
-
.SCIENCEANDENGINEERINGRESEARCHCOUNCIL
RUTHERFORD APPLETONLABORATORY

COMPUTINGDIVISION

DISTRIBUTED INTERACTIVECOMPUTINGNOTE744

PERQ UNIX IMPLEMENTATIONNOTE# 41
Accent/Unix: SwitchBoard

Issued by
J.C.Malone

26 January 1983

DISTRIBUTION: R WWitty
K Robinson
C Prosser
A S Williams
L 0 Ford
T Watson
EVe Fielding
J C Malone
P J Smith
A J Kinroy
J M Lovel uck
C P Wadsworth
Martin Ritchie (ICL Dalkeith)
P Palmer (IeL Dalkeith)
RL Support/PERQ/Unix Implementation Notes file

Since OBOEhas no idea of the type of the file it is accessing, all
Open and Creat requests [5] must be sent to one process to be directed
to the relevant server. The server will return the port on which it
will service future requests from OBOE, still without OBOEI s knowledge
of the file type [2J.

Swi tchBoard has the task of rerouting open requests to specific
servers, and also provides the services of the disk file and pipe
servers [3J.

The following sections describe the modules which comprise Switch
Board.

1. SWBTYPES

This holds type definitions which are used in the calls to SwBEx
port routines, and constants which would be useful to those programs
using SwitchBoard.

2. SWBIMPORTS

Imports modules used by all SwBmodules.

- 1 -



-:~~WNHHHf:~~/f:~):ttWllHj.FHff{{{~~i~W0\W~H{{f{~~~~~~~~fJ.~~Jli~i~~~~~~}}~~~t1%%ijiii~~~J.~~~t~~t~~}J:jXNM~i:{!fjjf.~\Wl~f{%}::)j&~~~~i~\~:;:;fj~~l}}}}}j}l~~~~~ff:o~~t~~~~~:H&0~~~~~Hm~E~~~~~~~~~WNH~

3. SWBPR IVATE

SwBPrivate holds routines and data structures internal to the
SwitchBoard process.

3.1 Data Structures and Manipulating Routines

3.1.1 The Port Table

All open files are connected to a port, to which file access
requests are sent. In the case of special files, these are sent
directly to the driver [2J. Disk file accesses and pipe reads/writes
[3 J are sent to SwitchBoard, which must map between the port and the
corresponding file image or pipe header.

Note that file entries generated by open or creat will have a new
port entry, and separate read/write pointer, but files dupl icated on a
fork will share entries (file descriptor dups are handled in OBOE).

PortEntry = record of all information for a port }
Valid boolean;
PortNumber : Port;

case entrytype : EntryT of
DiskFile : (FileAccess : AccessMode;

ForkCount : integer; {files on this port}
FileI : FileIndex; {into ArrayWorkingFile}
RWOffset : long; {pointer to Virtual file}
DiskID SegID
) ;

ReadPipe : (RPipeI Pipe Index) ; {to ArrayPipeBlock}
WritePipe: (WPipeI : PipeIndex) {to ArrayPipeBlock}

end;

PortTable array [PortlndexJ of PortEntry; { all port information}

procedure GetPortEntry
Returns first unused entry in the port table, or ErrorFlag = ENFILE
if there are none.

procedure MakePortEntry
Set the valid flag to show that this entry is in use.

procedure KillPortEntry
Cancel the valid flag for this port entry.

procedure SearchSegEntry
Find first valid entry in port table for given seg id ,

procedure SearchPortEntry
Find first valid entry in port table for given port.

procedure FillFileEntry
Used by Open and Creat to fill port table entry for a newly opened
working file.

- 2 -



3.1.2 The Open File Table

There is only one image for every open file, which may be accessed
through a number of different ports, each of which has its own associ
ated read/write pointer.

When the usecount has been decremented to zero, the file may be
written' back (if modified and not unlinked), and the virtual memory
holding it invalidated.

FileLength is the current size of the file in virtual memory,
whereas ValidSize shows how much memory has been validated to hold it.

WorkingFile = record
MountI : integer; {Index into partition table}
FileWritten : boolean; {has a file been written to}
usecount : integer; {number of ports accessing file}
FileLength : long; {length in bytes}
ValidSize : long; {amount of validated VM in buffer}
BaseAddress : VirtualAddress;{of file in VM}
Delete: boolean {if still inuse, to delay delete from

close }
end;

ArrayWorkingFile : array [FileIndex] of WorkingFile;

procedure GetFileEntry

procedure KillFileEntry
An unused entry has a zero usecount.

3.1.3 The Pipe Header and Queue

The port table entries for the read and write ends of a pipe [3]
both point to the same pipe block entry. Read and Write counts are
incremented on forks.

All pipe write requests are linked together using pipebuffer
headers. Here the ReadP indicates the beginning of the data to be read,
and Size shows how much more is valid. A read request may take part or
all of one buffer, or may require a number of buffers to be con
catenated.

If a read request has been held up, waiting for data, then it is
necessary to know the port of the write end of the pipe, which will free
the read. This is kept in WPort.

- 3 -



-

PipeBuffer = record { Pipe writes are kept in original buffers
and linked }

Start VirtualAddress;
Size : long; {number of bytes left to be read}
ReadP : long; {may have read part of this buffer

also, write may have included a
byte offset, so whole of buffer
was not val id }

Next
end;

PPipeBuffer

PipeBlock = record
ReadCnt,
Wri teCnt,
WPort

{of information for one pipe}
{readers on pipe}
{writers on pipe}

Port; {port on which waiting read is to
be queued}

First,
Last

end;
PPipeBuffer

ArrayPipeBlock : array [PipeIndexJ of PipeBlock; { pipes in VM }

procedure KillPBufHdr
Removes first entry in pipe buffer queue and releases space.

procedure GetPipeEntry

procedure KillPipeEntry
An unused entry has zero reader and writer counts.

3.1.4 The Mount Table

When a block special file [2] is mounted an entry is generated in
the mount table giving the special and file names. In this implementa
tion, special files are restricted to partition names.

The UseCount indicates the number of open files. or working direc
tories on a partition.

MountEntry = record
Valid: boolean;
UseCount : integer;
Special ~ PathName;

Write Perm
end;

boolean

{Full pathname of mounted partition
e.g. sys :user> }

{UNIX-type name
e.g. lusrl

all references to this name will
be changed to refer to the
special file directory}

{is writing allowed}

FName : PathName;

MountTable array [1..MaxMountJ of MountEntry;

- 4 -



-~I#:YJl~~~~t~1~\W}]fi1{:t~}~~{5~~~~~·~~~~~~:;}jj;~~~~}JJjjj~~~=:frk~~~{~~ii~ffff:~~~~{{fHn~:~:~\~~~~~~~~~NHW~~~t~;~~~@}J:-:-!.!.!.~t~iJi!~~~Kf{{{~{K{(~{{{{{:::~;:~~~~tljH~~1~~~'{[{{f{{~~;~W{~~;tt/jR~~%}~\~:~~:~~~~1fHgf~

procedure GetMountEntry

procedure KillMountEntry
Cancel the valid flag for this mount table entry.

procedure CreateMountEntry
Allocates and fills mount entry.

procedure SearchPartition
Looks for valid entry for special file name.

procedure SearchFileName
Looks for valid entry for file name.

procedure ActivePartition
Increments use count, e.g. when file opened.

procedure ReleasePartition
Decrements use count, e.g. when file closed.

3.1.5 The Device Table

When a device registers with SwitchBoard [2,4J, it sends a port on
which it expects to receive open and creat requests on the device name.

DevEntry = record
MountI
DevSegId
DevPort

end;

integer;
SegId;

: Port

DeviceTable : array [1..MaxDevsJ of DevEntry;

procedure GetDevEntry

procedure KillDevEntry
An entry is unused while the MountI value is zero.

procedure SearchDSegId
Finds entry for given seg id.

procedure SearchDPort
Finds entry for given port.

3.2 Routines Directly .Interfaced To FileSystem

n.b. The file is always left closed after these routines.

This is to remove the problem of the Spice file system disallowing
multiple file updates - which would occur, say, when a file is
already open and a chmod is performed.

Also the routines may then open in the appropriate mode.

- 5 -



-

procedure FileLookUp
If the file is not found, then add the suffix •DR and try again.
This is because UNIX does not distinguish between names of files
and directories, whereas POS does. FileName parameter will only be
altered if the file is found with the suffix.

procedure CreateDirEntry
Creates new file and enters in directory.

procedure TruncateFile
Destroys file contents.

procedure ReadWholeFile

procedure WriteWholeFile

procedure DiskBufRead
Reads File header block.

procedure DiskBufWrite
Write~ File header block.

function SegMakeDirectory
Directly calls PFilesys routine, and converts returned file id to a
seg id.

3.3 Data Conversion Routines.

function Chunked
Memory to hold a file is validated in chunks. Given a number of
bytes, this routine rounds up into a whole number of chunks.

function SizeInBlocks
Converts bytes to file blocks.

function GetBlks
Given the file header, checks on file type and returns:

"- -
if normal file : Number of blocks in file

if directory : Number of highest block used + 1

function SizeInBytes
Given the file header, returns number of bytes in file.

function AbsolutePtr
Given virtual address and byte offset, produces a byteptr.

function OwnerToUId
Currently No-op, as Uids not stored in file header.

function GroupToGId
Currently No-op, as Gids not stored in file header.

- 6 -



.:..- -

mm~~~~~-:-~m~~¥:~;¥f~rt;~;~~~~~~~:;{~~~~~@~~~~~:::::~~aHjjf.~~~tif.i}_U_Hf~~~ii~~:?if-~H{{@m~~H~~~-tEf[[{f~N0~iNf{:~{{{{{{0~~~¥J.~~~IIHt~~~iW~~~WiffIlH1M~~~~i~1~~~1~~~~m~~~))}~~~~~~~~!~~~~~~~~~~~~~~~~t~~~;:~~;~i~;{~~

3.4 Routines Dealing with Stored File Characteristics.

The following are passed the file header information (which has
been received on, e.g. a file lookup).

function IsDirectory
Checks FileType for DirFile.

function IsDeviceDriver
Checks FileType for DevFile.

function getmode
Converts FileType to Unix type and adds FileRights, which holds rwx
permissions, to produce file mode.

The following are given the file segid and obtain the file header
through DiskBufRead.

procedure getfilestat
Uses DataEntToStatStruct to convert Spice file header to Unix stat
structure.

procedure setprotect
Extracts rwx permissions from given mode and stores in file header
field FileRights.

procedure setfilemode
Stores permissions in FileRights, and also sets FileType.

3.5 General Support Routines.

Procedure DataEntToStatStruct
Converts file header information into stat struct.

procedure getPipeStat
Fills out stat struct information for a pipe.

function LongMin

function AccessPerm
All that is currently checked is that the given mode of access is
permitted on this partition. It disallows writing on partitions
mounted read-only.

function EOn

function EmptyPipe
Returns True if the pipe data chain is empty.

function BytesInPipe
Works through linked pipe blocks, totaling block sizes.

function StdPosName
Used to standardise POS-style filenames so that they may be tested
for equality. This just means stripping off trail ing directory
symbols, although it could be extended to convert to upper case.

- 7 -



function StdUnixName
Used to standardise Unix-style filenames so that they may be tested
for equal ity. This just means stripping off trail ing directory
symbols, although it could be extended to convert to upper case.

procedure UToPFile
Converts the full Unix filename, as supplied by OBOE, into the
filename recognised by the Spice file system.

Finds which partition the file is on, by finding the filename in
the mount table which matches the longest part of the name. Then
replaces this prefix by the special file name. Finally, replaces
all Unix directory symbols with POS ones.

procedure AppendDr
If there is not already a .dr suffix, and it is possible to add
one, then appends it. Returns a flag to say whether this has been
done.

function PartNo
Given partition info-mation, finds the ~ndex for a partition ~ame.

function CheckPartition
Obtains partition information from Accent, then uses PartNo to see
if the given filename is a partition name.

procedure UpdateDisk
Writes back all files which have been updated, but not unlinked.

procedure SendDriver
Finds the device port from the device table, sends an open request
and receives the user's device port.

- 8 -



-
4. SWBEXPORT

The SwitchBoard module, in the SwBExport file, holds the system
call routines which are called from OBOE via a message interface.

procedure SwBInit
Called at the beginning of SwBControl.

Performs table initial isation, allocates SwitchBoard reply port,
sets time to 1st Jan 1980 and mounts the system partition.

procedure SwBSTime
Sets clock, given time in seconds.

procedure SwBTime
Returns time in seconds.

procedure SwBFTime
Fins in timeb_struct, using GetTimeStamp module and param.dfs.

procedure SwBUTime
Sets file access and write times in the file header. However, on
writing back, these are updated to the current time by the Spice
file system.

procedure SwBRegister
Called by device drivers on initial isation. If the device name
does not exist it is made with SwBMkNod. The device name segid and
driver port are entered in the device table.

procedure SwBMount
Checks that the files exist, that the special file is a partition,
that the filename is a directory and that neither are already in
the mount table.

procedure SwBUMount
If the special file is in the mount table and there is currently no
open files, working or root directories on this partition, then it
is removed from the mount table.

procedure SwBlnUse
Used to tell SwitchBoard that a partition is to be used, when it
would otherwise not know, e.g. when changing current directory,
which is all done in OBOE.

procedure SwbRelease
To inform SwitchBoard that the partition is no longer required for
the purpose for which SwBlnUse was called.

procedure SwBFreeBlks
This will later be used for the DF system call.

procedure SwBOpen
Opens an existing file, without truncation. If the file is already
open it shares the working file, otherwise a copy of the file is
read in to virtual memory.

- 9 -



.: .. '. ,!j -

, : ~~;';';';:: ::~::::: ::::::: :: :::.: .:.:':;';': ':,';::::: '.'.'. '.: ::::-:=. =. '. :::=.=.=.'.::::=.=.=.:::: ::::.=.:. =.=.:::- :-:-:.::=.=,':;;:: :.'.: ::: =.:::::-:-:.:.:.:.:.::::::::: : .:::.::.'.:::':':'::::: :: '.::::'1:.:.:.:'.:''::-:::-':'::.:.::::: ':.:.:.::-:: ':.:.:::-:: :: ':.:.:.::-:-:::::':': ':.':.':.'.'.:.':':.:.:-:::::::: '.'_'_'::: :: z0::::'::::.':.".'.::: :: :: :; ; .c::::. : ._._~~:~~~::_:_:~~:~:::?~:~:~~~.~~~~:~~.~.~-~:::::-~:;~:;:::?·;f~;~;~~-:-~~~~::::~:~:~::_:':?::.7::::::~~3:~I~~~:'~:::::~~~:~·:~:_:_::_~~::~::::::::=:::;::??:?:~-~·:·:-~~:_~-i.:-~~?·:·!!fli~:::::::~:_~:_:_:_:~::_--:_-;·~-~·~-~:::::::::::~llll.:~.=_:_:_=l.:~~~::~~::~~~~::~::·~·~-~·~-;-;·::~:~~:::~::~~_:_:.:_~:=~~~:_~~~~~~~-~:::::::~~~~~.{~~~~~:_:~

Also
open
user

opens directories (read-only) and special files (by sending an
request to the driver, which returns the port on which the
may directly access the driver for future requests).

procedure SwBCreat
Creates new file, or truncates existing one (also truncates image
in virtual memory, if already open).

Calls to create a special file cause SwitchBoard to send an open
request to the device driver.

procedure SwBChMod
Used to change file rwx permissions only - calls SetProtect.

procedure SwBSync
Updates disk image of all open files - calls UpdateDisk.

procedure SwBClose
The use counts for the file or pipe are decremented and, when this
was the last user, ports are deallocated.

If the port corresponds to a file then the disk will be updated, if
the file is no longer in use, memory will be invalidated.

If the close is for the last reader of a pipe, then any unused pipe
buffers are thrown away. If there are no more writers then the pipe
header may be destroyed.

The final close of the write end of a pipe results in any readers
waiting on the pipe being sent EOF.

procedure SwBDeadDevice
Called by SwBControl whenever it receives an emergency message to
say that a port to wh~.chSwitchBoard had access has died. The dev
ice table is searched and dead devices removed.

procedure SwBLink
This is implemented as a rename, name1 being renamed to name2.

procedure SwBLSeek
If the port entry is for a file and the arguments produce a legal
file pointer, then the RWOffset is updated.

procedure SwBRead
The read returns a byte address and the number of bytes that fol
low, or EOF.

File reads are taken from the working file area, beginning at the
current file position.

Pipe reads are taken from the linked list of buffers. If the first
buffer satisfies the read then the address is taken as the start of
the valid data. Otherwise several buffers must be moved to one con
tiguous area, and the address of this is returned.

- 10 -



-~0~~&{{~N~~~~~%~{~~~;t~~~j![/!:W!B:~:':':'~JI:':'!-!IfHm!-!fHmJDB11DIiIf~~E~\~~~~Eii~1.~~~J.~.~I~~~~i~~WH![;'~t~~~i~~~~~~}t::~~~mmm~\~~~1mi~~~·~·~~~~~SE~ii{~~~~tf~)~))HffHHEftt:~~~~~~~tt~,~~~tt~:~~t:tt~

Used buffers are removed from the list; those which have only been
partly read will have their offset and size updated.

If a read request receives the end of the buffer then the Deallo
cate flag is set when sending back the reply. When several buffers
are combined, they are deallocated after being moved, and the whole
buffer is deallocated in the reply message. When a large buffer
supplies several read requests, then any pages which have already
been read are invalidated, this is to keep the offset byte pointer
within integer range.

procedure SwBWrite
If the port maps on to a file then the data is moved to the current
file pointer, validating more memory to hold it if necessary. File
pointer, FileWritten flag and size (if necessary) are updated.

If the port corresponds to the writer of a pipe and there are no
readers then the signal SIGPIPE must be sent to the writer.
SwitchBoard returns the error EPIPE to OBOE, which directly invokes
the trap handler [6], Otherwise the write buffer is added to the
chain of buffers, noting the offset of the beginning of the valid
data within the buffer and the size.

procedure SwBpipe
Sets up new port table and pipe block entries.

procedure SwBmkncd
First checks that the file does not exist, then calls either Seg
MakeDirectory or CreateDirEntry, finally uses setfilemode.

procedure SwBstat
If file exists, returns file information in stat struct.

procedure SwBFStat
Calls getfilestat or getpipestat, depending on type of file open on
given port.

procedure SwBunlink
Deletes the file and, if it is currently open, sets file delete
flag so that it will not be written back.

procedure SwBFork
Increments file usecount and forkcount, or pipe read or write
count, depending on structure associated with port.

procedure SwBIOCtl
Calls on devices will go straight to the device port, so that all
calls coming into SwitchBoard are illegal.

- 11 -



-

5. SIFSWB

This holds the server routine which decodes requests and calls the
relevant SwBExport routine [1J.

6. SWBCONTROL

The SwBControl routine is called by SwBBoot and controls the ser
vices provided by SwitchBoard. The majority of requests are received,
satisfied and answered, except for pipe reads.

All pipe read request messages which cannot be immediately satis
fied are queued on separate queues, according to the port of the write
which will free them. When a write has been performed, the queues are
checked and as many read requests reissued as can be satisfied. Simi
larly, if the write end of a pipe is closed, then the reads are reissued
to receive EOF.

Entries must be removed from the queue when satisfied or when a
CancelReq request is received.

REFERENCES

1. L.O. FORD, "Perq Unix Implementation Note it 45 - Accent/Unix: Over
view of Serverloops and remote procedure call interfaces", DIC Note
II 748, Rutherford Appleton Laboratory (January 83). [to be pub
lished J.

2. J.C. MALONE,"Perq Unix Implementation Note II 51 - Accent/Unix: Spe
cial Files, Mountable File Systems", DIC Note " 756, Rutherford
Appleton Laboratory (January 83).

3. J.C. MALONE,"Perq Unix Implementation Note II 52 - Accent/Unix:
Pipes", DIC Note II 757, Rutherford AppJeton Laboratory (January 83).

4. J. C. MALONE,"Perq Unix Impl ementation Note # 44 - Accent/Un ix:
TermDriver", DIC Note # 747, Rutherford Appleton Laboratory (January
83).

5. A.S. WILLIAMS, "Perq Unix Implementation Note II 31 - UNIX System
Call Specification", DCS Note II 727, Rutherford Appleton Laboratory
(November 1982). [In PreparationJ.

6. A.S. WILLIAMS,"Pe r q Unix Implementation Note" 50 - Accent/Unix:
Signals and dead ports" , DIC Note II 755, Rutherford Appleton Labora
tory (December 82)~ [to be published J.

- 12 -


