
·

SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 747

PERQ UNIX IMPLEMENTATION NOTE # 44
Accent/Unix: TermDriver

Issued by
J.C.Malone

26 January 1983

DISTRIBUTION: R W Witty
K Robinson
C Prosser
A S Williams
L o Ford
T Watson
E V C Fielding
J C Malone
P J Smith
A J Kinroy
J M Loveluck
C P Wadsworth
Martin Ritchie (ICL Dalkeith)
P Palmer (ICL Dalkeith)
RL Support/PERQ/Unix Implementation Notes file

The terminal driver (TermDriver) handles all input via keyboard and
output to screen.

The TermDriver process is started up by Init [5], together with any
other drivers.

It fathers login sessions t starting a new session whenever the
previous one terminates.

- 1 -

1. MAINTAINING CHILD PROCESSES

The terminal driver forks a child process, which execs Getty (for
boot sequence, see [5J).

The child calls SetPGrp to become the head of a new process group
[2 J, so that on "c it is possible for the Terminal Driver to kill the
child's process group without killing itself.

The Registrar [3J Wait function would inform the Terminal Driver
when a child has died, returning its process ide However, it is not
desirable for the driver to hang on a Wait system call [8] and so the
Wait request message is sent to Registrar without waiting for the reply
[4J. The Wait reply will be received in the main control loop and dealt
with in ServiceMsg, the StartWai t routine being called to reissue the
Wait.

procedure ExecGetty
Uses the StartChild procedure in the MidWife module to fork and
exec the login session.

procedure StartWait
The Wait request message is sent to Registrar. Called at the
beginning of TermDriver and upon receipt of a reply. Also used in
shutting down, when waiting for all processes in child's process
group to die.

procedure CheckChildren
The reply to the Wait message has been received. If the dead child
was the login session, then a new session is begun.

function GetPId
The Wait message reply is decoded to get the process id of the dead
child.

- 2 -

2. KEYEDINPUT

The Canvas server [1] is used to receive keyed input in a similar
manner to the use of Registrar for Wait requests (see above): a GetKey
message is sent to Canvas whenever TermDriver is ready for the next key
and the reply is received in the control loop.

procedure StartKey
The GetKey request is sent to Canvas. Called at the beginning of
TermDriver and whenever a reply is received.

function WaitingKey
If the TermDriver has been requested to write a large amount of
data, it is desirable to check for keyed input during the write,
particularly when the user has typed ~C or ~S (see TermWrite).

This function returns a true value if the Accent supplied boolean
array shows that the Canvas reply port has queued waiting messages.

procedure ReceiveKey
Receives a message from Canvas and requests another key. This is
used by TermWrite when a key is known to be waiting, or when a key
is needed to restart the display.

procedure DecodeKey
Given a GetKey reply message, obtains the key typed.
keys which are interpreted by Canvas as command
translated back into their ASCII values.

Those control
keys must be

- 3 -

-

3. SCREEN DISPLAY

Keyed Input is kept in a circular buffer (Buff), awaiting read
requests. CRCntlZCount always holds the number of CR and EOF keys
currently unprocessed in the buffer, so that it is always possible to
tell whether there is a full line of input ready.

When a key is received, it is normally echoed, using the
xTypeScript modul e, and placed in the buffer. However, certain control
characters have special meanings and are neither echoed nor passed on to
the user.

Note that when the current line is to be redisplayed (i.e. after AH
or AU) the xTypeScript module is given the number of keys to ignore and
take scare itsel f of erasing control characters (two characters) and
tabs (up to eight spaces).

Having calculated the window size, TermDriver provides a paging
mode.

procedure FlusrBuffer
Empties Buff and resets CRCntlZCount.

function LastKey
Returns the position in the buffer of the last key typed.

procedure GetLine
Finds the beginning of the current 1ine in the buffer, and its
length. Used when erasing and redisplaying line.

procedure ActOnKey
Given the ASCII character just typed, decides on the action to be
taken.

Currently:

AC - kill child's process group, and FlushBuffer
AH _ backspace
AI _ tab
Ap _ switch paging mode
AQ _ ignored (used to restart printing after AS

without being passed on to user)
"R - retype line
AS - halt printing until next key is typed
"u - erase current line
"z - EOF

null - null or unrecognised keys are ignored
otherwise - echo and add to buffer

- 4 -

4. QUEUEWAITINGREADREQUESTS

Since the TermDriver must wait for a CR before supplying a line to
a reader, and since the method of input is relatively slow, a read may
take any length of time to be satisfied. It is not feasible for the
TermDriver to wait until the read request has been answered before
receiving any other requests, so read requests must be queued until
satisfied.

When a user process receives an interrupt [9 J and is in OBOE
waiting for a reply from a server [4J, the interrupt is usually ignored
until the reply has been received. However, since read requests are
queued by the TermDri ver, the read call can no longer be thought of as
an indivisible remote procedure call. In order to avoid the delay in
handling the interrupt, the read reply must be forgotten. To prevent
TermDriver from sending an extraneous message back to OBOE (and thus
losing type), and also to clear obsoLete requests from TermDriver's
queue, OBOEsends a CancelReq message to TermDriver, and waits for a
reply. If the request is still in the queue, then TermDriver dequeues it
and replies immediately. Otherwise, the request has been satisfied and
the reply already sent. Either way, OBOEreceives a prompt reply and
may handle the interrupt.

procedure QRead
Add message to ReaderQ as soon as it is received.

procedure DQRead
Remove request from head of ReaderQ and dispose message.

procedure AttemptReads
Called by ServiceMsg if there is a line of input ready, to satisfy
as many read requests as possible.

p ocedure Cancel Read
A CancelReq message has been received, remove the request from the
queue and send acknowledgement, if the read is still outstanding.

procedure KillRequest
Search for message from given port in ReaderQ (there will only be
one request from anyone process) and, if found, squeeze the entry
from the queue by moving other entries down and dispose of message.

- 5 -

-

5. IDENTIFY MESSAGE

procedure ServiceMsg
Called by the control loop to handle message received:

When a key is supplied by Canvas (see KEYED INPUT), another
key is requested; the message is decoded to produce the
character, which is passed to ActOnKey;

When Registrar repl ies to the Wait request (see MAINTAINING
CHILD PROCESSES), CheckChildren is called to see if the child
must be restarted and another Wait is issued;

On Cancel Req, Cancel Read is called to remove unwanted read
requests from ReaderQ.

Read requests are queued;

Otherwise, TermServer is called to satisfy the user request on
this server.

After processing message, AttemptReads is called to satisfy queued
reads, if there is a line of input waiting.

- 6 -

6. TERMINAL SYSTEM ROUTINES

Function TERMServer
Decodes server request message, calls relevant service routine and
encodes reply message [4J.

procedure TermFStat
Calls on SwitchBoard to perform Stat on Idev/tty.

procedure TermLSeek
Checks the arguments are valid, and returns offset value (as on
11170).

procedure TermIOCtl
Returns OK, but No-Op.

procedure TermClose
Returns OK, but No-Op.

procedure TermOpen
Called indirectly, via SwitchBoard, and returns user Port to be
passed back by SwitchBoard. All future requests from the user will
be made to this port.

procedure TermFork
No-Op.

procedure TermRead
Returns characters from Buff, up to the number requested, g i v i ng
the virtual address of the buffer plus the offset of the beginning
of the data. If the line has overflowed around the end of the
buffer, then the buffer must be rotated so that the data is
returned contiguously.

It is here that CRs are translated into LFs before being returned.

When all the characters up to an EOF character have been processed,
the EOFFlag is set. The purpose of this is to clear all waiting
read requests: AttemptReads will continue to loop through ReaderQ
and the readers will receive EOF.

procedure TermWrite
Displays characters on screen, using xTypeScript module.

Accept keyed input during large writes, allow for paging mode and
frozen display (after ~S).

In paging mode, after each window of output, CR will produce one
more line, while any other key advances to the next page. These
keys are all thrown away. apart from ~C, which is obeyed.

- 1-

....j -

:~fffIi~g~~}}}}}J:im~NN~~~WE~Jlt~~~~:~~~mm~~-~~~~~i~~!X~~~¥:~~Z~tt~~\~~i~~ii~{#:~&~E~~~\\WJ}f~~~~~!W;555~~'~~~~~~~:;:~fj~}}~~}~}}}!~}~~~~::f~\~~{~~f[-H/;~i:~~{HHH{:~~~t~~~~~~WlN~~~{*T{~~~~\~)I-~-~-~-~-~~~N!;t~?

7. SHUT DOWN

procedure CatchSigHup
Nominates ShutDown as the signal handler for SIGHUP [9]. This is
to shut the device driver down as cleanly as possible (5].

function ShutDown
Sends SIGKILL to all processes in the child's process group.

Then services all requests (ensuring that EOF is returned to any
read requests, by call ing FlushBuffer and ignoring any further
keys) until there are no more children left.

Checks that there are no more children left by waiting for a -1
return from the split wait call, StartWait.

Then exits.

8. INITIALISATION

procedure TerminalRegister
Registers with SwitchBoard [6], by sending the tty device filename
and open request port [7].

procedure TermInit
Initialises modules used and TermDriver's variables and ports.

Calculates size of the window currently running in, for paging.

9. MAIN PROGRAM

After initial isation, sets up the child process (using ExecGetty)
and signal handler (using CatchSigHup).

Then issues the first requests to Registrar (StartWait) and Canvas
(StartKey) .

Remains in a loop, receiving messages and calling ServiceMsg to
process them.

REFERENCES

1. J. EUGENE BALL, Canvas: the Spice graphics package, Dept of Computer
Science, Carnegie-Mellon-university, October 81.

2. L.O. FORD, "Perq Unix Implementation Note ff 53 - Accent/Unix:
Process ids and process groups", DIC Note 41 758, Rutherford Appleton
Laboratory (December 82). [to be published J.

3. L.O. FORD, "Perq Unix Implementation Note fI 42 - Accent/Unix:
Registrar", DIC Note fI 745, Rutherford Appleton Laboratory (December
82). [to be published J.

4. L.O. FORD, "Perq Unix Implementation Note If 45 - Accent/Unix:
Overview of Serverloops and remote procedure call interfaces", DIC

- 8 -

Note If 748, Rutherford Appleton Laboratory (January 83). [to be
published J.

5. J.C. MALONE,"Perq Unix Implementation Note If 43 - Accent/Unix: Boot
Sequence", DIG Note If 746, Rutherford Appleton Laboratory (January
83).

6. J. C. MALONE.
Switchboard",
(January 83).

"Perq
DIC

Unix
Note

Implementation Note II 41 - Accent/Unix:
/I 744. Rutherford Appl eton Laboratory

7. J.C. MALONE,"Perq Unix Implementation Note II 51 - Accent/Unix:
Special Files, Mountable File Systems", DIC Note # 756. Rutherford
Appleton Laboratory (January 83).

8. A.S. WILLIAMS, "Perq Unix Implementation Note II 31 - UNIX System
Call Specification". DeS Note /I 727. Rutherford Appleton Laboratory
(November 1982). [In PreparationJ.

9. A.S. WILLIAMS. "Perq Unix Implementation Note If 50 - Accent/Unix:
Signals ar.d dead ports" • DIS Note II 755. Rutherford Appleton
Laboratory (December 82). [to be published J.

- 9 -

