entire system, or to
criticise the facilities they provide in the same way as
those that are provided in concurrent languages. The
problem they address is that of linking computers which are
themselves self-contained systems, which must carry on
running even though other parts of the system break and which
must be removable from the system for hardware maintenance
or software alteration. 1In effect the “network’” is a rather
flimsy alteration to the environment. So far no language
has gone very far towards a solution of this very real
problem of loose, intermittent coupling.

4.3.7. Other languages

There are a number of languages which are being
developed or are in use and which I can do little more than
name. In some cases I haven’t reported because they aren’t
used much; in others because they won’t fit into my
classification. DTL (22,28) is reported on elsewhere in
this conference. Edison is under investigation at Sheffield
Polytechnic (16,33) in a sort of competition with
PascalPlus. Basix (18) was developed at the University of
Newcastle in an attempt to extend the way in which the UNIX
“shell” handles file-hierarchies to other hierarchies, in
particular hierarchically organised hardware and
hierarchical scopes in programs. Lisp (8) was experimented
with at the University of Bath on a multiprocessox. There
is a development of Basic (21) which aims to provide ‘real
time’ programming and could, say the authors, be extended to
distributed concurrent programming: the reference gives a
Basic version of the Conic pump-control progranm.
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4.4. CONCLUSION

This review is not intended to be depressing or to
condemn the current state of imperative language design in
distributed computing. Superficially there don’t seem to be
many distributed programming languages in use and most of
the distributed computing which is done seems to be either
experimental or else done under UNIX. But in fact there are
grounds for optimism. We have at least one excellent
language design in occam, and a good deal of experience of
implementing and writing programs in several more. We
haven’t reached our destination yet but the wagon is rolling
and all its wheels seem to be going round (our mule was the
DCS programme and since this is the final conference it
can’t pull the analogy any farther). The next five years
won’'t be all downhill but I am sure that much of the hard
work of the last five will begin to pay off.
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Chapter 5

A strongly typed, distributed
virtual memory

J. W. Hughes and M. S. Powell

Programming is predominantly the task of implementing
data structures and the necessary operations required on
them by the application. Within a single program, the task
is well supported by the extensive data abstraction
facilities of modern high level languages, but they make no
such provision for data which is to outlive the execution of
a program or to be shared among program executions. Such
data is conventionally manipulated using a more primitive
language of the operating system, filing system or data
base. The work described here is an attempt to extend the
data abstraction facilities of a modern high level language
beyond the program boundary by strongly typing all data,
both volatile and persistent, local and distributed, and
consequently unifying the language by which it is
manipulated.

S.1 INTRODUCTION

The concept of a filing system provided by a computer
operating system emerged very early in the evolution of
systems software, along with the concepts of FORTRAN as a
high level programming language and the array as a data
structure. All three provided convenient ways for the
programmer to manipulate respectively the backing store; the
instruction set and the memory whose hardware structures
they closely reflect.

In the intervening vyears considerable advances have
been made, particularly in the area of programming language
design, which have resulted in the facility to express
programs in problem—orientated rather than machine—
orientated terms. These advances have centreed around the
concept of abstraction; program control structures have
abstracted away from the machine jump instruction (13, 20),
process and monitor structures have abstracted away from the
sequential processor (2, 6, 19} and the concept of user
defined types has abstracted away from the structure of
memory (7, 14, 13, 20). Thus in the context o+ modern high
level languages, files have become the Komo«do dragon of
programming, still reflecting more of the streacture of the
medium in which they are implemented than the structure of
the information they store. Any long term sts~uctured data
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has to be mapped onto the imposed file structures.

The work described here has arisen from examination of
an existing information system for monitoring plant and men
in a large press shop (10). Although the initial
investigation was concerned with distributing this system,
it soon became evident that a tool for constructing and
manipulating the interrelated data structures needed would
allow the designers and programmers of such a system to
concentrate on the complexities inherent in the problem,
whereas much of the complexity of the existing system lay in
coping with the device dependent limitations of the filing
system. Attempts elsewhere to date to overcome this problem
have led to the emergence of data bases and database
manipulation 1languages (4) independently of the important
and significant advances in programming language design
which have occurred.

Clearly there is no reason why the structure of the
information which so-called files contain should be any
different to the structure of the information manipulated by
the programs that access and generate those files. If the
conventional filing system is replaced by a structured data
store, a natural and desirable consequence is that there is
no need to design, implement and, more importantly, learn
special purpose database description and manipulation
languages. These are already provided conceptually by the
type declaration and variable accessing facilities of most
general purpose programming languages. Furthermore, within
application programs, there is no longer a need for possibly
complex and costly input and output routines which convert
between the external file representation and the internal
representation of the data types.

The replacement of a conventional filing system by a
language specific structured data store is in line with the
philosophy that the entire computer system should be
language orientated. The +flexibility of the UCSD (21)
system is due largely to the fact that its operating system
is designed specifically to support the implementation of

Pascal programs and is itself written in Pascal. Similarly
the potential of the PERG@ derives from its underlying P-
machine (22). A 1logical extension of this philosophy

suggests that the data store (traditionally the +filing
system) should likewise be language orientated, in order
both to simplify the programmers®™ task and to improve
software portability. This paper describes such a Pascal
orientated structured data store, its implementation and
use. However, the concepts involved are applicable to any
language employing user defined data structures. e.qg. 0BJ
4). The next section identifies the facilities required
and the third describes the progress to date on their
implementation.
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.2 FACILITIES REQUIRED

The system is required to support non—-volatile abstract
data structures in the spirit of the set theoretic types
described by Hoare in (4) and ideally is to be built into a
system orientated towards a modern high level language. By
analogy with a filing system, the facilities required fall
into two classes:—

i) Manipulation of the external data from within a
program,

ii) Management, at the operator level, by means of a
utility like a "filer”.

I¥f the system is bootstrapped, the lat}er can be
implemented using the former i.e. the utility is written in
the programming language around which the entire system is
based, and may use its facilities for manipulating external
structured data.

5.2.1 Types supported

In fact the high level language chosen, around which to
build the system, was Fascal. The justifications for the
choice are numerous - Fascal types closely approximate
Hoare®s abstract data types and the philosophy of building a
machine and an operating system around a language has
already been successfully put into practice for Pascal.
Combining and extending these ideas to provide a Pascal
based, structured, non-volatile data store is a logical
development.

The set of predefined types and type constructors
provided should be representative of abstract data types and
compatible with those already provided in Pascal for program

variables. The system should naturally support scalar
types, both standard and user defined and the usual array
and record constructors, including variants. The

requirement for dynamic objects and recursive data
structures was carefully considered and it was decided to
follow FPascal and support both of these facilities via a
pointer constructor. However, two specific recursive data
structures have been provided to reduce the number of
occasions on which the user will be reduced to using
pointers directly. {(See later). The real type, set and
file constructors are not considered fundamental as they can
be represented in terms of the other types. They have
therefore been omitted from the current requirements list.

This then was the initial set of types, chosen as
representative of abstract data structures in the Hoare
sense (7):- standard and user defined scalars, pointers,
records and arrays. Experience with using the system
revealed the usefulness of the UCSD Pascal string and two
frequently used dynamic structures which, as described
below, are of particular use in defining and manipulating
objects representing types. These are a variable length
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sequence, implemented as a LIST and a MAF which represents a
sparse function between types, implemented as a list of
ordered pairs. These two constructors and strings have
therefore been incorporated into the user interface to the
data store at the operator level, although they were not
part of the initial requirements and from a program they are
still manipulated by the standard Pascal record and pointer
mechanisms. They can be regarded effectively as mere short-
hand notatiens in the user interface.

S5-.2.2 Manipulation fraom within a program

In traditional filing systems, the data representation
within a file is generally different from that used to
represent the same data within a program and is strongly
influenced by the structure of the storage medium, rather
than by the natural structure of the data itself. In these
circumstances, considerable programming effort as well as
machine time can go into providing the necessary
transformations between representations whenever transfer of
data between storage media occurs.

Ideally a structured data store should allow the same
data representations to be used independently of the
structure of their storage medium, just as programs written
in a high level language are independent of the structure of
the machine on which they are executed. Thus the normal
data access mechanisms of the programming language should be
available on all data objects independently of their
location, as should assignment of values between structured
types. The only new concept necessary is the way in which a
praogram identifies an object external to it. This problem
has already been solved for external files, but the present
situation calls for stronger type checking between the
program’s and the data store’s type definitions to be
implemented. Providing a suitable virtual store can be
implemented, the language extensions needed are minimal. In
the existing system under discussion, the Pascal data
accessing, assignment and dynamic store allocation
mechanisms are implemented as a set of procedures {(described
in the third section) but it would be equally feasible to
incorporate the virtual and external store concepts into a
compiler and virtual machine.

S.2.3 Management of the Structured Data Store

In strongly typed languages, each data object has an
associated type which is used by the compiler or the run
time system to check the proper use of the data. In the
case of external data, which outlives the execution of a
program, it is necessary to maintain some representation of
its type in order to provide the same level of security of
proper use. Following this philosophy, the data store is
strongly typed and all operations on it embody type
checking. With each didentifiable data object in the
structured data store therefore are associated :-
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i) A type which describes its structure

ii) Its wvalue, of that type which may be manipulated,
for example to create new values for existing or new data
objects.

The data store management utility, in manipulating
structured data objects, must therefore be capable of
performing type checking and consequently the necessary type
information must be stored as well as value information.
Furthermore, the store management utility should provide the
facility to create and update type information as well as
value information. Thus, just as most filing systems embody
the concept of a file directory which itself may be a file,
so0 the structured data store may contain data objects whose
values are type information. In those circumstances, the
same utility can be used for the management of type
information as is used for managing data values. In the one
case information about the structure of type information is
used to create or edit structured values representing type
information, in the other user created type information is
used for type checking during the creation or updating of
data values. The uwuse of the utility in the two cases is
illustrated in figure 35.1. Its detailed use and precise
user interface are described more fully in the third
section.

S.2.4 Representations

In order for the user to make use of the type and value
editors to interact with the structured data store,
conventionally a textual interface is required, although any
human sensory representation could be used. In either case,
an alternative data representation to that used in the
memory is necessary and the data manipulation software must
be capable of performing the required transformations

between alternative representations. In order to do so
formatting information is associated with each type, which
defines the textual (or alternative) representation of
values of that type. Because types are defined

hierarchically, the representation of a composite type is a
function of the representations of its components and a
formatting used to represent the constructor with which it
is composed. The representations of standard types are
standard and are specified in the standard type information.
The representations of user defined types can be specified
by using the type builder when the type itself is defined,
or the representation can be changed by editing the
formatting information in the type data structure. Thus the
representation is type specific rather than ?persistent
variable’ specific. Although the facility is capable of
being used for specifying general transformations of type
representations, in the current system it has been used only
for specifying two dimensional textual representations. The
standard types have their usual textual representation with
the added facility, similar to Pascal output parameters, to
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specify minimum Ffield width and left, right or central
justification within the field. The layout for array and
record structures is specified in terms of prefix, infix and
postfix strings which respectively precede, separate and
follow the textual representations of the components of the
structure.

S.2.5 Operations

The required facilities described above effectively
extend the scope of Pascal structured variables beyond the
scope of a Pascal program. More modern high level languages
have extended the data abstraction concept beyond user
defined types to incorporate the encapsulation of a data
type together with operations on that type. The concept has
been variously implemented as the class in Concurrent Fascal
(2), the envelope in Pascal-plus (19) and the package in Ada
(11). A logical further development of the permanent data
concept incorporates operations into type descriptions. The
concept of allowable operations wupon data, or data
components, of a user defined type includes formatting
operations as a special case. As well as being used to
provide type transformation operations, such operations
could also be used to strengthen type checking by performing
data validation of a non—-syntactic nature and to provide
higher level data base like query operations. Thus rather
than programs defining the data which they manipulate, the
data defines the operations by which it will be manipulated;
each level in the hierarchy defining operations at the
appropriate level.

5.2.6 Distributed Data

Only one external store has been considered above,
however, the idea is readily extendible to identifiable
external stores. This 1leads to the possibility of a
physically or even geographically distributed data store
where the user may require explicit control over the
geographic location of data objects. Furthermore, the fact
that wvalues in the structured data store persist between
program executions suggests that they may be shared between
programs or users. In these circumstances, rather than
being considered as classes, the data structures should
behave more like monitors, providing exclusion on operations
when appropriate. Previous work on nested moni tor exclusion
in distributed systems (17) suggests that not only is global
exclusion a bottleneck, but local exclusion which makes no
distinction between read and write access 1is also too
strong. In order to be acceptably usable as a distributed
data base, a structured data store of monitor-like data
objects should provide exclusive writer and mul tiple reader
access operations.
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S.2.7 Requirements Summary

In this section, the concept of an external structured
data store based on a strongly typed high level language has
been developed. The facilities required on such a store are
problem rather than device orientated. These include the
normal data accessing facilities provided in most languages
for accessing program variables, together with utilities
analogous to filing operations which provide for the
definition and represention of types and their values.
Identification of multiple external stores leads to the
concept of a distributed virtual store containing monitor
like objects. The next sections describe progress to date
on the implementation of such a store.

5.3 THE VIRTUAL MEMORY

The structured data store is implemented on top of
virtual memory which may be distributed over a wide range of
different memory devices. Conceptually the virtual memory
implements a mapping between virtual addresses and the
elements of the memory (words). Its interface, therefore,
includes the following type definitions.

TYPE address oieis))
word -
memory kind = ...;

The gesory kind enumerates the various memories over which
the wvirtual memory is distributed. In an implementation
which makes use of the processors main memory, a disk memory
and a network link to other processors, each supporting the
same kinds of memory, fetory kind could be defined as below.

TYPE memory kind = (local memory, local disk, remste aemoryl;

The address information required to access the virtual
memory in this environment might be defined as follows.

TYPE address = RECORD
CASE kind: memory kind OF
local mesory @ (local : local address);
local disk ¢ (disk : disk address);
remote memory @ (remote: renote address)
END;

local address = low address .. high addressj
disk address = RECORD

volume name + volune identifier;
block address : ain block .. sax block;
word offset v 0..max offset

END;

remote address = RECORD
node identifier : min node .. #ax nodej
internal address: address
END}

The address information for each particular memory
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component can be chosen to suit the attributes of the device
which implements it. Where a memory component contains
further memory components, its address information may be
defined recursively. This will generally be the case where
a remote memory addressed via a network link is involved and
allows, for example, memory accessing through network
gateways.

The structure of a wrd can be chosen to suit the
implementation environment. e.g. 1 bit, 1 byte, a 16 bit
word etc.

The virtual memory interface must be able to support
the following operations on the above types.

PROCEDURE allocate(VAR base: address; words: natural; where: semory kindl;
PROCEDURE dispose(bases address; words: naturallj

PROCEDURE read(location: address; offset: natural; VAR value: word);
PROCEDURE write(location: addressj offset: naturalj value: wordlj

Allocate and  dispose support the initial creation and
destruction of contiguous memory areas specified by their
base addresses, sizes and the kinds of memory in which they
reside. Read and write allow individual words to be accessed
from any such contiquous memory areas. The virtual memory
does not provide any operations to support the safe sharing
of data objects between more than one user (mutual
exclusion). Such operations are implemented at a higher
level where advantage can be taken of the strongly typed
nature of the structured data store (18).

Most of the internal structure of an address may remain
hidden from users of the virtual memory except when the
exact placement of a memory area is important. e.g. Long
term data objects should be allocated on non-volatile memory
devices such as disks and remote communication is only
possible if both sender and receiver know where messages are
stored.

The internal implementation of the virtual memory may
use paging technigques to provide efficient access to wrds
irrespective of the diverse structures of the physical
memory devices over which it may be distributed.

5.3.1 Data Structure Accessing Operations

A set of standard structure accessing operations are
build on top of the virtual memory interface. These include
operations for creating, copying, disposing and accessing
components of data structures of any of the supported types.
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FUNCTION new structure(sort: type ref): address

PROCEDURE copy structure(source, sink: address; sort: type ref)
PROCEDURE dispose structure(old: address; sort: type ref)

FUNCTION scalar value{scalar: address; sort: type ref): ordinal value
FUNCTION index(array, index value: address; sort: type ref): address
FUNCTION field(record: address; field name: identifier; sort: type refl: address
FUNCTION dereference(pointer: address; sort: type ref): address
FUNCTION nil pointer(pointer: address; sort: type ref): Boolean;
FUNCTION string value{string: addressj sort: type ref): string type
FUNCTION first list{list: addressj sort: type ref): address

FUNCTION rest list{list: address; sort: type ref): address

FUNCTION empty list(list: address; sort: type ref): Boolean

FUNCTION first map{map: address; sort: type ref}: address

FUNCTION rest map{map: addressj sort: type ref): address

FUNCTION eepty map(map: address; sort: type ref): Boolean

FUNCTION inder aap{map, domain value: address; sort: type ref): address

A complementary set of operations support the
construction and interrogation of type, as opposed to value,
information. The examples below show the operations which
support the use of array type structures.

FUNCTION new array(index, element: type ref): type ref
FUNCTION index typelarray sort: type ref): type ref
FUNCTION element typelarray sort: type refl: type ref

Safe sharing of data objects between a number of users
{(mutual exclusion) may be achieved through the use of the
acquire and relezse operations. In line with the above operations
these must also specify the types of the objects on which
they are to operate and the kind of exclusion which is
required. e.g. read exclusion or write exclusion.

The operations on values are very similar to those
provided in the instruction sets of high-level language
machines, whether implemented in software or hardware. The
primary difference lies in the fact that the operations of
this system always have a detailed knowledge of the
structure of the data objects on which they operate. This
information is generally discovered by a compiler from a
high—-level language source text and limited amounts of it
are encoded into the instructions which implement operations
on the data objects it describes. However, the majority of
the information is discarded before the data objects are
ever created or used. Retaining all type information as an
integral part of the system allows far more flexible use to
be made of the values stored within it as the system knows
so much more about the attributes of each object. Wor k
reported in reference 16 indicates that the retention of
type information may also have beneficial effects on
efficiency.

In addition, where an operation refers to an adiress this
may in turn refer to an object anywhere in the distributed
virtual memory. For example copy structure can be used to move
information of any type from one memory in a network to
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another elsewhere in the network, or from a disk memory to
the main memory of a processor, as easily as the information
may be moved from one place to another within the same
physical memory. This applies equally to information
described by dynamic data types implemented using pointers.
Copy structure will automatically transform the addresses which
implement pointers in the source memory, into pointers
suitable for use in the sitk memory and create the appropriate
values for them to refer to.

9.4 THE USER INTERFACE

Given the amount of type information which the
structure store has about the objects stored within it, it
is appropriate to allow the user access to the stored
information via an interface which supports operations which
are directly related to its structure. Nearly all
conventional computer systems have interfaces which are
unnaturally contorted away from the structure of the objects
they manipul ate due to a bias towards textual
representations of data types, values and operations. e.g.
Consider the amount of work performed by a compiler in
extracting the essence of a program from its source text.
If a program is represented directly as a data structure
strongly related to the abstract syntax of the language in
which it is “written®, all of conventional textual syntax
analysis and much of conventional semantic anal ysis becomes
unnecessary. In addition an executable representation of
the program, its code, could be generated in an efficient
manner from this data structure, or the structure could be
executed interpretively.

The user interface to the structured data store is
designed to allow direct manipulation of data objects in a
fashion which is not biassed towards textual representations
but still allows the user to view information in a textual
form. Many other non—textual formats are possible within
the same framework. From this point of view, the facilities
provided are similar to those found in program development
environments which support structure editors such as Gandal+f
(S

9.4.1 The Type Editor

Initially any object will have an undefined type and an
undefined value. The first stage in the creatdion of a new
object is therefore to define its type. This is done by
using the type editor. Once the type of a new object has
been defined the value editor may be used to give it a
defined value. Both the type editor and the value editor
are supported by a common structure editor which facilitates
the stepwise creation and maintenance of arbitrary data
structures.

The type editor allows the construction of type values
of arbitrary complexity by using the facili ties of the
structure editor to edit values from some predefined domain
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of types. In the current implementation the type value
manipulated by the type editor is a mapping from type names
to references to individual type values. The first entry in
the mapping defines the type of the object to be created,
subsequent entries define the types from which the new type
is composed.

TYPE types = WAP identifier T0 type ref
identifier = stringlidentifier sizel
type ref = *type
type kind = {scalar, array, record, pointer, string, list, map}
type = RECORD

name ! identifier

format: format information

CASE kind: type kind OF
scalar: (scalar kind: scalar type)
array : (array kind: array typel

« ' .
. .

END

An example will be used to illustrate how values of
this type are manipulated by the type editor. The example
is drawn from the area of computer aided teaching systems
and involves the construction of a data object which is to
represent a lesson. A lesson is to consist of some number of
trames, each frame presenting a unit of information to the student.
Frames will have distinguishing titles and contain references to
succeeding franes which represent the continuation of the lesson. An
example of the implementation of such a lesson is a “Teach
Yourself ... ? book where frases are implemented by pages and
centinuations are implemented wvia page number references to
succeeding material.

A type which describes the above lesson structure may be
expressed textually, using the Pascal 1like type domain
supported by the type editor, as shown below.

TYPE lesson = MAP line TO frame ref
frame ref = “frame

frame = RECORD
title: line
bedy : information
END

line = string{line lengthl

inforimation = RECORD
text
continuation
END

LIST OF line
lesson

The data object must support operations which include
the ability to add new frames to a lesson, the ability to define
the information and continuations for such new frames and the
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operations necessary to allow a student to ’browse®™ through
the frares in the order indicated by the continuation information.

The lessan  structure was defined textually above,
however, the type editor’s interface is not biassed towards
textual representations of type values but rather towards
the manipulation of values from the domain of types which it
supports. This makes the task of describing a non—textual
interface textually rather difficult! An attempt will be
made to overcome this problem by referring to the sequence
of VDU screen images which the editor would present to the
user during the course of the construction of the type lesson.
Figure 5.2 shows the sequence of VDU screen images which are
referred to in the paragraphs below.

The initial undefined state of an object’s type is
represented by an empty mapping. Figure 5.2a shows how the
type editor displays this initial state. The top line on
the screen always shows the type of the currently selected
component of the value being displayed. In addition the
currently selected component will be emphasised in some way,
in this case by underlining. In this example the currently
selected component is the entire types mapping which is empty.
The editor adopts the convention that empty or undefined
values are indicated by displaying their type names in
pointed brackets.

The first step in defining the type of the object to be
created is therefore to insert into the mapping a reference
to the objects root type. In this case lesson. This is done
by issuing the editors “change®™ command. Commands may be
given to the editor in the current implementation via single
key strokes on a keyboard or by selecting command “buttons’
on the screen via a graphics tablet or light pen (these
*buttons® are not shown in figure 5.2 ).

When the change command is issued the display will
change to that shown in figure 5.2b. The editor knows that
the currently selected component is an empty mapping and
therefore offers the possibility of inserting a new element
into it. Selection of the insert option causes the display
to change to that shown in figure 5.2c, as the editor
enquires about the value of the element to be inserted into
the map. In this case the element to be inserted is of a
complex type which is best defined by defining its
components individually. The user therefore emters an empty
value and the display changes to that of figure 35.2d. At
this stage the display is indicating that the tyes map now
contains one element which is an undefined typeref.

The next stage is to create a type for the typeref to refer
to. This is done by Ffirst selecting the tye ref to be the
currently selected component. This is achi eved by
*pointing® at the type ref using a graphics tablet or light
pen, or by using the arrow keys of a keyboard to position
the screens cursor over it. When one of these actions is
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performed the display will change as shown in figure 5.2e to
indicate that although the whole types map is still displayed,
that the first, and in this case only, element in it is the
currently selected component.

If the editors “view® command is used at this stage, a
new type will be created and the previously undefined type ref
will be made to point at it. In addition the display will
change to show the current value of the new tye instead of
that of the types map. Figure 5.2f shows the new state of the
display. The entire type value is the currently selected
component and will be emphasised accordingly.

The new type has a default initial value. The first line
{identifier} indicates that the name of the type is currently an
empty string. This can be changed by selecting this string
and using the editors change command to give it the value
Tlesson’ . The editor knows that this component of a type is a
string and will accept a string of characters from the
keyboard in response to the *New value: T prompt. Figures
S.2g, S5.2h and 5.2i show the various stages in defining the
types nme field.

The next field in the type is used to define its visual
representation. It iz currently undefined and will be left
so0 for the purpose of this example. Figure S5.23 shows the
display after the user has selected the type kind field. The
default value of this is scalar and must be changed to gy in
order to define the type lesson . The fields which follow the
type kind field are currently those which are associated with
the swlar variant of a type (minimum ordinal value, maximum
ordinal value and identifier list for enumerated types).
Figure 5.2k shows the display after the change command has
been used to change the type kind to map. Notice how the
subsequent fields change to those associated with the nap
variant of a type.

In figure 35.21 the, currently undefined, range of the
lesson map has been selected prior to giving it a value. The
domain type is not displayed as it must always be the first
component of the range type and is therefore deduced from
the range of the map. For the purpose of this example the
range type of the lesson map must be given a value which is a
reference to the type frare. Figure 5.2m shows how the change
command may be used to do this. In response to the
*New value:” prompt, the user types ““frame ref’. The *~*
indicates to the type editor that the new value is to be
searched for in “appropriate’ map type values in the
structure being edited. An “appropriate® map d4is one with
the required range type, in this case type ref, and with a
domain type which is consistent with the value following
*~?y in this case identifier. Maps in the structure being
edited are searched starting with any that form part of the
currently displayed value and theng g > necessary,
considering further maps by working back towards the root.
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In the current example, the editor will report that it
cannot find a type ref which points to a type named frame ref after
searching the only appropriate map which is the tyes map at
the root of the structure being edited. It therefore asks
whether it should create a suitable type ref. Figure S.2n
shows what happens if the user tells it to do so. The
editor creates a type value with its name field set to frase ref and
adds a reference to it to the types map. Apart from the
formatting information the type lessonis now complete.

Figure S5.2o0 shows the display after the user uses the
editors “return® command to return to the level in the
structure being edited which is the immediate parent of the
lesson type which has now been defined. This shows that the
types map now contains two entries, one for lesson and one for
its sub-type frae ref. The user can now select the frase ref
entry and define it. This will lead to further entries
being made in the types map which the user must define until
the required structure is complete. In this way the editor
supports the stepwise refinement of data types.

It is interesting to compare the number of key strokes
required to enter the lesson type using this interface with
the number required when using a conventional screen editor.
The sequence of commands described above require 39 key
strokes when wusing the editors keyboard interface only.
There are about 42 characters in the corresponding part of
the textual representation not counting redundant spaces or
newlines.

lesson = NAP line TO frame ref
frame ref = ...

The number of key strokes is further reduced if the
editor’s graphics tablet or light pen interface is used but
with the usual penalty of requiring the user to invest in a
third arm.

The system has further obvious advantages over the use
of conventional textual representations in that a data type,
once completed, 1is ready for immediate use without any
compilation process. Type checking is carried out
incrementally during its construction.

5.4.2 The Value Editor

Types created by using the type editor are used to
describe values to the value editor. The user interface to
the value editor is identical to that used by the type
editor because both utilities are built on top of a common
structure editor. Figure 5.3 illustrates two views of a
value of type lesson as seen through the value editor’s
interface. Figures S5.3a to 5.3c show the teacher’s view
during the initial stages of the construction of a new lesson.
Figures 5.3d to 5.3f show the student’s view during actual
use of the teaching material constructed by the teacher.
All of the displayed information is controlled by the format
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(line>

(text)

{lessan)

{frame’
Pascal Identifiers

A Pascal identifier starts
with a letter which is
followed by a sequence of
letters or digits.

% continuation ...

(3.3¢)

(5. 3d)

(frase)
continuation ...
Which of the following is not

a Pascal identifier?

# Answer 1. markl!
# Answer 2. markone
# Answer 3.  mark one

{frame}
Answer 2,  markone

Wrong!

# is a letter and arkone is &
sequence of letters.

Review the definition.

* Pascal Identifiers

{3.3e)

(5.3f)

Fig.5.3 Value Editor screen layout
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information created as part of the type value of a lesson. i.e.
No further programming is required to implement this
application above and beyond the initial construction of the
type information.

In figure S5.3a the value editor has been called to edit
an empty lesson. The first step in creating a new lessn is
therefore to insert a new frae ref into it. Figure 5.3b shows
the display after this has been done. The editor’s “view’
command is then used and a new frame is created for the frame
ref to refer to. The display changes to that shown in figure
5.3c and the user can go on to select and define the title,
text and continuation of the fraie. As the i type is used to define
lessonsy, the structure of frazes may be expressed hierarchically
such that Pascal like scope rules apply to frase titles.

Figure 5.3d shows a fraie as it might be seen by a
student making use of the teaching material contained in a
lesson on the subject of Pascal identifiers. The student is
told that he may move through the lesson by selecting any of
the starred entries and using the editor’s °“view® command.
The frane shown in figure S5.3d gives the student some
information and invites him to move on to the next frase.
When he does so the display changes to that shown in figure
5-38 and the student’s understanding of the previous
information is tested. Each of the continuations may lead to a
new part of the lesson or take the student back to review
earlier information. If the student selects ’Answer 2° in
this case, the display changes to that shown in figure 5.3e,
his mistake is explained and he is directed back to review
the definition of a Pascal identifier.

Such lessons are only useful if they are kept on a non—
volatile memory such as a disk. All of the operations
described above can be performed without the lesstn concerned
being moved from the disk on which it is stored. The
distributed nature of the data store would allow a lesson to
be read by a number of students simultaneously. It could,
of course, only be written by one teacher at a time. To
prevent unauthorised changes being made to a lesstn, a teacher
might retain read exclusion after he had finished creating
it, as exclusion is a non-volatile property of persistent
objects within the data store.

S.5 CONCLUSION

Programming is, predominantly, the task of implementing
data structures and the necessary operations required on
them by the application. This process is well supported by
most modern languages which include extensive facilities for
data abstraction provided that the data to be manipulated is
neither persistent nor distributed. Where either of these
properties is required the programmer finds himself unable
to abstract away from the storage representations of the
abstract data structures he wishes to manipulate.
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Because of this a very large class of conventional
programs spend more time translating data structures from
one memory representation to another than they do in
performing the operations required by the application. €.0.
A compiler generally spends more time performing lexical and
syntactic analysis than it does in generating executable
code. Both processes are necessary to translate from the
textual representation of a program into a form which more
closely describes the abstract structure of the program.
One of the main reasons for using a textual representation
for program data structures is that they are required to be
persistent and the disk memories in which they are generally
stored do not support abstract data structures directly.

Given an environment which supports persistent and
distributed abstract data structures directly, many
previously difficult programming problems become trivial.
e.g. A program may be represented by a data structure which
closely resembles the abstract syntax of the language in
which it is "written’. Such a data structure may be created
by using the type editor to define its structure and visual
representation. Programs may then be constructed and
modified by using the value editor in much the same way as a
syntax directed editor. If the facilities of the data store
are extended to allow operations and consistency conditions
to be associated with data types in much the same way that
is possible with classes, then the value editor would also
be able to perform semantic checking and execution of
programs. This would be most useful if the operations and
conditions associated with objects were defined using the
same data structures used to represent programs.

A large program might be distributed between many
programmers who could all work on their component of it,
perhaps from separate workstations on a network, without the
program becoming fragmented. Thus well defined interfaces
between the components belonging to different programmers
could be maintained at all times and incrementally checked
during the construction of the program.

The structured data store described in this paper has
been implemented under the UCSD (version 1IV>» operating
system and currently runs on a Sage IV computer. The user
interface supported is a superset of that used in the
examples in this paper and the underlying implementation
permits data structures to be distributed over the main
memory and disk memories connected to this machine. The
mutual exclusion facilities described have not yet been
implemented but work on this and the related problem of
garbage collection are well under way. In addition a
version of the system which allows data structures to be
distributed around a network of memories belonging to four
LSI-11/23s connected together by a Cambridge rirmg, has been
implemented.



Distributed virtual memory 83

The system is quite compact. An early version ran on a
64kb Apple II and was only moved on to the Sage so that
advantage could be taken of its large Winchester disk. The
implementation is entirely written in Pascal and 1little
attention has been paid to optimisation. However, the
performance of the system as seen through its interactive
interface is comparable with that of a good screen editor
even though the current paging of the virtual memory only
keeps one page at a time resident in the main memory.

Further work on the system will include the extension
of the types provided to include class type objects so that
user defined operations and consistency conditions can be
made available. With these additions it should be possible
to use the interface to the structured data store as a total
replacement for conventional textually represented
programming languages and operating systems. Alternative
type domains, such as that of OBJ (4), will also be
investigated using the facilities of the current system as a
supporting tool. In addition the system will be used as a
system development environment in which its ability to
maintain parallel representations of system components in a
hierarchical fashion will be utilised. Examples of such
parallel components include requirements, specifications and
implementations.
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Chapter 6

Building flexible distributed computing
systems in Conic

M. Sloman, J. Magee, J. Kramer

6.1 FLEXIBILITY IN DISTRIBUTED SYSTEMS

Large computer systems are expected to have a long
lifetime. However, they do not remain statie during their

operational 1life , but evolve as human needs change, the
application environment changes and as new technology is
incorporated. In fact the introduction of the computer

system itself tends to act as a stimulus for change in the
application environment, and so the services provided by the
system must evolve.

In addition to evolutionary change, distributed systems
must cater for operational changes. Components may have to
be physically relocated in response to either personnel or
installation changes. After failures of parts of the system,
continued, possibly degraded, operation should be possible
by manual or automatic reorganisation. Distributed systems
should also cater for redimensioning: extension by addition
of existing components or removal of superfluous ones.

A system must exhibit the property of flexibility in
order to adapt to the above evolutionary and operational
changes. The Conic approach to building distributed systems
provides the capability for the system to evolve and change
to meet changing requirements and conditions. 4 Conic
distributed system (Kramer et al (1), Magee and Kramer (2))
can easily incorporate new functionality in response to
evolutionary changes and allows reorganisation of existing
components in response to operational changes.

We now refine and classify the flexibility requirements
for distributed systems and then show how Conic meets these
requirements.

Functional Flexibility - is the ability to modify a system

to perform different or new functions, This can be
achieved by the replacement of existing components or
the addition of completely new ones. An important

aspect of a system's functional flex ibility is the ease
with which one can identify the implications of a
change ie. which other existing modules will be
affected by the change.

Implementation Flexibility - allows for re-implementation
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without a change in function. This could be for
operational reasons, such as to improve performance,
reduce running or maintenance costs, or increase
reliability. :

Topology Flexibility - the topology is the structure of the
components (hardware, software) of the system. There
are three aspects to be considered:

i) Physical topology flexibility allows hardware
components such as computers or transmission lines
to be positioned or easily changed to meet the
needs of the application. Typical changes would be
to move a user's workstation from one office to
another or to increase the number of workstations.
There will always be fundamental limitations on
the physical topology (eg.the maximum number of
stations on a serial bus or the maximum distance
between two stations on the bus). However, one
should avoid making any artificial limitations
such as system dependence on a specific network
topology.

ii) Logical topology flexibility in a system allows
for any arbitrary communication patterns (between
the software components) which meet the
application requirements. The logical topology
should be independent of the physical topology.

iii) Mapping flexibility is needed for the mapping of
software components and data onto the physical
topology. Software components may be moved from
one processor to another to optimise performance
or to recover from failures.

Time Domain Flexibility - is an indication of when a
system can be changed. A static sytem must be
completely shut down in order to change any component.
It may be necessary to wait for a time when it is
quiescent such as during a maintenance period. Dynamic
systems are flexible in that they allow functional,
implementation or topology changes to a running system
with no service interruption. 1In practice the
disruption caused by a component change is dependent on
whether it is being used by other components.

It has been widely recognised that in order to build
large software systems, it is necessary to decompose the
system into components which can be separately programmed,
compiled and tested. The system is then constructed as a
configuration of these software components. The separate
activities of component programming and system building
(configuration) have been referred to as "programming in the
small" and "programming in the large" respectively (DeRemer
and Kron (3)). In Conic this is reflected in separate
component programming and configuration languages (1,2). In



88 Distributed systems in Conic

this paper we will show how configuration management can be
used to satisfy the above flexibility requirements.

In section 6.2 we explain how the Coniec module
programming language provides the necessary modularity
characteristics for functional and implementation
flexibility. The message primitives are described and it is
shown that these meet the topology requirements because they
employ indirect naming and provide transparency between
local and remote communication. In section 6.3 we describe
the Conic configuration language and physical topology of
interconnected networks, which together meet the topology
flexibility requirements. The facilities for structuring
configurations to provide abstraction are also covered. In
section 6.4 we explain the use of an on-line configuration
manager to achieve dynamic configuration (time domain
flexibility) in a Conic system. Finally we describe the
current status of the Conic set of tools for building
distributed systems.

6.2.1 Task Modules

Modularity is the key property for meeting the
flexibility requirements. The Conic programming language is
based on Pascal, which has been extended to support
modularity and message passing primitives.

The language allows the definition of a task module
type which is a self-contained, sequential task (process).
A task module type is written and compiled independently
from the particular configuration in which it will run ie.
ok{p provides configuration independence in that all
references are to 1local objects and there is no direct
naming of other modules or communication entities. This
means there is no configuration information embedded in the
programming language and so no recompilation is needed for
configuration changes as is the case with other 1languages
such as CSP (Hoare (4)) and ADA (5)).

At configuration time, module instances are created
from these module types. Module instances exchange messages
and perform a particular function in the system such as
controlling a device or managing a resource. Multiple
instances of a module type can be created on the same or
different stations and a station can contain many different
modules. This meets the requirements for mapping
flexibility.

Conic modules have a well defined interface which
specifies all the information required to use the module in
a system. This 1is essential to provide implementation
abstraction. The interconnections and information exchanged
by modules 1is specified in terms of ports. An exitport
denotes the interface at which message transact ions can be
initiated and specifies a local name and message type in
place of +the destination name and ¢type. An entryport
denotes the interface at which message transactions can be
received and specifies a local name and type in place of the



Distributed systems in Conic 89

source name and type. The binding of an exitport to an
entryport is part of the configuration specification and
cannot be performed within the task module programming
language. Simple parameters (eg. integers, reals, booleans)
may also be used at the interface to a task module type.
Parameter values may then be passed to a module instance
when it is created. This can be used tailor a module type
for a particular environment, for example to pass a device
address to a device driver.

Figure 6.2.1 is an example of a simple bounded buffer
task module.

TASK MODULE bound;
ENTRYPORT putchar:char REPLY signaltype;
getchar:signaltype REPLY char;
CONST maxsize = 132;
VAR inp,outp,contents:integer;
buf:ARRAY[1..maxsize] OF char;

BEGIN
inp:=1; outp:=1; contents:=0;
LOOP
SELECT
WHEN (contents<maxsize) {buffer not full}
RECEIVE bufl[inp] FROM putchar REPLY signal
=> inp:=(inp MOD maxsize)+1;
contents:=contents+1;
OR
WHEN (contents>0) {buffer not empty}
RECEIVE signal FROM getchar REPLY bufloutp]
=> outp:=(outp MOD maxsize)+1;
contents:=contents-1;
END
END
END.

Fig. 6.2.1 Bounded Buffer Task Module

There are two classes of ports which correspond to the
message transactions classes described in 6.2.2. Request-
reply Ports are bidirectional as they declare the types of
values to be wused for both a request message and the
corresponding reply. Notify Ports are unidirectional ie.
they have no reply part. For convenience, it is possible to
define families (arrays) of identical ports. The following
are examples of port definitions:

Exitport getch : char reply signaltype;
alarm : boolean;
datalinks [1..3] : message;
Entryport print : line reply status;
message : msgtype;
callsin [1..n] : printrequest reply printertype;

Ports define all the information required to use a
module and so it is very simple to replace a module with a
new or different version with the same operational inter-
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face. This provides the implementation and functional
flexibility identified in section 6.1. The indirect naming
used by the communication primitives (refer to local port
names) provide complete configuration independence for a
task module.

6.2.2 Communication Primitives

As mentioned above, the communication primitives
provided by the module programming language must provide the
same syntax and semantics for local (within a station) and

remote (inter-station) communication. Differences in
performance between local and remote communication are
inevitable due to network delays. This Communication

Transparency allows modules to be allocated either to the
same or different stations, which can be particularly
useful during the development of embedded systems in that
modules can be fully tested together in a large computer
with support facilities and then 1later distributed into
target stations.

Communication primitives are provided to send a message
to an exitport or receive one from an entryport. The message
types must correspond to the port types. There are two
classes of message transactions:

6220 Notify. A notify transaction provides
unidirectional, potentially multi-destination message

passing. The send operation is asynchronous and does not
block the sender, although the receiver may block waiting
for a message. There is a (dimensionable) fixed size queue
of messages associated with each entryport. Messages are
held in order of arrival at the entryport. When no more
buffers are available the oldest message in the queue is
overwritten. The Notify can be used for time critical tasks
such as within the communication system, with the queue size
corresponding to a flow-control window.

O 1xp ep
send msg to Xp > ~c-ceccen—- > >
o i notify

i
! %
> receive msg from ep
i
i

Fig. 2.2 The Notify Tramsaction
6420242 Request Reply. This provides bidirectional

synchronous message passing. The sender is blocked until
the reply is received from the receiver. A fail clause
allows the sender to withdraw from the transaction on expiry
of a timeout or if the transaction fails. The receiver may
block waiting for a request. On receipt of a request, the
receiver may perform some processing and return a reply
message. In place of a normal reply, the receiver may either
forward the request to another receiver (thereby allowing
third party replies) or he may abort the transaction.
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I e H request | es

{ o By e p—— > epl ..

| send req to xp >> >> receive req from ep;
| wait rep => ..} {ommmmmmee ! cee

! fail => el reply { reply rep to ep;

| end; E I =

! i i

Fig. 6.2.3 Request-Reply Transaction

6.2.2.3 Selective Receive - any of the receive, receive-
reply, receive-forward, or receive-abort primitives can be
combined in a select statement. This enables a task to wait
on messages from any number of potential entryports. An
optional guard can precede each receive to further define
conditions wupon which messages should be received. A
timeout can be used to limit the time spent waiting in the
select statement.

1 )
1 ]
| select i
epl} when G1 H
>? receive reql from epl reply signal !
i or i
ep2| when G2 i
> receive req2 from ep2 |
{ =) ojerers ixp1
! forward to xp1 Do
ep3! or !
>> receive msg3 from ep3 => ...... {
| or |
H when Gn timeout tval !
! => {timeout action} 1
{ end; |
H i

Fig. 6.2.4 Selective Receive

6.2.3 Input/output

The Conic Kernel provides a simple single primitive to
support the implementation of device handlers as application
tasks. The waitio procedure suspends a task until an
interrupt occurs on the vector specified as a parameter eg.
waitio(100£8). This is similar to the facilities provided
in Modula (Wirth (6)). The kernel does not convert
interrupts into messages as in Ada (5) and SR (Andrews (7)),
because such conversion complicates the kernel and increases
response times to interrupts. If required, a simple task
can convert an interrupt into a message eg. in order to
queue interrupts. Task device drivers execute at the highest
software scheduling priority level to ensure they are are
not pre-empted by other non-device handlers. When an
interrupt occurs the scheduler is not called but rather the
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hardware effectively schedules the relevant device driver
task via the interrupt vector. Different device drivers may
have different hardware priority levels, allowing nested
interrupts. Figure 6.2.4 provides an example of a simple
device driver which outputs characters to a Q-bus serial
interface.

TASK MODULE serial_output( status,vector:natural) <system>;
{ 'status' is the address of the status register
expressed as a 'natural' number.
The task executes at 'system' priority i.e. with
interrupts locked out.

}
ENTRYPORT output:char REPLY signaltype;

VAR xcsr:®natural; {status register!}

xbuf:“char; {data "
ch:char;
BEGIN
REF(xcsr,status); {REF converts 'natural' to }
REF(xbuf,status+2); {a pointer type }
LOooP

RECEIVE ch FROM output REPLY signal;
xesr”:=100#8; {enable device}
xbuf®:=ch;
waitio(vector);
xesr”:=0; {disable device}
END
END.

Fig. 6.2.4 Device Driver Task Module.

6.3 CONIC CONFIGURATION LANGUAGE

One of the key elements in the provision of flexibility
is the need to separate the programming of individual
software components (task module types) from the building of
a system from instances of modules. This has led to the
development of the Conic configuration language which can be
used to specify both the initial system and subsequent
changes as described below. The following sections describe
the essential properties which must be supported by a
configuration language.

6.3.1 Context Definition

The context definition identifies the set of module
types from which the system is constructed, and is provided
by a use construct eg.

use bound, serial_output;

Modules communicate by typed messages so it is
necessary for data type definitions to be shared between
modules. Having to redefine types wherever they are used,
would make type checking more difficult, more error prone
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and require redundant effort by the programmer. Conic
allows common datatypes and constants to be defined in
separate definitions units. These are imported to make them
accessible from both the programming and configuration
languages eg:

from commstypes use datatype, acktype, buffer_size;

6.3.2 Instantiation

The create construct declares the named instances of
module types to be created in the system. Instantiation
parameters can be used to pass information such as device or
interrupt vector addresses to device drivers. In order to
cut down proliferation of names we allow the type identifier
name to be overloaded and used as an instance name where
only one instance of a type exists in a (sub)system.

Create serial_output (177560#8,100#8);
datalink1,datalink2:CRdriver (retries);

Families (cf. arrays) of module instances can be
created by specifiying a 'range':

Create family k:[1..maxcalls]
call [k] : call_handler (Kk);

6.3.3 Interconnection

The 1link construct specifies the interconnection of
module instances by binding a module exitport to a module
entryport. Both type and operation compatibility are
checked so an exitport can only be linked to an entryport of
the same data and transaction type. Multiple exitports can
be linked to a single entryport which is particularly useful
for connecting clients to servers (eg. a file server). A
single notify exitport can be linked to multiple entryports
which provides multidestination message transactions.
Multidestination cannot be provided for request-reply ports
because the semantics of dealing with multiple replies to a
single request are unclear.

Link mod1.xp to mod2.ep;
manager.errorout to loggerl.errorin, operator.reports;

Families of modules and/or families of ports can be
linked by defining range identifiers and associated ranges.
This is merely a shorthand to save on repetitive 1link
statements. The repetitions can be nested and are then
performed in an analogous way to nested for-loops in Pascal.

Link family k:[1..maxcalls]
calll[kl.in to manager.requests;
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6.8.5 Mapping onto Physical Topology

The only constraint imposed by the configuration level
on the interconnection of module exit and entryports is that
they are compatible in terms of type and operation. The
logical interconnection is completely independent of the
physical configuration of the hardware components on which
the system is to be run. The same logical configuration can
be mapped onto a single computer, a closely coupled multi-
processor station or distributed stations connected via an
arbitrary network. It is thus important to separate the
specification of a logical configuration from its mapping
onto a physical configuraton. Currently this mapping is
performed by annotating a table produced by the configura-
tion compiler. This maps the module instance names to
physical stations.

The physical topology supported by a Conic system
consists of Local Area Networks (LANs) interconnected by
store-and-forward gateways (Sloman (8)). A station can
communicate with any other station, if necessary via a
gateway. This provides the required physical topology
flexibility 1in that a variety of LANs can be used to suit a
particular application requirements eg. Ethernet (9),
Cambridge Ring (10), or one of the emerging IEEE LANs (11).
The  store-and-forward gateways provide the implementation
flexibility at the data-link layer, allowing the inter-
connection of LANs of different transmission rates. The
topology of interconnected subnets allows flexible
extensions either of stations within a subnet or of subnets
within an overall network.

6.3.8 Structuring Configuration Specifications

The modules in a distributed system often exhibit a
hierarchical relationship. For example a database subsystem
makes use of file servers, which may themselves consist of
directory servers, record access servers and disc drivers.
This structure can be represented by nesting software
components at the configuration level by means of group
modules. A group module type is a configuration specifica-
tion and indentifies a collection of module types, instances
of those types and their interconnection. The constituent
modules may be the primitive task modules containing a
single process, described in section 6.2, or group modules.
The group modules also have an interface defined in terms of
exit- and entryports, as well as formal parameters. This
structuring of the specification is essential for large
systems with many module instances, otherwise the name space
would become unmanageable and the configuration
specification unreadable.

As mentioned, group modules provide configuration
abstraction. The structure of a group module is defined by
the use, create, and link constructs described previously.
The interface to the module is also defined in terms of
exit- and entryports and so from the outside it is not
possible to distinguish between a task and a group module.
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The group interface ports are bound to the ports of
component module instances using link statements within the
group module specification. These links are exitport-to-
exitport or entryport-to-entryport eg.

Link groupentry to modl.entryt;
modl.exit1 to groupexit;

This 1linking is merely a name mapping and does not entail
any run-time overheads ie. there is no copying or queueing
of messages at interface ports to group modules. The
interface port name is global within the group specification
and must be unique, whereas ports on different module
instances can have the same name. The combined
"module_name.port_name" must be unique within its scope (the
group specification).

An example of a configuration description for a simple
system which echoes characters at a terminal and uses the
modules defined in the previous section is shown in Fig.
6.3.1. (Invert is a simple module which takes the front
character from the bounded buffer and makes it available at
its exitport outchar.)

GROUP MODULE buffer;
ENTRYPORT inchar : char REPLY signaltype;
EXITPORT outchar : char REPLY signaltype;

USE bound,invert;

CREATE bound;

invert;

LINK invert.getchar TO bound.getchar;
inchar TO bound.putchar;
invert.outchar TO outchar;

END.

GROUP MODULE echo;
CONST status = 17756048;
vector = 100#8;
USE serial_input,serial_output,buffer;
CREATE Rx:serial_input(status,vector);
Tx:serial_output(status+4,vector+4);
B :buffer;
LINK Rx.input TO B:inchar;
B:outchar TO Tx.output;
END.

Fig 6.3.1 Configuration Description
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Fig 6.3.2 Configuration Diagram.
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A Segment Module is a restricted form of group module
in that the constituent module instances share an address
space and so must be in a single station. The components of
a segment module may share procedures and pass pointer
values in messages. However there is no global data within
a segment module. Any shared data must be encapsulated
within a task module and references explicitly passed by
messages. The only synchronisation primitives available for
control of access to shared objects in a segment module are
the message primitives. For example the Conic modules which
implement the various layers of the communication system
within a station pass pointers to message buffers in order
to reduce the overheads of copying messages between these
modules.

Also a group of tasks may be required to provide
parallelism within a particular function. The terminal
driver is an example of a set of closely related tasks which
are grouped to form a segment module (ie. input from a
terminal keyboard and output to its screen). This
capability for parallelism at the task 1level encourages
simpler cooperating sequential tasks rather than multi-
threaded ones. The concept of a segment module is similar
to that of a Guardian in Argus (Liskov (12)), but our
segment modules do not automatically provide resiliency.

6.4 DYNAMIC CONFIGURATION

The configuration specifications described so far are
essentially static. A Unix-based host development environ-
ment is used to produce load images which are down-line
loaded into target distributed stations or put into ROM

memory for embedded systems. In a Conic distributed
system, where the operating and communication system is
iteslf implemented as Conic modules, this static

configuration 1is essential to provide the basic support for
dynamic configuration in each station.

Dynamic configuration is necessary to provide the time
domain flexibility mentioned in section 2. For many
applications, it is too costly or unsafe to shut down a
complete distributed system in order to change a component.
A Conic system allows arbitrary, unpredicted modification
and extensions to an existing system without rebuilding the
entire system (2). It should be possible to perform
incremental changes on the system without stopping the
unaffected parts of the system. Changes which can be
performed on a running system include:

Installation and removal of module types;

Creation and deletion of module instances;

Changes to the interconnections between modules.

These changes are performed by submitting a change
specification to an on-line configuration manager which
validates the change and produces a new system specification
incorporating the changes. It also generates the necessary
commands to the operating system to perform the changes.
Deleting a component would obviously affect other modules
using it but changing the interconnections can often be
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performed without affecting other modules.

6.4.1 Change Specifications

The change specification wuses the configuration
constructs described in section 6.3, but must also specify
the inverse functions, namely:

unlink - disconnects a module exitport from an entryport.

delete - deletes the named module instances from the system.
This can be performed only after all its ports have
been unlinked.

remove - removes knowledge of the type from the configura-
tion specification, and is valid only after all
instances have been deleted.

For example, to remove the buffer from the example of Fig.
6.3.1 the change specification outlined in Fig. 6.4.1 would
be submitted to the configuration manager.

CHANGE echo;
UNLINK Rx.input FROM B.inchar;
B.outchar FROM Tx.output;
DELETE B;
REMOVE buffer;
LINK Rx.input TO Tx.output;
END.

Fig. 6.4.1 Change Specification
6.4.2 Configuration Manager

A change specification is submitted to a configuration
manager which validates the specification, translates it
into commands to the distributed operating system to execute
the reconfiguration operations and produces the new system
configuration specification. The configuration manager
requires information on the current state of the system (eg.
is a component type already in a station or will it have ¢to
be downloaded?) and must also have access to information
necessary to perform validity checks. Some of this
information can be obtained by querying the system to check
its current state but type information is not maintained in
stations and so must be held in an online database. A
single change may result in a number of commands to the
system (eg. create component instance => query resources,
load type, instantiate).

The configuration manager currently being designed
consists of three parts: a database describing the current
system, specification translator and a command executor
(Fig. 6.4.2). The initial version of the configuration
manager will be centralised but later versions will be
decentralised.
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Fig. 6.4.2 Configuration Manager

6.4.2.1 Configuration Database. This holds the following
information:

Task module types - the code generated by the module
compiler, together with symbol tables for port names
etc. These will be held in an intermediate machine
independent target language called EM (Tanenbaum (13))
and the final target code generated when the type is
loaded into a particular processor.

Type definitions -~ these are the definitions files of port
and message types.

Configuration specification - the updated current specifica-
tion of the system configuration together with a
history of all change specifications in time order.

Physical system configuration - information on the subnets
such as type, stations connected and current status.
Also descriptions of the physical stations, including
their resources such as memory and devices.

6.4.2.2 Specification Translator. This validates the change
specification with respect to availability of resources (eg.
memory or I1/0 devices) as well as type and operational
compatibility for interconnections. The specification is
translated into a sequence of simple commands to the
operating system which are passed to the command executor.
The translator uses the database to map the names in the
specification into system addresses eg. a port address is
specified by "subnet_id.station_id.module__id.port_id".

The change specification effectively produces a new
system configuration but the change specification is kept in
order to provide a history of changes. If required, changes
can be reversed which is particularly useful for testing
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purposes. A module can be installed, tested and the system
restored to its original state by a single command.

6.4.2.3 Command Executor. This performs operations on the
distributed operating system by means of Conic communication
primitives. A change specification is translated into a
series of commands called an action 1list. The command
executor 1is responsible for issuing these commands and
updating the database. In order to keep the system and its
specification consistent, the system is returned ¢to its
original configuration if any commands fail.

If an action list involves deleting and recreating a
module (possibly in another location), then any internal
state information will have been lost. It is possible to
use redundancy techniques to mask configuration changes in a
Conic system, as described elsewhere (Loques (14)).

6.5. DISTRIBUTED OPERATING SYSTEM

The Conic distributed operating system supports the
dynamic configuration described above and also provides
intermodule communication. It conforms to a layered
structure where each layer provides services used by the
layer above (fig. 6.5.1). The distributed operating system
consists a set of utilities which are not replicated in
every station and an executive which is in every station.

CONFIGURATION MANAGEMENT (Conic)

UTTEITLES (Conic)
loader

debugger

file server

device handlers

LOCAL MANAGEMENT (Conic)
module manager, link manager,
store access, error manager.

o TR S ety

—— = o =

COMMUNICATION SYSTEM (Conic)
interstation message transfer,
routing, data link drivers.

STATION
EXECUTIVE

KERNEL (Pascal)
multi-tasking

local communication

simple interrupt handling
run~time error handling

M " —— — ——— - - ———- - - - - ———— - ——— -
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Fig. 6.5.1 Conic Distributed Operating System
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The main influences on the design of the Conic
distributed operating system (Magee (15)) were that the
station executive should be small and efficient so that
dynamic configuration could be provided on small
microprocessor systems without backing store. This led to
the principle of providing minimal functionality in the
executive present in every station and rather implementing
as much as possible remotely by utility modules. The
executive should itself be configurable so that smaller ROM
stations could omit the dynamic configuration support.
This was accomplished by implementing most of the station
operating system components as a set of Conic modules which
can be configured using the static configuration facilities.
The flexibility of the Conic module structure has been
exploited in allowing distribution of the operating system
components.

6.5.1 Station Executive

The executive is the set of Conic modules which
together with the kernel manage the resources within a
station and implement the communication primitives described
earlier. The executive does not include device drivers
which is usually the case in most operating systems. These
are considered application utilities (see 65%2) 5
Since flexibility 1is regarded as more important than
performance the executive was mostly written as Conic
modules, with the kernel being implemented in Pascal.

Station kernel - It is implemented in Pascal and provides
multitasking and the primitives used by the executive's
local management modules for task execution control and port
linkage. It also provides the run-time support for the
language extensions to Pascal ie. inter-task message
communication within a station, timing primitives, and the
simple interrupt mechanism described in section 6.2.3.

Communication system -~ This consists of a set of modules to
support inter-station message passing. An exitport linked
to a remote entryport is actually 1linked to a 1local
communication module which formats a message by adding
station addresses etc. and sends the message over the
network to the remote station. At the remote station a
communication module receives the message, strips off
headers and then uses standard local Conic communication
primitives to deliver the message. The communication system
thus acts as a surrogate local source or destination for
remote communication. The basic communication system
provides a datagram service over a single subnet but
configuration options include routing over interconnected
subnets and a reliable virtual circuit service (8).

Local management - This is a set of four Conic modules:

modulemanager deals with the loading of task types and
creating instances; the linkmanager handles requests to link
exitports of task instances within the station to either
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local or remote entryports; storeaccess allows remote
reading or writing of blocks of memory and is used for both
down-line loading and remote debug; errormanager receives
run-time error messages detected by the kernel or issued by
a module reports them to a selected destination.

6.5.2 Utiliti

The utilities provide the shared services traditionally
found in operating systems. These utilities are implemented
as normal Conic group modules and may themselves be
distributed, but they are not found in every station.

File Server - This consists of a group of modules which
perform the functions of file access (reading or writing
blocks of a file), directory lookup (translates symbolic
file names into file identifiers), management facilities
(creating, deleting and renaming files) and disc drivers
(reads or writes disc blocks).

Loader - This downline loads module type code into target
stations. It obtains the type code from the file server and
performs the final translation into the machine specific
target code. It also relocates code to absolute memory
addresses for processors with no memory management hardware.
The memory instance address is obtained from the station's
module manager.

The 1loader handles one code file at a time. However,
more than one instance of the loader module can exist in a
system and execute concurrently. The loader can of course be
located on a different station from the file server.

Debugger - allows a remote module to be tested by via its
message passing interface or by examining its memory space.
The debugger provides the capability ¢to construct test
messages to send to a modules's entryports and to decode and
display messages received from exitports. It can also the
use store access manager of a (remote) station to read or
write to the test module's memory space. The debugger
operates on record structured objects, messages and
variables. It obtains information on record structures from
symbol table information stored on the file server.

It should be noted that neither the file server nor the
console device module need be in the same station as the
debugger module. Indeed, it is often useful to locate the
console in the station being examined and the debugger in a
remote station where more store is available.

Device handlers have been implemented for a number of
network interfaces, terminals, discs etc. Our experience
has been that these are comparatively simple to implement
and integrate into the system. For example moving from the
Omninet to Cambridge Ring required about two man weeks of
programming effort for the new driver and requires a change
of only a single line of a configuration specification.
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6.5.3 Configuration Operations

The operating system utilities together with the 1local
station executives, cooperate to implement the following
dynamic configuration operations:

Load (stationid, codefile, moduletypeid)
The loader obtains the code size from the code file and
sends a load request containing the moduletypeid to the
target station. The station's module manger allocates
memory space for code and returns the start address of
the code segment. The loader forms a load image and
sends load blocks to the station's storeaccess module.

Unload (stationid, moduletypeid)
The station's module manager deletes the moduletypeid
and deallocates the storage for the type code. It can
only be performed after all instances of the type have
been deleted.

Create (stationid, moduletypeid, moduleinstanceid,

parameterlist)

The station's module manager is given an identifier for
the module instance and instantiation parameter values.
The module manager assigns data segments, initialises
control blocks etec. The module type code must have
already been loaded into the station.

Delete (stationid, moduleinstanceid)
The module manager checks that the module ports are
unlinked and deletes the module instance from the
station.

Link (exitportid, entryportid)
The request to link an exitport to an entryport is sent
to the linkmanager in the same station as the exitport.
The entryportid is placed in ¢the exitport's data
structure (no informatin about a 1link is held at the
entryport). A link to a remote entryport is actually
made to the local communication system.

Unlink (exitportid, entryportid)
The entryport address is removed from the exitport data
structure. If a request-reply transaction is in
progress it will fail.

Start (stationid, moduleinstanceid)
The module manager requests the kernel to make the task
module runnable.

Stop (stationid, moduleinstanceid)
The module manager in the target station requests the
kernel to stop the task module.

Query (stationid)
This request to the module manager queries the state of
the module instances in the station.

6.5.4 Performance

The approach adopted minimises the complexity of the
station executive and instead moves all validation and the
more difficult operations into the configuration management
utilities. This has resulted in a configurable, efficient
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operating system as indicated by the size and performance
statistics for the protoype (LSI 11/23) system (given
below). The figures are based on a station executive with a
full set of local management modules, an Omninet data-link
driver and 4 input message buffer modules, but no routing or
virtual circuit service.

Station Executive Size (in kilobytes)

CODE DATA

Local management 5 2.4
Basic communications 25 2.5
Kernel Byeili 0.2
Total B2 5.1 K.bytes

Request Reply Performance (in milliseconds)
LOCAL REMOTE

0 byte request, 0 byte reply 15 19.2
100 byte request, 100 byte reply 2.2 2%lxeiD
Local Management Performance (in milliseconds)
Typical module creation time 5
Module deletion 50
Link 118
Unlink 2.1

The time to create a task module depends on the number
of ports and the length of the module initialisation code.
Module deletion takes much longer than creation since the
executive checks that no exitports within the station are
linked to the entryports of the module to be deleted.

6.6, CONCLUSIONS
6.6.1 Experience of Using Conic

A prototype system based on a network of LSI 11 micro-
computers interconnected by an Omninet serial bus and
Cambrdige Ring has been in use at Imperial College for a
number of years. We now have about 4 years experience of
using earlier versions of the programming and configuration
languages for implementing operating system utilities,
device drivers, communication systems, and distributed
simulations. It has been used both by experienced systems
programmers and students for project work. The prototype
software is also being used by the National Coal Board for
implementing software for distributed underground monitoring
and control stations, and by researchers at Sussex
University for experimenting with adaptive control
strategies.

This experience has shown that Conic provides an
extremely simple yet very flexible approach to structuring a
problem as a set of communicating components. Even
comparatively naive student users have found Conic easy to
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use for building both distributed and centralised
concurrent systems.

6.6.2 Current Status

Reports defining the Programming (16) and Configuration
(17) languages are available. A commercial product providing
the set of tools for building distributed Conic systems,
based on a Unix host environment and LSI 11/23 and 11/73
target microcomputers will be available by September 1984,
Motorola 68000 based targets will be supported by December
1984, The task module compiler is based on the Amsterdam
Compiler Kit (13) which has multiple back-ends and so
simplifies the porting of Conic to new targets. The
development tools allow static network configurations to be
built and a prototype on-line configuration manager is being
produced. The host system produces load images for stations
which are down-line loaded over a network or can be placed
in ROM.

Data-link drivers are available for the Cambridge Ring
and Omninet Serial Bus. A distributed routing algorithm
which caters for interconnected LANs and automatically
updates routing tables to adapt to configuration changes has
been implemented. There are a number of utilities such as
terminal drivers, simple file servers and interactive debug
tools.

6.6.3 Future Work

Fault Tolerant Conic. Some initial work has been done
on incorporating fault tolerence techniques into a Conic
distributed system (14). Both hot and cold standby
redundancy can be supported. The configuration facilities
are used to automatically switch to a cold standby module
after a failure 1is detected. These can be wused for
applications which can accept the comparatively short time
it takes to link and start a module. No state information
is preserved. Applications which require completely
transparent failure recovery can include a hot-standby
module. The active module (performing the function)
transfers state information at defined points during its
operation to the passive 'hot-standby' module. In the case
of a failure we automatically switch to the passive module
and it assumes the active role. A new hot-standby passive
module can be created. The hot standby approach to fault
tolerance effectively masks module failures. This seems
appropriate for many real-time applications. An interesting
aspect is that the configuration manager can itself be made
fault tolerant using these techniques.

Additional work is needed to incorporate the support
for fault tolerance of transactions, such as the provision
of atomicity (12).

Distribution of configuration manager. The prototype
configuration manager will be implemented within the host
development system and so will be centralised. We intend to
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investigate alternative strategies for distributing the
configuration manager both to improve reliability and to
allow faster configuration changes.

Module Programming Languages. The Conic environment
currently supports a single module programming language
which simplifies some of ¢the problems associated with
transformation of information representation. The port data
structures do not currently hold the type information needed
for such transformations. We intend to investigate the
problems associated with communication between both non-
homogeneous computers and different languages.

The configuration flexibility provided by Conic could
then be extended to building distributed systems consisting
of modules implemented in other procedural languages such as
Ada or even non-procedural languages such as Prolog. Conic
could then provide the modularity framework for building
distributed expert systems.

Module Behaviour. We are investigating the provision of
specifications for the behaviour of individual task modules
which could then be used in composition rules to specify the
composite behavior of group modules. A sound, practical
approach would provide the basis for module and system
verification. It would allow analysis of a configuration
specification for properties such as deadlock and whether it
preserves specified constraints. Such specifications could
also be used to predict the effect of configuration changes
on the behaviour of a system.

ACKNOWLEDGEMENTS

We gratefully acknowledge the many useful discussions
with our colleagues Kevin Twidle and Naranker Dulay, the
support of the SERC under grant GR/C/31440 and the National
Coal Board. The views expressed are those of the authors and
not necessarily those of the NCB.

REFERENCES

e J. Kramer, J. Magee, M., Sloman and A. Lister. CONIC:
an integrated approach to distributed computer control
systems. IEE Proc. Pt. E., 130:1, Jan. 1983, pp.1-10.

2hs J. Magee and J. Kramer. Dynamic configuration for
distributed real-time systems. Proc. Real-Time S
Symposium Arlington, Virginia, Dec. 1983, IEEE
Computer Society, pp. 277-288.

3. F. DeRemer and H. Kron. Programming-in-the-large versus

programming-in-the-small. Proc. Conf. on Reliable
Software, 1975. pp. 114-121,
4, C.A.R. Hoare. Communicating sequential processes.

Comms. of the ACM, 21:8, Aug. 1978, pp.666-677.



106 Distributed systems in Conic

5.

10.

11.

12.

13.

14.

115

16.

LT

USA Department of Defence. Reference Manual for the Ada
Prggramming Language. Proposed Standard Document, July
1980,

N. Wirth. Modula: a language for modular multi-
programming. Software Practice and Experience, 7, 1977,
pp. 3-35.

G.R. Andrews. The Distributed Programming Language SR =~
Mechanisms, Design and Implementation. Software
Practice and Experience, 12, 1982, pp. T19-753.

M. Sloman, J. Kramer, J. Magee, K. Twidle. A flexible
communication system for distributed computer control.
Proc. 5th IFAC Workshop on Distributed Computer Control
Systems, May 1983, Pergamon Press.

XEROX Corporation. The ETHERNET: A local area network,
data 1link and physical layer specifications. Version
1.0, September 1980. ‘

Cambridge Ring 82 Interface Specifications, SERC, Sep.
1982.

IEEE Project 802 Local Area Network Standards, IEEE
Computer Society, Dec. 1982.

B. Liskov and R Sheifler. Guardians and actions:
linguistic support for robust distributed programs. ACM
TOPLAS, 5:3, July 1983, pp. 381-404.

A. Tanenbaum, H. van Staveren, E. Keizer, J.
Stevenson. A practical tool kit for making portable
compilers. Comms. of the ACM. 26:9, Sep. 1983, pp. 654~
662.

0. Loques-Filho. A fault tolerant distributed computer
cogtrol system. Imperial College Ph.D, Thesis, Feb.
1984,

J. Magee. Provision of flexibility in distributed
systems. Imperial College Ph.D. Thesis, April 1984,

J. Kramer, J. Magee, M. Sloman, K. Twidle. The Conic
programming language: version 2.2. Imperial College
Research Report, March 1984,

N. Dulay, J. Kramer , J. Magee, M. Sloman, K. Twidle.
The Conic configuration language. Imperial College
Research Report, March 1984,



Chapter 7

The Cosy approach to distributed
computing systems
P. E. Lauer

7.1 CONCURRENT, DISTRIBUTED AND SYNCHRONIZED SYSTEMS

Throughout this chapter we will be concerned with systems
capable of concurrent behaviour. A system is concurrent if
it 1is composed of several (sequential) subsystems whose
respective behaviours may progress in parallel. A system is
sequential if its behaviour can progress by an occurrence of
only one event at a step, whereas the behaviour of a
concurrent system can progress by occurrences of several
events at a step. The notion of decomposition of a
concurrent system into several subsystems introduces a notion
of distribution in the sense that events must be assigned to
subsystems 1n some particular way.

A concurrent system is synchronized 1if subsystems share
events, and the interpretation of shared events is that the
behaviours of the subsystems concerned may only progress by a
coincident (simultaneous) occurrence of a shared event in all
of the subsystems sharing the event. This implies that for a
shared event to occur at some step, it must be capable of
occurring at that step in all the subsystems sharing the
event. It also 1implies ~that all behaviours of subsystems
sharing an event will agree on the number and order of
occurrences of that event.

Global behavioural properties of such systems include
periodicity, absence of various types of deadlock, absence of
starvation, mutual exclusion of sub-behaviors, etc. A system
is periodic if all its behaviours are included 1in the
multiples of some subset of behaviours called periods. The
problem of analysis of the behaviour of a system can be
greatly simplified if the system is periodic, since it can be
reduced to the problem of analysis of the periods. A system
is weakly deadlock-free, if and only if, for every behaviour
there 1is at least one event of the system which may occur at
the next step. A system is (strongly deadlock-free)
adequate, if and only if, for every behaviour of the system
and every event of the system there is a possible extension
of the behaviour after which the event may occur. Notice
that both types of absence of deadlock only say "may occur"
and not "will occur". If the system in question is
non-deterministic, then two events which may both occur at a
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step, but whose occurrences exclude each other at that step,
will 1lead to an arbitrary choice of one of the events to
occur. At each recurrence of the step in the subsequent
behaviour of the system the same choice could be repeated,
leading to an infinite delay (starvation) of the event
occurrence not chosen.

to

We will present a formal model, the COSY model, intended

support rigorously reasoned design, development and

analysis of such concurrent systems.

7.2

DECISIONS INFLUENCING THE DESIGN OF THE COSY MODEL

To arrive at the level of abstraction of this particular

model we made certain basic decisions:

1.

We will concentrate on the concurrency, distribution and
synchronisation structure of such systems based on the
notion of primitive (uninterpreted) events. We will
explicitly represent true concurrency (not interleaving),
distribution and synchronisation throughout our model.

We will attempt to relate global behavioural (dynamic)
properties of a system to structural (static) properties
of its specification in some notation.

We will express the semantics of such specifications in
terms of the notion of behaviour (history, trace) rather
than in terms of more abstract notions such as the notion
of function or the notion of relation. We will express
the semantics of such specifications 1in terms of the
notion of period as far as possible, Successfull
termination of some task the system may be said to be
performing will be expressed not by the notion of
halting, but by the notion of having completed some
sub-period of a behaviour (which is analogous to having
reached some "homing" state in a state oriented model).

The notation should be based on the notion of inherently
periodic sequential subsystems and facilitate the
construction of concurrent systems which are periodic in
a more general sense.

The notation should allow maximum flexibility for
decomposing a system into components to achieve greater
concurrency of behaviour and/or differing distribution of
events to components.

The notation and its formal semantics should permit its
efficient implementation in a computer based environment
for the design, development and analysis of concurrent
systems. Although the verification of the correctness of
the environment is based on rigorous mathematical
reasoning, subsequent reasoning about systems developed
by means of the environment should not require great
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mathematical sophistication, but should be couched in a
form comprehensible to non-mathematically specialized
users.

k) TOWARDS THE COSY MODEL

Since we had decided to concentrate on concurrency,
distribution and synchronisation structure and to express
this structure explicitly, there was only one existing body
of theory of concurrency which had been developped on the
basis of similar decisions, namely General (Petri) Net
Theory, see Brauer (l). This fact led us to adopt Net Theory
as a standard semantics for our approach.,

Within Net Theory systems are often specified by means of
bi-chromatic directed graphs, called condition/event nets,
involving two types of nodes representing states and
transitions respectively, together with tokens whose movement
over the graph indicates the asynchronous flow of control
through the system. The notion of behaviour of such nets is
made precise in Net Theory by the notion of partially ordered
event occurrences and condition holdings, expressed as
ordinary directed graphs called causal nets or occurrence
nets. Thus we found in Net Theory much that suited our
purposes.

However, there existed no non-graphic notation in which to
express such condition/event nets and we felt that it |is
important to have such a linguistic notation if one wanted to
support flexible and convenient transformation of one
specification into another. This led us to develop the COSY
notation as a linguistic alternative to condition/event nets.
Such nets can be thought of as a generalisation of the notion
of finite state automaton which naturally arises from the
consideration of the fact that the finite state automata are
closed with respect to composition in the sense of
identifications of states, but are not closed with respect to
composition in the sense of identification of transitions.
This means that two finite state automata composed by
identification of a state yield another finite state
automaton, whereas if they are composed by identification of
a transition the result is not a finite state automaton. On
the other hand, both types of composition when applied to
finite state automata considered as a special case of
condition/event nets result in another condition/event net.

It is well known that the behaviour of a finite state
automaton can be expressed by the language specified by some
corresponding regular grammar, and hence it should be
possible to express the behaviour of a condition/event net by
the language specified by an appropriate generalization of
regular grammars., Furthermore, since the structure of
regular grammars corresponds well to the structure of their
behaviours, it was to be hoped that the structure of their
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generalized counterparts would also correspond well to the
structure of their behaviours. Additionally, the use of
language theoretic and automata theoretic methods is very
prevalent throughout computer science in such areas as
programming language design, compiler design, hardware
design, network protocol design, etc. Hence, it was to be
hoped that our generalization of these two types of methods
would enjoy similar prevalence, and would not require any
greater mathematical sophistication than that required for
the application of more traditional language and automata
theory.

The above considerations led us to begin our work by
defining the semantics of the COSY notation by translation of
a COSsYy specification into an equivalent labelled
condition/event net and then wutilizing the corresponding
labelled causal nets to express their corresponding
behaviours. However, we eventually abandoned this indirect
method of defining the meaning of COSY specifications as the
main semantics, in favour of a more direct method of defining
an equivalent semanics in a language theoretic framework.
This was due to a growing recognition of the fact that such a
language orientation was more directly suited to the sum
total of our decisions discussed above. We continued to use
the net semantics of COSY whenever appropriate, and the
equivalence of the two types of semantics allows transferral
of results from net theory to the language oriented model and
vice versa.

Finally, we rejected programming notations involving
facilities for expressing concurrency, communication and/or
synchronisation as a specification notation for two main
reasons. First, we wanted to express "what" the behaviours
of a system are, rather than "how" particular synchronisation
facilities enforce these behaviours. Second, conventional
programming language constructs themselves have
synchronisation properties which are less important when they
are used in sequential systems, but which assume great
importance when they are used in concurrent systems. On the
one hand such synchronisation properties encourage the
designer to express part of the structure of the system in
terms of the synchronisation primitives proper and express
another part of the structure of the system in terms of
properties of the more conventional programming language
constructs. This may be an advantage from the standpoint of
programming but may increase the difficulty of analysis of
behaviour, since it tends to make the analysis of the
synchronisation structure of a system dependent on the
semantics of all the language constructs, rather than just on
the semantics of the synchronisat ion primitives.
Furthermore, to analyze the behaviours specified by a program
one needs to abstract from "how"™ the program enforces the

behaviour to "what" the behaviour is, so one might as well
choose a specification notation sufficiently abstract to
express behaviour directly. In that case the notation can

also be used to determine, for example, whe ther two programs
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implement the same system in the sense of enforcing the same
abstract behaviour.

7.4 THE COSY MODEL

COSY (from COncurrent S¥stem) is a formalism intended to
simplify the study of synchronic aspects of concurrent
systems where possible by abstracting away from all aspects
of systems except those which have to do with
synchronisation.

A basic COSY path program, or generalised path is a
collection of single paths enclosed in program and endprogram
parentheses. A single path is a regular expression” enclosed

by path and end.
For instance:

PR = program
Pl: path a;b,c end
P2: path (4;f)*;b end
endprogram

In every regular expression like the above, the semicolon
denotes sequence (concatenation), and comma denotes mutually

exclusive choice, The comma binds more strongly than
semicolon, so that the expression "a;b,c" nmeans "first a,
then either b or c". An expression may be enclosed in

conventional parentheses with Kleene star appended, as for
instance "(d;f)*" which means that the enclosed expression
may be executed zero or more times. The expression appearing
between path and end is implicitly so enclosed, so a single
path describes cyclic sequences of actions. The
synchronisation among paths is due to common events ("b" in
the above example). Every single path describes a sequential
subsystem. The formal description of the COSY syntax may be
found for instance in Lauer (2).

The semantics of generalised paths can be described by
means of vectors of strings, an approach initiated in Shields
(:Bh)e.

With every single path P=path body end, we associate its
set of events Ev(P). In the case of example PR the events
are:

Ev(Pl) = {a,b,c}
EV(PZ) = {bldlf}
which also indicates how events are distributed into

subsystems.

For every regular expression E, let |E| denote the regular
language described by E. For every single path P=path body
end the language |body| is called the set of cycles of P and
denoted by Cyc(P), i.e. Cyc(P)=|body|. For example PR we
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obtain :

Cyc(Pl)={a.b,a.c}
Cyc(P2)={{d.£}*.b}

and they represent the periods of the inherently periodic
sequential subsystems, namely the single paths.

From the set Cyc(P) we construct the set of firing
sequences of P, denoted by FS(P), as follows:

FS(P)=Pref (Cyc(P)*)=Cyc(P)*.Pref(Cyc(P))
where for every alphabet A and every language LCA*:
pref(L)={x|( } yeA*):x.yeL}.

The set FS(P) is the set of sequences of event occurrences
specified by the single path P. For example PR we obtain :

FS(Pl)={a.b,a.c}*.{e,a}
Fs(P2)={{d.f}*.b}*.{e,d, {d.£}*}

Consider a generalised path P=program Pl...Pn endprogram
(or simply P=Pl...Pn),where Pi's are single paths. To model
the non-sequential behaviour of P=Pl...Pn, partial orders of
occurrences of events will be constructed which are

represented by vectors of strings.

A vector (xl,...,%¥n) is a possible behaviour of P=Pl...Pn
if each xi for i=1,...,n is a possible firing sequence of Pi
and furthermore, if the xi's agree about the number and order
of occurrences of events they share. To formally define the
set of possible behaviours or histories of P, vectors of
strings are introduced together with a concatenation
operation on them.

Let us consider the set Ev(Pl)*x...xXxEv(Pn)#%*, I1f the
vectors (x1l,...,xn) and (yl,...,yn) belong to the above set
their concatenation is defined as:

(%1, enerXnl) o (Ylzoscapyn)E(X1oy1s ey ¥n.yn) .
Let Ev(P)=Ev(Pl)U...UEv (Pn), and For A=ljuie.n Lot
hi:Ev(P)*-->Ev(Pi)* be an erasing homomorphism given by:
a if a€Ev(Pi)

(¥acEv(P)):hi(a)=
e otherwise

where "e" denotes the empty string.

Let _:Ev(P)*-->Ev(Pl)*x...XEv(Pn)* be the mapping defined
as follows:
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( ¥ x€Ev(P)*):x=(hl(x),...,hn(x)).

The set Vev(P)={3|aGEv(P)} is called the set of vector events
of P. For example PR the vector events are :

Vev(PR)={a,b,c,d,f}

or indicated by distribution into subsystems and "e"
replaced by blank:

Vev(PR)= Pls a«sb.c: « &
P2ls  sBs wdlafi

Again the vector events indicate distribution of events to
subsystems, and the sharing of events ("handshake"
synchronisation) by sub-systems.

For i=1,...,n , let [ }i:Ev(Pl)*x..,.XEv(Pn)*~-->Ev(Pi)* be
a projection defined as:

00k v ior by, areesrfRiin) ] =il s
Note that:( ¥ xEVev(P)*) ( ¥ i=1l,...,n):[x}i=hi(x).
The set of all possible behaviours or histories of P, the

vector firing sequences of P, denoted by VFS(P), is defined
by:

VES(P)=(FS(Pl)X...XFS(Pn)) ~ Vev(P)*.

The set FS(Pl)X...XFS(Pn) in the definition of VES(P)
guarantees that each string component xi of a history
x=(xl,...,Xn)EVFS(P) is a firing sequence of the path Pi, and
the set Vev(P)* guarantees that all these firing sequences
agree about the number and order of occurrences of events
they share.

The set VFS(P) can be treated as a formal description of

the execution semantics:"execute as possible (i.e. not
necessarily maximally concurrent)".

If we define generalised periods by :

Per (P)={x€VFS(P)~{e}|¥i{l,...,n}:[x]i€Cyc(Pi) v ([x]i=e}
then P is periodic if

VFS (P)=Pref (Pexr (P)*)=Per(P)*.Pref(Pex (P))
For example PR which is periodic this gives:

Per (PR)={a.c,a.b,d.f.a.b} and



114 The Cosy approach

and showing the distribution into subsystems in Per(PR) we
get:

Pl: a.c a
P2: e.e , e.

Ao}
b
Let ind ¢ Ev(P) x Ev(P) be the following relation:

( ¥V a,b6Ev(P)):(a,b)eind:<==>( ¥ Pi)agEv(Pi) or bgEv(Pi).

The relation ind is called the independency relation. Note
that:

(a,b)Gind<==>a¥b & a.b=b.a <==> ( ¥ i)[alife ==>[bli=e.

The definition of ind implies that only independent events
may occur concurrently. However, indpendent events may not
always occur concurrently or may never occur concurrently at
all.

Before we give formal definitions of the notions of
sequential, concurrent and maximal concurrent reachability we
will reconsider the behaviour of example PR, At the
beginning events a and 4 may occur in one step or one after
the other in two steps. After their occurrence in one step
both ¢ and f may occur in one step or separately. After the
occurrence of c and £ in one step again a and d may occur in
one step, and so on. On the other hand, a behaviour could
start with an occurrence of a in one step, after which b and
d may occur. Hence b may occur, a case that does not arise
when independent events always occur in one step.

This example shows that the semantics "execute as much as
possible in parallel" may not be equivalent to the semantics
"execute as possible”, Let us analyse this problem formally.
First of all, we must formally define the semantics "execute
as much as possible in parallel®,

Let P=Pl...Pn be a generalised path, and let Ind(P) ¢ £P
be the following family of sets of operations:

A€Ind (P):<==> ( ¥ a,beAr) (a,b)eind.

In other words elements of Ind(P) are sets of independent
events. If A={al,...,ak}€Ind(P)}, then al.....ak=ail.....aik
for any permutation il,...,ik so we may write A=al.....ak.

For every xGVFS(P), an event aGEv(P) is said to be enabled
at x if and only if:

(¥ i=1,...,n) a€Ev(Pi) ==> [x]i.a€FS(Pi).

For every xEVFS(P), a set of independent events A€Ind(P) is
said to be concurrently enabled at x if and only if every a€A

is enabled at X. For every EGVFS(PT, let enabled(x) denote
the family of all concurrently enabled sets of events at x.
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A concurrently enabled set at x, A€enabled(x), is said to be
maximally concurrent if and only if it may not be extended,
i.e. 1ff (V¥ BE€enabled (x)) AcB ==> A=B.

For every xGVFS(P), let maxenabled(x) denote the family of
all maximally concurrent sets enabled at x. 0f course

maxenabled(i) ¢ enabled(x) .

Let -s>, -c>, -m> ¢ Vev(P)* x Vev(P)* be the following
relations:

X =8> :<==> ( } acEv(P)) {a}€enabled(x) & y=x.a,

5

1
0
v

I
A

[
it
v

( + Acenabled(x)) y=x.A,

|
3
v
<

X :<==> ( } A€maxenabled(x)) y=x.A.

The relations -s>, -c>, -m> are called respectively: the
sequential reachability in one step, the concurrent
reachabilty in one step , and the maximally concurrent

reachability in one step.

VES(P) = {x]|e-s>*x} = {x|e-c>*x}.

The above fact states that VFS is fully characterisable by
the relation -c>. The computer based environment, BCS, to be
discussed in a later section is nothing but an implementation
of the relation -c>, (2) and Hamshere (4).

The relation -m> is that mathematical object which
represents the maximally concurrent evolution, i.e. one step
under the rules of the semantics "execute as much as possible
in parallel™.

Let us define:VMFS(P) = {x|e -m>* x}.

The set VMFS(P) represents all histories that may be
reached by a maximally concurrent evolution of the system
(the vector maximal firing sequences), so it may be treated
as a formal description of the execution semantics:"execute
as much as possible in parallel”.

For every X c Vev(P)*, let Pref(X)={x| (3y€Vev(P)*) x.yex}.

We will say that P is completely charaterised by maximally
concurrent evolution if and only if:

VFS(P) = Pref(VMFS(P)).

The above equality is a formal expression of the fact that
the “semantics "execute as much as possible in parallel" and
the semantics "execute as possible" are equivalent. In
Janicki et al  (5) we give some sufficient conditions for a
system to be completely characterized by maximal concurrent
evolution alone, which permit the time taken to simulate

behaviours of the sytem to be improved by a factor of eight.
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The formal model of behaviour permits us to speak formally
of dynamic properties of systems specified by a generalised
path P=Pl...Pn.

We say that P=Pl...Pn is deadlock free if and only if:

( ¥ X6VFS(P)) ( } aGEv (P)) x.a€VFS(P),
that is every history x may be continued.
We say that P=Pl...Pn is adequate if and only if:
( ¥ XEVFS(P))( ¥ a€EV(P)) ( } y€Vev(P)*) X.y.a6VFS(P),
that is, if every history x of P may be continued eventually
enabling every event in P. Adequacy is a property akin to

absence of partial system deadlock. More details can be
found in (3), Shields (6) and Lauer et al (7).

LS FORMAL RESULTS ABOUT THE MODEL

A large number of formal results have been proved about
the COSY model in the past ten years. We Dbriefly discuss

three types of such results below.

7.5.1 Static Criteria for Adequacy and Periodicity

We have discovered a number of sub-classes of COSY
specifications which permit the deduction of their adequacy
from the structure of their description, For larger
sub-classes we have obtained results which permit the
compile-time calculation of bounds for the runtime required
to check adequacy dynamically. Details can be found in
(3),(6),(7) and Best (8).

hs51:.2 Equivalence of COSY Specifications

On the basis of the relationship between partial orders
and vector firing sequences we have introduced a notion of
equivalence for COSY specifications with different numbers of
sequential components, and we have discovered two normal
forms for vectors of firing sequences, see Janicki (9).

7o 53 Mathematical Results about Vector Firing Sequences

Shields (6) and (10) are extensive presentations of the
mathematical properties of vector firing sequences, and in
particular the notions of periodicity, and various order
theoretic (e.g. existence of least upper ©bounds) properties
are subjected to a careful study.
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7.6 TRANSFORMATIONAL DEVELOPMENT OF SPECIFICATIONS

By transformational development of a specification we mean
the development of a specification starting from some initial
specification by a sequence of syntactic transformations
which produce intermediate specifications, until some
specification is reached which is considered final for the
purposes for which it was required. 1In the COSY theory we
have developed two kinds of techniques for transformational
development which guarantee that semantics of some kind are
preserved in each step of the development process.

161 Constrained Expansion and Reduction Rules

In the first type of technigque, substitution, expansion
and transformation rules are used to generate specifications
which are adequate by construction. It can be shown that all
specifications which have been generated in this way have a

special behaviour, they are all periodic. Reduction and
excision rules can be used to decrease the complexity of a
specification or to break i into several disjoint

specifications. Details can be found in (3),{(19¢) and Hillen
G .

62 Decomposition of Sequential into Concurrent Systems

The second type of technique involves the decomposition of
sequential systems into semantically equivalent concurrent
systems. Given a sequential COSY specification one can
define abstract resources which the system is to use and
there exists an algorithm for decomposing the squential
specification into a maximally concurrent and functionally
equivalent one.

This 1is important because of the following theorem and
others proven in (9) and Janicki (12).

Theorem

Given sequential and concurrent specifications S and R,
respectively:

If C and S are functionally equivalent then C is adequate.

This means that it is possible to verify the adequacy of COSY
specifications by first giving a sequential solution which is
adequate by definition, transforming it into a concurrent
specification and using the above mentioned algorithm to
verify functional equivalence, which by the above theorem
guarantees the adequacy of the concurrent specification.
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7.7 DEVELOPMENT OF A COMPUTER BASED ENVIRONMENT FOR COSY

We have implemented a computer based environment which
supports the systematic design, development and semantic
analysis of specifications written in the COSY notation.

kel The Basic COSY System : BCS

This system permits one to enter basic COSY specifications
via a context editor or a screen editor, to incrementally
debug and compile such specifications, and to simulate them
interactively or automatically. The system includes an
automatic logging system, a version management system, a
facility for producing reports during interactive use of the
system, flexible context switching between different
sub-facilities of BCS and between BCS and the host operating
system without losing contexts switched from, and many other
facilities which support the general software development
process. Lauer (13) is a detailed user introduction to COSY
and BCS.

Tew e 2 The COSY Dossier

The dossier concept was introduced to integrate the
facilities belonging to BCS, for organizing the information
obtained about systems by means of BCS, and for managing the
process of system development and analysis in general.

Details can be found in (2).

7.8 HIGH LEVEL COSY NOTATION

During the development of the COSY notation the need to
provide the system designer with a tractable tool for design
became apparent. Path expressions do not do this very well
in themselves. Thus, one effort of our work has been towards
the development of higher level descriptive notations. Two
more notations were developed:

Macro notation To formulate COSY systems 1in a concise and
general way, dgenerators have been introduced in the
notation which may represent a finite but possibly
indefinite number of repetitions of regularities of
structure in basic COSY programs, see Lauer et al (14)
and Cotronis (15).

System notation To express hierarchy, modularity, and levels
of “abstractness of a design, the nota tion has been
equipped with a (SIMULA) class-like macro construct for
which we wuse the term "system"™ (14) and Torrigiani and
Lauver (16).

The semantics of programs in the macro and sy stem notations
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can be given in terms of the semantics of equivalent basic
programs generated by expansion. A computer based
environment called CS is being implemented which extends the
BCS environment to include the high 1level notations, see
Lauer (17).

oL) APPLICATIONS OF COSY

79, Operating System Problems

The COSY model has been applied in the analysis of most of
the standard synchronisation problems and solutions discussed
in the literature on operating systems. These solutions have
been verified within the COSY model and published in the
papers (2),(3), Lauer and Shields (18) and (19), and Lauer et

al (29).

7 o9l 2 Network Protocols

COSY has also been used to specify and verify network
protocols and has been found to nicely extend the finite
state machine based verification techniques prevalent in this
area. For details see Cotronis and Lauer (21).

1903 Train Journeys

COSY has also been applied to study the behaviour of
systems other than computer systems. One such application is
in the specification of the behaviour of a highly concurrent
model train set. Details are in Shields (22), Janicki and
Lauer (23), Devillers (24) and Koutny (25).

7.19 VLSI IMPLEMENTATION OF COSY

Recently we have developed a VLSI implementation of COSY
by implementing each sequential subsystem by a PLA, achieving
concurrency by running the PLAs simultaneously, and enforcing
synchronisation by a decentralised "busy waiting" mechanism
connecting these PLAs, see Li and Lauer (26).

7.11 RELATION OF COSY MODEL TO OTHER APPROACHES

The COSY model has been formally related to a number of
differing approaches to distributed systems. One group of
workers has tended to concentrate on the development of
mathematical models of such systems. Another group has
concentrated more on the development of programming notation
for such systems, We will discuss these two groups
separately below.
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TeoxLrlyorls Other semanic models

7.11.1.1 Translation of COSY to Labeled Petri Nets : We will
briefly explain the translation from basic COSY programs to
labelled marked condition/event nets. The current net
semantics of basic COSY programs is obtained by translating
each component sequential path into a labelled state machine
represented as a net, i.e. representing transitions by boxes.
For example, the paths :

Pl: path a;bj;a end P2: path a,c;d end

would individually give rise to :

pl a p2 b p3 a Net of Pl

(sl (OB )——{t3

—

Net of P2

Fig.7.1 Nets of individual paths

Once the nets corresponding to the individual paths have
been obtained, for example, two nets called N1 and N2, one
applies a composition rule denoted by "®" to the two nets,
written N1®N2, constructed from N1 and N2 by the
identification of transitions with the same label.

We may now give the construction of N1®N2 from nets N1 and
N2, and illustrate it with the two example paths above :

1. The set of places of N1®N2 is the set theoretic union of
the sets of places of N1 and N2, with inherited markings.

2. Suppose t is a transition in either N1 or N2 such that no
transition in the other net is labelled with the label of
t, then N1®N2 contains a transition t, with the same
label as t, whose input and output places are the same as
those of t (recall 1).

3. Suppose tl1 and t2 are transitions of N1 and N2,
respectively, with the sa e label, then N1®N2 contains a
transition (tl,t2) with the same label as t1 and t2 and
whose set of 1input (respectively output) places is the
union of the sets of input (respectively output) places
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of t1 and t2.

"®" may be shown to be commutative and associative. 1If
P=Pl...Pm and Ni is the marked labeled state machine
associated with Pi, then the net associated with P is defined
to be N1&...®HNm.

The result of applying these rules to our example paths Pl
and P2 is then :

Fig.7.2 Net of Ple®Net of P2

A number of results about the correspondence of COSY
sub-languages and sub-classes in the hierarchy of Petri Nets
classified with respect to structural (and related
behavioural) complexity, have been obtained. This formal
correspondence permits the transferral of results from one
model to the other. Details are in (7) and (8).

7.11.1.2 Calculus of Communicating Systems : Shields (19)
contains Some 1initial “comparisons oFf VFS semantics and
Milner's calculus for communicating systems CCS, see Milner
(A7)

7.11.1.3 Structural Operational Semantics : Li and Lauer (28)
presents a semantic for COSY notation in terms of the
sructural operational approach of Plotkin (29), and
demonstrates that this semantics is equivalent to the VFS
semantics for COSY. Previous definitions of concurrency in
the operational approach reduced concurrency to interleaving,
whereas our definition models true concurrency. The
operational approach has been used to define the semantics of
a number of programming languages including ADA, Edison, CSP
and CCS, see Li (306), and our result allows a straight
forward extension of these semantic definitions to model true
concurrency.
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7 1 ) Programming Notations

The COSY model has been used to specify and study
behavioural semantics of a number of programing notations
involving synchronisation or communication primitives.

7.11.2.1 Communicating Sequential Processes ¢ Lauer (31)
relates the COSY model to Hoare's communicating sequential
process notation and its corresponding trace semantics, see
Hoare (32).

7.11.2.2 BExtended Semaphore Primitives : Shields and Lauer
(33) contains a formal semantics of Agerwalla's extended

semaphore primitives (34) and develops  a concurrency
preserving translation from programs involving these

primitives into the COSY notation.

7.11.2.3 Monitors : Cotronis and Lauer (35) shows how various
types of monitors can be formulated in the high 1level COSY
notation as system definitions. This allows one to treat
such monitors as high 1level primitives in cosy, and
illustrates the use of COSY as a software specification tool.
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Chapter 8

Ease of use through proper specification

Roger Gimson and Carroll Morgan

81 INTRODUCTION

In this chapter we describe a project whose aim is to construct a distributed
operating system which would “make the programming and application of multiple
microprocessor networks as simple and natural as the programming of single microprocessor
workstations is today”. In order to achieve this, we decided very early that it would be
necessary to use in the construction the most up-to-date techniques for software specification,
design, and development that were available to us. Our hope was that by doing this

we could use specifications to explore designs motivated purely by case-of-use rather
than by ease-of-implementation (since specification allows abstraction from
implementation constraints),

we would have a precise notation in which such designs could be reliably
communicated to others, and which would assist the discovery and discussion of the
designs’ implications,

it would be possible to present the specifications directly in the user manuals of our
operating system, thus increasing their precision while decreasing their size, and

we could use the mathematical techniques of program refinement to produce
implementations which were highly likely to satisfy their specifications (and hence
would also be accurately described by their user manuals).

It seemed especially important that those benefits should be realised in the
construction of a distributed operating system - because distributed operating systems offer
the rare opportunity for the user to control the system, rather than vice versa. The high
bandwidth of current local area nctworks allows efficient modularity; for example, a
structure consisting of largely autonomous services and clients is entirely feasible. In such a
system, the choice between (rival) services, and the manner in which they are used, would be
entirely up to the clients. This is the basis of the open systems approach: provided services
are well-specified, clients are free to make use of them in whatever manner is consistent with
their specification.

82 A FIRST EXAMPLE
One of the most visible parts of any operating system is its file system. Even today,

the design of these range in quality from excellent to horrific - in our opinion. Others may
think instead that they range from horrific to excellent: that is, the features one user cannot
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do without, another may abhor. It is through such features that an operating system
controls (even the thoughts of) its clients, and this is exactly what we hope to avoid.

A file service in a distributed operating system is there to be shared by as many
clients as possible. To achieve this, it must be unopinionated: it must have so few features
that there is nothing anyone could object to. It is only in the context of specification that
we can propose such a radical design; any less abstract context introduces -efficiency
constraints. Some of these, of course, will have to be met eventually, but perhaps not all of
the ones that might conventionally be presumed necessary. We must not introduce such
constraints simply because we could not express ourselves without them: first we state what
we would like - then we compromise.

As an example, we propose the simplest file system design we could imagine. We
describe it as a partial function files from the set NAME of file names to the set FILE of
all possible files; we say nothing about the structure of the sets NAME and FILE themselves:

files: NAME -» FILE

The mathematical notation above introduces the variable files, and gives its type as
NAME - FILE. The English text states that this variable is to describe the file system. Our
style of mathematical specification is an example of the Z specification technique, and we
will continue to use it below. It is not possible for us to fully explain Z itself in this paper,
but we hope its flavour will be evident; the bulk of the meaning will be conveyed by the
English. Sufrin (9) and Morgan (4,5) together give an introduction to Z. The final
section of this chapter provides a glossary of mathematical symbols.

We propose two operations only on the file system: Storefile stores a (whole) file,
and RetrieveFile (destructively) retrieves it.

Storefile

Let files be the state of the file system before the operation, and let files' be
the state afterwards. Let file? be the file to be stored, and let name! be some name, chosen
by the file system, which will refer to the newly stored file (we conventionally use names
ending in ? for inputs, and in ! for outputs). That is, given

files, files': NAME -» FILE
file? 8 PILE
name! : NAME
the effect of Storefile is to choose a new name, which is not currently in use

name! # dom files

and to update the partial function so that after the operation, it maps the new name to the
newly-stored file

files’ = files ® [name! +— file?]

(We notice as an immediate advantage of our abstraction that we have given the
implementor the freedom to store identical but differently named files in single or multiple
copies, as he chooses.)

RetrieveF il

Let files be the state of the file system before the operation, and let files' be
the state afterwards. Let name? be the name of the file to be retrieved, and let file! be the
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file itself. That is, given

files, files': NAME -» FILE
name? : NAME
file! s FILE

the effect of RetrieveFile is to return the named file to the client
file! = files (name?)

and to remove the name (and hence the file) from the partial function which represents the
file system

files’ = files / {name?}

The description above is of course infeasible with today’s technology - which is a
pity. It would be too inefficient to have to retrieve a whole file just to read one small piece
of it. But how wonderful it would be if a file system could be so simple! We must take as
our consolation that at least we were able to describe it

83 THE FIRST COMPROMISES

The best we can do with our simple file system is to use it as the basis for a
development of a more practical design - and the description above provides a context into
which the necessary compromises can be introduced. Here are some of them (in no particular
order):

Compromise Reason
It must be possible to read the The communication medium is
file without deleting it. not  entirely reliable - a

breakdown during retrieval could
destroy the file without
returning its contents.

Clients must be prevented from Mistakes are inevitable - even
destroying the files of others honest clients could accidentally
(remember, a file can’t be destroy another’s file if not
updated). prevented.

Files must be given a limited Any implementation of the file
lifetime, and clients must be system, however capacious, will
charged for their storage. still be finite.

We introduce these compromises in a revised design (again using the notation of Z
largely without explanation). First, we name three new sets

CLIENT - the set of client identifications,

TIME - the set of instants (e.g. seconds from 1/1/80 - but we need not be
specific here),
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CosT - the set of costs (e.g. pence).

A file is extended to include its owner, and its time of creation and (eventual)
expiry. DATA is a fourth new set which contains all the possible values a client could store in
a file (its contents). We will collect these attributes in a schema FILE, and state at the
same time that in any file, the creation time must precede the expiry time:

FILE

owner : CLIENT
created,

expires : TIME
contents : DATA

created € expires

The schema SS below describes the state of the file storage system itself:

SS
I files: NAME -» FILE

and the schema ASS describes the general aspects of any operation on it:

ASS
files, files': NAME -» FILE
who : CLIENT
when :+ TIME

who is the identity of the client performing the operation, and when is the time at which it
is performed. We can abbreviate ASS (without changing its meaning) by building it from the
schema SS instead of directly from the variable files:

ASS :
ss
ss*
who : CLIENT
when: TIME
Storefile

The (revised) Storefile operation we will present as a schema including the
variables files, files’, who, and when (supplied by ASS), as well as the data to be stored
(contents?), the expiry time (expires?), the new name chosen by the service (name!), and
the charge made in advance (cost!):
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StorefFile
ASS

contents?: DATA
expires? : TIME
name! : NAME

cost! : COST

JFILE'. owner’ = who
created’ = when
expires’ = expires?
contents’ = contents?

name! ¢ dom files
files' = files ® [name! > FILE']
cost! = Tariff (FILE")

A new file FILE® is constructed which is owned by the client storing it, records its
creation time as the time it was stored, which will expire at the time the client specified
(then becoming inaccessible), and whose contents the client supplies.

A new name name! is chosen, not currently in use, and the file is stored under that
name. The charge made is some function Tariff of the file (hence of its owner, creation
and expiry times, and contents). Here is a possible definition of Tariff (which depends in
turn on some function Size):

Tar iff = \FILE. (expires - created) * Size({contents)
Readfile
The ReadFile operation returns the expiry time and the contents of the file stored

under a given name. Its parameters are the name of the file to be returned (name?), when it
will expire (expires!), and its contents (contents!):

ReadFile ,
ASS
name? : NAME
expires! : TIME

contents!: DATA

85' = 55

SFILE. FILE = files (name?)
expires > when
expires! = expires
contents! = contents

ReadFile does not change the state of the service. The map files is applied to the
name, to determine the file’s value FILE, which must not have expired. Its expiry time and
contents are returned.



Ease of use through proper specification 131

Deletefile

The DeleteFile operation removes a file from the service A rebate is offered as
an incentive to deletion before expiry. name? is the name of the file to be deleted, and
cost! is the (possibly negative) charge made for doing so (we assume negation “-” is
defined on COST):

Deletefile .
ASS
name?: NAME
cost!: COST
IFILE.. FILE = files (name?)
expires > when
owner = who
files' = files \ {name?>
cost! = - Rebate (FILE, when)

The map files is applied to the name, to determine the file’s value FILE, which
must not have expired. It must be owned by the deleting client. The file’s name name? (and
hence the file itself) are removed from the partial function which represents the stored files,
and the cost is determined by a function Rebate of the file and its deletion time. Here is a
possible definition of Rebate:

Rebate = MNFILE; when: TIME. (expires — when) %* Size(contents)

Naturally, there are other compromises which could be made, in addition to or
instead of those above. In the next section, however, we discuss a compromise which we
suggest should not be made.

84 A COMPROMISE AVOIDED

One glaring inefficiency remains in our proposal: that we must transfer whole files
at once. Many clients will not have time or the resources (eg. local memory) to do this.
But here we will not compromise by modifying our file storage service to cater for this
inefficiency - rather we insist that the business of the file storage service will be storage
exclusively. Partial examination and updating will be the business of a file updating service.

To propose a service which treats the contents of files as having structure, we must
propose a structure. The proposal we make is the very simple view that the contents of files
is a sequence of pieces. (Sequences are functions from the natural numbers IN to their base
type, and begin at index L) We do not say what a piece is, however.

DATA
l seq PIECE

The file updating service in fact has no state; all its work is done in the calculation
of its outputs from its inputs. Its two operations are ReadData and UpdateData,
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ReadData

ReadData takes the contents of a file contents?, a starting position start?, and
a number of pieces to be read number?, and returns the data pieces! at that position
within contents?. (#pieces! is the length of the sequence pieces!, and 1..#pieces! is the
set {i: N| 1 i € #pieces!})

ReadData -
contents?: DATA
start?,
number? : N

pieces! : DATA

wpieces! = min (number?, (#contents? - start?))

Vi: 1..8pieces!. pieces!(i) = contents?(i + start?)

The length of the data returned is equal to the number of pieces requested, if
possible; otherwise, it is as large as the length of contents? will allow. The i-th piece of
pieces! returned is equal to the (i+start?)-th piece of contents?,

UpdateData

UpdateData takes the contents of a file contents?, 2 position start?, and some
data pieces?, and returns an updated contents contents!.

UpdateData :

contents?,

contents! : DATA

start? : N

pieces? : DATA

#contents! = max (#contents?, (start? + #pieces?))

start? < #contents?

Vi: 1..ucontents!.
(i - start?) € 1..8pieces? == contents! (i) = pieces?(i - start?)
(i - start?) # 1..#pieces? =+ contents! (i) = contents?(i)

The length of the new contents is equal to its original length, unless an extension
was necessary to accomodate the new data; however, the mew data mmust begin within the
original contents or immediately at its end. The i-th piece of cont ents! is equal to the
(i-start?)-th piece of pieces?, if this is defined; otherwise, it is equal to the i-th piece
of contents?.

Our proposal is of course only one of the many possble (for example, see the
definition of these operations in Morgan and Sufrin (6)). We could, of course, propose
several updating services, each providing its own set of facilitis IMoreover, the original
operations which transferred whole files would still be available to tknose clients able to use
them. (See figure 81).
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85 MODULARITY AND COMPOSITION OF SERVICES

The structure we have presented above separates the issues of how files should be
stored from how they should be manipulated. As a result, we have offered the user an
unusual freedom of choice - he can read just one piece of a file, or he can treat a file as a
single object (with the corresponding conceptual simplification; Stoy and Strachey (8) for
example allow this in their operating system OS6).

Still, it’s likely that a further compromise will be necessary: for large files, the time
taken to transfer the file between the two services (storage and updating) may not be
tolerable. We solve this not by changing our design, but by an engineering decision: for
applications that require it, we will provide the two services together in one box, and the
transfers will be internal to it. (See figure 82.) Its specification we construct by combining
the material already available.

StorefFile, ReadFile, and DeleteFile will be available as before. We introduce
two new operations, however - ReadStoredfFile, and UpdateStoredFile - whose
specifications will be formed by composing the specifications given above. (The schema
composition operator 3, used for this, is defined in (4). Here, we will explain it informally.)

ReadStoredFile

Reading a stored file is performed by first reading the whole file with ReadFile,
and then reading the required portion of its contents using ReadData. In Z we write this

ReadStoredfFile @ ReadFile 3 ReadData

If we were to expand this definition of ReadStoredFile, the result would be as
below:

ReadStoredFile

ASS

name? : NAME
start?,
number? : N
expires!: TIME
pieces! : DATA
S8’ = 5SS

APIES BICE files (name?)

expires > when
expires! = expires
#pieces! = min (number?, (#contents - start?))

VYi: 1..8pieces!. pieces!(i) = contents(i + start?)

ReadStoredfFile takes a file name name?, a starting position start?, and a number
of pieces number?, and returns the expiry time of the file expires!, and the data pieces!
found at the position specified. (expires! is returned by ReadStoredf i 1e because ReadFile
returns it; we could have dropped this extra output, but choost not to introduce the Z
notation for doing so.)
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UpdateStoredFile

The complementary operation UpdateStoredFile is a more difficult composition,
since we must accumulate the costs of the component operations, and we must ensure the
updated file is (re-)stored under its original name. For the sake of honesty, we will give the
definition, but we will not expand it

UpdateStoredFile &

ReadFile 3

DeleteFile [dcost!/cost!] 3

UpdateDBata 3

StoreFile [name?/name!, scost!/cost!]l 3

(dcost?, scost?, cost!: COST | cost! = dcost? + scost?)

UpdateStoredFile first reads the whole file, then deletes it, then updates it, and
then stores its new value under its original name Finally, it presents as its overall cost the
sum of the two charges made by DeleteFile (which may well be negative) and StorefFile.

Machine assistance in the manipulation of expressions such as the above is the subject
of a separate research project within the Programming Research Group (the Software
Engineering Project).

What we have done is to compose two simple but infeasible operations to produce a
more complicated but feasible one (rather like the use of complex numbers in electrical
engineering, for example). Naturally, the implementor will not transfer whole files back and
forth within his black box on every read and update operation - but nevertheless the
updating and storage service provided by the box must behave as we have specified. Our
decomposition was chosen for economy of concept; the implementor’s must be chosen for
economy of time and equipment, and the whole range of enginecring techniques are available
to him to do so (caches, update-in-place, etc.).

86 EXPERIENCE SO FAR

While we have followed the general principles above, we have in fact adapted to
constraints in different ways. Our storage service, which we have implemented in prototype,
stores blocks of a fixed size (rather like the service described in Bickert (1)). This
distinguishes our “universal® storage service from, say, the one implemented at Cambridge
(described in Needham (7)). Organisation of blocks into files, the keeping of directories, etc
is done by software in the clients’ own machines (for example, using a “File Package”
(Gimson (2)). This allows clients freedom in the choice of what file structure they build, but
of course makes the sharing of files more difficult. If one package showwld become popular, it
could be placed in a machine of its own, and so become a service.

It has not been possible to cover many aspects of our work in this presentation. For
example, the specification of the errors that may occur in use is an esential part of the full
specification of a service, and is included in service user manuals (for example see Morgan
).

We can’t claim to have made “the programming and application of multiple
microprocessor networks as simple and natural as the programmimg of single microprocessor
workstations™ - not yet. So far, the pressure of simplicity in our mat hematical descriptions
has kept our designs correspondingly simple. At present, they are pehaps too much so; but
by using “the most up-to-date techniques for software specification .” we have built basic
services which genuinely are simple. And that is where one must ®begin
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87 FUTURE PLANS

The styles of specification, and of presentation of user manuals, has to some extent
been developed in parallel with the software to which they bave been applied. These styles
are now more stable, and we intend to specify, design, and implement further services in the
same way.

Our goal is to produce a suite of designs from which implementations can be built
on a variety of machines. Each design will be documented, in our mathematical style, both
for the user and for the implementor. Thus we can say that our primary goal is to
construct a distributed system on paper.

For our paper construction to have any value, the designs proposed in it must be
widely applicable, and genuinely useful. We expect our machine-independent techniques of
description to take care of the first requirement. To ensure that the second is met, we must
construct prototype implementations of each of the designs, and we must gain experience of
their use.

88 GLOSSARY OF SYMBOLS

e “is syntactically equivalent to”
N The set of natural numbers (non-negative integers)
{sig | pred> The set of sig such that pred

m..n The set of natural numbers between m and n inclusive

m..n & <k: N m<k<n>

A+ B The set of partial functions from A to B

[ab] The function {{a,b))> which takes a to b

fix) The function f applied to x

dom The domain of a relation (or function)
for f: A-HB,

dom f & {a: A | (I b:B. b= fa))>
\ Domain co-restriction

for f: AHB; A c R,

f\aa & {(a,b): f ] a¢f@a>r
® Functional overriding

for f, g: A-B,

foeg & (f \domgl)ug

seq A The set of sequences whose elements are drawn from A

seq A & {s: IN-» A | (3n: N. dom s =1..n)>
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s The length of sequence s
doms = 1..4s

{new/old] Schema variable renaming

H Schema forward composition
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Chapter 9

Probabilistic modelling of distributed
‘computing systems

1. Mitrani

9, 1. GENERAL BACKGROUND

There are three main methods for evaluating the performance of a
complex computer system. These are (a) observing the system in opera~-
tion and taking measurements, (b) writing and running a simulation
program that mimics the behaviour of the system and (c) constructing and
solving a mathematical model that captures the essential featuresof the
system. The last of these methods is in many ways the most satisfying,
both intellectually and from the practical point of view, Its chief
advantage is that it provides deep insights into underlying trends and
functional relationships between system parameters and performance
characteristics. Also, mathematical modelling requires little or no
computing resources; hence, it is usuwally very cheap. On the other
hand, a mathematical model is, by its nature, only an approximation of
reality; moreover, it is often necessary to make further simplifying
assumptions in order to ensure numerical or analytical tractability.
The application of the modelling approach to the performance evaluation
of different types of distributed computing systems, and the accompany—
ing trade—-offs beiween accuracy and cost, is the subject of this article.

Systems whose behaviour is influenced by random phenomena — and
computer systems certainly fall in that category due to the unpredicta—
bility of the demands placed upon them — are modelled by means of
stochastic processes., A stochastic process is a random function of
time whose value at any given moment is a possible system state. In
the cases that interest us, the system states are usually represented by
vectors of integers, and so the associated stochastic processes can be
thought of as random walks on multidimensional lattices. For example,
in a system consisting of two computers commected by a communication
line, allowing jobs to be submitted and executed at either site, the
system state at time t might be described by a pair of intergers,
[n4(t), np(t)] , where ny(t) is the number of jobs waiting and/or
being executed at site i '(i=1,2). The system could then be modelled by
a two-dimensional stochastic process 2[n4 (t), np(4)] ;3 t;o}. The
state lattice and the possible one-stép %fransitioms for such a process
are illustrated in Fig. 9.1.

To specify a model completely, it is of course necessary to make
assumptions governing the probabilistic behaviour of the associated
stochastic process. From the point of view of the analysis, it is
highly desirable (in most cases imperative) that the process possesses
the so called "Markov' or 'memoryless' property: The states entered
after a given moment, t, may depend on the state at t, but not t itself
or on anything that happened before t. The Markov property is closely
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related to the exponential distribution. The time that a Markov process
spends in any given state, on any visit to that state, is distributed
exponentially (with parameter which may depend on the state). In order
to ensure that this property holds, various random variables that affect
the behaviour of the process - such as intervals between job arrivals,
job execution times, etc. — are assumed to be distributed exponentially.

Fig. 9.1. State transition lattice

We are interested mainly in the long-run, or equilibrium, or
steady~state behaviour of a system. For a Markov process whose state
vector, _§(t), takes values, s, in some denumerable set @, the steady-
state distribution is defined by the limits

p(s) = p P [ S(t)=z | 5(0)-g,) » ms.€® (9-1)

provided that the latter exist for all states s in 6, are independent
of the initial state 5. and sum up to 1. When it exists, the steady-
state distribution and hence other performance measures, can in

principle be determined by solving a system of linear equations (e.g.

see Gelenbe and Mitrani (6)

o) 2 r(m')] S obere ] e 6.2

-1

The quantities r(§_,§'), 5,8°€6G, referred to as the 'i nstantaneous
transition rates!, are known; they are simple functions of basic
model parameters such as job arrival rates, average executi on tinmes,
numbers of processors and terminals, etc. It is intuitivel y appealing
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to interpret r(g,g’) as the average number of transitions that the
process makes from state s to state s/, per unit time that it spends in
state s. With that interpretation, equations (9.2 ) become almost
obvious: they simply state that the average number of transitions out of
state s per unit time is equal to the average number of transitions into
state s per unit time, for all g. For that reason, (9.2 ) are known as
the 'steady-state balance equations'.

Thus the general approach to the analysis of models which are for—
mulated in terms of a Markov process involves writing a set of balance
equations and then finding the unique solution p(s), E whose ele-
ments sum up to 1. However, while the first of these steps is usually
quite easy, solving the equations can be very difficult indeed., In
particular, if the state space (and hence the number of equations) is
infinite, close~form solutions are available only in a few special
cases; some of these will be described later. Even when the state
space is finite, but large, deriving an exact solution is often too
expensive to be practical.e It is important, therefore, to consider ways
of obtaining good approximate solutions.,

One approximation technique that has proved very useful in the
context of distributed computer systems consists of expressing certain
essential quantities in terms of themselves., This is done by making
simplifying assumptions about the dependencies between system components
isolating subsystems which are easily solvable and feeding the solutions
for those subsystems back into the model., The problem is then reduced
to a 'fixed-point' equation of the type x = £(x), where x is either a
scalar or a vector and is related either directly or indirectly to the
performance of interest (de Souza e Silva et al (3), Mitrani, (14) ).
Such an approximation can, of course, be applied even when the under—
lying stochastic process is not Markov,

The following section is devoted to models that can be solved
exactly. The applications include multi-processors systems (with and
without breakdowns) and networks where the interactions between jobs and
processors satisfy a particular set of assumptions.

Section 3 deals with cases where those assumptions are violated,
and where only approximate solutions are available. Distributed data
bases and local area communication networks fall in that category.
Before proceeding, however, it is worth mentioning here a fundamental
result which will be very useful later,

Consider an arbitrary system where jobs arrive, spend some time and
then depart. The internal composition of the system is unimportant dbut
it should be in the steady-state, Let 2\ bethe average number of jobs
entering (and leaving) the system per unit time, W be the average period
that jobs spend in it and L be the average number of jobs present in it
at a given moment. Then these three quantities satisfy the relation

L= AW (9.3)
regardless of the nature of any random variables that are involved, and
whether they are independent or not. This is known as 'Little result',
(13). It implies that, for a given throughput, the congestion and the

response time are essentially equivalent as measures of performance.

9.2. MODELS THAT CAN BE SOLVED EXACTLY

All systems examined in this section are modelled by Markov
processes. We shall classify them according to their dimensionality,
i.e. the number of elements in the vector describing the system date.
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9.2,1 Multiprocessor Systems with a Single Job Type

Suppose that all jobs submitted for execution at a computer
system are of the same type, i.e. they are statistically identical.

The computing resources consist of N identical processors, each of
which executes jobs, one at a time, to completion. When there are more
than N jobs in the system, N of them are being executed, while the rest
wait in a common queue. To ensure that the memoryless property holds,
assume that the arrival instants form a Poisson stream (wi'l;h rate A per
unit time) and that job execution times are exponentially distributed
(with mean ‘I/p ). Then the system state at time t is completely descri-—
bed by a single integer, n(t), specifying the number of jobs that are
waiting a.nd/or being served at that time. Moreover, {n(t), t;o} is

a Markov process which attains steady-state if the available processors
can cope with the work submitted, i.e. if ('h/y-)(N.

This model is known in the queueing theory literature as the
M/M/N system (Markov arrivals, Markov service, N servers). If the
process is in state n, the only possible one-step transitions are to
state n+1 (if the next event is the arrival of a new jo’b), or to state
N1 (if the next event is a departure and n>O). Markov processes with
a transition structure of this type are called 'one—dimensional Birth—
and-Death processes'. In our case, the average number of transitions
from state n to state n+1 per unit time that the process spends in state
n, i.e. the rate of birth in state n, is equal to A for all n 2z O:
Similarly, the rate of death in state n is equal to = min(nrk, Ng ’
since the departure rate is proportional to the number of busy process—
ors., The balance equations are easy to solve (see (6)), yielding the
steady—state distribution of the process and such performance measures
as the utilisation of the processors, average queue size and (using
Little's result), average response time, This analysis shows, for
example, that if the number of processors increases and their speed
decreases, so that the total processing capacity Nm remains constant,
the system performance deteriorates. Thus, other things being equal, a
single processor is best.

Now consider the more interesting case where the processors are not
completely reliable. Bach processor goes through alternating periods of
being operative and broken down, independently of the others. The
operative and inoperative periods are distributed exponentially, with
means 1/§ and 1/11 respectively. Thus each processor is operational
for a proportion /( -+ ) of the time and hence the ef fective number
of processors available is Ny /(& + 7 ).

The system state at time t is described by a pair of integers
[n('t), m('t)J , where n(“h) is the number of jobs present and m(t) is the
number of operative processors, There is still essential ly a one-
dimensional process because m(t) takes only a finite nuiber of values,
0, 1, ee« N The condition for existence of steady—state is again that
the submitted load is less than the available processing power:
(A/m)<un/(E+n) . However, the balance equations are more
complicated than in the previous case and their solution is considera-
bly more difficult (Mitrani and Avi-Itzhak (15), Neuts and Lucantoni
(17))s Without going into details, the steady-state distribution of the
system state (n, m) is obtained indirectly by determining N one—
variable generating functions, The derivatives of those g enerating
functions at point 1 yield the average number of jobs presentand hence
the average response time,

It turns out that, in the presence of this type of —unreliability,
the optional number of processors is no longer always 1; dn general, it
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is greater than 1, Moreover, the closer the system is to saturation,
i.e. the closer the submitted load (7\/]&) 1o the available processing
power [Nv,/(; +7)] , the greater is the optimal number of processors.

The above model can be generalised in several directions.
Processors might be more likely to breakdown when they are busy than
when they are idle. There could be a finite number, R, of repairmen
(R<N), so that a broken down processor may have to wait before its
repair can start. The distributions of operative and repair periods
may be other than exponential (this last generalisation is much more
expensive than the others).

A different problem in the area of multiprocessor systems concerns
the extent to which internal parallelism can be exploited in the execu~
tion of a job. One can construct a model of a job as a collection of
tasks, some of which can be executed in parallel on different process—
ors. The question then would be: given the structure of that collectim,
how long does it take a certain number of processors to execute the job?
Some results in that connection were obtained in Fayolle et al (5); we
shall not dwell on them here because both the model and the solution
techniques fall outside the present framework.

9.2.2 Two Job Types

A fundamentally different problem arises if the jobs arriving into
our multiprocessor system may belong to two different types, with
(perhaps) different arrival rates and average exeuction times. The
computer mananager may wish to give unequal treatment to the two job
types and provide one of them with a better service than the other.
One way of doing this is to designate K of the N processors as 'type 1!
and the other N-K as 'type 2'. Type i jobs can then be given pre-
emptive priority on type i processors (i=1,2). Thus the processing
capacity available to type 1 jobs is K when there at least N-K type 2
jobs in the system, dbut can rise (up to N) when that number drops
below N-K., The scheduling strategies defined in this manner vary from
tabsolute priority for type 1 jobs' (when kN), to 'Tabsolute priority
for type 2 jobs' (when K=0).

Under exponential assumptions, this system is modelled by a two —
dimensional Birth—and-Death proces{[n,l(t), nz(t)] , 120} , where n,
(t) is the number of type i jobs present in “the system at time t. =
The condition for existence of steady-state is is (7\1/ r.k1)+( 7\2/ M )
<N, where A. and 1/PL are the arrival rate and the average
exeuction time, respectively, for type i jobs (i=1,2).

The state transition structure of this process is easy to
describe: from state (n1, nz), the process moves %o

state (n1+1, n2) with rate 2,
state (n,l, n2+1) with rate 7\2_

state (n1—1, n2) with rate rlimin [n,], K+min(0, min(O,N—K—nz)_J P
for n1> 0

state (n,, n~1) with rate M min [n,, NK+min(0, K-n,)|,
For n 02 Pomin [ 2, b
The solution of the set of balance equations reduces to that of a
functional equation in two variables. The 'mixed prbrity' scheduling
strategies (0 <K <N) are more difficult to deal with ‘than the 'absolute
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priority' ones (K=0 or K=N); in the former case, the functional equation
is further reduced to a boundary problem on a closed contour. In both
cases, the solutions were obtained quite recently (Fayolle et al (4),
Mitrani and King (16) ).

In the context of systems with multiple job types it is reasonable
to enquire to what extent an improved performance for one job type is
paid for by a deterioration in performance for another type. If perfor—
mance for type i is measured by the average number of jobs of that type
in the system, L. (or equivalently, by the average time that they have
to wait), and if service is provided by a single processor, then the
answer to that question is supplied by a result known as 'Kleinrock's
conservation law (Kleinrock (12) ). The latter states that any )
decrease in the value of one or more of the L.'s, by means of a change
in the scheduling strategy, is compensated by an increase in other Li's,
in such a way that the linear combination

¢ = 2 (/@) (9.4)

remains constant (the sum is taken over all job types). Whether that
conservation law holds for multiprocessor systems is, at present, an
open problem. Some numerical experimentation with the above two job
types model seems to indicate that it holds, at least approximately.
For a given number of processors, N, the scheduling strategy was varied
by varying K from O to N and the linear combination (9.4 ) was evaluatel
each time. Some differences were observed, but they were so slight
that they could have been explained by accumulations of round-off
errors, rather than by failure of the conservation law,

9.2.3. Network Models

When a system comprises several interconnected service stations
(which may be processors, I/O devices, etc.) offering different types
of service to jobs that may move from one station to another, the appro—
priate model to use is likely to be a queueing network. To define such
a model, one has to specify (a) the set of nodes and their characteris—
tics, and (b) the behaviour of the jobs. As usual, there is a fine
dividing line between the assumptions that lead to tractable models
and those that do not.

One of the first important results in the area of queuieing net-
works was obtained by J.R. Jackson (9) more than twenty years ago; the
models to which that result applies are hence known as 'Jackson net-
works?! (see also (6) ). A Jackson network consists of N nodes numbered
1,2 eee N, and a single job type. The execution times at node i are
exponentially distributed with mean 1 / . (that parameter may also
be assumed dependent on the number of jo‘?ﬁs at node i). Jobs arrive
into the network in a Poisson stream at rate A per unit time. A newly
arrived job joins node i with probability i (i=1,2, ees, ) o After
completing execution at node i, jobs go to node j with prob=bility 9
(i, j.—.‘l,2,...,N); they leave the network with probability Yoy The 9
matrix of probabilities .. 1is called the 'routing matrix¥,

The state of the netwdrk at time t is described by the vector
[n’(t),nz(t),...,nN(t)J , where n,(t) is the number of job= at node i.
It might "seem, in view of the difi'iculty in analysing the —two=-
dimensional processes of the previous sub-section,that this N-dimensiond
Markov process would prove to be at least as hard to solve, This,
however, is not so: Jackon networks turn out to have a surpaxrisingly
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simple solution,

Let 3; ve the average number of jobs coming into node i per unit
time (from outside and from other nodes). If the network is in steady-
state, 3y is also the average number of jobs leaving node i per unit
time. These throughput rates must satisfy the following system of Yflow
balance' equations.

N
Ap = Mdg; + ‘?i—:f)‘jqji'i = TSpweny (9.5)

When the system (9.5) has a unique solution, the network is said to
be 'open'. Intuitively, this means that jobs do come in from the out-
side (X)O), and no job remains in the network forever. Jackson's result
states that, in an open network in the steady-state, the numbers of jobs
at the different nodes are independent Birth—and-Death processes. In
other words, the probability that the network is in state (nq,nz,...,nN)
is equal to the product of the probabilities pj(n;), of finding n; jobs
in a single node system with Roisson arrivals trate Xi) and. exponential
execution times (mean 1/p;) for i=1,2,...,N:

p(nalynzt"'fr‘N) = P1(n1)p2(n2)..'pn(nN) (9'6)

Thus, having determined the throughputs 3 i from (5), node i is
treated as a one-dimensional Birth—and-Death process with parameters \i
and 4, in isolation of the other nodes. The known solutions for these
one—-dimensional processes are then multiplied together, to obtain the
joint distribution of the network state (9.6). Performance measures
such as average numbers of jobs or average sojourn times are easily cal-
culated. For a given node, these come from the one—~dimensional solution
Pi(ni)° For a group of nodes, or the whole network, the developments
are only slightly more complicated. Suppose, for example, that we are
interested in the average times, Q;, that a job spends in the network
after leaving node i (i=1,2,...,N); also, in the average total time spent
in the network, Qy. These quantities satisfy a system of linear
operations:

N
Q = JZ;_ q 5(W,+Q)

where W. is the average sojourn time at node J.

Jackson®s result is remarkable in several aspects. First, it is
counterintuitive : the nodes obviously influence each other, so the
queue sizes could be expected to be dependent. Second, individual nodes
behave as though they were subjected to a Poisson input of jobs, whereas
the total input stream into a node is not in general Poisson. Third, the
independence of the queue sizes is in marked contrast with the fact that
the sojourn times of a job at the nodes that it visits are, in general,
dependent. To illustrate this last phenomenon, consider the simple three-—
node network in Fig. 9.2:
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-

Fige 942+ A three-node network

If a job goes from node 1 directly to node 3, its sojourn times at
the two nodes are independent of each othery if, however, that job goes
via node 2, then its sojourn times at nodes 1 and 3 are dependent. What
causes that dependence is the possibility of the job being overtaken by
other jobs which were behind it at node 1. The distribution (as opposed
to the average) of sojourn times along paths that allow overtaking is,
except in some special cases, an open problem.

If no jobs arrive into a network from outside and no jobs leave it
(i.es 2=0 and g0 =0 for all i=1,2,...,N), then that network is said to
be ?closed!. Closed networks can be used to model distributed systems
under heavy load, when there is a certain number of jobs circulating
among the service stations at all times.

The flow balance equations (9.5) are still satisfied in a closed
network, but since they are now homegenous, they no longer determine
uniquely the node throughputs 3. Nevertheless, closed exponential
networks have a product—form solution similar to (9.6):

p(n 4Ny eeeyny) = Gy (n,)p,(05) e ooy (ng) (9.7)
where Pi(ni) is obatined by using any solution of (9.5) and Gi is chosen
so that the right hand sides of (3,]), when summed over all network states,
add up to 1. This result was established by Gordon and Newell (8) and.
bears their names.

The number of possible states for a closed network with N nodes and
K jobs circulating amongst them, is equal to [(N+K—1)}]/[Kd(N-1)!].
Since that number grows rather quickly with N and K, the compuation of
the 'normalising constant! G in (9.7) is a non—trivial task for networks
of realistic size. Fortunately, a number of efficient numberical
algorithms are available for that purpose. Having computed the constant,
other performance measures are easily obtained.

The queueing network model can be generalised considerably without
losing the product form solution (see (6) Do An important general-
isation is to assume that jobs may be of different types and may change
type as they move from node to node. Thus the routing of jobs can
proceed according to probabilities gir is that a job of type r leaving
node i will go to node j as a job of “t;’y'pe se. The matxix of these
routing probabilities need not be irreducible; it is possible for jobs
of different types to circulate among different groups of nodes. Alpo
the network may be open with respect to some job types and clomed with
respect to others.

When jobs belong to different types, one may wish to use scheduling
strategies that treat them differently, e.g. discriminete in favour of
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one or more job types and against others., It turns out that if this is
done, the product form of the solution is lost and the model becomes
intractable. The scheduling strategies that can be allowed, such as
First—In-First-Out, Last-=In-First~Out or Processor-Sharing, treat all
jobs equally (at FIFO nodes, it is even necessary that all job types
have the same average execution times). There have been a number of
studies involving network models with priority scheduling strategies,
but they have always had to seek approximate solution methods.,

A few words on the robustness of the network results are perhaps in
order. As a general rule, the more specific the required performance
measure, the more sensitive it is with regard to the assumptions of the
model, Thus quantities like node utilisations and throughputs in open
networks depend only on the average interarrival and execution times,
and not on their distributions, As far as average numbers of jobs or
sojourn times are concerned, the exponential assumptions often provide
very good approximations. The variance and higher moments of those
measures (at FIFO nodes) tend to be more affected by the shape of the
distributions.

9,3 MODELS THAT REQUIRE APPROXIMATIONS

In principle, any model can be solved exactly, or at least to any
degree of accuracy. For that, it suffices to make the state space
finite, if it is not so already, and then apply a numerical algorithm,
In practice, of course, such an approach is very likely to be pro-
hibitively expensive, which is what is meant when the model is said to
be 'intractable'. However, the fact that a model is intractable does
not necessarily preclude the possibility of obtaining perfectly
reasonable estimates of the desired performance measures with very Iittle
effort. The unfeasible exact solution can often be replaced by an easily
computable approximate one,

The general idea in deriving approximate solutions is to reduce the
complexity of the model by examining certain parts of it in isolation and,
having solved the corresponding simpler models, use the results to
evaluate the interaction between the parts. An approach that seems to
work well for distributed systems proceeds as follows: By analysing an
appropriately chosen (and easily solvable) subs—-system, obtain certain
of its characteristics — call them X - as a function of certain para—
meters — call them Y -~ approximately representing the effect of the rest
of the system on the sub-system. This yeilds a relationship of the form
X = P(Y). Next, expressing the interaction parameters Y in terms of the
sub~system characteristics produces a 'complementary' relationship Y =
G(X), which again may be approximate., Those relations lead to a fixed~—
point equation, X = H(X), which can be solved for X.

As an illustration of this idea, consider a closed cyclic network
(Fig. 9.3) with N nodes and X jobs circulating among them (there is no
product form solution if queueing at each node is FIFO and execution
times are not exponentia.l). (see Fig. 9.3 Next Page)

Let W, be the average sojourn time of a job at the i'th node, L; be
the average number of jobs at the i'th node, and ) be the throughput of
the network (i.e., the average number of jobs passing through any node
per unit time). Assuming that L; is also the average number of jobs at
node i that a job sees when it gets there, we can write an approximate

expression

W, = (D418, 1= 152,000, (9.8)
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Fig. 9.3 A closed cyclic queueing network

where s; is the average execution time at node i. To obtain a comple-
mentary expression for the Lj's in terms of the W;'s, note that the
average time for a job to make a complete cycle is (W1+W +...+WN), hence
the rate at which a given job passes through a node is the reciprocal of
that sum. Since there are X jobs altogether, the network throughput is

given by N
T=il
Little's result now provides an expression for Li:
N
L, =l = KW, /22 Wy 3= 1,2 000, (9
=1 9
Finally, (9.8) and (9.9) yield a set of fixed point equations for the

W.'s: W
W, = si[1+ Kwi/j=Z1 wj], R R, | (10)

i

Arguments very similar to the above form the basis of a general
method for the analysis of closed queueing networkse. This is known as
'Mean Value Analysis', or MVA (Reiser and Lavenberg (18), Bard (1)b It
is possible to improve significantly the approximation involved in
writing (9.8) or even, under certain assumptions, to replace (9.8) with
an exact relation (in the latter case, the resulting equations are re-—
cursive, rather than f ixed—point).

The 'natural' way to solve equations of the form X = H(X), regard-
less of whether X is a scalar or a vector, is by iteration: start with an
initial value, X, and at the n'th step compute X = H(X - ), until the
sequence Xn convérges. Unfortunately, it is poss%ble that the fixed—point
equation has a unique solution, and yet the 1itera tion sequence does not
converge. When that happens, other solution methods have to be employed.

The models that are described in the following have this in common:
they are intractable as far as exact solutions are concerned, but lend
themselves quite easily to approximation by the fixed—point methods.

92301 A Distributed Data Base Model

Consider a data base consisting of a large number, D, of items of
information, and suppose that it can be accessed in parallel by N
statistically identical users. At any moment in time, a user is either
passive (in 'think' state), or is executing a transaction; these two
states strictly alternate. During its execution, a transaction may re—
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quire data items. These are acquired dynamically as requested and are

held until either the execution is sucessfully completed, or the trans—
action is aborted. An item cannot be held simultaneously by more than

one transaction. If, at the time when a transaction requires an item,

the latter is not available, that transition goes into a wait state and
tries again later. In order to recover from deadlocks, a limit on the

number of such retries is imposed; when that limit is reached, the re-

questing transaction is aborted, it releases all items acquired so far

and has to restart its execution from the beginning.

In order to describe +the state of the system, one has to specify
what each user is doing (passive, running, waiting for an item, etc.) and
what is the location of each item., Itis clear that, even under Markovian
assumptions, the problem is intractable for any but a few small values
of N and D, To obtain an approximate solution, consider a single user
in isol ation and assume that the influence of all other users on him is
stationary. That influence is manifested by two parameters whose values
are as yet unknown: F and F4.F is the probability that when a transaction
from our user makes a request for a new item, the latter is unavailable;
Fq is the probability that a repeated attempt to get the item will fail
again. Now it does not matter which items the tramsaction is holding,
only how many; the process modelling the user is essentially one—dimen~—
sional and easily solvable.

The analysis of a single user yields expressions for various
characteristics in terms of F and F4. Three quantities are of particular
interest: the average response time for a transaction, W(the time be—
tween starting and successfully completing it); the average number of
items held by the user, m; the average number of items successfully ac-
quired by the user per unit time, ). These three quantites are thus ob-
tained in the form (see Chesnais, et al (2))

W = W(F,F,) 9.11)
m = méF,F.l) 9.12;
= A (FFq) .13

A
Next, going back to the N-user model, the probabilities F and Fy
are related to the quantities already found. For instance assuming uni—
formity of requests over the data base, it can be argued that, since the
average number of items held by all other users is (=1)m and the aver—
age number of items not held by the given user is D-m, the probability
of failing to acquire a new item is

P = [ (8=1)m]/(D-m) (9.14)

A slightly more complicated, but equally straightforward argument leads
to an expression for F4 of the form

F, = F,(x,m) (9.15)

Substituting (9.12) and (9.13) into (9.14) and (9.15) yields two fixed=
point equations from which F and F’I’ and hence the other performance
measures, can be determined.

For this particular system it was possible to demonsirate the
existence of a solution for the fixed-point equations but not, except in
some special cases, the uniqueness. However, in the examples solved
numerically, the solution was always unique and provided a good approxi-—
mation.

9,3,2 Local Area Networks

The three most widely known local area network architectures —
Ethernet, Cambridge Ring and Token Ring — present the analyst with radi-
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cally different modelling problems. In Ethernet, a station can listen
to the transmission medium and, if it detects a transmission in progress,
back off and try again later. A collision may occur if two or more
stations start transmitting within a period less than the network propa~
gation delay, D; the contending parties then back off and try again later.
This behaviour makes the Ethernet somewhat akin to the distributed data
base of the previous sub—section, and suggests a similar approach to its
analysis. A single station is considered in isolation, assuming that the
influence of all other stations can be represented by fixed parameters.,
In the present case these are the probability that an attempted trans-
mission will result in a collision, F, the probabilitiy that a new
attempt to transmit will find the medium busy, F,, and the probability
that a repeated attempt to transmit will find the medium busy, Fo.

The analysis of the single station yields various performance
measures such as average response time, message traffic rate, etc. — in
terms of F,F, and F,. Returning to the full N-station mode network,
these latter para,me%ers are expressed in terms of performance measures
already found (for example F is the probability that at least one of the
other N-1 stations starts to transmit within an interval D each way of
the instant when the given station starts its transmission; hence F=2D(N
~1)g, vhere g is the rate of traffic offered by one station). This leads
to the fixed~point equations

F= wéF,F 5008

Fi= v FrF:Ilng)

Fo= y(F,Fy,Fp
As before, existence of a feasible solution can be demonstrated, dbui not,
in general, uniqueness (Gelenbe and Mirtrani (T7)).

The Cambridge Ring employs a centralised control that enforces fair
sharing of the medium by a number of parallel transmissions. At the hard-—
ware protocol level, the system can be modelled by a single—server queue
with a Processor—Shared scheduling strategy and state~dependant service
rate (King and Mitrani (10)). That rate is a rather complex function of
the number of slots circulating in the ring and the number of trans
missions in progress, but once it has been derived (either analytically
or empirically), performance measures are easily obtairned, At the level
of the Basic Block protocol, there is the additional complication that
the medium can be shared only by transmissions to different destinationsg
the ones to the same destination are queued. The flow of messages under
the Basic Block protocol is illustrated in Fig. 9.4.

S RIN

Fig. 9.4 Cambridge Ring under the Basic Block Pr otoc ©l




Probabilistic modelling 151

The system can be modelled by a closed queueing network with N+1
nodes, numbered 0,1, ¢ee,N, and N jobs, numbered 1,2,¢..,N, circulating
among thems. If job i is at node 0, station i is the 'think' state; if
it is at node j(j:‘l,...,N,) then station i has submitted a message
addressed to station j; that message is either waiting or is being trans—
mitted. The network parameters are the average think times, the average
transmission times at nodes 1,2,...,N and the matrix of probabilities
that job i, upon leaving node, 0, will go to node j.

The network has a feature which prevents it from having a product—
form solution: the rate at which several messages are transmitted in
parallel on their number, and also on the number of messages awaiting
transmission. More precisely, if there are k non—empty queues and a
total of m jobs waiting for service, then the k jobs that are receiving
service do so at rate g(k,m), where g is a given function.

Good approximate solution can be obtained by replacing the state~
dependent service rate with a constant one, C, choosing the latter so as
to be consistent with the average performance of the system. For a given
C, the closed network is solved to yield the average number of non~empty
queues, k(C), and the average number of waiting jobs, m(C). The value
of C is then chosen so as to satisfy the fixed-point equation

C = m[k(C),m(C)]
The closed network with that value of C is used to calculate the perfor-
mance measures of interest.

Our last example is the Token Ring local area network. This archi-
tecture allows a station to monopolise the entire capacity of the com-
munication medium for the duration of a transmission. The availability
of the ring is signalled by a token: the transmitting station holds the
token, and releases it upon completion. The free token travels along the
ring in a fixed direction; the first waiting station in its path will
intercept it, regardless of how long it and the others have been waiting.

This system can also be modelled by a closed queueing network with
M+1 nodes and N jobs. The flow of jobs is similar to the one in Fig.9.3
but with the following important differences. A job in queue i indicates
that station i wishes to transmit (rather than that there is a trans—
mission addressed to station i). Thus, job i goes from node O (think
state) to node i, remains there until completed, then back to node 0,
etc. There is a single circulating server (the token) which serves one
job at a time to completion, moving from queue i to queue (i mod. N)+’I.

Suppose that the performance measure of interest is, as before, the
vector of average response times (W1,W2, e.eWy), where W; is the average
interval between job i leaving node O and returning to it. The charac~
teristics of the different stations, i.e. the average think times, 4,
and execution times, s3, are given (i=1,2,+..,8)s Let p.. be the prob—
ability that, when job i joins queue i, the server is DbuSy at queue j
(i£3=1,2,000,N)s Let also R, be the expected remaining service time for
the job at queue j and Djj bd the average time it takes the server to
reach queue i after leaving queue j. Then the average response time for
station i can be written as

N
W, = Zpij(aj+Dji)+si, T (926)
=4
A fixed-point approximation is obtained by meking simplifying assumptions
which allow P;:, R; and Di; to be expressed in terms of W; and the known
parameters (Kihg et al (1;6, Mitrani (14)h For example, the argument
aimed at pj 3 proceeds as follows: Station j goes through 'think—transmit
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cycles whose average length is t_4W.. During each such cycle, it spends,
on the average, time s, aotua.lly‘]trgnsmitting. Therefore, the proportion
of time that the servef spends at node j is equal to s./(t‘+W.). Hence,

assuming that the instant of arrival of job i at node 1 cafl bd treated as
a random observation point (this is an approximation), p. . can be set to

the proportion of time that the server spends at node j,lg*iven that it

is not at node is

pij & [Sj/(tj+wj)]/{1"[51/(ti+wi)]}

This, and similar arguments for R, and D_., turn (§16) into a set of
fixed-point equations of the form J

LA Gi(w1,w2,...,wN), i=1,2,400,N

from which the average response times can be determined.
9.4 CONCLUSION

It is clear that, in the area of distributed computing, as in many
other areas, a performance evaluation exercise has much to gain from the
application of probabilistic modelling methods. The models discussed in
this article can be, and have been, used successfully in performance
studies of real-life systems. When the complexity of the target system
is such as to preclude an exact analysis of the model, we have seen that
reasonable approximations can still be obtained quite easily. Indeed,
the computational cost of solving fixed-point equations is so small that
even if the only benefit derived is to reduce the number of parameter
points at which the system is simulated, the savings can be considerable.
Nor is the application of the modelling methods limited to the type of
models described here. More complex systems can often be decomposed
into hierarchical levels which can then be treated separately, either
exactly or approximately.
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Chapter 10

Developing concurrent systems
with DTL

J. W. Hughes and M. S. Powell

Despite the fact that interest in parallel languages
has arisen primarily due to the availability of parallel
hardware, the real motivation for parallel languages should
come from the programmer’s needs. High level languages have
developed precisely because they provide concepts relevant
to the programmer independent of machine architectures.
This paper uses simple examples to show how concurrency
arises naturally during the design of programs when a
language which supports the stepwise decomposition of
complex operations into concurrent processes is used. The
examples also illustrate the use of the DTL language
developed at UMIST as part of an investigation into the use
of concurrency as a structuring concept in program design.

16.1 INTRODUCTION

The concept of abstraction in program specification and
design originated in Wirth" s Stepwise Refinement Method (14)
and Dijkstra’s Structured Programming (3). The distinction
between procedural abstractions for encapsulating the
details of algorithms, and data abstractions, teo abstract
from storage representation was developed by Liskov (12) and
Farnas (13). Programs designed using these methods have an
organised bhierarchical structure, and are consequently
easier to understand and reason about than unstructured
programs.

These methods allow the specification of a solution to
a problem only as a sequential algorithm. They lack any
concepts for expressing concurrency, and force the designer
to specify operations as sequential when they have no
natural order dependency. Thus, they introduce constraints
into the design which are not inherent in the problem being
solved and force arbitrary decisions which need never be
made. At the other end of the spectrum, specifications
using functional 1languages abstract away +from operational
algorithms and leave the language implementation to resolve
all sequencing as well as it can. At the same time, between
the sequential-operational and the functi onal approaches,
the concept of process abstraction has emerged 1in the work
of Hoare (4), Kahn and McGueen (1©) and Jackson (9). By
means of process abstraction a system can be described as a
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network of voncurrent processes each of which proceeds
sequentially and communicates with its neighbours in the
network. This is an operational approach which does not
impose any unnecessary segquencing, yet models typical
prablem domains well and also allows a functional view to be
taken. Such a description is readily understood if:

(i) the structure of the network can be understood;
(ii)} each sequential process is simple.

All previous work has shown that a system is more
readily understood if it can be decomposed hierarchically
into simpler independent components. Design methods using
process abstraction, therefore, must allow hierarchical
decomposition of both the network and the sequential
processes within it.

Distributed Translation tLanguage (DTL) is a notation
developed at UMIST for the design of systems using the
concept of process abstraction.

10.2 PROCESS ABSTRACTION

The first stage of the design process is to identify
subprocesses which are required for the solution of the
problem. Unless the solution consists of completely
disjoint subsystems, it will usually be necessary for the
subprocesses to communicate in order for them to co-operate

on the solution of the problem. In most cases the
subprocesses identified do not necessarily have to proceed
one after the other sequentially, but may proceed

concurrently, synchronised by the demands and needs of the
subprocesses with which they communicate.

Concurrent situations arise primarily from two sources,
one is that in which concurrency is specified in the problem
( e.g. controlling a set of more than one lifts) the other
arises in the decomposition itself and results in the
description of some function as the composition of simpler
functions. Network diagrams such as those shown in figure
10.1 give a visual description of the structure of a
decomposition. The boxes represent processes and the arcs
their intercommunication. The decomposition proceeds by
further refining the description of each process by
repeating the procedure outlined above. At each stage the
nature of the data communicated on the arcs which are
introduced by the decomposition is specified. These are
sequential streams of different kinds of data items and may
be described by grammars.

Eventually the refinement reaches a level where the
process required to input the specified data streams and
produce the required output streams is naturally sequential.
DTL is therefore designed to allow specification of:-

i) The hierarchical structure of networks of
communicating processes.
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ii) The structure of the streams by which they
communicate.

iii) The sequential processes which at the bottom level
of the hierarchy translate streams of data.

10.3 CONCURRENT TRANSLATIONS

The connection together of sequential translations (11)
via their data streams to form concurrent networks allows:

i) natural concurrency, in the function to be computed,
to be expressed ( e.g. operating systems, realtime
applications)s

ii) functions which would require an extremely complex
sequential translation to be simplified.

One way to specify a network of sequential translations
would be to give each stream in the network a unique name
and to 1list the translations using those stream names as

actual inputs and outputs. This is comparable to the way in
which access rights are named when Concurrent Pascal
processes are initialised. For example, if the single

output of a translation 7! is to be used as the single input
of a translation T2 we could write "Ti(is), T2(si)’. This
is unsatisfactory for more complex networks since:

i) it gives no visual indication of the structure of
the network

ii) it requires that all streams and translations are
global to the entire program

iii) it allows arbitrary connections, conceptually
similar to the lack of structure which can result from the
unrestricted use of goto’s in sequential programs.

Rather we wish to decompose a system hierarchically
into a network of simpler components. Thus any component is
considered to be either:

i) Inherently sequential and may be desscribed as shown
in section 190.5.

ii) A pipeline of n simpler translations.

titiisl) >) t2(stis2) »> ..ovvv D) tnlsn-1)ic)
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iii) A disjoint parallel composition of n simpler
translations.

[ tiditied), t2(i2i02), ...... , talinion) 1

iv) A cyclic composition of ii) or iii).

CYCLE t{i,lcop:loop,0} END

A concurrent DTL translation is thus specified by a
network expression, formed using three operators
(corresponding to the three forms of construction) with
translations as operands.

The expressions described so far lead to finite cyclic
networks of translations. However, it is possible to use
the translation being defined in its defining expression,
recursively.

16.4 EXAMPLE : SORTING

An illustration of hierarchical process refinement is
the problem of sorting a sequence of data into descending
order. Suppose the input is a stream of integers terminated
by an end marker. The sorting process can be refined into
two processes, first one which finds the maximum value and
separates it from the rest; then one which sorts the rest
and outputs the maximum followed by the sorted remainder.
This last process can be refined into two processes, one to
sort the rest and the other to append the result to the
maximum. These two refinements are shown in figure 10.1.
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integer stream ! ! sorted integer stream

--------------- >osort
| —_—— i

______ rest ______

integer streas | find }-----—- »1 sort | sorted integer streas
--------------- diosax i 1append: ?
S I Db — H
max

rest |

integer stream | find i- -h i sorted integer streas
--------------- domax i === iappend)
i jummme- I === (i i
may  “-==7 first
Fig.1@.1

The network in figure 10.1 consists of a three stage
pipeline as shown in figure 10.2 with the corresponding DTL
network expression.

! d 2 ' 3

o5==Yi BORE ieasy

IR it ikl

i '
______ Ogt 8 ——
i find 1-? il i

------ YoM i1 .--- 1 lappendi-—----)

i frmmm=s DI si==case ] !

TRANSLATION sort(in | out) =
findmax (inimsax,rest)
»
[ sort(restisortedrest), I{maxifirst) }
»
append (first,sortedrest iout)
END
Fig.10.2

The translation I is the identity translation. It is
analogous to the empty statement in a Pascal-Xike language
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in that it allows any network to be expressed in a well
structured fashion.

The next stage in the refinement requires the
specification of f{findeax and append. These are most naturally
expressed as simple sequential translations.

10.5 SERUENTIAL TRANSLATIONS

A sequential translation translates its input streams
into its output streams. As mentioned earlier, the streams
are sequences of data items which may be of different kinds.
A stream is defined in terms of the kinds of data item which
it may communicate (its alphabet), and the permissible
sequences in which those items may occur. Any data item
kind may have associated attributes. e.g. an integer type
item may have an attribute representing its value. The
structure of the sequence can be described by a grammar.

The structure of the sequential process which consumes
the inputs and generates the outputs naturally reflects the
structure of its streams. Thus a sequential translation is
derived from the grammars of its input and output streams
using much the same principles as the Jackson program design
method (9} or recursive descent compilers (1). A DTL
sequential translation therefore specifies its stream
alphabets and a set of production rules in extended BNF
defining the translation grammar. Nonterminals in the
productions enforce a hierarchical structure.

In the previous sort example the final process in the
pipeline is a simple sequential translation. It has two
input streams, the first communicates the maximum value, or
an end marker if the input sequence contains no integers,
the other the sorted remainder of the integers or nothing at
all. The output stream from agppend is to communicate a
(possibly empty) sequence of integers in descending order
followed by an end marker. These stream structures can be
described by grammars as follows:-—

{firstd::= int(n) | endstreas
{rest) ::= #( int{x) ) endstream | {espty?
Cout} ::= #( intly) ) endstreas

The append function is clearly achievable by forming the
stream ot from first with rest appended to it, which can be
thought of as requiring

{out} = (first) (rest}

to be invariantly true for all executions of the translation
append. This property can be used to derive the  append
translation. By considering the grammar for first, two cases
have to be considered:-

i) <first> = endstream

It is intended that in this case the rest stream will be
empty and the ot stream will be the same as the first stream,
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this is described by the following production
first,endstrean [out.endstrean]
ii) <first> = int(n)

In this case the int should be the first symbol in out
and the rest of ot should consist of the rest stream, this is
described by

first.int(n} [out.int(n}l
#( rest.int{i} [out.int(i)] }
rest.endstreas {out,endstreas}

The append translation consists of Jjust these two
alternatives and is therefore given by the sequential
translation in figure 10.3.

TRANSLATICN append(first, rest { out)
first, rest, out = intin: integer), endstream
(append>::= first.int(x) [out.int(x)}]
#{ rest.int(x) [out.intix)3 )
rest.endstrean [out.endstream]
first.endstreas [out,endstreanl
END
Fig.10.3

Data items and productions may have attributes. This
facility is used in the definition of findnax shown in figure
10.4.

TRANSLATION findmax(in | max, rest)
in, rest, aax = int(n: integer), endstreaa
{findmax>::= in.int (maxvalue) <body(maxvalue))
in.endstrean [max.int{maxvalue)] [rest.endstrean]
+
in.endstreas [max.endstreanl;
{body (maxvalue: integer))i:=
#( in.int(xi x (= maxvalue) [rest.int(x)]
in.int{x! x > maxvalue} [rest.int(paxvalue}}
{maxvalue:=x}
}
END
Fig.1o.4

The first item accepted by findlax is either an integer
or an end marker if the input sequence is empty. In the
latter case, the end marker is output on the stream called
sax and the translation is complete. Otherwise the value of
the attribute of the first integer is assigned to the
variable maxvalue. The rest of the integers on the stream
called in are then processed by the production named body
until an end marker is encountered. An integer is then
transmitted on the stream called sax with an attribute value
corresponding to the value of the variable axvalue. This is
followed by transmitting an end marker on the stream called
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rest and the translation is again complete.

The production body processes the remainder of the (zero
or more) integers from the stream called in. All those with
attribute values less than or equal to the current value of
naxvilue are transmitted on the stream called rest. Whenever an
integer is accepted with an attribute value greater than the
current value of mavalue, saxvalue is transmitted on rest and then
redefined to have the value of the last integer accepted on
ina The initial and final wvalues of nsvilie are communicated
to and from the root production via the attribute of body.

Sequential translations thus have a hierarchical

structure supported by production names. The form of
production definitions supports the conventional control
structures of sequence, selection and iteration. The

notation also enforces a correspondence between input and
output data structures and control structures as advocated
by Jackson (2). Furthermore the concurrent facilities in
DTL. in allowing natural concurrency to be retained in a
program description, tend to lead to sequential translations
which are small and simple to understand. Many simple
saequential translations like append in the above example could
be provided as standard components by an implementation of
the language.

10.6 EXAMPLE = LOGIC NETWORKS

In this section the use of DTL as a hardware
description language will be considered. Hardware
description languages allow logic networks to be described
and simulated from a description of how a set of primitive
components are connected together to form a complete
hardware system. The primitive components are generally
logic gates. e.g. NAND gates, NOR gates etc. These may be
connected together in a modular fashion and a hardware
description language should allow this modularity to be
expressed. e.g. Two NAND gates may be connected together to
form a flip—flop and it should be possible to describe a 16—
bit register made from 16 flip—flops without baving to
describe the internal structure of each one.

In order to use DTL as a hardware description language
the nature of the signals which are communicated between logic
gates must be defined and then a set of primitive gates can
be designed. One of the advantages of using a general
purpose language for hardware description in this way, is
that the primitive elements can be described in as much
detail as is required for any particular application.
Hardware description languages in general, supply a fixed
set of primitives which may not be changed by the ordinary
user.

Hardware engineers often abstract away from the
concurrent nature of logic networks and consider logic gates
to be represented by pure foclean functions. In this style an
AND gate would be represented by a function with the
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following type.
and: Boolean x Boolean -2 Boolean

However for the purposes of continuous simulation it is
important to regard a logic network as set of communicating
processes connected together by streams of Boolean values. In
this style an AND gate must be represented by a function
with the following type.

and: Boolean* x Boolean¥ -» Boolean#

A description of this kind may enable the
synchronisation of events in a logic network to be reasoned
about but still abstracts away from many of the factors
which complicate logic design and lead to ’bugs® in hardware
systems. e.g. Gate delays and edge speeds. If a hardware
description language is to be useful it must enable such
factors to be represented so that they can either be
reasoned about during the design process and the behaviour
of a complete system can then be proved to meet its
specification, or the language description can be used as
the basis for accurate simulation and attempts can be made
to establish the correct behaviour of a system by testing
before the real hardware is built.

The diagram below shows an example of the kind of signal
which might be communicated between two gates in a logic
network. It illustrates some of the factors which a
hardware description language should take into account.

In this diagram thigh and tlow represent the time periods
which the signal spends in the high and low states and ty and
tdown represent the transition times between the high and the
low states during which its state is undefined. This
representation abstracts away from the absolute values of
voltage, current, pressure or magnetic flux density etc,
which may be used to implement the high or low signl levels.
In practice this is a reasonable thing to do due to the
nature of the hardware support provided for these concepts
by physical logic gates. If such sigils are to be modelled by
DTL streams, their alphabet may be described as shown below.

signal alphabet = up{time: natural), down(time: natural), high(time: natural), low(time: natural)

Many classes of signal can be modelled using this
alphabet in terms of the transitions they contain and the
stable states in between. Some examples are shown below.
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{square wave(period: natural)) ::= low{period) up(edge time) high(period) down(edge tise)
{pulse(length: natural)> ::= up(edge time) high(length} down(edge time)

{pulses{interval, length: natural)) ::= low(interval) {pulse{length)® <pulses(interval, length))
{glitch) ::= up(edge time DIV 2} down{edge time DIV 2)

(noise> ::= low(randos period) {glitch) <{noise)

It may be that the environment in which a particular
hardware system is to be implemented is so well behaved that
glitches and npise do not occur sufficiently frequently to cause
praoblems. It may also be the case that the edge tises involved
are short compared to the stable high and low states of the
signals and that it is the synchronisation of transitions
between states which is of interest rather than the absolute
time periods which they spend in high or low states. If
(fortuitously for the complexity of the examples which
follow) all these things are the case, the alphabet required
to describe all possible signls can be reduced to that shown
below.

simple signal alphabet = up, down

In such a wonderfully simple universe of signls, there
are only three classes of signl. There are ety signals which
contain no transitions and carry no information. There are
signals which start life by making a transition from a low
state to a high state and there after go dow, up, down, etc and
there are signls which start life by making a transition from
a high state to a low state and there after go up, down, up, etc.

{signal) ::= <empty> ! (low) | <highd
lowd> 1= up Khigh? § {empty?)
<highd 3= down ( <low> | Cempty))

If we require some timing information about such signals
we can compare them with a special clock signal which is known to
make transitions at regular intervals. The specification of
such a clock signal is outside the scope of this paper as it may
require some non—-digital components in its implementation!

signal

(] Al Ol OBy TR
[ HEo 5 o Y v
P 3 [ 5 [ olin
b i 1 il ]

clock
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DTL translations may be constructed which process such
signals and produce new signls as their outputs. A primitive
logic gate such as a NOT gate can be described as shown
below.
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TRANSLATION not(in ! out)
in 4 out = up, down
{not? <enpty> | {low? i {high>
{low? in.up out.down (Chigh? ! {empty)
<high> ::= in.down out.up ( <low) | <espty>
END

The above translation may be constructed systematically
by using a Jackson-like technique and has the advantage of
making it easy to establish that inputs in the form of signls
are accepted, that the output is always a signal and that it
represents the "not’ of the input. In an environment where
the input is always guaranteed to be a signl, simple program
transformation techniques can be used to derive the less
complex translation which follows.

TRANSLATION not(in | out)

in , out = up, down

(not> ::= {empty} | in.up out.down <not> | in.down out.up <{not)>
END

More complex gates may be described in a similar
fashion by sequential DTL translations. These may then be
connected together into still more complex structures by
using the DTL network composition operators. The example
below shows how a NAND gate may be constructed from a NOT
gate and an AND gate.

TRANSLATION nand(inf, in2 i out) = and(inl, inZ | x) >} not(x | out)

As is well known two NAND gates may be connected
together to make a primitive memory element in the form of a
reset/set flip—flop. The same is of course true of the NAND
gates described abaove.

TRANSLATION flipflop(int, in2 i outl, out2) =
CYCLE
[ nand{ini, out? i outl), nand{in2, out! ! out2) I
END
END

For simulation purposes it would generally be more
efficient to use a single sequential translation to describe
the same function, however there is an obvious advantage to
being able to describe such a component in as much detail as
is required. Many hardware description languages are forced
to provide such components as standard parts of the language
because they cannot be constructed from the primitives of
the language.

The last example in this section shows how an n-bit
register may be constructed from n flip-flops by using an
array of translations. DTL supports arrays of translations
and arrays of streams.
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TRANSLATION register{ini{i..n], in2{1..n] i outifl..n], out2ll..n]) =
flipfloplizt..nd(intlil, in20i] | outifil, out2(il)
END
The network expression in the example above can be
regarded as a shorthand for

[ flipflopllltinif1], in201] § outi{1}, out2({l},

flipfloplnd{intinl, inZin] i outifnd, outZlnl)
3

The use of DTL as a hardware description language has
been illustrated in the preceeding examples by developing
descriptions for common hardware components in a bottom—up
fashion. For hardware systems of any complexity the normal
process of design would proceed top-down using the
structuring methods provided by the language to support
stepwise refinement. The leaves of a refinement tree which
describes this process would represent the kind of primitive
hardware components described above.

The set of such components can be defined in advance
for a specific implementation environment. It might, for
example, comprise a subset of the 74 series TTL gates. This
situation is very similar to the use of top-down stepwise
refinement in the production of software, where the leaves
of refinement trees represent high—level language statements
or, perhaps if a low level langqguage is used, individual
machine instructions.

In all of the preceeding examples, the signals
communicated between gates have had a very simple form and
only record the transitions between logic states. Where

more information must be represented because, for example,
edge speeds are important in the implementation environment,
the structure of signals may be augmented with such information
and the primitive gate translations updated accordingly.
The edge speed of an output transition may be determined by
the edge speed of the input transition which caused it.
Edge triggered flip—flops may be described which will only
respond to suitably fast edges. By augmenting the
information which defines a signal, all of the necessary
imperfections of physical hardware devices may be modelled.

10.7 IMPLEMENTATION OF DTL PROGRAMS

The design of DTL has been motivated by the
programmer’s requirements for expressing algorithmic
solutions to problems. The language may be implemented on a
variety of machine architectures. On a single processor,
multiplexing between the individual +translations can be
achieved using a coroutine mechanism. On multiprocessor
architectures, the individual translations would be
distributed amongst the available processors on either a
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one-to—one basis or by again employing a coroutine mechanism
to multiplex a number of translations on each processor. In
this case, streams may be implemented either in a shared
store on closely coupled architectures or by direct
processor to processor communication on loosely coupled
systems. A detailed description of a virtual machine
architecture for supporting DTL programs is given in (7)) The
above implementation possibilities are all special cases of
the virtual machine architecture described.

16.8 SUMMARY

DTL has been designed by analysing the programmer’s
requirements and is based on a data driven approach to
program design. An overview only has been given here. A
full language description is given in (6). The resulting
language allows programs to be expressed as structured
networks of translations which communicate data on fully
synchronised streams. The network structure allows natural
concurrency in the problem to be maintained in the solution,
without the introduction of any unnatural sequencing.
Reasoning about the behaviour of DTL programs is facilitated
by the hierarchical structure, the absence of shared data
and the full synchronisation.

The language has been used for a variety of
applications, only two of which have been illustrated here.
It bas proved suitable for describing conventionally
concurrent systems such as a spooler, less obviously
concurrent algorithms such as sorting, and less obviously
algorithmic objects such as logic networks.

The language may be readily implemented on a variety of
computer architectures. In the case of multiprocessor
architectures, design in DTL results in programs which,
because they maintain all the concurrency inherent in the
problem, execute with enhanced performance. For example, if
sufficient processors are available, the sort program
described in this paper will run in linear time. Thus the
most efficient program from the execution viewpoint is also
the most efficient from the design viewpoint because it
reflects the natural structure of the problem. There is
therefore no need to distort the natural solution in order
to optimise it.
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Chapter 11

Parallel algorithm design
D. J. Evans

11.1 INTRODUCTION

A description of the work on distributed and parallel processing
systems involving parallel algorithms design undertaken in the Depart-
ment of Computer Studies, Loughborough University of Technology, is
given.

The work is based on production minicomputers connected by a shared
memory to achieve certain levels of distributed and parallel processing.
By the use of the manufacturer's software and a number of software
modifications a parallel system can be set up and be made operational in
a matter of months not years. This strategy has resulted in the 2
operational Loughborough M.I.M.D. systems:

1. Dual Interdata 70 system, 1976-79;

2. 4 Texas 990/10 NEPTUNE system, 1979-1984.

These parallel systems have provided a service in the Department and to
other SERC users for the past 5 years in which research into parallel
algorithms have been extensively undertaken.

Parallelism arises at many different levels within a complex
problem which if exposed can be efficiently exploited. By incorporating
software tools in the system to measure the performance we are able to
restructure our algorithms or component parts of them into parallel form
to run more efficiently.

In particular, we have studied the various standard techniques of
achieving parallelism, i.e. vectorization, problem partitioning and
divide and conquer strategies as well as exploiting the use of implicit
parallelism in various numerical and non-numerical algorithms. In
addition, new parallel algorithms have been introduced.

The principles we have learnt from this study have also been
extended to algorithms on other parallel systems, i.e. DAP and CRAY.

11.2 NUMERICAL PARALLEL ALGORITHMS

The main aims of the work have been as follows:
1. To discover and design alternative solution methods which offer
parallelism in one form or another.
2. To study the suitability of each parallel scheme for implementation
on different parallel computer systems.
3. To obtain the performance analysis of the implemented procedures.

The primary feature that distinguishes parallel algorithms and systems
from the more usual uniprocessor situation is that parallelism entails
the use of facilities or resources not present in sequential solutionms,
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i.e. namely:

T

i) multiple processors
ii) data communication

synchronisation to determine the state of related
processors (a special type of communication).

The introduction of these factors into the computation can make
significant changes in the algorithm design.

11.2.1 Algorithm Structure

Algorithms can contain parallelism at different levels which may:

e
2k
3

As
the sum

an example consider Numerical Quadrature:
of several independent function evaluations.

be apparent in the high level problem specification
arise from the method of solution
arise in the details of the solution.

its specification is
Methods of

solution are often based on successively splitting the domain of
integration into smaller domains to each of which the quadrature

specification is applied independently.

Finally, the detailed

examination of the integrand can also reveal independent computations
as well as forms of implicit parallelism.

Generally for the design of effective parallel algorithms one has
to match the resources demanded by an algorithm and the resources

available on a given parallel architecture.

a)

b)

This involves:

The ability to express the solution methods for the problem in
hand in terms of independent (parallel) processes. The nature
of the operations required by each or all of the processes has
to be matched with the processing capabilities of the process-
ing elements within a given system. On the other hand, the
number of available processes and the allocation cost of
processes to processors should be a determining factor on how
far a solution method can be expressed in terms of parallel
processes.

The evaluation of the communication/computational bandwidth
required by the algorithm and that offered by the various
parallel computer systems to determine (and minimise if
possible) the overhead cost associated with the required
communication.

To illustrate the above points consider the following problem of

evaluating the eigenvalue A
(B¢ 71C sneDx
ST e

of a symmetric tridiagonal matrix A

+l), o - - b1= n+1=o’ ) =
E
= b2 5 T
b &, b
R 2\ 2. 3\\
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\\ N\ \\\
N ~
C) \\ \\ bn
Mo Ne
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The solution algorithm involves the repeated evaluation of the
recurrence relation,

o=l =

q; = (ci - Al) - b'/qi-l 5 EER o

N >

12¢ %)

"

(2.1)
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for different values of Al. The number of negative qis, i=il2¢ eveemhl TOF

the above sequences will indicate the number of eigenvalues below the
sample point A,. Repeated application of this procedure will separate
the eigenvalue spectrum into small sub-intervals of size € (pre-defined)
which contain 1 or more eigenvalues, A. In the following section we
shall briefly discuss the possibilities for solving this problem on
alternative parallel systems.

11.2.2 Parallel Methods for the Tridiagonal Eigenvalue Problem

The standard procedure to solve the above problem on sequential
computers involves halving the interval containing all the eigenvalues
and successively choosing one of the two sub-intervals containing eigen-
values. This is in turn bisected into two further sub-intervals and the
process is continued until the eigenvalues are separated to a predefined
accuracy. The method of parallel bisection (Barlow and Evans, [l]) uses
the principle on all the previously determined non-empty sub-intervals.
A major disadvantage with this scheme is that the number of parallel
processes available at the initial stages of the algorithm is limited to
1l at the lst iteration, 2 in the 2nd iteration, 4 in the 3rd iteration
and so on. Therefore, the potential speed up obtainable from this
parallel version is dependent upon the number of non-empty intervals
available at each stage and is bounded by N, the maximum number of
eigenvalues.

However, in the multisection procedure, each subinterval is divided
into m (instead of 2 as in the bisection procedure) subintervals for
each of which the Sturm sequence is evaluated in parallel on each of the
available processors simultaneously. This procedure can be extended
further into a method called parallel multisection (Barlow et al [2]) in
which the above two methods are combined to obtain greater efficiency.
In this method given p processors and m domains then one allocates £=p/m
processors per domain. The speed-up of the resultant method lies
between m and m log, (2+1).

In all of the above methods the recurrence relation is evaluated
sequentially and parallelism is generated through the simultaneous
evaluation of several sequences for different sample points. However,
additional parallelism through the reformulation of the Sturm sequence
itself can be achieved as the following two algorithms will show.

The method of recursive doubling, (Lambiotte, [3]1), for example,
re-defines the Sturm sequence as:

Po

P

Sl P1=°1'Alé
(e, = A)py_y — b, 5, + 172,3,... (252}

which can be expressed in the form,

P, | i p
& = Tl'sj 1, 1«2,3,...m (2.3)
P 1 Jj=1 Po
where, 2
57N >y
s, = 7 (2.4)
J 1 0

It can be easily seen that the sequences pi and qi, i=1,2,...,n are
related through the formula,
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P,

q, = —
Py

{2 .5)

The parallelism in the above procedure is obtained by evaluating the

d
(2*2) matrix multiplication terms -ITSj ¢ 1223 0.0 in the folléwing

manner, A
processor

11 Sl
2 52 X Sl
<) S3 * 52 * Sl
4 S4 » 53 » S152
8 55*84*SS *Sl (2.6)
6 56*85*854*5152
) 57*86*85 *815253
8 S8 . 37 . SSS6 » 51525354
9

It can be seen from (2.3) that all the terms are built up of products of
the S, matrices. The system can be solved in log,(n) sequential stages,
each “stage consisting of between n/2 and n parallel processes each of
which is a multiplication of (2*2) matrices. Thus, stage 1 forms all
products (Sj.sj_l) for j=2,3,...,n, stage 2 combines all the results to
give the products (Sj.S.

3—1) . (sj_ 2
Thus, the parallel evaluation of the Sturm sequence can be
completed in a time

.Sj_3) for j=4,5,...,n and so on.

’l‘r = (l2n/p)log2(n) + 3n/p

using p processors and taking into account the cost of counting the sign
changes in the p; sequence.

Finally, we look at an alternative procedure which reformulates the
process of the evaluation of the recurrence relation in order to generate
further parallelism.

The Block Triangular method due to Chen et al, [ 4] was originally
designed for the solution of banded unit lower triangular systems of
equations with bandwidth m+l where m and the number of available
processors p are assumed to be smaller than the size of the system n.

It is well known that any linear recurrence relation can be
expressed as a banded unit lower triangular system which can then be
decoupled into a number of parallel processes using log,(n) <p<n
processors. In particular, the Sturm sequence (2.2) can be rewritten as
a unit lower triangular system of equations Lp=f with the coefficient

matrix L of bandwidth 3, with elements Ri 3 such that

’

1 , i=j
’Li,j = -Z(Ci—)\l), i=j+1 (25:7)
b* , i=j+2

ki
o] , Otherwise
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The parallel solution envisaged by Chen et al, [4] for the solution
of such linear systems is based on partitioning the cocefficient matrix L
and the r.h.s. vector f into k blocks. The system is solved in three
steps:
i) Premultiplication by a block diagonal matrix made up of the
corresponding inverses of the matrices L., i=1,2,...,k of the
original matrix L produces the following linear system:

E T (o] (€]
s Py il
8 T 0 P, &
G L | = ] (2.8)
2 Biag ] ' ’
N o = ~o 1 '
~ 1
O ST ' fI
L k-1 T [Py A
where
o) Mi-T
Gi = s wikh Hi of order mXm
0 H_[
i
Yy I-“J
and p, = 5 f, = , with z, and v, of
i = 5l [V it b4
i i the size m*m
ii) the solution of a recursive relation defined as,
z. 2R, 5 2 +H,z2, = Vv, » BSl2 irerammRlys (2.9)

p i g -1 . i AL
which is achieved using recursive doubling in log2p steps of
matrix (mxm) multiplication followed by one matrix vector operation.

iii) the independent modification of (k-1) vectors y; as,

yl = ul i yi = ui—Mi—lzi—l 7 20,8l eremerg Ko (21.10)

which can be solved for the yis in parallel.
The method requires a time (including the sign change count) of
Ty = 15n/p + 12 logz(p) . (1251 T)
Since the linear recurrences are of length n/p after decoupling, the
build up of rounding errors in its evaluation is likely to be less than
in the recursive doubling method. Also the possibility of over- or under-
flow occurs in the elements of p; for large n.

Note that both the recursive doubling procedure and the block tri-
angular method can be extended to operate on a multiple of sample points
by a combination with the parallel multisection method. The theoretical
analyses which follow takes account of this possibility in order to
obtain greater efficiency.

In the above we have illustrated how parallelism can be generated
through designing alternative procedures for solving a given system. 1In
the following we describe the criterion which determines which one of the
described solution is optimum on a given system.

11.2.3 Analysis of the Alternative Solution Methods

To be effective, a parallel solution must not only be accurate and
fast relative to the same algorithm run on a uniprocessor but it must also
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be efficient relative to the best sequential algorithm for that problem.
Therefore, there is little use if the sequential starting point is
inefficient or the cost of reformulation of a sequential procedure into a
parallel version is too high. For example, the cost of evaluation of the
Sturm sequence sequentially is 3n floating point operations (flops) where
n is the size of the system. The recursive doubling procedure for
evaluating the same sequence costs 12n flops. Therefore, it can be seen
that the introduction of parallelism within the evaluation of the
recurrence relation has produced a procedure which is immediately more
expensive by a factor of 4. Thus, since the maximum speed up of the
recursive doubling procedure is only log,p the actual speed up compared
with the sequential bisection is log,p/4”if the processors on the
parallel system have equal computing power to that of the sequential
system.

To compare the performance of the above alternative solution methods
we analyse their individual computing times for evaluating a single
eigenvalue as follows:

sequential bisection T = 3n

parallel bisection (N>p) Ty = 3n/p

parallel multisection Tm = 3n/log2 (p+1)
recursive doubling Tr = (lZn/p)logz(n)+3n/p
block triangular method TB = 15n/p + lZlogz(p) .

When trying to locate large numbers of eigenvalues (N>p) the
parallel bisection method is the best solution. However, for a single
eigenvalue then considering the above computational costs it can be seen
that after some judicious reasoning the following conclusions for the
best method can be made, i.e.,

Tr < ’1‘m if p/log2p >3 4log2(n) 5

Thus, for n=1024, for example, the recursive doubling strategy is
better than multisection if the number of processors is greater than 512
which signifies that it is suitable for the DAP but not for the CRAY or
NEPTUNE .

Furthermore, TB<Tm i€ lSn/p+12loc52p<3n/log2 (p+1) which indicates that

P has to be greater than 28 signifying the suitability of the block tri-
angular method for the CRAY and the DAP but not for NEPTUNE.

Finally, Tm<T]3 AL logz(p+1)>n/4 logzn with p=n. For n=1024, this

means that multisection is better than the block triangular method if
p>32,000,000 which indicates that it is unsuitable fox use on the CRAY,
DAP and the NEPTUNE system.

Another important criteria in designing effective parxallel
algorithms is the stability of the proposed solution methods. Unstable
solutions are of little interest to the user and current sequential
algorithms have had their stability properties thoxroughly analysed.
Therefore, any parallel solution that deviates from the calculation of a
sequential sclution must be thoroughly analysed for stability.

It can be easily seen that the computations involved in the parallel
bisection and multisection algorithms follow that of the sequential
bisection method. However, in the recursive doubling and block triangular
methods the computation involves matrix multiplications imstead of
scalar operations as in the previous procedures. Thexe still remains
further work to be done, to verify the stability charactexistics of these
procedures. For example, in the recursive doubling pxocedure to produce
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results of identical accuracy to that obtained by the standard bisection
method all the elements involved in the matrix operations have to be
stored in double precision. This in turn will affect the performance of
the algorithm on systems such as DAP where the performance of the system
as a whole degrades as the word.length increases (e.g. on the DAP, the
timing for the multiplication of two numbers stored as R*4 is 274
useconds whereas for R*¥8 it is 1066 useconds.

11.2.4 Results

Combined multisection and bisection has been successfully
implemented on 2 different types of parallel architectures. These are
the ICL-DAP, an array processor and the CRAY-1S vector processor. The
recursive doubling method has also been implemented on two systems,
whilst the block method is currently being implemented (Barlow et al [6]).

The implementations are fully described by Barlow et al, [2]. The
results are summarised in Tables 2.1 and 2.2.

TABLE 2.1 ICL DAP and CRAY-l timings for locating all the eigenvalues
using combined multi-section and bisection

ICL-DAP CRAY-1
S Time Speedup* Time Speedup***
(secs.) (secs.)
64 0.24 4 0.028 3.8
256 I ES 12 Q.27 5515,
1024 6.66 2.7 3.14 6.2
4096 655 >46** 49.26 6.8

*
speed-up calculated with respect to ICL 2980 (the DAP host)

* %
ICL 2980 version ran out of time
* k%
compared to CRAY sequential solution

TABLE 2.2 ICL-DAP and CRAY-1l timings for locating a small number of
eigenvalues of a matrix of size 1024

ICL-DAP CRAY-1
No .of Multi- Recursive Multi- Recursive
Eigen- sec?ion Doubling sec?ion Doubling
values & bi- & bi-
section section

'y 2.85 secs 1.1 secs 0.034 secs 0.145 secs

4 2 .85 2429 0.0485 0.312

le 2485 6.8 0.0929 1.128

N.B. the coefficient matrix for the above table is the tridiagonal matrix
A defined as 2 if |i—j[=O
a,. =d =51, 1 (E155=ls Ae5=li2as amn

[e] otherwise
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11.3 NON-NUMERICAL PARALLEL ALGORITHMS

This section describes a sorting problem that combines the neigh-
bour sort and the 2-way merge algorithms. This problem has been
implemented on the NEPTUNE MIMD system.

11.3.1 Introduction

One way of solving this problem in parallel is to implement it as
two relevant components consisting of the sorting and the merging
algorithms. Initially, the file of N items is partitioned into M sub-
sets of (N/M) items each. These subsets are partially sorted by the
neighbour sort algorithm which was first introduced by Haberman [6].
This algorithm is of O(NlogzN). The sorted subsets are then merged
using the parallel 2-way merge algorithm to yield the final sorted file.

11.3.2 The Neighbour Sort Algorithm

The neighbour sort when first introduced was implemented on a SIMD
computer when N items are distributed onto N processors in such a way
that there is only one item in each of the processor's memory. When
this algorithm is implemented on the NEPTUNE MIMD system, the file of N
items is partitioned into M subsets of size (N/M) each. Each subset is
sorted independently of the other subsets using the natural 2-way merge
algorithm (Knuth [7}). In other words, each item is compared with its
immediate neighbouring element. In the next stage of the algorithm,
each subset of 2 items is compared with its immediate neighbouring sub-
set to form a subset of 4 items and so on until the subset is sorted.

11.3.3 The Parallel 2-Way Merge Algorithm

The basic principles of the 2-way merge algorithm are given by
Knuth [7]. The parallel implementation of this algorithm is perxformed on
the M sorted subsets of the previous section. By supposing that N is
divisible by M where M is a power of 2, this algorithm can be completed
in log,M steps where the parallelism is introduced within each step and
not amongst the steps as it is shown in Figure 3.1.

Subset/step: 3 P ) | 4 B 6 r 8
1l
0)
8
Fige S5l

11.3.4 The Complexity of the Algorithms

The Neighbour sort algorithm requires the following complexity.
Since the sort is performed by the natural 2-way algorithrm whose average
number of comparisons is given by (2M-1), where M is the subset size
(Knuth [7]), therefore, each subset is sorted in log (N/M) steps. Thus,
in the first step where 3} (N/M) sequential merges are performed (see
Fig. 3.1), each two neighbouring subsets of size one item require at
least one comparison. Hence, in this step % (N/M) total coomparisons are
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required. In the second step, 1/4(N/M) merges are required to sort the
subsets of size 2 elements each which are the results of the first step.
Thus, on average, 3/4(N/M) comparisons are required. This proceeds
until the final step where only one merge is completed to merge two

subsets of size Zlog(N/M)-l each. Hence, the total number of
comparisons for this step are

log (N/M)-1 N 2log (N/M)

2 %2 -1) - 1.
The sum of the comparisons of the log(N/M) steps gives the total
complexity of one subset of size (N/M). Hence, the complexity of the M

subsets is given by

N
Jiogl(=)i=1
1N 3,N ] M N
Cls = M[E(ﬁ +Z(ﬁ) ¥ e +—N (—l;l-) i)
log(ﬁ)
=N[l-%+l-%+ +1-;N-)
2log(ﬁ)
= N(log (—g) ~1) + M comparisons. (3.1)

The M subsets can be sorted in parallel where M parallel paths are
generated with the condition that M3P, where P is the number of
processors. In this case, at most I-M/P-] parallel paths are performed by
each processor where each path requires the same complexity described
above. Therefore, the total complexity of this algorithm in the
parallel implementation is

N N M "
CPs < E(log(ﬁ) -1) + e 1 comparisons. {3=2)

As the speed-up, S o7 ratio is important in most of the parallel
implementations, therefore,

c
5
S, = ==

ps Cps

This means that the speed-up of this algorithm is always linear (i.e.
of O(P)) and does not depend on M.

The complexity of the 2-way merge algorithm that merges the M sub-
sets in log M steps is measured as follows:

In the first step, M/2 paths are generated where each path merges
two neighbouring subsets of size N/M each. This results in(M/2}(2N/M -1)
comparisons. Similarly, in the second step, each two subsets of size
(2N/M) are merged in which case M/4 paths are required, and this yields
(M/4)(4AN/M -1) comparisons. The algorithm proceeds until the final step
in which only M/2109M=1 path is generated to merge two subsets of size
ZlOgM—l M 2logM-l

. This gives zlogM(z . m -l) comparisons as the

= OKRY =

M

complexity of this step.
By summing up the complexities of all the steps we obtain the

total complexity in one processor th. Thus,
M 35
= - — - = - + 5 P
th NlogM 5 s 2a (. zlogM) NlogM M+l 3.5

In the parallel implementation, if M2P, then each processor has to
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carry out one or more paths in the first few steps. Precisely, when
M32'.p, for i=1,2,..., all the co-operating processors are potentially
activated so that no loss in the algorithm's efficiency is achieved. 1In
other words, when the step number i such that iglog(M/P), for i=1,2,...,
all the processors are potentially used. After these log(M/P) steps,
the number of processors is halved in each step until the final step
where only one processor is active while (P-l) processors remain idle.
The number of steps between log(M/P) and the final step are log(P),
where log(M/P)+logP=logM steps represent the total number of steps to
merge the M subsets.

Now, by proceeding as in the sequential case with the addition of
the above-mentioned properties, the total complexity of the 2-way merge
algorithm when run in parallel becomes:

_ M7 2w M] an r w
t = (TT =1) + (= (]T =1)+...+ ———————————; o

M |2P |ap| | ;1og (4/P)
& 2
log (=) M
I [ o 1@,
M 1zl;q (M/P) +l.1>/2| M
51log
T 2°%N (3.4)
| ,logM P | M
: ,logP

Equation (3.4) can be simplified with the use of the rules of the

geometric series. Thus,
N M 2N M M
tPM S 109(3) + 5 (p-1) - 5, 1+ log(;) . (3.5)
1M
Hence, the merge speed-up, SPM’ which equals T becomes of
PM

PlogM

o T

M
logc§)+2P—2)

If we sum the results of equations (3.1) and (3.3) and equations
(3.2) and (3.5), we obtain respectively, the total sequential and
parallel complexities of the neighbour sort with the 2-way merge
algorithm. Thus,

T, = N(log(%)—l) + M + N logM - M+l
= N(logN-1l) + 1 , (3.6)
and,
T, = 5(logG)-1) + T+ + Jlog(p) + 2FN(P—1) - Ei1+log ()
s Dlog-1) + %I‘l(p-l)uog(%nz . QT

Then, the total speed-up, Spt, can be obtained. Thus,

s > N(logN-1)+1 ) (3.8)

131¢] N N 2N M
P(log(—E)—l)+ 7;(P—l)+log¢;)+2
. T . Pl.:_}gNJ R
After simplification sPt becomes O(-~MN . } . From equation
log (|') +dP=2

(3.8), we notice that the total speed-up is mainly dependent upon the
number of processors P and independent of the number of paths M. The
experimental and theoretical values of the speed-up ratios arxe

presented respectively in Tables 1.1 and 1.2, where the data si ze N is
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1024.

TABLE 3.1: The experimental results of the algorithm

No. of No. of Sorting Merging Total
Processors Paths Speed-up Speed-up Speed-up
(P) (M)
4 4 365 K28 2= 5,7
8 8).157 1.60 253
16 Bii5Y7 1585 24105
32 3.54 %010 203
64 3.40 21:22 2.5
SP
The efficiency of the algorithm which is measured as Ep =T is
calculated theoretically as shown in Table 3.2.
TABLE 3.2 The theoretical results of the algorithm
No. of Noi. ©of Total Efficiency
Processors Paths Speed-up (EP)
2 4 1.82 0.91
8 1.82
32 I.82
64 1...82
3 8 2.41 0.80
32 2.41
64 2.41
4 8 2% 07, 0.69
32 2.ilid
64 2.77

We notice that the theoretical and experimental total speed-up are
approximately equivalent. The efficiency decreases as the number of
processors increases and this is due to the reduction in the usage of
the processors in each step of the 2-way merge algorithm.

A performance analysis of this method is predicted together with
its performance measurements when run on the NEPTUNE system (Yousif [8]).
Thus, we measure the static and dynamic losses of the parallel paths
control and the shared data. However, in order to measure the static
losses of the parallel paths control, we have to know the nunber of
accesses made by the program to a path per the total number of
operations performed in the path. Similarly, with the static loss of
the shared data. On the other hand, the dynamic losses of the
parallel paths control are obtained directly from the results of the
NEPTUNE system and we include here the results of 4 processors when run
in parallel. These measurements are the cost of the waiting cycles the
processors have spent because no parallel path is available to be
carried out by that processor. These calculations are listed in Table
3158
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The parallel path access rate in the 2-way merge algorithm is
measured as follows:

Since the number of comparisons is changed in each step of the
algorithm, an average of the complexities is taken to represent the
total complexity per path. Hence, as the algorithm requires M steps,
then the average complexity per path is given by (2N/M -1)1logM. This
means that there is one access to a path per (2N/M -1)logM.

The losses values in Table 3.3 are obtained by using the results of
Table 3.4 that includes the timing results of the parallel path accesses
on the NEPTUNE system.

If we compare the static parallel path losses obtained from the
NEPTUNE system with that of our prediction, we notice that they are in
good agreement.

TABLE 3.3. The performance measurements of the 2-way merge algorithm

No. of Shared data Parallel path Parallel path loss
Paths (M) access rate loss access rate loss static contention
2N
4 2:1 flop 0.2% l:(c;r -1) 0.11% 0.06% 2.6%
logM
flops
8 0.14% 0.11% 2.26%
16 0.22% 0.19% 2%
32 0.36% 0.38% 1.79%
64 0.61% 0.64% 1.58%

However, the contention in Table 3.3 cannot be predicted and can
only be obtained from the results of the 4 processors' performance.
Also, we notice from Table 3.3 that the parallel path losses increase
as the number of paths increases but the contention increases with the
increase of the number of paths.

TABLE 3.4. The resources time on the NEPTUNE system

Resource Time in microseconds
Floating point operation (flop) =700
Integer <200
Local memory access ~0.6
Shared memory access ~0.7(average)
Mutual exclusion mechanism ~400
Mutual exclusion blocked ~200
Parallel path mechanism ~800

Parallel path blocked
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11.4 CONVERSION OF IMPLICIT METHODS TO EXPLICIT FORM

Another technique of achieving parallelism in a numerical algorithm
is by the use of explicit methods.

However these methods are the oldest methods and suffer from poor
stability and convergence characteristics that require unacceptable
computer solution times.

The newer implicit methods are better but often we are not able to
exploit to the full the implicit parallelism in the solution algorithm.

Hence we must find new explicit methods with improved stability and
convergence characteristics.

Consider the simple heat-conduction problem, (Fig.4.l),

Ju 32u
S'E = =5 Oog<xg<1l, t>0 , (4.1)
9x
with initial conditions, u(x,0) = £(x), 0<xsgl,
and boundary conditions, u(0,t) = go(t), O<E<LT,

u(l,t) = gl(t), O<tgT.

1

A
\V

N
L/

[

\ X
N\ e

Fig. 4.1

The simplest explicit method uses a forward difference operatoOr apprax—
imation to 3u/dt and a central difference operatoxr approximation to 3 u

The formula, 2
9 9x
= +(1- + O(At+A )
ui,j+l rui—l,j (1L 2r)ui,j + rui+l’3 ( - | {5.+2)
At
is well known (Fig.4.2) but is unstable for values of r = — = k.
Ax’

Hence, the algorithm is ideal for parallel application since every point
on the grid can be evaluated at the same time. The method requires long
solution times due to the small time step of integration.

J+1

3= it ixd
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An implicit method uses a backward difference operator approx%mation
to 3u/3t and a central difference operator approximation to Bzu/ax .  The
equation,

-x +(l+2r)ui - E " (5.3)

Uio1,5+1 IETS R TS VS B

is also well known and is stable for all values of r (Fig. 4.3). However,
the algorithm requires the solution of a system of 3 term finite
difference equations at every time step in which we are not able to

exploit the parallelism to the full.

@ 1+2x @ 3+l

1=l i i+l

Fig. 4.3

In order to facilitate the solution of these implicit equations,
asymmetric techniques due to Saul'yev [9] have been used, i.e. the
computational molecule Fig. 4.4 representing the equation,

2 At
= HICLE = - + A G 5.4
rui-l,j+l (1 r)ui,j+l (@t r)ui,j +rui+l,j O (At+Ax AX), {( )
is explicit if solved from left * right and the computational molecule
Fig. 4.5 representing the equation,
At

2
(l—r)ui’, + ru .+ O(At+Ax™ - A_x) (4.5)

+(1
Sk i-1,3

=i, j+1

is explicit if solved from right > left.

-1 i i+) i-1 o i+l

Fig. 4.4 Fig. 4.5

These two schemes are often referred to as semi-explicit fo-xmalae.
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11.4.1 A New Group Explicit Method

If we now couple the use of the asymmetric equations (4.4) and (4.5)
at 2 adjacent points, i.e.,

O

A= dl i+l i+2
Fig. 4.6

then they result in a (2X2) set of implicit difference equations.

For the group of two points, i.e. {idx,(j+})At} and {(i+1)Ax, (j+3)At}
in which equations (4.5) and (4.4) are used simultaneously to calculate
the values of u at these points respectively. Therefore, at point
{ifAx, (3+3)At} the solution is approximated by

+ (l4r)u, 2 5

=X 1,441 ui-l,j + (l-r)uij M (4.4a)

Yit1, 441 ’

whilst at point {(i+1)Ax, (j+})At}, the solution is approximated by,

~ru + (L, ® (1-r)u, . (4.5a)

+ 0=
i,9+1 i+1,5+1 i+1,3 Yi42,3

If we now rewrite equations (4.4) and (4.5) in matrix form,
1+rx —jl {ui,j+l ‘} B 1l-r 07! [ui,j .|J . {Iui—l,j}
- | (4.6)
¥ l4x u o} l—rJ ui+l,j Lrui+2,j

i+l,j+1
in which the (2%X2) matrix of coefficients can easily be inverted so that
the equation can be written in explicit form as,

—u. : l+r Y 1-r 0] Wi & o o .
N | =3 g [ 3
_ui+l,j+1 IAI ¥ IstE [¢] l-r ui+l,j rui+2'j
where|A}=l+2r. This simplifies to,

P 2 2
15 L+ (1- A+ (l- . .+ . .

Bi5¢1 | _ 2 R U TG Py gRRCleatg, 0 JFE u1+2,;|‘l bt
2 2, A

- - +
_ui+l,j+l IA| - ui—l,j+r(l r)ui,j+<l ¥ )ui+l,j r(1+r)ui+2’jj

For any ungrouped (single) points near the right and left boundaries
equations (4.4) and (4.5) can be used respectively, i.e. for the right
boundary,

)

ol (4.9)

(5

= —— +
Ym-1,5+1 T (1+r) m, el T T

um—2,j + (1-r) um

and for the left boundary,
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i
ul,j+1 = T (ruo'j+l + ru2,j + (l_r)ullj) . (4.10)

Finally, equation (4.6) can be easily converted to explicit form
resulting in the computational molecule (Fig.4.7).

j+l

s | - S Ex
o

i-1 i+l i+2
representing the equation,
= —]l——[r(l+r)u +(l—r2) +r (l+r)u +r u 1
Yi,9+1 T (1+21m) i-1,3 Yi,5 i+1,37F %i+2,3
(4.11)
and the molecule,
@ "
m T (L +1)
@ 1+2x
i+l i+
Fig. 4.8
representing,
- i [r2 +r(l-x)u +(l—r2)u +
Yisl, 941 T (Te2m) oC V-1, i 44,5
r(l+r)u, ) Fa (4.12)

153 . 3

which when used in the alternating group explicit (AGE) method results in
a stable explicit algorithm which is ideal for parallel application
(Evans & Abdullah, [(10]).

Preliminary results indicate that the new alternat ing group explicit
(AGE) algorithm (4.11) and (4.12) not only possesses swperior stability
characteristics over the standard explicit method but h as immproved speed-
up and efficiency characteristics when programmed for t he g iven problem
(5.1) and run on the Neptune parallel MIMD system. The extension of this
method to time dependent multidimensional problems is g iven in Evans [11].
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11.5 NEW PARALLEL ALGORITHMS

Most algorithms that are found in our textboocks are based on a
sequential way of thinking. This is undoubtedly due to the historical
way of mathematical problem solving in our education and to date, the
utilisation of serial computers. However, with the increasing avail-~
ability of parallel computers, the 'discovery' or development of new
parallel algorithms for many standard or new problems is bound to occur
when parallel thought processes become more established.

Consider the factorisation of the matrix A in the form A=LU which
forms the central theme in many linear algebra applications. The
computation of the elements of L and U reduces to non-linear recurrence
relations which can only be solved sequentially. However, Evans [12]
analyses a different decomposition of the (nxn) matrix A, namely the
Quadrant Interlocking factorisation (Q.I.F.), i.e.,

A =W2Z , (5.1)
where
z 4 ZT bz T
1,1 &1 1 “1,n
oy e e (] )
1
Wn = and Zn = e} , Zn_2 ; o] 7 28, (512)
“?n,l: “n ' "n,m

This decomposition leads in a natural manner to algorithms where the
coefficients of the W and Z 'butterfly' matrices are obtained as (2X2)
systems of linear equations which can be solved in parallel.
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Chapter 12

Design study for active memory arrays
J. K. lliffe

12.1 DESIGN AIMS

The work described here is intended to offer an
attractive range of options in the design of high-performance,
high-integrity machines. It is meant to be general-purpose,
but the most promising application areas are in support of
portable operating systems and languages, high precision
software engineering, and problems that can be expressed
effectively in SIMD terms.

At first sight the connection with Distributed Systems
is tenuous. On closer inspection it will be seen that
distribution of function in a generalised sense is proposed
only as a last resort, though sufficient control is retained
to facilitate such a development. If the object of computer
engineering is to take data from the users' files, to trans-
form them, and then to return them for later use or display,
movement from file to arithmetic unit and back again is the
primary goal and memory bandwidth remains the primary limita-
tion on performance. Having sufficient bandwidth to shuffle
the data from side to side in search of processing power is
a freak situation encouraged by the introduction of low-cost,
low-performance cpu's into the designer's toolkit.

Leaving aside the practical need to handle geographically
dispersed files, and assuming that the problem data is in
the same box, more or less, as the processor, the problem
arises of how to deal with it effectively. If '"the problem"
is in fact a workload of separate jobs the option of routing
them to separate computers is available and is taken on many
commercial systems. As the amount of interaction within the
workstream increases a solution based on simple partitioning
becomes unattractive, and the designer looks to the program
memcry as the principal weapon in attempting to configure
the system to match the workload. Increasing theoretical
bandwidth is relatively easy: the aim is to minimise demand.
Once that is done the option of increasing throughput by
parallelism is still available. The converse approach,
hoping that massive parallelism will overcome inefficiencies
of the underlying engines or their interconnections, appeals
mainly to semiconductor manufacturers.
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The traditional roles of raindom access memory are:

(a) to extend the function set of the processor by means of
stored program; (b) to retain control, structural, and
numeric data pertinent to a set of partially executed tasks;
(c) to provide the buffer space necessitated by attachment of
asynchronous external devices.

In modern systems the development of these roles exerts
conflicting demands on memory subsystem design. For example,
(c) is eminently suited to distributed, modular design with
"message'" interconnection, (a) is better suited to shared
memory, and (b) hovers between the two extremes. Faced with
such variability, the appropriate design strategy is to
evolve an engineering model in which all three roles are
recognised. Ideally, commitment to one or other mode of
operation should be dynamic; at worst it should be deferred
until the system is configured.

It has to be admitted that in practice the problem is
more often reconfigured to fit the system than vice versa,
as illustrated by "array processing" and "reduction'" engines.,
Yet it is frequently overlooked that even in apparently
highly specialised machines a substantial part of the work-
load still requires conventional processing capability: the
ICL DAP is backed up by a scalar controller and the ICL 2980
mainframe, the Manchester dataflow computer is supported by
a VAX 11/780, and so on. The guestion arises as to whether
one can capture the essential elements of the '"novel"
architectures within the framework of conventional design.
If so, an attractive range of options can be developed by
varying the emphasis on one type of function or another
without changing the architectural specification.

In the case of array processing that objective has been
achieved by the Active Memory Array concept to be described
here. The user sees a machine with built-in parallel
function in the style of the DAP. The engineer can vary the
extent to which hardware is committed to support it.
Examples will be given of the type of measurement that can
be made to guide such decisions.

The Fifth Generation architects, however, have
apparently rejected the idea of grafting logic programming
onto von Neumann architecture. It is difficult to come to
grips with specific requirements because in this field there
is as yet no causal chain leading from social demand to the
"solutions" which are being offered - one that can compara-
tively easily be supplied, for example, in passing from
energy-saving aerofoil design to CRAY 1. It woul d be mis-
leading to read too much into current efforts in dataflow or
applicative architecture, or even into single-ass ignment
languages and first-order predicate calculus. The "Klips"
rate seems an even more dubious parameter than Mi ps, at least
until substantial applications have passed the sampling stage.
However, it might be suggested that the computati onal models
that have come into vogue in recent years can be underpinned
by quite mundane functions, namely the ability to: (a) scan
lists rapidly, evaluating elementary logical and arithmetic
functions of their elements; (b) create and destr-oy lists
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freely without incurring heavy penalties in accessing their
elements or in collecting garbage; and (c) localise calcula-
tions to the extent that they can safely be executed in
parallel. 1If that is anywhere near the mark it is surely
unnecessary to throw away the von Neumann baby with the
bathwater.

The Active Memory Array (AMA) is allied to an
engineering model referred to in Iliffe (1) as the Pointer-
Number Machine. In the PN machine program structure is
recognised at hardware level to an extent that appears to
satisfy (a) - (c): not merely in microprogram but at logic
gate level. That is to say, (a) and (b) are supported by
the parallel function of the memory, and (c) by strict
control of task environments. The result can be visualised
(Fig 1) as a main memory with an N-word data path, to
which a number of vector registers are interfaced. These
registers serve as instruction and data buffers for the
(scalar) PN processor; they and the processor can be
replicated to achieve higher performance until the memory
bus reaches saturation. In addition, the vector registers
can be presented in parallel to a planar arithmetic-~logic
and routing network. Placing the parallel component as a
shared resource reflects a preliminary feeling for its
importance. The relation of this model to others is outlined
in Section 12.2.

It was intended ((1), Chapter 13), that part of the
vector registers would act as look-ahead cache memory, but
the design complexity, and uncertainty as to performance
benefit, have delayed progress towards that goal. In the
present model the "vector register" is simply the set of
working registers addressed in the user's program. This has
some interesting consequences in program design which are
explained in Section 12.3. The main parameters affecting
performance are I¢, the PN machine instruction cycle time;
Mc, the memory cycle time; K, the proportion of PN
instructions making reference to memory or to the planar ALU;
and N, the width in words of the memory data path. In
Section 12.4 it will be shown how they affect overall
performance.

12.2 RELATED WORK

The novelty of the PN Machine lies in a synthesis of
several established techniques which seem at first sight to
be in conflict: for example '"high integrity" is often
associated with performance or cost penalty, and "array
processing'" with inflexible control or data structures. It
will be shown in the next Section how harmony is restored.
The underlying techniques are discussed at length in (1),
and summarised briefly here.



190 Active memory arrays

PLANAR ALU
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Fig.12.1 Active Memory Array with a single
PN Machine.

12.2.1 High integrity design

The aims of high integrity design are to improve system
reliability and to reduce software development and mainten-
ance costs. The basic mechanism invoked is a stored element
distinct from instructions and data which serves as a
pathway to a precisely limited region of program space.

This is the "Pointer" component of the PN machine. An array
of pointers, possibly mixed with numeric values, delimits
the program space that can be accessed by a task at any
instant. In the PN machine pointers include capabilities,
i.e. identifiers of abstract objects, and physical addresses
of data sequences.

Any access control mechanism has to satisfy certain
constraints to be acceptable, namely, it must be (a) fool-
proof, (b) cheap and fast, (c) flexible, and (d) easy to use.
Taking all these constraints into account, a tagged memory
and register structure comes closest to meeting requirements.
The interpretation of (b) has always been relative to current
technology. The earliest machines of this type were
constructed using microcoding techniques and compared
favourably with their contemporaries. 1In a sense, however,
they were fortunate in having such a large umbrel la under
which to shelter. The introduction of writ able czontrol
memories in the early 1970's started a line of reesearch
(now seen in the RISC philosophy, Patterson and Seaquin (2))
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which shifted interest from high level architecture to
microsystems. Here the range of options qualifying as cheap
and fast is very much reduced.

It will be recalled that access control incurs two
sorts of "overhead": that of ensuring that program space is
only accessed via the list of current environmmental pointers,
and that of managing change in the list itself. Indirect
addressing of memory via segment tables or resource lists
is impractical, which is the reason for placing physical
addresses in pointers and mapping the access list into
program registers. The points at which the access list
changes - typically on procedure calls or at the interface
between major software subsystems - require a wholesale
adjustment of register contents to reflect the change of
environment. In the PN machine this is accomplished very
economically with the help of the N-word data path of the
memory array.

12.2.2 Microcoding

Achieving controlled memory access within the micro-
machine cycle proved to be difficult, but finally removed
the major obstacle to the provision of flexible micro-
systems. The advantages of using language-oriented
instruction sets have been demonstrated with varying degrees
of conviction. Apart from that there is a growing body of
system and application software which is easily transported
across machines which can offer an efficient means of
imitating a common target lunguage. Experience of such
systems seems to suggest that the most effective design
strategy is to provide the chozce of targetting onto micro-
code, to DEL code, to a fixed instruction set, or to a
mixture of all three. Regarding the PN machine instructions
as a form of vertical microcode, the above objective has
been achieved in the present design. The instruction buffer
(Fig.12.1) acts as a microinstruction cache: it will be
shown later how it is exploited in the design of inter-
pretive code.

12.2.3 Parallel arithmetic

The principle of the ICL Distributed Array Processor
and similar machines has been to avoid the memory bottle-
neck by placing arithmetic circuits in, or adjacent to,
memory itself. The distinctive feature of the DAP is its
substitution for a memory module in the mainframe processor
in order to serve as a 'passive" memory and to escape the
overhead of loading and unloading an "attached" device. The
functions of the DAP controller enable it to execute
parallel algorithms independently of the main cpu but to
act as a ''slave" to a task in the mainframe: it is not
possible, for example, to call a (scalar) Fortran sub-
routine from within a (parallel) DAP-Fortran subroutine.
Although the DAP has been more successful than most array
processors in presenting a usable interface to programmers
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the rigidity of control and storage structures has been a
severe limitation on its applicability.

In AMA design the need for a host is dispensed with
completely. The PN machine acts as a controller and carries
out all operating system functions including command stream
interpretation and compilation. Parallel operations can be
freely mixed with scalar, and parallel tasks can be freely
scheduled in the interactive workload. 1In system programming
the rigid restriction to an N-word memory plane cannot be
avoided, but in application programming generalised array
dimensions are supported.

It remains to be seen what level of parallel function
can be economically justified, and how practical it is to
share parallelism between PN machines. A possible com-
promise might be to provide non-shared routing and elementary
logic, and a shared array of N floating point devices. The
present design study is intended to shed some light on such
issues.

12.3 PN SYSTEM

The PN machine is designed to support at hardware level
the ideas of (a) abstraction, (b) memory management,
(¢) array manipulation, and (d) interpretation of language-
oriented target codes as an alternative to compilation. It
follows that a unique combination of features has to find
expression in the defining language, while keeping close to
convention in other respects. The system language is called
"P", By using P in practical applications it is possible
to derive quantitive measures of the support required from
system functions and hardware, and to make realistic
performance estimates.

The following subsections dwell on unusual features of
P. For definiteness the description is centred on an
implementation using 16-bit words, 32-bit long words, and
36-bit registers. The encoding of P reserves 8 registers
for system use, leaving 8 for the application code. A
memory plane contains N long words, N registexrs, or 2N
instructions, where typically N=8. The memory depth is
64K planes. Only a single PN machine and single AMA are
considered. Input and output devices are addressed as
"external memory" of the system: they may be viewed either
as individual status or data words, or as mor-e substantial
stores such as TV frame or disk buffers. 1In that way one of
the major functions of the memory is detached from program
space and associated with the appropriate I-O dewvices.

12.3.1 Abstraction

Tag coding distinguishes numbers from pointers, and
further subdivides the latter into capabiliti es, addresses,
and control pointers. Interpretation of tags is by hardware
to ensure integrity of data. Interpretation of capabilities
is by program. A user can request a capabili ty For a new
class of objects, receiving a capability-forring—capability
(CFC) in return; a capability for a particulaarobject within
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a class is formed by presenting the CFC together with object
identification to the system. Misuse is prevented by
restricting the circulation of CFC's, which is the responsi-
bility of the users. Forgery is prevented by restricting the
use of the tagsetting instruction, which is a privilege of
the system.

Capabilities can persist from system start-up until
switch-off. Lo ng-term storage in files is not supported.
Deletion of objects, including entire classes, is assisted
by system functions but generally requires cooperation of
the capability class manager to permit early deletion of
the representation.

As noted earlier, a set of tagged elements, which might
include capabilities, serves to define the execution
environment of a task. Certain capabilities are reserved
for system use to represent files, storage segments, abstract
data types (the CFC's mentioned above), error conditions,
etc. A second set of tagged elements known as the base
represents the aquthorisation environment. A task is
executed with reference to a base. A control module is
authorised to access only certain named elements of the base,
which are declared in the source text. Association of these
names with base elements is dynamic, enabling binding to be
deferred until execution. It is this mechanism which ensures
safe expansion of the execution environment in moving from
one control module to another: a program simply requests
access to the base element by name, and places the address
that is returned in the execution environment. The
assocliative search is carried out by parallel functions.

A stack is associated with each task, organised as a
sequence of memory planes. Under program control any subset
of the eight user registers or eight system registers can be
pushed into memory or, conversely, popped in one memory
cycle. A function is provided to "clear' selected registers
to the Null value in parallel. A procedure call effectively
seals the stack and prevents the called program from
unwinding it to get at protected data. In that way the user
is given precise control over which elements of the execution
environment are passed back and forth between procedures. It
can thus be seen that the user benefits from the presence of
the AMA even though not explicitly making use of parallel
function.

12.3.2 Memory management

Addresses are distinguished by tag as referring to word,
plane, or mixed (tagged) sequences. The maximum length of
any type of sequence is 4096 elements. The tag further
assigns read-write or read-only permission.

Sequences of appropriate tag and length are supplied on
demand by the system store manager. A sequence is assigned
to a task, is unshared, and is recovered by the system when
no addresses refer to it, unless it is absiracted, i.e.
assigned to the class of objects consisting of storage
segments. As with other abstract objects a capability is
then created and may be used as the means of controlling
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shared access to the segment it identifies. Typically, the
segment capability is placed in the base at position p and
access is requested by authorised users:
x = Access(p,m)
seeks access to segment p, mode m, (update, read-only, etc),
and places the result (an address or failure code) in x. On
completion,
Release(p)

relinquishes use by the current task. Any dangling refer-
ences (such as x) are annulled by scanning the tagged space
of the current task: it is possible to control the propaga-
tion of addresses across task boundaries.

One of the more difficult problems caused by using
physical addresses in pointers is that of detachment,
i.e. of moving the sequence of elements to which a pointer
refers out of memory, perhaps to secondary storage. The
action of scanning tagged space replacing addresses by
suitable markers is not materially helped by parallel
operation. It is, however, a good candidate for "microcoding"
and that is how it is programmed on the PN machine. It
remains to be seen how much machine time it absorbs.

12.3.3 Array manipulation

The data values of parallel arithmetic can conveniently
be represented by plane sequences. They can be created
dynamically with the help of the system store manager. In
vertical mode k planes represent 32N numbers of k-bit
precision. In horizontal mode the same k planes would
represent a vector of kN single-precision (32 bit) numbers.

There are three types of array function in the system
language, of which the first two are strongly dependent on
array geometry: (a) broadcast operations involving trans-
mission of scalar values to or from store planes; (b) planar
routing, which is essentially a two-dimensional shift
function; and (c) element-by-element arithmetic and logic.
As all higher level functions are built out of these element-
ary steps it is important to be able to string them together
easily, which is achieved in P with the full power of
protection, abstraction and other system facilities.

In moving away from geometric limitations it is not
difficult to generalise the instruction set and even to
arrange that algorithms written and tested on the "real"
array should run on interpreted '"virtual" arrays. Such an
approach is likely to lead to quite significamnt performance
loss, as can be seen by examining the data mowvement involved
in copying one array to another via a (virtual) planar ALU.

The method favoured in the PN system is to develop a
library of functions to replace (a) and (b), which can be
optimally coded for the real array in the system language.
Work on the DAP by Flanders (3) and others giwves a strong
indication of the type of function that is required.
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12.3.4 Instruction sequencing

Use of the planar instruction buffer alleviates one of
the main drawbacks of RISC design, namely the difficulty of
presenting instructions at the rate required by the ALU.
Fig.12.2 illustrates the effect of varying N on the demand
for I-plane fetches. It is known, of course, that for

100«
I-plane 75
fetches »
per 100
instru- 50
ctions ",
25 \'
~.~\\'
S—
0
1 2 4 8 16

Memory bus width N words

Fig.12.2 I-plane 'miss' rate.

sufficiently large N very high hit rates can be achieved,

but here again the logical complexity of large cache
memories adds to the difficulty of matching the micromachine
instruction rate. A proportion of misses can be covered by
conventional pre-fetch techniques; the unavoidable ones are
out-of-plane branches, but the margin they leave for improve-
ment is small.

The I-plane structure encourages a view of sequencing in
terms of "superinstructions" of 2N words. Immediate benefit
is gained by allowing P programmers to align code on plane
boundaries in order to guarantee uninterrupted execution of
short loops. It is also possible to "execute" plane without
changing the program counter. For example, interrupts are
dealt with not by a vectored branch but by loading the super-
instruction of the highest priority interrupt into the
I-plane. 1In effect, the function set of the machine is
extended without suffering the overhead of procedure call
and return.

A possible application, which has yet to be demonstrated,
is in writing interpretive code using multiway branches to
I-planes. It will result in a strange hybrid, using the host
sequencer and using '"'soft" function interpretation only when
necessary. It does appear, however, to avoid the most costly
burden of interpreters, which is payment of sequencing and
decoding overhead for even the most trivial operation.
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12.4 PERFORMANCE

The AMA-PN-machine combination has been simulated for
some years, first on a PDP-11 host but currently on a stand-
alone MC68000 system. In order to accommodate substantial
applications work is in hand on a hardware-assisted version
centred on the AM29116 micromachine (Fig.12.3). This is
referred to as "microPN". 1t does not contain the planar
registers or ALU, so all parallel functions are serialised,
which represents a performance loss of about 3N:1 memory
cycles on planar operations, and s:1 on stack operations,
where s is the average number of registers stacked at a time.
Program registers are stored partly in the AM29116 and partly
in external static RAM. Long operands have to be folded into
the 16-bit ALU of the micromachine. Nevertheless, microPN
will execute machine functions at about 2.5 Mips compared
with 30 Kips on the Mc68000.

INTERRUPT
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: 1 !
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CONTROL SIGNALS

Fig.12.3 MicroPN machine schematic diagram

Crude performance characteristics can e inFferred from
the data paths of the machine. The most important feature
of the design is its ability to switch from one mode of
use to another with minimal overhead, for example in moving
from serial to parallel operation, from natdive code to DEL
instructions, from sequential to deductive mode ©f control,
from one protection domain to another, or simply from one
task to another. Any of these changes can e cormpleted in a
half-dozen microinstructions, where it is not unXknown for
one to take several hundred. Such gross di fferemices are
difficult to observe in practice because de signexs can see
them a mile off and attempt to steer round them, e.g. by
inventing distributed systems.
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Measurements of activity are made by the interpreter. These
are incomplete, but show interesting variations in moving
from one mode of use to another. Table 12.1 gives results
obtained from three different programs: the first is a simple
edit-compile-execute session; the second involves data input,
permutation, parallel arithmetic, and output; and the third
models an intensive parallel algorithm which smooths an image
by averaging over sets of four near-neighbour points.

I-plane fetches are assumed to be non-overlapped. Stack
operations are assumed to be serialised and would be reduced
by the factor "s" mentioned above in parallel implementation.

TABLE 1. Measurement of PN machine activity

Problem
PN Machine Operations Edit/compile/go Array Grid
Instructions obeyed 100 100 100
I-plane fetch (N=8) 19.4 14.8 10.4
Non-memory instructions 64.3 74.9 62.8
Memory operations: 35 7 25.1 37 .2
Scalar Read-Write: il 9 M 1.2
GOTO 3.8 149 0-3
Stack (serial) 20. 0 12,2 )12
PE operation .01 %3 32,5
PE routing distance: 0 4.1 20.2
Total memory activity (K) 551 39.9 47.6

GOTO indicates a change of control module, which involves
reference to a segment table in memory. PE routing distance
is the total shift of the planar accumulator, North, South,
East and VWest.

Performance estimates are normalised with respect to
machine clock cycles. In microPN non-memory instructions
require I=2.5, and memory references give Mc=4 (the machine
clock is 100nsec). In current PN design I¢=1.5 and Mc=5 or 3,
depending on the speed of memory element used (the machine
cycle is assumed to be 60 nsec). Table 12.2 shows the result
of evaluating

C = I¢c * (no of non-memory instructions)
+ Mc * K
+ PE routing distance

which assumes that planar shifts take one machine cycle per
step.
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TABLE 2. Estimation of PN machine performance

Total machine cycles(¢) per 100 instructions

(N=8) Edit/compile/go Array Grid
I1,=2.5, M.=4 381 351 368
I.=1.5, M.=5 371 316 352
I.=1.5, M.=3 262 236 257
Ic=2.5, M,=4, serial 382 1227 4433

The last row of Table 12.2 shows the result (in microPN) of
dispensing with the parallel ALU and planar registers.
Current work is aimed at improving the accuracy of the
simulation relative to possible implementations and widening
the range of workloads to which the system can be applied.
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Chapter 13

Hardware and software for parallel
update of raster graphics images

. Page

13.1  INTRODUCTION

The user interfaces of complex information processing systems such as
those for computer-aided design, computer-based training and automated
office systems are rightly receiving an increasing amount of attention
from computer scientists. However, many of the new techniques being
employed in user interfaces, such as dynamic windows, pop-up menus,
dragging and animation require a large amount of computational power to
support them properly. In the type of highly interactive information
systems mentioned above, this computational power is often provided by a
powerful, single-user, graphics-based workstation which also has to run
the application programs. Also, the software structures needed to run
such a user interface will often become extremely complex in an attempt
to cater for the entirely reasonable desire of the user to apply any
operation that he knows about, in any context that he happens to be in.

Considerable simplifications in the construction of such powerful user
interfaces can be obtained by using a display list as an interface
between the applications programs and the screen image. The display list
is a high-level data structure stored in the address space of the host
computer which represents the screen image in terms of windows, groups
of windows, strings of text, bitmap pictures etc. The separate (often
concurrent) applications programs can then interact with the data
structure very easily. Moving a window, for example, becomes a simple
matter of changing the x & y co-ordinates of the window in the display
list and changing the =z-order of the windows might only involve re-
ordering a window list.

This approach considerably simplifies the task of constructing complex
interactive systems but it also increases still further the amount of
processing power needed to support the screen image. We would now need
to continuously refresh the screen image from the data structure at a
rate of up to 25 times per second and this clearly needs special-purpose
hardware support.

A short investigation showed that virtually all of the computation
time is spent in a software procedure often known as 'RasterOp' (Newman
(1)). This operates on rectangular sub-areas of bitmaps and can move
and combine such bitmaps under various Boolean operations. Despite the
fact that it 1is conceptually very simple, RasterOp is an extra-
ordinarily powerful procedure and can even perform many operations which
are not intuitively obvious (such as rotating bitmap pictures and doing
fast scalar arithmetic!. Guibas (5), Goldberg (7)). We decided to
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support this procedure and also the display 1list interpretation with
special purpose hardware. The hardware system that has resulted from
this we fondly know as 'DisArray' (short for Display Array).

DisArray uses a two-dimensional interconnected array of very simple
computational elements each one paired with its own local memory. The
DisArray hardware has the ability to manipulate two-dimensional areas of
a bitmap (up to 16 x 16 bits square) in a single memory/processor cycle.
DisArray can use this ability to form new screen images in a very short
time by rapidly assembling the components of the picture (individual
characters, line segments, half-tone shaded areas, whole windows etec.)
into a screen-sized bitmap which can then be displayed on a conventional
C.R.T. monitor.

This approach has the advantages of high speed since the memory and
computational elements are very closely coupled, and of high throughput
because of the high degree of parallelism and the two-~dimensional
interconnections within the array.

13.2 A QUICK INTRODUCTION TO RASTEROP

As noted above RasterOp operates on rectangular arrays of Pixels
(Picture Elements). An over-simplified Pascal version of the RasterUp
algorithm is shown below. This version ignores the problems caused by
having overlapping source and destination rectangles and assumes that
pixels are only ever Black or White (false or true). The data type
'raster' is not defined, but is essentially a two-dimensional array of
Boolean variables corresponding to a picture. The rasters are only
manipulated through the access functions 'GetPixel' and *SetPixel' which
are not defined here but have the obvious meanings. The ‘operation'
parameter has the following effect on the destination rectangle :

all black
all white

Black : Dest :
White : Dest :

Copy . Dest := same as source rectangle

Invert : Dest := logical inverse of source rectangle

ROr : Dest := logical OR of source and destination rectangles
RXor : Dest := logical EXOR of source and destinationn rectangles

procedure RasterOp (operation : integer;
var Dest : raster; xd, yd, width, height : i nteger;
var Source : raster; xs, ys : integer);
const White = false; Black = true;
var x, y : integer;
begin
for y:=1 to height do
for x:=1 to width do
case operation of
Black : SetPixel (Dest, x, y, Black);
White : SetPixel (Dest, x, y, White);
Copy : SetPixel (Dest, x, y, GetPixel (S ouwrce, x, y));
Invert : SetPixel (Dest, x, y, Not GetPixe 1 (Source, x, y));
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ROr : SetPixel (Dest, x, y,
GetPixel (Source, x, y) Or GetPixel (Dest, x, y));
RXOR : SetPixel (Dest, x, y,
GetPixel (Source, x, y) <> GetPixel (Dest, x, y));
end
end;

This would be a hopelessly inefficient implementation of RasterOp, but
it does effectively show the nature of the algorithm and more
sophisticated versions of it still retain these same essential features.
Also, this version has only some of the ‘'operations' that a real
implementation might offer. Further details of the algorithm can be

.cund in Newman (1).

13.3 DISPLAY LIST APPROACH

The display list is an abstraction of the image to be presented on the
screen to the wuser. It acts as an interface between the application
programs and the refresh process which has to construct a screen image.
The design of the display list is therefore a crucial issue, since it is
at the heart of all the display operations and these need to be
performed quickly. Also its structure needs to be appropriate both for
the different applications programs and for the display manager. This
always means that trade-offs have to be made since the requirements of
applications programs and the refresh process are significantly
different from each other.

A simple example of a display 1list in which the major structural
elements correspond to ‘'windows' (or ‘pages' or 'pieces of paper') on
the screen is shown in Fig. 13.1. The whole structure is a 1list of
window descriptors which each store the attributes and the contents of
one window. The order of the windows in the display list is the same as
the z-ordering of the windows when shown on the screen. Thus the screen
image can be generated using the painter's algorithm (ie. back-to-front
fill) by traversing the 1list from beginning to end, filling in the
contributions to the screen from each window in turn. Fig. 13.2 shows
the screen image which corresponds to the display list in Fig. 13.1.

In this simple example, the windows contain only text and so the data
structure for each window includes a list of text strings which comprise
the text to be put in the window. An application program operating on
one of the windows can now be given a pointer to 'its' window descriptor
and can move it on the screen by changing the x, y offset values in the
descriptor. It can similarly change the background colour of the window
or its size or the fount of the text by altering the descriptor
appropriately. The text in the window can be scrolled by simply cyeling
the pointers in the array of text string pointers.

The display processor needs to continuously scan this display list and
generate a screen image from it. It can be appreciated that this process
involves little more than scanning the display 1list in order, performing
some simple clipping operations (to window and screen boundaries) and
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then performing the RasterOp operation on whole windows (to clear them
to their backgound colour) and then to use RasterOp again for each of
the characters in the text strings to copy the bitmap images of the
characters from a fount table into the window area. Thus we need a
relatively fast machine to traverse the display list and a super-fast
machine to implement the RasterOp commands generated from the display
list interpretation.

As a historical note, around 1977 at QMC we built a hardware system
known as the QMC Text Terminal which used exactly this style of display
list and generated 50 completely new frames per second using a purpose-
designed bit-slice processor (Page (8)). It produced a fully-animated,
colour display of a desk-top with 'pieces of paper' but was restricted
to showing only textual and block graphics information. A large part of
the motivation for the DisArray project stemmed from the success of the
Text Terminal experiment and our desire to have a system which would
perform similarly with multi-founted text and more complex graphical
images.

13.4 DISARRAY, RASTEROP AND LINE DRAWING

13.4.1 RasterOp

Despite its simplicity, RasterOp is an extraordinarily powerful
primitive and, when it 1is well-supported in the hardware in such
machines as the Alto (Thacker (2)}) and the Perq (Three Rivers (3)), it
gives those machines a very good interactive graphics capability.
However, we wish to improve significantly on that performance by
employing parallelism in the hardware. We would also like to find a
form of parallelism which can offer even greater throughput by simply
increasing the amount of parallelism in the hardware.

In its simplest form on a conventional machine, the inner loop of
RasterOp would take a word-aligned word from store (part of the source)
and move it to a bit-aligned word in store (part of the destination).
This bit-aligned word will usually fall across the boundary of two store
words and thus require two read/modify/write cycles to update it. This
effect slows down the algorithm but it can be ameliorated by pipelining
the data over a number of such inner loop cycles.

To improve their graphics speed, machines such as the Perq have a
micro-programmed RasterOp. Also, they make special arrangements to
increase memory bandwidth (by employing wide data highways), and have a
barrel shifter to do the alignment to bit boundaries. This is probably
about the limit of support that a conventional processor can offer to
RasterOp, but there are (always!) good reasons for wanting to increase
its speed s8till further. It should also be noted that such a
conventional machine would always be very much better at doing short,
fat RasterOps than tall, thin ones. Such an implementation will perform
most poorly (in terms of pixels/second updated) when drawing a pixel-
wide vertical line. In this case only one bit is being usefully updated



204 Parallel update of Raster graphic images

on each memory cycle. Paradoxically, in this particular case, this
bandwidth degradation only gets worse as the machine data paths are made
wider in an attempt to improve the general throughput of RasterOp.

In fact, in the graphics world, there is no reason why RasterOp
rectangles should be of any particular shape and the theoretically most
efficient shape for the basic word is thus a square, which 1is equally
optimised for both worst cases of the tall, thin and the short, fat
rectangle.

DisArray uses such a square word, known as a plane, to support
RasterOp. The analagous inner loop of a DisArray RasterOp, takes a
(plane-aligned) plane from memory and moves it to a bit~aligned plane,
which will usually fall across four actual memory planes. A series of
diagrams (Fig. 13.3) shows a sequence of DisArray operations to perform
a single step of the inner loop of a RasterOp operation.

13.4.2 Line Drawing

A first sight it might appear that the DisArray style of processor
offers 1little to a line drawing algorithm, such as the ubiquitous DDA
(Newman (1)). However, such is the power of RasterOp that it can be used
to great effect in a DDA style algorithm which plots more than one point
at a time.

The basic idea is to pre-compute a set of short line ‘'strokes' at
various angles and to keep these in a table. Whenever an arbitrary line
is to be drawn, it can be formed by choosing the apprpriate stroke(s)
from the table and using RasterOp to place them appropriately in the
image. In our software, the strokes are pre-computed into DisArray
planes and a procedure identical to the inner loop of RasterOp places
these strokes into the image being constructed. Thus 16 points along a
straight 1line can be plotted in parallel in exactly the same time as a
RasterOp cycle. Further details on this approach can be found in Gupta
(9).

13.5 A SIMPLE EXAMPLE

In the example shown in Fig. 13.3, the letter 'A' is to be copied from
its current position in a fount-table to a position within the portion
of DisArray memory which is (currently) being refreshed onto the screen.
The user would thus see the word 'DISARRAY' being commpleted on the
screen (Fig. 13.3a). DisArray has a 16 x 16 register, known as the Q-
Register. Fig. 13.3b shows the contents of the Q-Register after a
single memory cycle which loads the 1letter 'A' from the appropriate
source plane. During this same cycle, the Row and Column mmasks shown in
fig 1b are ANDed bit-wise in each processor to obtain a 16 x 16 bit
mask. This mask defines the 1limit of validity of the source region
within this source plane. A single 'read' operation will r<ead the source
plane from memory, AND it with the 16 x 16 mask and then store the
result in the Q-register.
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Using the nearest-neighbour connections between the processors, the
Q-Register 1is shifted by appropriate amounts, first in the east-west
direction (Fig. 13.3¢) and then in the north-south direction (Fig.
13.3d). Fig. 13.3d also shows the state of the Row and Column masks
which will be needed for the subsequent operations. These operations are
on the four separate 'quadrants' of the letter 'A' which lie in the four
corners of the Q-Register. Notice that the logical AND of these two
masks selects the bottom left-hand corner of the 'A' (now in the top
right-hand corner of the Q-Register). The other quadrants are selected
by appropriately inverting the row and/or column masks.

Fig. 13.3e shows the state of the four destination planes after a
single read/modify/write cycle involving the lower left of these four
planes. The shifting performed above has resulted in the bottom left-
hand corner of the 'A' being correctly aligned with the top right-hand
corner of the destination plane where it eventually needs to go. A
single DisArray cycle reads the previous state of the destination plane
and writes it back unchanged, except in the area designated by the
quadrant mask, where the contents of the destination plane are replaced
by the logical OR (in this case) of the corresponding part of the Q-
Register (the source) and the previous contents of the destination

plane.

Fig. 13.3f shows the state of the destination planes after a further
three read/modify/write steps and the desired operation has been
completed. We call this sequence of steps a 'RasterOp Cycle'. With
slight variations to cater for edge effects, this RasterOp cycle can be
repeated many times to deal with source rectangles which consist of many
planes and the example presented is indeed representative of the inner
loop of a generalised RasterOp.

13.6 THE ARRAY PROCESSOR

13.6.1 Overview

The DisArray hardware has an array of 16 x 16 Processing Elements,
which are each simple 1-bit processors, each having a 16K x 1-bit local
store. The array as a whole therefore deals with 256-bit square words,
known as planes. All Processing Elements execute the same instruction
simultaneously on their local data, making it an S.I.M.D. (Single
Instruction stream, Multiple Data stream) machine. The Processing
Elements each have connections to their four nearest neighbours in the
array s8o that planes can be shifted bodily in the four orthogonal
directions, one bit position at a time. The edge connections are
toroidal so that the shifting is in fact circular in the two dimensions.
The architecture is similar to the I.C.L. Distributed Array Processor
(Reddaway (4)), which partly inspired this project.

The Array Control Unit turns a set of RasterOp parameters into an
appropriate sequence of array operations to implement a particular
'call' of RasterOp. An outline diagram of the array system
configuration is given in (Fig. 13.4), but with a much reduced size of
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array for reasons of clarity. The Array Control Unit is also
responsible for autonomously interpreting the display list and turning
it into the implied sequence of RasterOp procedure calls.

A host processor runs the application programs which create and
manipulate the display list. Currently, the system is in fact running
in a stand-alone mode without a properly integrated host processor. We
hope to build a DMA link to an Orion (a 32-bit micro-programmable engine
running Unix) in the near future.

13.6.2 The Processing Elements

A block diagram of a single Processing Element is shown in Fig. 13.5.
The processing is done by the ALU, which is in faet an 8:1 multiplexor.
This, in effect generates an arbitrary function of the Q-Register output
and the memory output. However, one of two such arbitrary functions is
selected on the basis of the logical AND of a row-derived and a column-
derived input 1line. Together, these are normally used to select an
arbitrary sub-rectangle of the array based on one or other of the
corners of the array. Such sub-rectangles are known as quadrants.
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Fig. 13.5 : A DisArray Processing Element
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Two 16-bit strings, each consisting of a single group of consecutive
O's and a single group of consecutive 1's, applied to the row and column
input lines are sufficient to define a single quadrant (ie. that area
where both Row & Column inputs are 1). The other three similarly-aligned
quadrants can be selected by inverting the bits in either one or both of
these bit strings.

This arrangement allows some arbitrary function to be performed in the
region of the selected quadrant. Often, however, the rest of the
processors outside of the quadrant will have to perform some simple
(non-useful) operation such as copying whilst this is going on.

There is a single 1-bit register (the Q-register) which holds the
result of computations and is also the holding register for array
shifting operations. The design has optimised the nearest neighbour
shifting by putting only the Q-register and a 4:1 neighbour selection
multiplexor into the shift data path. We hope to enhance the system at
some future date with one or more additional Q registers.

The local store is a 16 Kbit dynamic RAM whose control inputs
(including the address 1lines) aregderived from the Array Control Unit
and whose data input is fed from the output of the ALU. A 16~bit output
bus from the array is generated from 16 sets of 16 open-collector
outputs in each column of the array being wired together. By selecting
only one row of the array, using the row and column input lines, a
single 16-bit word can be output from the memory to this bus. This is
used to map the DisArray memory into the host processor's address space.
Similarly, 16-bit data from the host can be written into array memory by
putting the data on the column input lines and selecting just one row
using the row input lines.

As a bonus, the open-colle.tor bus can be used to support some simple
host-accessible content-addressing of memory. For example, arranging
16-bit words column-wise in store and broadcasting a 16-pattern along
the row input lines the host can look for a match in any one of the 16
columns simultaneously, the corresponding column output line saying
whether a match was found.

The control signals for the Processing Elem?nts are provided by the
Array Control Unit and are copied identically to each processor. This
set of control signals thus makes up a single array instruction. This
instruction consists of :

1. The memory (plane) address to be used.
2. Memory control signals (RAS, CAS etc).
2. The two Boolean functions for the ALU.
3. The nearest neighbour selection.

. Q-Register latch signal.

. Multiplexor enable signals.

. Miscellaneous edge control signals.

o &=

{ In fact, the memory address to each processor is in fact =systematically

altered under both the address-staggering and the quadr=nt-addressing
schemes ocutlined later.
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13.6.3 The Basic Array Cycle

The most general type of array instruction is one involving a
read/modify/write operation on a single plane in memory. Such an
instruction performs the following function:

a) Reads the contents of a 256-bit plane from memory.

b) Examines the state of the row and column input lines. These
usually contain masking information and the logical AND of these
inputs is generated to select an quadrant.

c) Applies an arbitrary Boolean operation between the contents of the
plane and the Q-register in the region of the selected quadrant
and applies another arbitrary Boolean operation outside that
quadrant.

d) The result of the computation cycle ¢) is optionally written back
to the same location selected in a), and/or latched into the
register and/or sent to the. column output lines. This
read/modify/write cycle is terminated early whenever possible.

13.6.4 The Array Control Unit

The Control Unit has the task of generating the instruction stream
which controls the array. This instruction stream is generated either
from interpreting the display file or by directly executing RasterOp
procedure calls from a process running in the host processor (usually a
screen manager process). Since the control unit is micro-coded, both of
these models of operation and many others are possible, simply by re-
loading the micro-code store.

The control unit consists of an AMD29116 16-bit datapath chip, a
2910-based sequencer and a 4k x 32-bit writable micro-code store. It
can execute independently of the array processor but is the sole means
of initiating an array processor cycle. It has DMA access to the memory
of the host processor and this is used to give the controller read-only
access to the display list. All of the array processor registers can be
directly written by the controller in order to set up array instructions
and edge data. Additionally, there is a 4k x 16 local cache store which
can hold working variables and copies of parts of the display 1list
needed during interpretation.

13.6.5 The Refresh Controller

The refresh controller autonomously takes a bitmap from store by
stealing array memory cycles. This produces 256-bits of data which is
then broadside-loaded into a spirally-arranged video shift register
which runs through the whole array. This data is then asynchronously
clocked out directly to the monitor at video speed.
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There 1is will always be a fundamental mismatch between the
requirements of RasterOp and those of video refresh; the former needs to
operate on square words and the latter needs to operate on very 1long
thin words (scan 1lines). DisArray has an address staggering scheme
which overcomes this mismatch without any need to resort to buffering of
the video output data.

DisArray currently supports a 512x512 pixel bitmap display with 4 bits
per pixel. A colour map RAM selects the 16 pixel colours from a pallette
of 4096 colours. This video output format is relatively arbitrary and
can be easily changed. There is currently over 4 times this video
bandwidth available if necessary, to support either higher-resolution
displays or more colours.

13.7. ADDRESS STAGGERING SCHEME

To achieve direct video refresh from the array without the use of
output buffering needs some re-~organisation of storage. Clearly,
considering scan line 0, all of the bits contributing to this line are
in row O of the array.

To get 16 consecutive 16-bit segments of scan line 0 out of the array
simultaneously (which is what the t.v. monitor requires), these segments
must necessarily then be in different rows of the array. This can be
accomodated at no extra software or hardware cost by arranging that
horizontally consecutive planes are stored such that they are circularly
shifted respectively southwards by one row. Now, it is only necessary to
arrange that each row of processors gets the appropriate refresh address
on any video refresh cycle. These addresses.can be simply formed from a
single video refresh plane address by adding the row number in the
array to the refresh address, but not allowing the carry to propagate
past the bottom four bits. This is equivalent to fetching a plane of
data out of array memory angled at 45 degrees rather than the usual
horizontal alignment.

The only other remaining problem is that the 'origin' of the 256-bit
scan-line segment that gets loaded into the video shift register is also
shifted. However, this is easily overcome, since the shift register is
spiral and all we need to do is to arrange for 16 tapping-points on the
shift register at the end of each row and to select one of these tapping
points with a multiplexor to get the correct video bit stream.

L In fact, with the memory mapping arrangement in DisArray the appropriate

address to be sent to each row of processors is :

(RefreshAddress - RowNumber - 1) mod 16
This is easily provided from a 4~bit alu slice on the low-order 4 bits of
the memory address bus on each row of processors.
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13.8  QUADRANT ADDRESSING SCHEME

As discussed above, the inner loop of RasterOp entails adjusting a
plane to bit boundaries in both directions and then performing a
read/modify/write cycle on each of the four quadrants involved. On each
of these cycles the array is not perfoming useful work in the other
three quadrants. The four memory cycles can be compressed into a single
cycle if the processors in the four quadrants could each receive a
different address.

There are a humber of possible ways to achieve this, three of which
are outlined here :

1. Broadcast all four addresses in turn along the common memory
address lines and use strobes generated on a per-quadrant or per-
processor basis to cycle the memory chips. This is a simple
extension of the method of time-multiplexing of the address lines
already in use because of the nature of dynamic ram addressing.

2. Build memory chips1 with some intelligence in the address paths.
What is needed is the ability to store a small number of addresses
on the memory chip and to optionally combine one of these with the
incoming address in a simple adder with outside control of the
carry-in signal. In this way, with a current memory address m, and
a stored address s, the chip could access the following locations
under the control of two extra control signals :

m, m+1, m+sS, m+S+1
This is precisely the pattern of addresses required by RasterOp.

3. Partition the memory address into two parts; an x-plane-address
and a Yy-plane-address. This institutionalises what the software
often does anyway, which is to regard the array memory storage as
a single, large two-dimensional bitmap.

This means that it is possible to generate the two x-parts of
the addresses and broadcast the appropriate one of them down each
of 16 sets of column-wise address busses. If the same is done with
the y-parts broadcast row-wise, then the address required by each
processor is then formed by concatenation of the x-part and y-part
that passes through that processor. This scheme has the
considerable benefit of requiring no extra hardware in each
processor.

In fact, none of these quadrant addressing schemes have yet been
implemented in the hardware. We may however implement the third method
in the not-too-distant future although we would really prefer option 2
if we could get access to the technology required to produce the
necessary 'smart' memory chips. We have already successfully designed

In fact, if we had the capability of building a reasonable size of memory
chip, then we would put somewhat more intelligence than this into the
address lines and also put a processing element onto the same chip. This
results in a smart memory chip with many other useful applications.
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and fabricated out first chip1 but the fabrication facilities we have
available are not nearly good enough for us to create a useful size of
intelligent RAM.

13.9  DISARRAY PERFORMANCE

The array can shift the Q-Register in any of the four orthogonal
directions at 30MHz, giving a total bit shifting capability of over 7
Gbits/second. This operation is the basic mechanism for aligning a
source plane with the (four) destination planes and it is the two-
dimensional analogue of the use of a barrel shifter in the data paths of
a one-dimensional RasterOp processor.

The array has a rather leisurely 600ns read/modify/write memory cycle
time. This is ilower than it need be because of the low speed of the
dynamic rams chips that we used. This gives the array a basic
computational rate (Memory := Memory Op Register) of just over 400
Mbits/second (plane-aligned). This could easily be tripled using current
memory chips to 1.2 Gbits/second.

Timing tests on the prototype have not yet been carried out as we have
only Jjust finished the first encoding of the basic microcode software.
However, we expect a to achieve speeds something like the following :

Current With With With
Hardware Quadrant 200nS Both
Addressing Store

Character-sized

RasterOps/sec 200k 300k 300k 500k
Large scale RasterOp
> 10 kbits.
Rate in Mbits/sec 80 160 200 260

These figures ignore the video refresh overhead, which is variable3

depending on the screen size.

L A 32-bit in, 16-bit out barrel shifter with two-level pipeline input

registers for aiding RasterOp on conventional 16-bit micros.

The ram chips were purchased over four years ago, before a rather 1long
break in the project when no manpower was available for construction.

3 For example, with a 1024x768 picture the overhead is abouat 200k memory
cycles/sec.
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13.10  DISARRAY2

13.10.1 The Next Generation

It is our intention to build a second generation DisArray machine with
certain advanced features. This will take the form of a fifth generation
workstation in which a microprogrammed Powerful Personal Computer is
completely integrated with a DisArray processor. DisArray2 is currently
an outline design for such a system, based on newly-available, very
powerful LSI components, which could improve on the performance of the
current DisArray by a factor of about 5 and also provide (at peak) about
300 Mips of vector processing on 16-bit quantities. We will introduce
The reader to this design in a number of stages.

13.10.2 Surface Shifting

One of the areas in which DisArray can be speeded up is by speeding up
the serial shifting that is required to align planes to bit-boundaries.
In a conventional machine the solution would be to replace the serial
shifter with a barrel shifter.

Happily, a similar solution is possible in the two-dimensional case.
We simply replace all of the horizontal neighbour connections in a
single row of the array with a barrel shifter. This then gives us a
fully-connected arrangement where any processor has a direct connection
to any other processor in the same row. We repeat this for every row in
the array using a total of 16, 16-bit barrel shifters. We also repeat
the pattern along the 16 columns of the array giving each processor
immediate access to any other processor in the same column. In fact,
there may be no need to have access to the intermediate result between a
horizontal shift and a vertical shift. In this case, at each processor
location the processor can send data to the appropriate input port of a
horizontal barrel shifter. The corresponding output port of that
horizontal barrel shifter is directly connected to the appropriate input
port of a vertical barrel shifter, whose corresponding output is then
fed back to the same processor.

This composite shifter, comprising 32, 16-bit barrel shifters, is a
two-dimensional analogue of the one dimensional barrel shifter. I have
dubbed this novel structure a surface shifter. A diagram of an example
Ux4 surface shifter appears in Fig. 13.6. This is implemented using 8
4-bit barrel shifters connected together in a pipeline type of?
arrangement with an array of U4x4 Processing Elements.

This arrangement can obviously speed up the shifting1 but at some
cost. In fact one of the nice features of the simple nearest neighbour-
connected array is that it can be extended indefinitely. The surface

However, using currently available components this speed-up is not quite
as good as one might at first suppose since serial shifting can be made
quite fast (DisArray currently runs at 30 MHz).
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shifter can probably only reasonably be implemented with at least each
barrel shifter being totally implemented on one chip. This means that
the maximum size of the array would be limited by the number of pins on
a package. Currently, we do not have access to the production
facilities that would be needed if we made a 32-bit barrel-
shifter/processor chip.

Another advantage emerges if it is possible to set a separate shift
constant for each row and column shifter simultaneously. Consider the
case in which the row number of each row is used as the shift amount for
a circular shift in that row. Considering only the horizontal component
of the shift, what we have achieved is a skewed shift of the data, with
wrap-around. Row 0 is unchanged, Row 1 is circulated by 1 bit ete. 1
have called this a skew-circular surface shift. In this case it is a
horizontally-based shift, but it obviously has a vertically-based
counterpart. By applying the following sequence of shifts to a plane :

1. Horizontal skew-circular surface shift.
2. Vertical skew-circular surface shift.
3. Horizontal skew-circular surface shift.

the effect is to completely rotate the contents of the plane by 90
degrees in only three machine cycles (Guibas (5), Goldberg (7)).
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13.10.3 Processor Element Implementation

Having decided to use the surface shifter concept one needs to
implement both the barrel shifters and the Processing Elements.
Fortuitously, there are two newly-available fast LSI chips which combine
a 16-bit ALU with a number of registers and a barrel shifter; these
being the AMD 29116 and the TMS 3020. These chips are reasonably good
for this application since each one bit section of the ALU/Register/Data
Path can function as a one-bit Processing Element as well as providing
the parallel shifting capability. Thus we get 16 of our 1-bit
processors and a row (or column) barrel shifter on one chip. Without
access to the appropriate VLSI fabrication facilities needed for a 32 x
32 DisArray2, we could use one of these two components for a 16 x 16

version.

The AMD 29116 is a 100ns component, and using this has the added
benefit that the 16-bit ALU can also carry out 16-bit arithmetic in
100nS. This means that with 32 of these processors in the 16-vertical,
16-horizontal arrangement, the array can achieve all that the DisArray
currently can, together with faster shifting and having a capability of
over 300 MIPs arithmetic processing performance on arrays of 16-bit
quantities.

There are a number of important graphics algorithms which would have a
greatly improved performance on this type of hardware. Some of these
are .

1. Line drawing with a DDA algorithm. The 16 horizontal (or
vertical) 16-bit processors can work together to plot up to 16
points simultaneously from an arbitrary line across a 16 x 16
plane.

2. 16 of the processors can co-operate in polygon filling
applications.

3. Co-ordinate transformation of multiple data points can be
achieved in parallel with w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>