
-
SCIENCE ANDENGINEERINGRESEARCHCOUNCIL
RUTHERFORD,APPLETONLABORATORY

COMPUTINGDIVISION

DISTRIBUTEDINTERACTIVECOMPUTINGNOTE 660

PERQ
TECHNICALNOTE27

Issued by
J M Loveluck

PERQ Interim Communications
Facilities II

29 July 1982

DISTRIBUTION:

1. Introduction

F R A Hopgood
R WWitty
K. Robinson
D A Duce
A S Williams
C Prosser
W P Sharpe
C P Wadsworth
I D Benest
E V C Fielding
T Watson
J M Loveluck
C J Webb •
K J Fermor
A P Ferryman
L 0 Ford
J C Malone
J. Smith
RL Support/PERQ/Technical Notes File
RL Support/PERQ/General File

This note describes progress, since the issue of DCS note 587, on
interim communication utilities for the PERQ. Apart from two develop
ments still to be completed (sections 3 and 4) the planned interim com
munication fac il i ties for the PERQ are essentiall y comlete, and future
effort on PERQ communications will be directed towards a sui table
basic-block driver and link module for the TSBSP software.

2. Implementation of Kent Ring Handl er under POS.

2.1 PERQ-PERQFTP via RS232.

A user inter face simil ar to that for PUFTP has been added to the Kent
BSP software. The Single-Shot-Protocol (SSP) is used for transmission of
requests to send/receive files. One machine must be put into 'poll' mode
while the other machine transmits requests. The 'save' and 'restore'
options have been implemented.

- 1 -

...



-
2.1.1 BUGS

A number of tests; involving variation oi :various time-outs, have
revealed that the' Kent software is not very reliable over the RS232. It
seems probable that this unreliability is due to the ring protocol
dependence of the software. In particular, for the RS232 communication
there is no analogue of the ring node transmission status register used
to signal the successful transmission of a basic bIock.. This results in
an inability to recover from certain error conditions.

2.1.2 Timing tests

Timing tests for PERQ-PERQ file transfer have been conducted, and the
resul ts are presented below. The Kent Pascal BSP software uses a 'slow'
byte stream (T.E. Schutt 1981), for which four basic-blocks are sent in
order to transfer one DATA block (NOT READY, READY, NODATA and DATA).
Because the resulting BSP protocol overhead is quite high (40 bytes per
DATA block) figures are presented for the total (including BSP overhead)
and net (useful) data transfer rates. The tests were conducted on a file
of 27676 bytes, 813 lines, and the file transfer was in the Kent 'line'
mode, in which the BSP assigns each line of the file to a basic block.
The tests were done with the RS232 line speed set at 4800 baud.

Net data transfer rate 1268 bits/sec

Total data transfer rate 2758 bits/sec

•

2.2 PERQ-PDP11 FTP via RS232

The Kent software (BBP, BSP, ICP, FTP and SSP) has also been implemented
on the PDP11/70, with an RS232 driver at the minipacket level. More sub
stantial modifications to the higher level software were required for
the PDP11 than for the PERQ, due to the rather rigid adherence of the
Unix VU Pascal to the ISO standard.

The same 'PUFTP' user interface as for PERQ-PERQ communication has been
preserved, with the addition of a login and 'start up' mechanism similar
to that of the PUFTP software. The PDP11 is always awakened in the
'poll' mode.

2.2.1 BUGS

Similar limitations on reliability to those mentioned for PERQ-PERQ
transfers apply also to the case of PERQ-PDP11 communication via RS232.

2.3 PERQ-Cambridge Ring Interface.

A basic block driver for the GPIB/Polynet node interface has been writ
ten and tested. This driver has been interfaced to the Kent software
(ICP, BSP and FTP). File transfers between PERQ and LSI11 have been
succesfully carried out, in both directions, using this software.

- 2 -

...



-
2.3. 1 BUGS

The major limitation at present is that of the (lack of) speed. of data
transfer to and from the ring interface (see below).

Other bugs detected include:

_ Null lines in a file abort file transfer from PERQto LSlll with ,
a protocol error.

- The 'close' sequence after file transfer is sometimes aborted
for file transfers to the PERQ.This is probably a timing problem,
with the PERQbusy closing a file when the close block arrives.

- Protocol' errors are fairly frequent. Possibly due to a mismatch
of time-outs between PERQand LSI11.

2.3.2 PERQHardware/Firmware Limitations.

There are a number of limitations due to the current state of the PERQ
hardware/firmware. It is hoped that these deficiencies will be mitigated
by the planned reprogramming of the 280 on the PERQI/O board, and by
the advent of the new I/O board, expected late 1982.

The major shortcoming is the very slow rate of data transfer through the
280. Three Rivers state that the data transfer rate through the GPIBis
somewhat in excess of 2 Kbytes/sec. Software overheads reduce this to
around 1200 bytes/sec for data transfer to the ring (the ring protocol
reduces this rate by at least an order of magnitude). •

A second major restriction is the size (32 bytes) of the buffers in the
280 used for GPIB I/O. Data transfer from the ring will cause flooding
of the input buffer, unless special precautions are taken. To avoid this
occurrence, special commands to the GPIB controller in the PERQare
required, which delay further data transfer until the current data byte
has been read. The GPIBcommandsalso pass through the Z80, and the net
result is that the data rate for receiving data from the ring interface
is less than half that for transmission.

Not all the facilities of the Texas TMS9914GPIBAdaptor chip, which is
the GPIB controller in the PERQ,have been implemented in the current
Z80 firmware. In particular, commandsrelated to polling of devices on
the GPIB are· unimplemented. In addition, although the BI (byte in)
status bit of the TMS9914interrupt status registers is passed through
to the 280, it appears that this is not the case for all the possible
interrupts. Tne hardware GPIB/Polynet interface was designed to pass
interrupts to the PERQusing the SRQ (Service Request) GPIB control
line; al though there is a corresponding interrupt bit in one of the
TMS9914interrupt status registers, it seems that the 280 firmware does
not enable this interrupt. This means that reception of minipackets at
the Polynet node, and error conditions on transmission, cannot be sig
nalled to the PERQby interrupts, and software polling must be used
instead.

For the reasons stated above, a genuinel y interrupt-driven basic-block
driver for the PERQis not feasible at present. Only data-byte reception

- 3 -

...



-
will cause a PERQprocessor interrupt, and this requires a preceding
GPIB command. Neverthel.ess, an interrupt handler for the GPIB, which
can deal with data from the tablet ORthe ring interface, has been writ
ten, and can be used with the basic-block driver. An alternative version
of the driver, which masks out GPIB interrupts, is also available. In
fact, two versions of the interrupt handler have been written, one of'
which uses a buffer for temporary storage of received data. The inter
rupt handler could be more useful when the re- programmed Z80, incor
porating GPIB polling facilities, becomes available, but this may well
be overtaken by the implementation of UNIXon the PERQ, for which GPIB
transfers will interface to the Accent kernel.

The interrupt handler procedures have been incorporated into an alterna
tive version of the POS module 10 Private. A small modification to
IO_Init is also required, in order -to initialise a boolean var LabLe
'ring' to its default value (false - the tablet is the default GPIBdev
ice). This means that all the 10 modules must be re-compiled and a new
bootfile made in order to use this alternative interrupt handler.

In timing tests it has been found that there is very little difference
in data transmission rate between the three different versions (one with
GPIB interrupts masked out, two versions of the interrupt handler, one
with an input buffer) of the basic-block driver. This tmpli es that the
limiting factor is the rate of data transfer through the Z80, and that
the interrupt latency of the PERQprocessor is a small perturbation on
this.

2.3.3 Timing Tests
•

Timing tests were conducted, under similar conditions to those described
in section 2.1.2, with a file of 10474 bytes, 311 lines. Results are
presented below for file transfers from PERQto LSI11 and from LSI11 to
PERQ.

PERQ-> LSI11 LSI11 -> PERQ

Net data transfer 448 bits/sec 376 bits/sec

Total data transfer 980 bits/sec 818 bits/sec

3. Implementation of GPIBbasic block driver under Unix on the Perq.

The latest version of the Accent kernel incorporates code for GPIB I/O,
and some of the Spice Canvas package uses this code for tablet input.
GPIB interrupts are handled by the ACCENTmicrocode, and input data from
the GPIB is placed in a circular buffer. An output buffer is used for
writing to the GPIB, but this buffer can hold only 8 bytes; it is not
clear whether or not there is some fundamental reason for this.

Appropri te procedures to read from and write to the ring inter face
registers have now been written, which use the ACCENTcode for GPIB I/O.
These procedures have been incorporated into the ring basic-block
dri ver, and basic-block transmission between PERQand LSI11 has been
successfully performed in both directions. This work was done using the
early Unix developnent system. File transfer was not possible because

- 4 -

, .•



-
file I/O was not incl uded in the stream module for this system, but
there is no reason to suppose that this shcul d cause any difficul ty, now
that the functionality of the basic-block driver under PERQUnix/ACCENT
has been established.

4. Ring FTP to the PDP11s.

An FTP daemon for the PDP11 is being devised by Bill Sharp. This will
allow file transfers from and to a. fixed directory on the PDP11. Alter
natively, it may be possible for a user to start up the daemon process
in his/her directory. The intention is to use SSP to handle requests to
send or receive files, in a similar manner to that used to implement the
'PUFTP inter face' for PERQ-PERQand PERQ-PDP11 FTP via RS232 (see sec
tions 2.1, 2.2). Wnenthis PDP11FTP daemon is implemented, it will be
necessary to make some modifications to the PERQsoftware to take advan
tage of the facility.

References.

T.E. Schutt, 1981: 'Byte Streams on a Minicomputer', UKC Computing
Laboratory Report No.6.

•

- 5 -

, .•


