
'_

SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 731

PERQ UNIX IMPLEMENTATION NOTE #35 Issued by
T. Watson

Inter-Language Procedure Calling Conventions
25 November 1982

DISTRIBUTION: R W Witty
K Robinson
C Prosser
A S Williams
L 0 Ford
E V C Fielding
T Watson
J C Malone
J M Loveluck
P J Smith
Alan Kinroy
Jim Collis
C J Webb
C Wadsworth
RL Support/PERQ/UNIX Implementation Notes file

1. Introduction

This note describes how to program inter-language communication at
the routine level between C, F77 and Pascal on UNIX on the PERQ. C is
as defined for V7 unix in [5]. F77 is Fortran as defined for V7 unix

'- in [2] with the changes described in [3]. Pascal is as defined in [1].
The generic term routine is used for Pascal procedures and functions,
F77 subroutines and functions and C routines.

Taking the interface between C & F77, C & Pascal and Pascal & F77,
in turn, the features of each language that affect the routines defined
in one language but called from the other are described.

1.1 Type definition

To make compatible definitions in the three languages it is neces
sary to know the corresponding representations of C, F77, and Pascal
data types. The definitions of these can be found in [6], There are
also include files called Ctype.dfs and mch.dfs (residing in
lusr/include/sys in the Accent Unix directory structure on the Perq),

- 1 -

...

-

-
..:-_

defining the basic C types in terms of Pascal, which helps to ensure
that the correct types are used.

1.2 Input and output

Pascal, F77 and C each employ a unique method of manipulating files
and doing input and output. It is therefore recommended that all liD be
done in the main program body using the routines provided by the
language in which the main program is written.

1.3 Fortran argument lists

All arguments of F77 routines are called by reference. This means
that an argument in C which corresponds to one in F77 has to be a
pointer. Pascal arguments which correspond to ones in F77 have to be var
or pointers to the relevant type.

2. The C I F77 interface

To be able to write C routines that call or are called by F77 rou
tines, and vice versa, it is necessary to know the conventions for data
representation, argument lists and return values that the compiled
code obeys. Also it is necessary to know the way in which F77 common
blocks equivalents are defined in C. - -
Figures 1 and 2 give examples of F77 and C inter-language calling. In

the examples in figure 1, ! and ~ are defined as pointers in C, while
the other arguments are not. This is because tha name of an array in C
is interpreted as a pointer to the array, so need not be explicitly
passed as pointers to F77.

The conventions for data representation are given in [6].
Underscores are not now appended to procedure names as they were on the

PDP 11170 Unix.

2.1 Argument lists

In F77 user defined actual parameters are passed by reference, so all
corresponding C parameters should be defined as pointers to the relevant
type. F77 produces extra arguments for character paramp.ters. These argu
ments are added on to the end of the argument list in the same order as
the arguments that they apply to.

In F77 when an argument of type character is defined an integer
typed argument is added to the list. It seems that F77 passes the
declared length of the variable, not its current length. Thus if, in
figure 1, ~ were set to "abd", the value of lc would be 10, not 3.

See [3] for other differences between V7 F77 and [2].

- 2 -

...

-
2.2 Return values

See section 4.3 of [2] for a description of how F77 subroutines are
defined and invoked in C.
Complex results are now passed as structures.
F77 Character-valued functions can not be referenced in C. This is

because a C array name is interpreted as a pointer to the array but F77
passes back the array.

2.3 Input and output

It is possible to call C I/O library routines from a F77 main pro
gram, but mixing them with F77 I/O routines is undefined.

2.4 Fortran Common blocks and C

A FORTRAN common block, for example,

common/fred/ a, i, x
real a,x
integer i

may be accessed from a C routine by defining an external structure, thus

extern struct { float a;
int i;
float x; } fred;

Blank common can be accessed using a structure called BLNK. As with
FORTRAN C9mmon statement. the order of the variables -in the C struct
statement defines the order of storage allocation. So the order in the C
struct and F77 common block must correspond.

To refer to a variable defined in a F77 common block from C, the
"--...-form "name.variable" must be used. For example:

fred.a = fred.x + c;

- 3 -

...

-
e ; ,

Figure 1: F77 calling C

In a F77 routine:

integer i, j(10)
real a, b(7)
character *10 c
character *5 d

call Jim (i, a, c , j, b , d)

A C routine:

jim (i, a, c, j, b, d, 1c, 1d)
int *i, j[];
float *a, b[];
char c[], d[];
int lc, ld, iii, jjj;
{
*i = j[3] + j[2];
b[2] = (*a) + b[3];
c[iii] = d[jjj];
}

Figure 2: C calling F77

In a C routine:

extern int jim();
int i, j [10];
float a, b[7];
char c[10];
char d[5];

jim(&i, &a, c, j, b, d, 10, 5);

A F77 routine:

integer function Jim (i,a,c,j,b,d)
integer i~ j(10), iii, jjj
real a, b(7)
character *(*)c , d

i = j(4) + j(3)
b(3) = a + b(4)
c(iii) = d(jjj)
Jim = 5

.end

- 4 -

, .•

-
3. c / Pascal interface

In order to call Pascal routines from C, or C routines from Pascal
it is necessary to know about the conventions for data representation,
routine names, return values and argument lists. Figure 3 gives an exam
ple of a C program which calls Pascal and figure 4 gives an example of a
Pascal main program which calls C.

3.1 Data representation

Equivalent type mappings for data representation and arguments can
be found in [6].

3.2 Routine names

I

The Pascal compiler converts all routine names and variables to
uppercase. So the name of every routine that is defined in C but called
in Pascal, or defined in Pascal but referenced in C has to be written in
uppercase in the C source file. For example:

in C:
int FUNN (a,b)
int a,b;
{
return(a);
}

in Pascal:
var i,j,k:long;
begin

i := funn(j,k);

The Pascal compiler needs to have all routines and variables
defined, see [1], so there has to be a dummy Pascal module created to
satisfy these references when C is called from Pascal. This dummy module
must have the same module name as the C module (see pcc(1) for how to

.............name the C module), and must export the routines in the same order as
they are defined in the C module. The type of each parameter in the
three modules must match the corresponding parameter type in the other
two modules.
Use the include

/usr/include/sys/mch.dfs
See figures 3 and 4 for
ling.

files /usr/include/sys/Ctype.dfs and
to get the correct basic type mappings [4].
examples of C and Pascal inter-language cal-

3.3 Return values

All C routines return a value, whose type can easily be translated
into the equivalent Pascal function definition or call. The type
correspondances are defined in [6].

- 5 -

...

-
3.4 Argument list

The arguments of a C routine are called by value so to use a var
argument in Pascal the equivalent C one has to be a pointer of the
corresponding type. There is a problem here because Pascal uses word
pointers and C character pointers are byte pointers. So the character
pointers will need to be adjusted, as described in [7] and
P_MAKESTRING() in <pstring.h> in [4]. Note that an array name in C is
interpreted as a pointer to the array so the PASCAL equivalent must be
defined as a pointer, or a var argument.

Figure 3: A main C program wnlcn calls routines
from a Pascal module

From a C program:

int c[2];
int i,j;
char b[3];
extern int CADD();

i = CADD (i,j,c,b);

From the Pascal module:

exports
type
{$include mch.dfsl
{$include Ctype.dfs}

type iarr = array [0 •• 1] of C int;
carr = packed array [0 ••2J of C_char;
ptr iarr = larr;
ptr=carr = "'carr;

function cadd(i
j
c
b

C_int;
C_int;
ptr iarr;
ptr=carr): C_int;

private

function cadd(i
j
c
b

C int;
C=int;
ptr iarr;
ptr=carr): C_int;

begin
b"'[3] := 'a';
cadd := i;

end;

- 6 -

...

-
Figure ~: A Pascal main program, C module and

corresponding Pascal dummy module

Pascal program:

program ptest2 (input,output);

imports ctest1 from ctest1;

type arr = array [0••1] of long;
var i,j,k : long;

ca : "arr;
begin

k := cadd (i, j, ca);

end.

C module:

int CADD (i, j, c)
int i, j;
int c[2];
{
return(i + j);

}

Pascal dummy module:

module ctest1;

exports

type
{$include mch.dfs}
{$include ctype.dfs}

function cadd(i:C int;
j:()nt;
pc : C_ptr_array):C_int;

private

~. Pascal / F77 interface

To be able to write Pascal routines that call or are called by F77
routines, and vice versa, it is necessary to know the conventions for
procedure names, type mappings, argument lists and return values. See
figures 5 and 6 for examples of Pascal and F77 inter-language calling.

- 7 -

...

-
4.1 Procedure names

All routines defined or referenced in Pascal have their names bon
verted to uppercase, but all F77 programs are converted to lowercase by
default. To ensure that the Pascal names are matched correctly with the
call or definition in F77, the names of the Pascal routines referenced
from F77 have to be in uppercase as well. Details of how to cancel the
lowercase conversion in F77 are given in [2].

When calling F77 from Pascal there must be a dummy Pascal module
matching the F77 subprogram declarations, to satisfy the Pascal com
piler. This dummy module must have the same module name as the F77 sub
program (see f77(1) for how to name a F77 subprogram) and must export
the routines in the same order as they are defined in the F77 subpro
gram. The types of each parameter in the three modules must match the
corresponding parameters type in the other two modules or subprograms.
Use the include files /usr/include/sys/Ctype.dfs and
/usr/include/sys/mch.dfs on Perq Unix to get the correct basic type
mappings [4J.

4.2 Type mappings

Equivalent type mappings for parameters can be found in
figure 5 for some examples.

[6]. See

4.3 Argument lists

F77 produces extra variables for character parameters and results.
These arguments are added on to the end of the argument list in the same
order as the arguments that they apply to.

In F77 when an argument of type character is defined an integer
typed argument is added to the list. It seems that F77 passes the
declared length of the variable, not its current length. Thus if, in
figure 6, E. were set to "abd", the value of lena would be 4, not 3.

See [3] for other differences between Perq Unix F77 and [2].

4.4 Return values

All F77 subroutines used in F77 that are defined external to the
F77 module are changed into functions that return a F77 integer. The
equivalent definition in Pascal is a function returning a Pascal long.

- 8 -

...

Figure 5: Pascal calling F77

In the dummy Pascal module:

exports

type pa4 = packed array [0••3]of char;
pa5 = packed array [0 •• 4] of char;
complex = record

x : real;
y : real

end;

function fun(var a : pa4;
var b : pa5;
alen : long;
bIen : long
) : long;

function fun2 (var c : complex; var d

private

- 9 -

real)

...

-_

complex;

In Pascal main program:

imports ftest10 from ftest10;

var i long;
a pa4;
b pa5;
c,j : complex;
d real;

begin
i := fun(a,b,4,5);
j := fun2(c , d);

end.

In the F77 module:

integer function FUN (a,b)
character*4 a
character*5 b
FUN = 5
end

complex function FUN2 (o,d)
complex 0

real d
FUN2 = (1.2, 3.4)
end

- 10 -

...

-
Figure 6: F77 calling Pascal

f77 program:

integer I, J, M
character *4 A, K

call PADD (I,J,M)

K = PADD2 (I,A,J)

stop
end

{

Pascal module:

module ptest3;

exports

type arr = packed array [0.•3] of char;

function padd (var i
var j
var k

long;
long;
long):long;

function padd2 (var i long;
var a arr;
var j long;
lena :long):arr;

'private

function padd (var i
var j
var k

long;
long;
long):long;

begin
k := i + j;

end;

function padd2 (var i:long;
var a : arr;
var j : long;
lena :long):arr;

begin
padd2 := a;

end.

- 11 -

...

-
REFERENCES

1. PERQ : Pascal Guide, Second Edition <'J), International Computers
Limited, June 1981.

2. S.L FELDMANAND P.J.WEINBERGER, "A Portable Fortran 77 Compiler",
Unix Programmer's Manual, Seventh Edition, Volume 2B, Bell Labora
tories (January 1979).

3. E. FIELDING, "Perq Unix Implementation Note - Differences between
the PDP11 Fortran 77 - and Perq Unix Fortran 71", DCS Note, Ruther
ford Appleton Laboratory (December 1982). [to be published J.

4. C. PROSSER, "Perq Unix Implementation Note fI 30 - Changes to UNIX
Include Files", DCS Note # 726, Rutherford Appleton Laboratory
(November 1982).

5. D.M. RITCHIE, "The C Programming Language - Reference Manual", Unix
Programmer'~ Manual, Seventh Edition, Volume 2A (January 1979).

6. A.S. WILLIAMS, "Perq Unix Implementation Note II 25 - Type mapping
between C, Fortran 77, and Pascal", DCS Note /I 608, Rutherford
Appleton Laboratory (May 1982).

7. A.S. WILLIAMS, "Perq Unix Implementation Note II 22 - Mapping of C
data types for Q-code", DCS Note II 605, Rutherford Appleton Labora
tory (May 1982).

- 12 -

$

