
,SCIENCE AND ENGINEERING RESEARCH COUNCIL
'RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 757

PERQ UNIX IMPLEMENTATION NOTE # 52
Accent/Unix: Pipes

Issued by
J.C.Malone

26 January 1983

DISTRIBUTION: R W Witty
K Robinson
C Prosser
A S Williams
L 0 Ford
T Watson
E V C Fielding
J C Malone
P J Smith
A J Kinroy
J M Lovel uck
C P Wadsworth
Martin Ritchie (ICL Dalkeith)
P Palmer (ICL Dalkeith)
RL Support/PERQ/Unix Implementation Notes file

A pipe is a method of passing data between two or more agents, usu
ally Ln different processes.

The pipe system call [2J produces two file descriptors, one associ
ated with the writable end of the pipe, the other with the readable end.
Normally a process will then fork another process, which will then share
these file descriptors. If, say, the parent process closes his read file
descriptor, and the child closes the write end, then the pipe becomes a
one-way channel, the parent being able to write data to the pipe, which
the child may read.

Note that further forks and dups may be done on the pipe, so that
it is possible to have any number of readers and writers on the same
pipe. Thus it is necessary for a single, independent process to control
the pipe - and this process is, arbitrarily, SwitchBoard.

The system calls [2] to read and write on a pipe are exactly the
same as those for files. The only difference is the way the data is han
dled in SwitchBoard [1]. The written blocks of data are queued and then
a read will receive any number of blocks, or the beginning of a block to
satisfy its request.

If a read is requested on the read end of a non-empty pipe, it will
be satisfied by the number of bytes requested, or the number currently

- 1 -



-

in the pipe, if this is less. If, however, the pipe is currently empty
then the number of writers on the pipe must be checked. No more writers
means that there will never be anything written to the pipe, since the
end of a pipe cannot be re-opened once the last user has closed it, so
the read receives EOF. Otherwise the read request will be queued and
the read ing process must wait. It will be dequeued either because a
writer has provided some data (to satisfy the request), or because the
write end of the pipe has now closed down (in which case EOF is
returned), or because the requesting process has sent a message to can
cel the read.

A write on the write end of a pipe will add data to the end of a
list of write buffers, unless there are no more read ing processes. A
write to a one-ended pipe would never be read, so the writing process
receives a SIGPIPE signal.

REFERENCES

1. J.C. MALONE,"Perq Unix Implementation Note ff 41 - Accent/Unix:
Switchboard", DIC Note II 744, Rutherford Appleton Laboratory (Janu
ary 83).

2. A.S. WILLIAMS,"Perq Unix Implementation Note If 31 - UNIX System
Call Specification", DCS Note II 727, Rutherford Appleton Laboratory
(November 1982). [In Preparation].

- 2 -


