
SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

f:

COMPUTING DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 799

PERQ UNIX Implementation Note 58
Screen Editor Proposal

Issued by
James Collis

11 February 83

DISTRIBUTION: R W Witty
K Rob i n so n
C Prosser
A S Williams
L 0 Ford
T Watson
EVe Fielding
J C Malo'1e
P J Smith
A J Kinroy
J M Loveluck
C P Wadsworth
J R Collis
M Ritchie ICL Dalkeith
P Palmer ICL Dalkeith
RL Support/PERQ/Unix Implementation Notes File

:~
,
e
,

1. Int.roduc t.Lon

This dor.ument describes the function?lity and user interface of a
screen editor to be implemented on an ICL PERQ. Tne editor is a means
of examining and altering files in the UNIX environment, making use of
the PERQ's high quality display. tablet and mouse. Primarily it is tar
getted for use by people involved in research for S.E.R.C.

2. Summary

The major aspe cts of the proposed editor:
·1

I.,A small number of menu orientated commands operating on selected
text.

The editor will be modeless.
Visual feedback on everything the user does.
Multiple file editing with easy transfer of data.
Adheres to the philosophy of the UNIX Operating System.
Powerful search and replace capabilities.

If you have any suggestions for improving this editor please contact me
on extension 6488 by Friday 25 March.

- 1 -

~l:¥]1mIfff~2}ill\~~}J~~I;~Wi~~~~~!.~U;4~~m~m~~~t~~~I§.~~ii~[jJ_~~~t~~~Ji}}J}jjHj~¥d~~\\t~itf:/A~~~~~~~~~~~~~}:;ji~~}}~~~J}j~~~~~~)li~i~j.:W~jji~~~fI~i~~~l~~~{~~f~1NH~~~~~~t~~~)illi!-~-~t~~,
e

3. Design Issues

The single most important consideration in the design·of an editor
is the user. It is the user who will work with the editor, and that is
who it should be designed for. The user has many requirements of a
screen editor, some of which conflict, and the most difficult part of
the design is not so much what to provide, but how to provide the right
balance.

User Requirements

1) Easy to Learn
2) Easy to Use
3) Safe
4) Fast
5) Powerful

There are several features that make an editor easy to learn.
Firstly it should be similar to something the user already knows. There
should only be a small number of commands, preferably with meaningful
names, or at least mnemonics. Some kind of 'help' facility readily
available and everything shculd be as simple as possible.

Ease of use follows mainly from how easy it was to learn, but now
brevity of commands becomes an advantage if they are typed,Cthough
graphical selection may be even better). The display is important, what
information is shown on it, and how well it is presented has a strong
influence on how pleasant and easy the editor is to use.

Safety for the user means that it is possible to recover from mis
takes, either by themselves or the machine, which frees the user from
the burden of making sure that each command does exactly wha~ l~
intended, leaving him free to experiment.

The user doesn't want to sit and twiddle h~.sthumbs "lhile waiting
for the editor to finish doing something.

Power comes from the functionality of the editor.

a) Travel, quickly and easily to any part of the file, making ~t
to browse through or study closely any particular section of theeasy

file.

b) Easy insertion of text anywhere in the file.

c) Simple deletion of any amount of information from a single char
.acter to the whole file.

d) To search and replace, forwards or backwards, interactively or
not, with the use of wild cards to provide powerful pattern matching.

e) To view and edit more than one file at a time, with easy
transfer of data between different files.

l------c:.• - 2 -

r _

~~~~~~~~fl~~B~~~Hi{~~~~~~{~t~HfHfl~!NHm}}}lt~~{~f~~Ifff{{;:~:"~~f;j~~~~~.ill~11~ill~Hf{{{£tygfrt~i~~~~~t~~~~~~j~Jf~~~1_~~\\~~3~~~:~&~~~3~Z~~J.~g{~j~~~???ffjjfUft~~~~t~~l~It\~~tt~jfj~t~~t:g~~~33333~
::;.; ..

4. History

Numerous editors with widely differing styles and philosophies were
examined, this section does not attempt to compare or discuss all the
features available, but covers the major deficiencies and faults of pre
vious editor designs. For further reference on other editors and edit
ing :

A C M Computing Surveys
Vol 14 number 3 September 1982.

In the past editor interfaces out of necessity, have typically been
a mass of shift and control characters typed at the keyboard (simply
because this was the only input device). Then with the keyboard charac
ters as commands, editors tended to use differer.tmodes to allow for
inserting. Also the commands themselves functioned using line ranges as
operands, which had to be specified by the user. These characteristics
cause difficulties in the user ir.terface:-

Mar.y editors have two modes insert and delete, though others have
more (eg. NUROS has 5 & SOS has 7, used for grouping commands). It is
confusing to the user, to only have certain commands available in cer
tain modes, or ~o have to type differently ir.different modes to execute
the same command. It also means the user must remember which is the
current mode, and displaying the mode only helps!

For the user to specify the operand of a range in terms of line
numbers, patterns and marks involves a lot of work. First you recognise
what you want to operate on. Then this has to be converted into some
form recognisable by the editor (as above), and also be syntactically
correct.

The new hardware available (specifically the tablet), opens up a
completely different scope. In an attempt to realise this potential, we
selected the best and most popular editor available that uses the mouse,
and tried change what we didn't like.

- 3 -



5. Pepper

Although very popular, Pepper only solves the second of the above
problems, selecting the operand by pointing at it with the tablet and
mouse. A method believed to be much closer to the human approach, and
borne out by users opinions. Unfortunately Pepper still has two modes
and 15 distinct commands, (the number of commands in an editor have a
major effect on the lead in time for learning). Only 9 commands are
executed from the puck, the others are combinations of single and dou
ble, shifted and control characters providing terrible mnemonics. They
also require both hands on the keyboard, which destroys the natural feel
of the mouse, and as a result the user interface is spoilt, (see Appen
dix A).

Some other smaller points about Pepper:
The commands issued from the mouse to traverse the file are very

good.
Relative tracking of the mouse is used, which allows operations to

take place at the cursor position.
There is no simple way of accessing a particular line number, and

While this is not such a natural thing to do, unfortunately it is
required for tracing Pascal and C compiler diagnostic messages, which
specifically -efer to lif!enumbfrs.

All the keyboard commands to move and a variety of others are redun
dant, and can be done more easily with the mouse.

The search and replace functions do not have any pattern matching or
meta character capabilities.

6. The Design Phase

Objectives

1) To remove all commands from the keyboard, and thus
2) Perfect the modeless environment where all the keys are con

sistent.
3) To provide a still smaller SRt of commands, chosen to be r.he

most basic operations, which can be combined to satisfy all editing
requirements.

4) To allow for the possible introduction of the three button puck.

Removing commands from the keyboard requires them to be graphically
selectable. (ie. point with mouse and press button.) This adds to the
importance of reducing the number of commands that need pointing at to
avoid cluttering the screen, (see display).

- 4 -



-
~f:'~~I~~::f~~~!!~~~~~~~~~~¥???~~{{i;fi~i:~f~gjf~fi~~}1~~~~:~~3~~ii~~~~}~~~~~;~;;;:~~;,~jji;fgfr~:;f~gID!~~~::~;{~::~~m~m~rmm~~l~~~~~~~~~;r:~{~I~J~~1~~~I~~~~~~~~~1

~ . ~

-

cO,TOK.

:,;cf1r<.C.H >. [ - - _ J c..r<..EATE MIDOL£
HeLP LEFt 1 I<I&HT

f<.~PLf1c.E L -__ J qv.rALL '--.~
OJliGNOSilc... H6,SSA&ES f'tND (J /( 01'1PTS. - - -
[ FIL-t: .\}AM~ ___I [Lll\lt:._ I L ~

;':-iSa·~StAa.ut IJt€PLA(_6IF;;~T~;;-ID£(..eTel.1PP£NJ l!>~(,tC:TAu..lW~/rc l O,,'IT

.•. •. ~ •. ..
..................
·. - +· . -
·

::?
· .. ·f·.. . .1. "-

" .
.~

I 1 I 1 [~ b~ (~>J .., o. J,J:..~ .,.j J-L.), I
_ '-
l [ I c~,~I 1 1 1

sc.rJl
bo-r ""j""J., £,J.,;•••

,,
•
•

•

1
i
~

1
i
1

'" f"~ uJ_ 5~k
\

5£'-£<:" T c.:orJI( (\)uOU S !,
ccev !€xTENO + DOt-vA! ').1 / oe ·1
MOV(~...•.•••.•I I

I
I
!

~~ C~

'(;<)To /)0 c.ot1htfNO 1~~iDl
UNi"1ARK 1 f'11fR../~ t ricL.P

\.~ .,
E~ 1M- ..:. ~

s~ :: , I I



Before the commands were decided, each one was carefully scrutin
ised, and had to justify itself functionally before bemg included in
the final set. For example, the argument for binding move and copy to
the mouse:-

':;_._:.:

With absolute tracking move and copy (if graphically selectable),
need a source and destination. If the left button in the text area is
set to fix a target for the operand, then this needs to be displayed
differently to the cursor and the selection. To maintain consistency
with the search and replace commands, the string matched by the search
should be the target, (not the selection). So now the target is a
string and not just a place, which presents greater problems of dif
ferent echoing, user complexity and raises the question of ordering
between the strings.

To avoid these nasties, the idea of move and copy was swapped for
cut, copy and paste. Wnere:

cut cuts the selection to a buffer.
copy copies it there.

1<::' paste sticks the buffer back over the selection.

This brings in arguments of cut buffers versus multi- windows, and
it requires extra keystrol:es, (due to text r.av tng an Lr.d t rect stop off
in buffer), for just the type of operation that should be ideal using
the mouse, (ie. pick it up and put it down).

,0;;'::.
x.::.'

The next solution is to use the left button either as a pop-up menu
(offering move and copy), or the actual copy command, both using the
cursor position at time of button press as the destination. With abso
lute tracking, the menu scheme would work, but covers the exact area of
interest when appearing. So the left button is set to copy, and a dou
ble press within a preset time limit is a move.

7. Command Summary

This section only gives 3 brief def:nition o~ wh3t each commGnd
does, and while it describes what happens in some exceptional cir
cumstances, it is not intended to cover everything, though the vast
majority of possibilities have been considered.

There is always a selection, at its smallest it is a position
between two characters, at most the whole window is selected, (not just
the visible window).

~;.;:

Insertion of typed text occurs to the left of the current selec
tion, thus typed strings are inserted in the correct order. Unfor
tunately this is the only sensible way to type with absolute tracking,
.(with relative tracking text could be inserted at the cursor).

Command Function

editor Invokes the editor, if given an argument it reads that
file into the first window, otherwise it presents a blank
page, in both cases the position before the first charac
ter in the file is selected.

- 5 -

{:::.
1;::::.



create
qui tall

help

read

select

extend

copy

move
down
up
continuous

goto

mark
ul}mark

selectall
delete

append
search

replace

forallmatch

quit

docommand
help

c::::

Creates a new windowwhere sufficie~t space is available.
Qllits the edi tor, fl ashe s a warning on any window not
written to a file.
Writes a message on how to get help on individual com
mands. Help on the editor in general is considered to be
a problem global to the UNIXoperating system.
Reads the file in filename as if it were typed at the
current selection, and selects the position before the
first character of the read in file.
Selects the nearest posi t Ion to the cursor between two
characters.
Extends the selection to the nearest position to the cur
sor between two characters.
Duplicates the selected text at the nearest position to
the cursor between two characters.
Moves the selected text to the cursor position as above.
Scrolls the top line in the window to the current line.
Scrolls the current line in the window to the top line.
Scrolls up or down continuously depending on movement
after initial press until button released.
Displ ays in the window, the approximate region of the
'file pointed at.
Puts a mark on the thumb bar.
Removes the mark pointed at on the thumb bar.
( N.B. This type of marking was decided upon with an
analogy to book marks. For example, imagine several
pieces of blank paper sticking out of a book - they only
mark the context not an exact position. )
Selects the whole window.
Deletes the selected text and p'l aces it in the bit
bucket, (except when it is deleted from the bit bucket).
Appends the selected text to file in filename.
Selects the first text from the current selection, in the
dir ect.ion specified by < or >, that is matched by the
contents of the search buffer.
Replaces the selection with the cor-tents of the replace
buffer.
( N.B. For search and replace operations, meta charac
ters with special meanings may be used. These characters
are the same as in System 3 regex (3) apart from the fact
that they are now control characters. )
Selects the first match of the search buffer, then if any
other commandis done immediately after, the same command
is done for every match. To abort after the first match
just select something else.
Quits this window, if it has not been written, then when
the button is depressed, a warning message flashes, if
the button is released before the cur sor is moved away,
the window quits, otherwise the quit was aborted.
Executes the highlighted commandas defined.
Informs the user what the highlighted commandwill do if
executed, and how to use it.

- 6 -



-. . -
5~~gt~i~t}ii~::~:~;;;#jJ.::r.~~5i~:i:;iN~{:~~~=~:~~~~:~~~f;;B~g£~~~~~~~~~~~{fI;~~~r.t7I~fi~~0f.!jji¥l~~~1~~~~[~~~~E~~¥1¥jl~~~0ff~~~l\l~~~I~I~~~mflF~~~~~~1~5~~~~~f:~~~~
r;;":o
~

8. Clarification of some minor points.

Selecting beyond the end of a line pads out with spaces.

Scrolling beyond end of file stops when EOF marker is at top of
window.

Selection beyond EOF pads out with new lines, then if that position
is also beyond end of line, that line is padded as before.

Moving the selected text into itself does nothing.

Copying the selected text into itself includes shifted text in the
selection.

Delete does not remove the selection, merely changes it to the
position between characters previously at each end of the selection.

Tabstops are fixed every 8 characters, tabs are not expanded to
spaces but appear as such.

Auto indent on LineFeed, using the tabs and spaces from the previ
ous line.

tty settings for interupt, quit, DEL, OOPS, etc. are maintained.

Control characters are echoed as the inverse of normal characters,
(ie. white on black).

Safety from user mistakes is provided by a file called bit.bucket,
which is created when the editor is invoked, and removed when the editor
is exited. The bit bucket contains copies of all text that is deleted.
This file is also editable, but anything deleted from it is not saved.
There is only one bit.bucket for the whole editing session.

In general, any com~a~d may be aborted by moving the mous? away
from where it was pressed, before releasing.

If the mouse or tablet fails to function, no backup is provided.

The search, replace, line number and file name buffers are editable
as text. Editing the line number places the desired line in the center
of the page.

Changing the window size will be another mouse operation, with the
cursor appearing differently between the line number and thumb bar,
after one press the window will be altered by the vertical distance then
moved before the next press.

There will be no escape to the shell as this is unnecessary with
the window manager.

The ability to pipe certain lines to another process is being con
Sidered, but left as a possible future enhancement.

- 7 -



:;~::~:~!.:ll:;;:::::~~:.:~~:~:::::;~:·:·:·::::::::::=::;;=:!:::::.::.~:::::::~:-:.~~~:::=::::::=::;:::~~~~~::~~:::~':::~:':::::~::::::~::::::~~::~~~~:::~-:~'~'~':-:':::::::;:;::~:;;:~::;2;::'-:~~:':':.~:::::i:il:ll:~:i=:~::::::::.:::::i::.:.=;~:=-::::::~·;:;;;~::;;:::·::;
~·:-::'''_.'''::. .....~.•:·-:':--::·:¥-.::·'_-'r-'.-'-::::::::::;:-:-:-:.:.::::::::.:.:::.:~_".-.:;.:.::::::::.:::-::::.:-:-::::::::::::::::::::::::':-:-:-;:-t::.-:-:-i:·::~::::-:-::::::::::::-:.::;::::::::::::_-._-._ .•_-._~::;_::._;.;.::.~:;.;.:_r_'}:~;!;~~;~~~:::_:.;i::~~~~~~~~~~~~7::::::~~~~~~~:~~~:~-:~::-:E!-:.:--':·-;jfj_:':--:-'_~

~ ~

Pepper Command Summary:

Appendix A.

Key

f
F
b
B
a
e
p
n
V
v

x ,
x.
=

xx

yellow

white

green

blue

*
i, TAB

CR
LF
q

(space)
t
o
o
Y
y

d
D

h, BS
H
k

OOPS
K
"

Command

forward character
forward word
backward character
backward word
begin Lirie
end line
up line
down line
up page
down page
top of window
bottom of window
begin file
end file
position to selection
set mark
find mark

select characters
scroll current line to top
select words
continuous scrolling
thumb to page
select lines
continuous scrolling
alter selection
scroll top line to current line
select entire file

insert tab
new line
new line and indent
quote next character
insert a space
twiddle characters
open space
open space and indent
yank kill buffer
pop kill buffer
insert selection

delete character
delete word { ctrl-D also gives
delete previous character
delete previous word
delete to end of line
delete to start of 1ine
delete back to indentation
delete selection

stack dump }

- 8 -



-
eE---

xO enter search string
x1 enter replace string
x2 search down
x3 search up
x4 repl ace down
x5 replace up
s enter string and search down
r enter string and search up
R enter strings and replace down

xR enter strings and replace up

x6 toggle insert mode
x enter/exit scroll region-;:::

enter/exit thumb regionx
xf exit editor

c, C immed iate exit
HELP, ? get this help file

xs write current file
xS write backup
xw write named file
1 refresh screen

xv make wir.dov~
xd kill window
xZ enlarge window
xz shrink window

xr replace window
1. .9 goto window 1•• 9

X change parameter
u enter repeat count

INS repeat last command
DEL abort command

- 9 -


