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International Robomation/Intelligence
2281 Las Palmas Drive
Carlsbad CA 92008
Telephone: (619) 4384424

I met a Mr. Dave Davidson, who is the .Corporate Communications Director.
I'm not too sure what that means, but he was very friendly and supplied
me with all their brochures and said he would be happy to provide
further information should anyone in robotics in the U.K. require it.

The company is mainly concerned with marketing its "affordable robot".
This is an air servo power robot arm controlled by a hierarchy of micros
with a MC68000 as the master control. Each of its 5 axes is controlled
by a 6803 and an additional 6803 acts as a safety control. The robot is
referred to as a workstation too - not quite what I was looking for! I
saw 3 or 4 of these robots being exercised and they look impressively
powerful.

On file at RAL we have an article from Computer Design, January 1983,
which describes IRI's "affordable vision syst.em"; This has been designed
to be the eyes of a robot and is intended to complement their "afford
able robot". The applications that they have in mind are: inspection of
objects on a conveyor belt for rejction of imperfect articles by the
robot; checking that the right object has been grasped and correctly
oriented before milling operations, etc.

Unfortunately, the person responsible for developing the IRI P256 V1Slon
system was away in Germany. However, I did manage to speak briefly to a
person who was programming the system and she gave me a quick demonstra
tion of what th0y had.

The IRI P256 is well described in the accompanying brochures, so I shall
try to describe it only briefly. It is a gray level image analysis sys
tem with a resolution of 256X256 pixels with 256 gray levels. It is
based on a 12MHz MC68000 with

..____)

64K bytes of on-board fast SRAM (70ns) from which application pro
grams are executed

32K bytes of on-board EPROM in which the real time monitor (RT1M)
and some basic utilities (e.g. menu utilities for use with a light
pen) are stored

RS232 and RS422 interfaces

the system bus is an IRI System Bus.

In addition to the host computer, there is an image digi t izer with 4 TV
camera inputs which may be selected by program; 256K bytes (4 frames) of
frame buffer memory which is in the address space of the host computer;
a monitor output; a preprocessor .which includes histogram logic; and an
optional coprocessor.
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There are 2 DHA channels to frame buffer memory:

The read-modify-wri te channel for image input and preprocessing.
The preprocessor is inserted in the read-modify-write loop of frame
buffer memory and so it can perform its functions during image
input.

The coprocessor m1A channel.

The preprocessor performs functions such as point transformation, equal
ization of gray-level distribution for better contrast, histogram calcu
lation, etc.

The optional coprocessor acts as a hardware accelerator for sof't.ware
routines that could be executed in the host computer but 1x to 2x
slower. Like the preprocessor, the coprocessor operates in SIMD (single

'- instruction, multiple data) mode. It consists of a microprogrammable
controller, systolic array processor, high-speed scratch pad memory and
32K bytes of on-board EPROM to contain the P256 subroutine library. The
functions performed by the coprocessor are copying and scaling an image,
image subtraction or addition, gradient and moment calculation and
filtering by matrix convolution. The subroutine library, may be invoked
by program or interactively by using a menu interface and a light pen.

The system which I was shown had no coprocessor, so its functions were
being performed by software running on the host MC68000. I was unable to
get any idea of when a coprocessor would be available, or how much it
would cost. I was shown examples of histogram calculation and plotting,
gradient calculation for edge detection, moment calculation and some
convoluting and filtering. Most of these operations took a few seconds
at least so it looked as if a coprocessor would be required in most
real-time situations. The picture quality on the monitor looked much
like that of a TV picture. Currently, programs to run on the 68000 are
written in FORTH and compiled on a separate system and are down-loaded
into the 68000 from cassette tape.

The future plan seems to be to produce 3 versions of the P256 worksta
tion. These are a program development workstation, a test station and a
production station.

The program development workstation is to provide a suitable environment
under which to develop image analysis programs offline. The UNIX
operating system is viewed as providing the ideal environment. An
extended version of probably V7 with a real time core will be required -
this certainly has not been implemented yet, and I doubt whether they do
currently have a C compiler available despite the claims of the Computer
Design article. The development workstation will have a terminal,
printer, cassette tape and probably more memory.

The test station will be used for real-time testing of image analysis
programs. This will probably require more RAM than a production station
and a terminal, and preferably a printer. Programs can be loaded from a
load terminal (cassette tape) or via the RS422 interface.
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In the production station programs will either be loaded into RAM from a
load terminal (cassette) or burned into EPROM and loaded from there.

I did not worry too much about collecting company details as this did
not look like something we would be interested in as a general purpose
personal workstation. If there is interest in the system for a particu
lar application then further information and exact prices could be
obtained fairly easily. The price of the basic system with host com
puter and digitizer and preprocessor boards seems to be $4995.

I

I
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TeleSoft
10639 Roselle Street
San Diego CA 92121
Telephone: (619) 457-2700

I visited TeleSoft as I know some of the people who work there. I knew
that they do not have personal computers with graphics capability, run
ning UNIX. However, as they are on the list of 68000 vendors, I thought
that it was probably worthwhile to visit, pick up their literature and
to note down a few points.

The main concern of the company is to market their Ada compiler. This is
as yet a compiler for a subset of Ada, but a full Ada compiler is under
way and should be released by the 4th quarter of this year. The Ada com-

"- piler is available under TeleSoft's programming support environment on:

IBM 370 under CMS
Vax under VHS
IBM PC
HP 9836 under HPOS1
standalone on MC68000 for Q-bus and Multibus.

In addition, not described in the accompanying glossies, the Ada com
piler is being implemented under UNIX - Berkeley 4.1 on the Vax and
UniSoft UNIX on the MC68000.

On the hardware side, the company sells the T68KQ, a Q-bus compatible
processor board with 8MHz MC68000 processor. They've also produced a
multiple processor system, MPS. This permits up to 16 separate Q-bus
based systems to share peripherals over a high speed bus - the a-bus. A
further processor, the lOP, handles 10 requests and low-level device
control for shared devices. The other processors may run any operating

~ systems and can have private peripherals. The device drivers for shared
peripherals in these operating systems are modified to communicate with
the a-bus.

The company is registered under Renaissance TeleSoftware Inc. but trades
under the name TeleSoft.
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Altos Computer Systems
2360 Bering Drive
San Jose CA 95131
Telephone: (408) 9466700

After a couple of days of telephoning Altos, I eventually spoke to a
Linda Salmon in their International Marketing Division. She was deter
mined that we should go throught their U.K. branch and gave me the fol
lowing address and names:

Roger Llewellyn or Phil Harris
Altos Computer Systems Ltd.
Office Suite E
Manhattan House
High Street
Crowthorne
Berkshire
Telephone: 344677911
Telex: 849139

She said to come back to her if we were not satisfied by the U.K branch
but she felt that they would be able to give us a demonstration and to
answer questions relating to U.K. conditions.
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Valid Logic Systems Inc.
650 North Mary Avenue
Sunnyvale CA 94086
Telephone: (408) 7731300

The person I met from Valid was Bob Lorentzen, their Product Marketing
~1anager. His first reaction when I outlined our requirements was that
the general personal workstation aspects of their Scaldsystem (struc
tured computer-aided logic design) were of low priority and that the
system was targetted so specifically towards supporting logic design
that it would potentially not be useful generally. However, their system
seemed to come the closest to satisfying the requirements specification
of all the systems I saw in the U.S., although what I saw of it did not
make me think it matched the PERQ capabilities.

~ Lorentzen did not know the answers to some of my questions and when in
doubt, left me with the impression that he guessed. So it may be
worthwhile to arrange with their U.K. branch to see the Scaldsystem to
verify details!

Marketing and support is done in the U.K. and the address and name of a
person to contact is:

Tom Lawrence
Valid International
Berkshire House
56 Herschel Street
Slough SL1 lTP
Telephone: (0753) 820101

The Scaldsystem consists of a controller, called the S32 Computer System
and up to 4 graphics Design Stations.

\_.
The S32 is based on the MC68000 processor (guessed 8MHz) and runs System
III UNIX.

I was told that the system bus was Multibus and that it would be
possible to upgrade the processor' to the 68010, but this needs
checking.

Up to 4 Mb of memory is supported, configurable in 1/2 Mb quanti
ties.

There are a number of RS232 interfaces - I was unable to determine
exactly how many, but there seems to be 1 available for dialup
access, 2 or 3 for each design station (for keyboard and graphics
and tablet) and 3 or 4 more for printer attachment etc. to the S32.

Ethernet is supported and there is a 56Kbit/sec bisynchronous
interface to connect to an' IBM 370 and a parallel interface for
connection to a VAX. There is no IEEE488 interface, or X25
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support. However they would try to assist with mounting X25
software if their system were bought together with their software.
LucasFilm apparently buy their hardware without their software -
the hardware only is marketed by AIM Technology in the U.S. The
U.K. office would also handle any hardware-only purchases. Valid
would support only what they had sold obviously.

Winchester disk storage is available in 33, 70, 240 and 420 Mbyte
sizes, with a 1/2" streaming tape drive for backup.

The graphics design station is based on the Intel 8086 and has the fol
lowing features:

20" raster scan display with resolution of 1024x768 points with 4
intensi ty levels. Landscape orientation only. The refresh rate is
60 times per second. There are no immediate plans for a colour
display .

.The display station has 272K bytes of display memory whict contains
the pixel map being displayed. A screen to be displayed has to be
transferred into the display memory, either from the S32 memory or
a host computer memory or disk.

The display station can be located up to 500 feet away from the
S32.

The keyboard has a large number of programmable function keys.

Summagraphics tablet (13x11") and 4 button puck. A nice feature of
the design station desk is that they attach the tablet underneath
the .desk top which makes for more surface workspace.

Software on the system consists of Unix System III and a graphics editor
(ged) which cannot be unbundled. Additional application software can be
unbundled and consists of logic design verification programs - compiler,
timing verifier, logic simulator, a library of standard logic components
etc. I saw a demonstration of the graphics editor only another
demonstration was in progress and this prevented a full demonstration as
only one person was allowed to log in as demo at a time. The display
reminded me very much of the Apollo display. I couldn't get a clear
idea of how fast the graphics was from what I was shown. It was possible
to alternate between a "Unix display" i.e. a dumb terminal type inter
face and a "graphics display" - the graphics editor menu down one side
and the design being created occupying the rest of the screen. The
graphics editor didn't look all that easy to use - a lot of use of func
tion keys was made but there was some menuing - not popup or scrolling
though. Text processing programs and editors available were ed t vi t

nroff and troff.

Price in the U.K is probably 30000 - 35000 pounds for the design station
and 40000 for the S32 controller. This excludes the software for which
we would have to get a price from Valid International.
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Company details - 65 people, 20000 square feet of office space in the
U.S. Venture capital finance. They do all their own manufacture but buy
in lots of the components. U.K. office was the last to open. They have
systems out in the field.
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Corvus Systems
2029 O'Toole Avenue
San Jose CA 95131
Telephone: (408) 9467700

At Corvus I met Bill Gitow, their International Sales Representative.
Corvus products are marketed in the U.K. by Keene Computers, who also
market the Sun. Corvus started out as a disk manufacturer and have now
branched out into marketing their Omninet network and workstations as
well.

The system I looked at was the Corvus Concept. This is based on the
MC68000 processor. I could not discover what the clock rate is. Further
specification details are:

Apple bus-compatible bus

Bit-mapped display, 35MHz, with a resolution of 720x560 points. The
display can be used in either landscape or portrait orientation -
requires a single switch to be flicked. I was warned by TeleSoft,
who had a Corvus Concept on trial, that the graphics was unbeliev
ably slow. The processor handles the screen refresh.

256K bytes of RAM is standard and this is extendible up to 512K.

There are 2 RS232 interfaces, 1 RS422 interface for Omninet and a
IEEE 488 board can be plugged in.

Winchester disks come in 6 Mb, 12 Mb and 18 Mb sizes and up to 4
can be dai3y-~hained.

Mice and tablets are being considered. The keyboard has a number of
programmable function keys.

There are floppy disk and video cassete recorder options too.

The display looks a lot like the PERQ but the graphics has only a frac
tion of the PERQ's speed.

The software is a Pascal system with a UCSD file structure. There is no
mu1titasking so although up to 17 windows can be defined, only one is
active at a time. They have a font editor which is inferior to the one
on the PERQ (but modelled along similar lines). Fonts contain 255 char
acters and seem to have 16x16 pixel size characters. The first 136
characters in a font being the Ascii set. They have program editor and
word processor called EdWord and Logicalc. There is no software support
for networking although there is hardware to support this. They have a
rudimentary graphics modelled on UCSD Turtlegraphics.

There do seem to be plans to add memory management and to use UNIX.
Xenix is being considered.
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The price for a station with 256K bytes of memory and software is $4995
_ for 512K bytes it costs an additional $1000. Fortran EdWord and Logi
Calc all cost extra.

The company details are: started in 1979 and now consists of over 400
employees. The turnover was over 27 million dollars last year and should
exceed 50 million this year.

:~
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Pyramid Technology
2471 East Bayshore Road
Suite 600
Palo Alto CA 94303
Telephone: (415) 4942700

Rick Rashid had passed on Len Ford's name to this company, as well as
the fact that RAL had mounted UNIX on top of ACCENT. I arranged to see
them to discover what they were doing and described what we had done in
general terms. I explained that the work done by RAL was done under a
collaboration agreement with ICL, who had rights to it.

The people I met were Ross Bott ( a UCSD graduate) and, later on, his
boss Rob Ragan-Kelly, who apparently went to university in Sweden. Not
that Rob Ragan-Kelly looked all that recent a graduate however. The com
pany gave the impression of being fairly new but I did not discover any
defini te company details, other t han the fact that they were offering
three jobs - with salaries in the $55000 - $60000 range, any ACCENT and
UNIX experience being a definite advantage!!

)

They are in the process of building a new machine which is going to be
called, originally, the Pyramid Machine. The machine is based on RISC
(reduced instruction set machine) ideas - I've attached 3 papers on
these which they gave me. It was explained briefly to me as follows: The
idea is to reduce the number of instructions in a machine's instruction
set to a minimum in order to reduce the logic on boards. The way in
which an instruction set is reduced is to have large numbers of regis
ters so that most operations are R -> R and memory accesses are minim
ized. This allows a very powerful single-chip computer to be produced.
ComptLer s then have to be relied upon to produce good code as the
reduced instruction set results in longer sequences of code being gen
erated. In practice though, a simple sequence of instructions can some
times be faster to execute than a single complex instruction which does
the same thing.

The Pyramid machine details are company confidential. What they were
able to tell me was: it is TTL-based, will have 1.5 - 3 times the power
of a VAX 111780, can operate in three modes - user/supervisor/kernel,
and will support paging. Their machine will have a control stack of 16
frames of 32 registers which will be used by kernel and user. Procedure
calls are very fast as on a call all that has to be done is to move a
pointer to point to the next frame of registers available for the pro
cedure to work with - the one above, as the frames are organized in a
stack. Argument passing is done by having a window into the first 16
registers of the frame above the one currently being used and transfer
ring argument values to these registers before the call.

The machine is designed to be a multiprocessor with up to 4 processors.
Their aim is to have a UNIX-like environment. As they require an
operating system which has been designed to be distributed they plan to
remove as much of the UNIX kernel as is possible while still retaining
an external UNIX appearance. The present aim is to implement ACCENT with

March 11, 1983
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UNIX sitting above it.

I was asked to pass on various questions regarding collaboration and
information exchange: ego possibility of a couple of people from RAL
working with them for month (s); whether there was any ICL interest in
collaboration with them and us; the possibility of one of them visiting
the U.K. I shall inform IeL of these details - Bob Hopgood suggested
that Richard Stonehouse or Chris Barfield should be contacted.
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,~,
'0 --1

Rise I: A REDUCED INSTRUCTION SET VLSI COMPUTER

DAVID A. PATIERSONand CARLO H. SEQUIN

Computer Science Division
University of California
Berkeley,California

ABSTRACT

The Reduced Instruction Set Computer (RiSe) Project
investigatesan alternative to the general trend toward
computers with increasinglycomplex instruction sets: With a
proper set of instructions and a correspondingarchitectural
design. a machinewith a high effective throughput can be
achieved. The simplicity of the instruction set and addressing
modes allows most instructions to execute in a single machine
cycle, end the simplicity of each instruction guaranteesa short
cycle time, In addition, such a machine should havea much
L orter design time.

This paper presents the architecture of RiSe I and its novel
hardwaresupport scheme for procedure call/return.
.Overlappingsets of register banks that can pass parameters
directly to subroutinesare largely responsible for the excellent
-oertorrnanceof RiSe'!. Static and dynamic comparisons
betweenthis new architecture and more traditional machines
are given. Although instructions are simpler, the averagelength
of programswas found not to exceed programs for DEe VA:X
11 by more than a factor of 2. Preliminary benchmarks
demonstratethe performance advantagesof RISC. It appears
possibleto build a single chip computer faster than VA:X
11/780.

INTRODUCTION

A general trend in computers today is to increasethe
complexity of architectures commensurate with the
;f)creasingpotential of implementation technologies,as
L .ernplified by the complex successors of simpler
machines. Compare, for example, VAX 11' to PDP-11,
IBM System/382 to IBM System/3, and Intel
iAPX-4323 to 8086. The consequencesof this
complexity are increaseddesign time, increaseddesign
errors,and inconsistent irnplernentations.f We call this
classof computers, complex instruction set computers
(eISC).

Investigationsof VLSI architectures>indicated that one
of the major design limitations is the delay-power
penaltyof data transfers across chip boundariesand the
stili-limited amount of resources (devices)availableon a
singlechip. Evena million transistors does not go far if
a whole computer has to be built from it.6 This raises
the question as to whether the extra hardware needed

0149·7111/81/0000/0443$00.75 e 1981 IEEE

to implement CISC is the best way to use this
resource.

'I IIscarce

The above findings led to the ReducedInstruction Set
Computer (RISC) Project. The purposeof the project is
to explore alternatives to the generaltrend toward
architectural complexity. The hypothesis is that by
reducing the instruction set, VLSI architecturecan be
designed that uses the scarce resourcesmore effectively
than CISC. We also expect this approachto reduce
design time, the number of design errors, and the
execution time of individual instructions.

Our initial version of such a computer is called RISCI.
To meet our goals of simplicity and effective single-chip
implementation, we placed the following "constraints"
on the architecture:

1. Execute one instruction per cycle. RISC I
instructions should be about as fast as, and no
more complicated than, micro instructions in
current machines such as PDP-ll or VAX.
Furthermore, this simplicity makesmicrocode
control unnecessary. Skipping this extra level of
interpretation appears to enhanceperformance
while reducing chip size.

2. All instructions are the samesize. This again
simplifies implementation. We intentionally
postponed attempts to reduceprogram size.

3. Only load and store instructions accessmemory;
the rest operate between registers. This restriction
simplifies the design. The lack of complex
addressing modes also makes it easier to restart
instructions.

4. Support high-level languages(HLL). An
explanation of the degree of support follows. Our
intention is always to use high-level languages
with RISC I.

RISC I supports 32-bit addresses,8-, 16-, and 32-bit
data, and several 32-bit registers. We intend to
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,
examine support for opsrating systems and
floating-point calculations in successors to RISC I.

( )
/

It would appear that such constraints would result in 8

machinewith substantially poorer code density-or poorer
performance or both. In spite of these constraints, the
resulting architecture competes favorably with other
state-of-the-art machines such as VAX 11/780. This is
largely becauseof an innovative new scheme of register
organizationwe call overlapped register windows.

SUPPORT FOR HIGH·LEVElLANGUAGES

Clearly. new architectures should be designed with the
needs of high-level language programming in mind. It
should not matter whether a high-level language system
is implemented mostly by hardware or mostly by
software. provided the system hides any lower levels
from the programmer.' Given this framework. the role of
the architect is to build a cost-effective system by
deciding what pieces of the system should be in
hardware and what pieces should be in software.

The selection of languages for consideration in RISC I
was influenced by our environment; we chose C and
Pascal.Ianguages.because there is a larger user
community and considerable local expertise. Given the
limited number of transistors that can be integrated into
a single-chip computer, most of the pieces of a RISC
high-level language system are in software. with
hardware support for only the most time-consuming
events.

To determinewhat constructs are used most frequently
and. if possible. what constructs use the most time in
averspe pograma, we looked first st the frequency of
classes of variables in high-level language programs.
Figure 1 shows data collected by Goldwasser for Pascal
language! and by Cohen and' Soiffer for C language.9

The most important observation was that integer
constants appeared almost as frequently as components
of arrays or structures. What is not shown is that over
80% of the scalars were local variables and over 90%
of the arrays or structures were global variables.

c.

We also looked at the relative dynamic frequency of
high-level language statements for the same eight
programs; the ones with averages over 1% are shown
in Figure 2. This information does not tell what
statements use the most time in the execution of typical
programs. To answer that question. we looked at the
code produced by typical versions of each of these

statements. A "typical" version of each statement v•.as
supplied by W. Wulf (private communication, Nov. 1980)
as part of his study on judging the quality of compilers.
We used C compilers for VAX. POP-11, and 680CXJ to
determine the average number of instructions and
memory references. By multiplying the frequency of
occurrence ·of each statement with the corresponding
number of machine instructions and memory references,
we obtained the data shown in Figure3, which is
ordered by memory references.

The data in these tables suggests that the procedure. '.
CAll/return is the most time-consuming operation in
typical high-level language programs. The statistics on
operands emphasizes the importance of local variables"
and constants. RiSe I attempts to mak.eeach of these
constructs efficient. implementing the less-frequent
operations with subroutines..

BASIC ARCHITECTURE OF RISC I

The RiSe I instruction set contains a few simple J
operations (arithmetic. logical. and shift) that operate on
registers. Instructions, data, addresses. and registers are'
32 bits. RISC instructions fall into four categories
(Figure 4): arithmetic-logical (ALU). memory access,
branch. and miscellaneous. The execution time of a
RISC I cycle is given by the time it takes to read 8 .

register, perform an AlU operation. and store the result
back into a register. Register O.which always contains
0, allows us to synthesize a variety of operations and
addressing modes.

load and store instructions move data between registers
and memory. These instructions use two CPU cycles.
We decided to make an exception to our constraint of
single-cycle execution rather than to extend the general
cycle to permit a complete memory access. There are
eight variations of memory access instructions to
accommodate sign-extended or zero-extended 8-bit, <:»
16-bit and 32-bit data. Although there appears to be
only one addressing mode. index plus displacement, .
absolute and register indirect addressing can be
synthesized using register 0 (Figure 5). (Using one
register to always contain 0 dates back at least to
COC-6600 in 1964. It has also appeared in more recent
designs.10)

. Branch instructions include CALL retum, conditional and
unconditional jump. The conditional instructions are the
standard set used originally in POP-11 and are found in
most 16-bit microprocessors today. Most of the'
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innovative features of RiSe are found in CALL. retum,
and jump; they will De discussed in subsequent sections.

Figure 6 shows the 32-bit format used-by
register-to-register instructions and memory access
instructions. For register-to-register instructions, DEST
selects one of the 32 registers 8S the destination of the
result of the operation, which itself is performed on the
registers specified by SOURCEl and SOURCE2. If IMM
equals 0, the low-order 5 bits of SOURCE2specify
another register; if IMM equals 1. SOURCE2expresses
a sign-extended, 13-bit constant. Becauseof the -
frequency of occurrence of integer constants in
high-level languageprograms, the immediate field has
been made an option in every instruction. sce
determines if the condition codes are set. Memory
access instructions use SOURCE1to specify the index
register and SOURCE2to specify the offset. One other
format. which combines the last three fields to form 8

19-bit PC-relative address, is used primarily by the
branch instructions.

Although comparativemeasurements of benchmarks are
the real test of effectiveness, the examples in Figure 5
show that many of the important VAA instructions can
be synthesizedfrom simple RISC addressing modes and
operation codes. Remember that register 0 (TO) always
contains 0; specifying TO as 8 destination does not
change its value.

Register Windows

:~

The previously mentioned investigations on using
high-level languagesindicate that the procedure CALL
may be the most time-consuming operation in typical
high-level languageprograms. Potentially, RiSe
programs may have an even larger number of calls,
ecausethe complex instructions found in CISCs are
ubroutines in RISC. Thus, the procedure CALL must be
as fast as possible, perhaps no longer than a few jumps.
The RISC register window scheme comes close to this
goal. At the same time. this scheme also reduces the
number of accessesto data memory.

.:;
~"

Using procedures involves two groups of
time-consuming operations: saving or restoring
registers on each CALL or return, and passing
parameters and results to and from the procedure.
Becauseour measurementson high-level language
programs indicate that local scalars are the most
frequent operands, we wanted to support the allocation
of locals in registerS. Baskett" and Sites'2 suggested
that microprocessors keep multiple banks of registers on

-
the chip to avoid register saving and restoring. Thus,
each procedureCALL results in.a new set of registers
being allocated for use by that new procedure. The
.return just alters a pointer, which restores the old set. A
similar schemewas adopted by RiSe I; however, some
of the registers are not saved or restored on each
procedureCALL These registers (TO through r9) are
called global registers.

In addition, the sets of registers used by different
processesare overlapped to allow parameters to be
passed in registers. In other machines. parametersare
usually passedon the stack with the calling procedure
using a register (frame pointer) to point to the beginning
of the parameters(and also to the end of the locals).
Thus, all referencesto parameters are indexed
referencesto memory. Our approach is to break the set
of window registers (r10 to r31) into three parts (Figure
7). Registers26 through 31 (HIGH) contain parameters
passedfrom "above" the current procedure; that is, the
calling procedure. Registers 16 through 25 (LOCAL)are
used for the local scalar storage exactly as described
previously. Registers 10 through 15 (LOW) are used for
local storage and for parameters passedto the
procedure "below" the current procedure (the called
procedure). On each procedure CALL. a new set of
registers, r10 to r31, is allocated; however, we want the
LOW registersof the "caller" to become the HIGH
registersof the " callee." This is accomplished by
having the hardware overlap the LOW registers of the
calling frame with the HIGH registers of the called
frame; thus, without moving information. parameters in
registers 10 through 15 appear in registers 25 through
31 in the called frame. Figure 8 illustrates this approach
for the case in which procedure A calls procedure B,
which calls procedure C.

l
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Multiple register banks require a mechanism to handle
the case in which there are no free register banks
available. RISCI handles this with a separate register
overflow stack in memory and a stack pointer to it.
Overflow and underflow are handled with a trap to 8

software routine that adjusts that stack, Becausethis
routine can save or restore several sets of registers, the
overflow/underflow frequency is based on the local
variations in the depth of the stack rather than on the
absolute depth The effectiveness of this scheme
depends on the relative frequency of overflows and
underflows; studies by Halbert and Kessler'3 indicate
that overflow will occur in less than 1% of the calls
with only 4 to 8 register banks. (Other machines, such
as BBN cno, contain register banks, but they do not
overlap their windows.)
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The final step in allocating variables in registers is
handling the problem of pointers. Pointers to variables
require that variableshave addresses. Becauseregisters
do not normally have addresses, one could let the
compiler determine what variables have pointers and put
such variables in memory. This precludes separate
compilation, slows down access to these variables, and
is beyond state-of-the-art compiler technology found in
most companies and universities. RiSe I solves that
problem by giving addressesto the window registers. If
we reservea portion of the address space,we can
determine, with one comparision, whether an address
points to a register or to memory. Becausethe only
instructions to accessmemory are load and store, and
they take an extra cycle already, we can add this feature
without reducing the performance of the load and store
. instructions. This permits the use of straightforward
compiler technology and still leaves a large fraction of
the variables in registers.

Delayed Jump

The normal RiSe I instruction cycle is just long enough
to execute the following sequenceof operations:

1. .Reada register

2. Perform an ALU operation

3. Store the result back into a register

We increaseperformance by prefetching the next
instruction duing the execution of the current instruction.
This introduces difficulties with branch instructions.
Severalhigh-end machines have elaborate techniques to
prefetch the appropriate instruction after the branch,"
but these techniquesare too complicated for a
single-chip RiSe. Our solution was to redefine jumps so
that they do not take effect until after the following
instruction; we refer to this as the delayed jump. (This
approach to branching dates back.to MANIAC I in 1952
and is now commonly used in microprogramming.)

The dela-,'edjump allows RiSe I always to prefetch the
next instruction during the execution of the current
instruction. The machine languagecode is suitably
arrangedso that the desired results are obtained.
BecauseRiSe I is always intended to be programmed in
high-level languages,we will not "burden" the
programmerwith this complexity; the burden will be
carried by the programmers of the compiler, the
optimizer, and the debugger.

-_'t

To illustrate how the delayed branch works, Figurege
shows a sequenceof instructions, which, in machines
with normal jumps, would be executed in the order 100,
101, 102, 105, •••• To get that same effect in RiSe I, ,
we would have to insert NOP (Figure 9b). In this case, ,
the sequenceof instructions for RiSe I is 100, 101, 102.
103, 106, ••• . In the worst case, every jump could take.
two instructions. The RiSe I software, however,
includes an optimizer that tries to rearrange the
sequenceof instructions to perform the equivalent, ", ..
operationswithout NOP. Such an optimized RiSe I.". '. '
sequence is 100, 101, 102, 105, ••• (Figure 9c). Because
the instruction following a jump is always executed, and.
the jump at 101 is not dependent on the ADD at 102, .,,:
this sequenceis equivalent to the original program
segment in Figure9a. ,:..

" -- '. "

EVALUATION ": :
.!": •..~."

We will now evaluatethe register window scheme, the
delayed branch, and the overall performance of RiSe___).' ;"

; .

Register Windows

The results of running two benchmarks have shown that
the window registers have been effective in reducing the
cost of using procedures. The puzzle and quicksort
programs, discussed below, are highly recursive
routines. Figure10 shows the maximum depth of
recursion, the number of register window overflo"";sand
underflows, and the total number of words transferred
between memory and the RiSe epu as a result of the
overflows and underflows. It also shows'the memory.
traffic caused by saving and restoring registers in VAX.
For this simulation,we Assumed that half of the
registerswere saved on an overflow and half were
restored on en underflow. We found that for RiSe I, an
average0.37 words were transferred to memory per
procedure invocation for the puzzle program and 0.0';,-../
for quicksort, Note that half of the data memory

, ,

.. ,
to: ".

" :':
.: '.:
.. ' 1'.. ,

. 1
j

;: I

references in quicksort were the result of the
CALLI return overhead of VAX.

.... ,
We also compared the performance of the RiSe i
proceduremechanismto that of more traditional
machines. We chose VAX. PDP-11, and M68000 as
representativesof modern computers. Figure 11 shows
the numbers of instructions. their total sizes in bytes,
and the numbers of register accessesand data memory
accessesfor these three computers and for RiSe I. The
data was collected by looking at the code generated by
e compilers for these four machines for procedure CALL
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and return statements,assuming that two parameters
are passedand requi'ringthat 3 registers must be saved.
It appears that this scheme reduces the cost of using
procedures significantly,

This schemealso reducesoff-chip memory accesses. In
traditional machines,generally 30% to 50% of the
instructions accessdata memory, with not more than
20% of the instructions being register-to- register.11;
BecauseRiSe I arithmetic and logical instructions
cannot accessmemory, it might be expected that even a
higher fraction of the instructions would be data
transfer. This was not the case. The static frequencies
of RiSe I instructions for nine typical e programs show
that less than 20% of the instructions were loads and
stores, and more than 50% of the instructions were
register-to-register, RiSe I has successfully changed
the allocation of variablesfrom memory into registers,
This indicates that RiSe I requires a lower number of
the slower off-chip memory accesses. It also indicates
that complex addressingmodes are not necessary to
obtain an effective machine,

Delayed Jump

The performanceof our scheme can be evaluated by
counting the number of NOP instructions in a program.
Static figures before optimization show that in typical e
programs, about 18% of the instructions are NOP
instructions inserted after jump instructions. A simple
peephole optimizer built by students reduced this to
about 8%. The optimizer did well on unconditional
branches (removingabout 90% of NOP instructionsl.
but not so well with conditional branches (removing only
about 20% of NOP instructions). This optimizer was
improved to replaceNOPby the instruction at the target
of a jump. This technique can be applied to conditional
branchesif the optimizer determines that the target
instruction modifies temporary resources; for example,
ari instruction that only modifies the condition codes. In
quicksort. this removesall NOP instructions except
those that follow return instructions. The dynamic
effectiveness of the delayed branch must now include
the number of NOP instructions plus the number of
instructions after conditional branches that need not be
executedfor a particular jump condition. The total
percentagesof either type of instruction for three
programs discussedbelow are 7%.22%. and 4%.

..

Overall Performance

To judge the effectiveness of the Rise I architecture,
wecomparedit with VAX, becauseit is an efficient

. and a popular modern machine, and PDP-11, because it
was the first machinewith a e compiler and many
persons assume that it is an ideal C machine. (This
assumption is not valid. Although the development of e
languagewas somewhat influenced by the architecture
of PDP-11, most features of e came from B language,
which was an interpreted languagenot tailored to any
architecture.) Figure 12 and 13 compare the static
numbers of instructions and the static sizes for 11
typical C programs for the three machines. The
compilers used are similar: the VA)( and RiSe e
compilers are both based on the UNIX portable e
cornpiler" the compiler for PDP-11 is based on the
Ritchie e cornpiter.!? Experimentscomparing the Ritchie
and Portable e compilers for PDP-11 have shown that
the averagedifference in the size of generated code is
within 1% (S. e. Johnson, private communication, Feb.
19811.

We found that on the average, RiSe uses only
two-thirds more instructions than VA)( and about
two-fifths more than PDP-11, in spite of the fact that
RiSe I has simple instructions and addressingmodes,
The most surprising result was that the RiSe programs
were only about 50% larger than the programs for the
other machineseven though size optimization was
virtually ignored.

Our main goal for RiSe I was to obtain good
performance; thus dynamic results are the most
interesting. We used a e program developed by F.
Baskett (private communication, Nov. 1980) called
"puzzte." This program is essentially a recursive
bin-packing program that solves a three-dimensional
puzzle. It displays many features of typical programs,
except that there are less than 0.2% procedure calls,
the call stack gets deep (20 nested procedure calls), and
there are a relatively large number of loops. There are
several versions of this program. Version A. which we
received from Baskett, accessesarrayswith subscripts
and does not declare register variables. (Register
variables are hints, supplied by the programmer, to the
e compiler that this variable will be used frequently and
should be kept in a register). We produced version B by
converting some local variables into register variables. In
version e. we changed the way arraysare accessed
from using subscripts to using pointers, The dynamic
informatio~ about each version of this program is shown
in Figures14 and 15 . The statistics of VA)( came from
an instruction trace program developed by Henry.18
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RISC I statistics came from a simulator developed by
Tamir.

The results of running the recursive quicksort program
are also shown in Figure 14. This program sorts 2,600
fixed-length character strings. The only unusual feature
of this program is that it has relatively more memory
references than most programs. The execution of this
program results in 1,713 multiply operations and 1,712
divide operations,which are subroutines in RISC 1.

There is much important information in Figure , 4. The
first is that it made no difference to RISCwhether we
used version A or B of the puzzle program. This is
becausethe architecture makes it relatively simple for a
compiler to allocate local scalars in registers, so there is
no need for a language to give hints telling which should
be used. Thus, a one-pass Pascal compiler, which does
not normally allocate registers for machines like VAX,
would likely allocate variables in registers for RISC I
and, therefore, result in the same relative memory traffic
as version A of the puzzle program.

Note that most commercial compilers do little
optimization. For example, even 8 three-pass,
optimizing Pascalcompiler for DEC 10 does not allocate
locals Orparameters in registers.19 It is unreasonable for
architects to expect in the near future, sophisticated
optimization from production quality compilers.

RISC I was successful in reducing the number of data
accessessubstantially in all programs. The·number of
instruction words accessed, however, increased. This is
becauseof the number of NOP instructions executed
and the inefficient encoding of RISC I instructions. We
expect that successors to RISC I could reduce this
difference.

.,

The final, and perhaps most important figure of merit is
execution time. This was easy to determine for VAX
"/780, but difficult for RISC I as we do not have any
hardware. Our execution time was based on low-level
circuit simulations of early RISC I designs. Using
student circuit designers, we estimated that a RISC
.cycle is 400 nsec: '00 nsec to read one of 135
.registers, 200 nsec to perform a 32-bit addition, arid
'00 nsec to store the result in one of '35 registers. We
can argue that this is both optimistic and pessimistic: it
is optimistic because it is unlikely that students can
successfully build something that fast in their first pass,
and it is pessimistic because it is likely that an
experienced IC design team could build a much faster
machine. Nevertheless,the student-technology

-
single-chip RIS'CI may still be faster than VAX 11/780
for all benchmarks mentioned previously. . .

We must mention that althouph our results are - ... ~ fI

encouraging, they are estimates based upon simulation~~~_.
. - ,;.",or,

of only two programs. Further benchmarks mustbe :.__:~~;;
finished before we can accurately characterizethe .... \:.i .
performance of RISC I. . :J :~:.;.~.

.. '~~~;~~:

MEMORY INTERFACE .' .~~;
... , '.) .

In most computers, the interface to memory is a main '.. ~ .
performance bottleneck, so this point must be given . '1·

.- ..•'j .

special consideration. In our discussions and . .' 1 .
simulations, we assumed that we can access main . ~.!.
memory in a single RISC CPU cycle. Depending on the . j

I
assumptions that we make for our CPU cycle time, and .~~
the size of the main memory, this assumption may be ...::l·
too optimistic. We thus reworked our benchmarksalso ·'1 :
under the assumption that two CPU cycles are required''1 :
to access data memory. Performancedegraded r '., . :" j .
'0 %, because the register window scheme redu the J •
number of off-chip data references. Data referencesdo':~:
not constitute a problem, but allowing two cycles to·-··..<~.
fetch instructions out of memory would reduce •... -....:j.

'" - '. .
performance by almost a factor of 2. . " ..) j .

Clearly, this memory interface will be an increasingly., : '. ;
critical point as the intrinsic speed of CPU increases .~.
with technologic advances. Accesses to memory canbe.-j •
forced to come mainly from on-chip, either with a iBrg~;; :
register file or with an on-chip cache and associated - :.::~;.:~.
memory hierarchy.!

'...:'
.~--. .~:.~.!

An on-chip cachewould be beneficial for RISC. It is _ !
sometimes forgotten that a cache is ineffective if it is .'
too small. In our opinion, an effective data cachewould ;
have to be quite a bit larger than our planned register.
file, especially if it was to provide the same number of, .
ports as the register file. More-complicated tral,--_)on
and decoding might even strech the basic CPU cycle
time. Given the limited amount of circuitry we can place'
onto a chip at this point and given the university.... I

environment and our student designers, a register file is' :
clearly the safer way to go.

.;". s ,

Although the problem of data accesseshas been ~ .... I

alleviated by the large number of registers and the
efiective window scheme, the number of instruction .
fetches has actually increasedbecauseof the simplicity ;
of individual instructions. Instruction fetches from main i
memory are indeed a major speed-limiting factor. An, !
instruction cache is a desirable commodity. Because- .:~
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there is no need for epu to write into this cache, its
controller can be simpler than that of a date cache. We
decided that RiSe I should not be burdened with the
design of a full-blown on-chip cache, but an instruction
cache would definitely be a good idea for the
next-generation RiSe.

SUMMARY

From our limited experience based on the results of a
few small programs, it appears that the reduced
instruction set computer is a promising style of
computer design. We have convinced ourselves that
complicated addressing schemes are not a vital part of
high-throughput machines. The register window scheme
appears to make significant contributions toward the
'pertormance of our architecture and should be seriously
consrtered in other machines.

We have taken out most of the complexity of modern
computers without sacrificing much in code density
while improving periormance. The loss of complexity
has not reduced the functionality of RiSe; the chosen
subset especially when combined with the register
window scheme, emulates more complex machines. It
also appears we can build a single-chip computer much
sooner than the traditional architectures. We are
encouraged by these results and have begun the design
of 8 single-chip RiSe I 8S part of a multiterm class
project.
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A bst ract

~111'S ,s a new single chip VISI procc-sor architecture that
obtains hirh pcrfnrrnancc b) n1C~Il,of a simplified instruction set,
similar 10 those found in microcngincs The prrccsscr is a fast
pip~linet! engine implemented in a slf'gle "IOS chip MIPS uses
software soluuons 10 !'CI'c;";!1traditional hardware problems. such
as pre. idlll[: pipeline interlocks.

Introduction

MIPS (Microprocessor without Intcrlock ed Pipe Stapes) is a
general purpose processor arrhiiccturc de,i~ned 10 be irnple
merited on ~ single \·I.S1 chip. The main goal of the design is
high performance in the execution of cnmpilcd code. The
architecture is experimental since it makes a radical break with
the trend of modern computer architectures The basic
phil()!;oph) of M II'S is to present an instrucuon set that is a
compiler-driven encoding of the microcnginc. Thus, lillie or no
decoding is needed and the instructions correspond closely to
microcode instructions, The processor is pipclincd but provides
no pipeline interlock hardware: this function must he provided by
software.

The 'iiI'S archi'ccturc provides a r:lSI and simptc insuucuon set,

'I"i, apprrurh i~rurrruily INti ill the It ISC' project I. It is directl)'
opposed to the approach taken hy architectures such as the VAX.
l lowcvcr. there are ~i!?nific;101differences between the RISe and
MIPS approaches. '1".: major differences revolve around the
philosophy of the architecture. The Iuse architecture is simple
both in the mrtrurtion set and the hardware needed 10 implement
that mstruuion SCl Allhough the \I1I'S instruction SCI has a
simple hardware implementation (i.e .. it requires a minimal
amount of hard ••••.are control), the 1I~,'r level instructinn !'Ct is not
as ~lraipht forward. and the sirnplici: y of the user bel instruction
set is secondary.

In the area of software, the RISe project relics on a straight
Iorward inst ruction ~I and ~Ira i~ht [or .••..ard compiler technology.
The RiSe instruction set design is based on this compiler
icchnolog,'. MIPS .••.'ill require more sophisticated compilers from
••••.hich it will gain significant PCI Iorrnancc bene fils.

\iIPS i~ designed Ior high performance. To :1110"" the user to get
m:1~irnun: pcrlonnnncc. (he com pie, ily of illdi\ idual ill\1fIlCIIOI1~
i5 rninimi/cd. '111i, allo .••.·, the execution of tllc~e invtrurtions 31

CH17392/82IOOOO-OOO2S00 75 (c. 1982 IEEE

.................... ; -, ·.-.·.·.1:·.1::·'···

significantly highc: speeds. To 12ke advantage of simpler
hardware and an instruction !'C\ thol ca~i!y maps to the
microinstruction set, :ddilional compiler-type translation is
needed. This compiler technology makes a compact and time
efficient m:::rrin£ between higher bel constructs and the
simplified insruruon sct. The shirting. of the complexity from the
hardware 10 ,-'le software has scverai major advantages,

rrrsl. the complex it)' is paid for only once durin; compilation.
When a user runs his program on 3 complex architecture, he pays
the cost of the architectural overhead each time he runs his
program. Second. energy is concentrated on the sottwarc. rather
than on constructing 3 CO:-npICIhardware engine. which is hard to
design. debug. and crftciently utilize. Software is not necessarily
easier to construct. but the VLSI environment makes hardware
simplicity important,

The design of a high performance VLSI processor is dramatically
affected by the technology. Among the most important design
considerations arc the eITL'CIof pin limitations, available silicon
area, and size/speed tradcofls, Pin limitations force the careful
design of a scheme for rnuliiplcxing the available pins, espedally
whc~ data and instruction fetches arc o"erla~f1cd. Area
limitations and the speed of off·chip intercommunication require
choices between on' and ofl-cblp functions as well as limi'ing the
complete on-chip dc.'ign. With current st~tc-of·thc·art
technology. either some vital component of the processor (such IS

memory management) must be off·chip. or the size or the chip
will make both its performance and yields unacceptably low.
Choosing what functions arc migraled off-chip must be done
carefully SO that the performance effects or the partitioning are
minimized. 1:--. some cases. through careful design. tho: effects may
be eliminated at some extra cost for high speed off-chip functions.

Spced/compinily/area tradcolfs arc perhaps the most important
and drfficult phenomena 10 deal with. Addilional on-chip
Iunctionality requires more area ..•••.hich also slows down the
performance or every other function. This occurs for two equally
important reasons: additional corurol and decoding logic
increases the length of the critical path (by increasing the number
of active clements in L'1c path) and each additional function
increases the lcr.t:"i of internal witc delays. In the processor's data
path, these .••.~rc delays can be substantial, since they accumulate
both fr0:11't''.:s ti~\~y" occurring .••.hen the C312 pJ\.h is lcngihed,
and control ccIJys. occurring .•••.hen the decoding and control is
expanded or .••hen the (121.2path is .••·i6cned. In the MIPS
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architecture, \l.C have attempted 10 control these delays: however,
th~)" remain , dominan; Iactor in determining the speed of the
processor.

The mlcroa rchitectu re

Design philosophy

(

The r2~lest execution of a la.~kon a rnicrocnginc would be one in
shich all resources of Ihe microcngine were used at a 100% duty
cycle performing a nonredundant and algorithmically efficient
encodin]; of the task. The MIPS rnicrocnginc aucrnpts to achieve
this goal. The user instruction set is an encoding of the
r.icrocnfine LI)Jtmakes a max imum amount of the rnicrocngine
z\.ilablc This goal motivated many of the design decisions
fo;.:nd in the architecture.

MIPS is a load/More architecture, i.c. data may be operated on
c.11y when it is in a register and only load/store ins: ructions access
memory. If ciat:!operands are used repeatedly in a basic block of
rode. haying them in registers \1.;11 prevent redundant load/stores
~:ld redundant addressing calculations: this allows higher
lhrou;:r,put since more opcrat ions directly related to the
compul.2tion can be performed. The only addrC$Sins modes
SJppol"\ed are immediate, based with offset indexed, or base
>'lined. These addressing modes may require fields from the
instruction itxclf, general registers, and one AI.U or snifter
operation. Another ALU operation available in the fourth stage
of every instruction can be used for ~ (possibly unrelated)

. comput:!lion. Another major benefit derived (rom the load/store
architCClure IS simplicity of the pipeline srrocurrc. The simplified
~ructure has a fixed number of pipest:lr,cs. each of the same
,.1gth: instructions move between siagcs in unison. Because the

103gCScan be used in varying (but related) ways, the pipline
ulilization improves.

Although MIPS is a pipclincd processor. it docs nOI have
~rdware pipeline interlocks The f:vc-SI'lge pipeline contains
three active instructions at any lime: either the odd or even
pifK:St:!Scsarc active. The major pipcstages and their tasks are
shown in Table 1.

Table l: Major pipcstages and t~eir functions
$110.

If Send oul t~e PC.
Inere_,nt It

I.,lruttlon f.l(~ r

Inl\ ruct Ion Ootod. 10 Oecod, Instruction

Optrind O-codt 00 Co~putt ,rr,ctlyt
.ddrtss .nd ,end to ,
.e_ory If IOld or
slore. uu ALU

Optrand Storel OSI
[••cutlon [X

SlOrt: wrltt operandI
[lPcutlon: uu •••LU

Oprra.d f.tch
\_ or load: ,.. ad operand

Interloci~ required because of pipeline dependencies are "0/

rro,·ided by the hard ..•.'3re. lnstcad, these imctlocks must be

'\

SI:itiC.1Ily provided \I. here they are necded by a piprlillt
rcorganitcr '111ishas t..•..o majnr bcnctus. First, a more regular
and faster hardware implementation is possible since it docs not
have the usual complex it} associated \I.·ilha pipclincd machine,
Ilard ware interlocks C::lUSC small del~)'S for all instructions.
regardless of their relationship on other instructions. Also.
interlock hardware tends 10 be vcry complex and nonrcgular2.'.
1he be\: of such h:\fd·,'..arc is especially important for VLSI
implementations, IIhere regularity and simplicity ere important,

Second. rearranging operations at compile time is better than
delaying ,them at run time. With a good pipeline reorganizer,
most cases where interlocks arc avoidable should be found and
t"ken advantage of. This rcsu'ts in performance better than that
of 3 comparable machine with hardware interlocks, since the use
of resources ..•.ill no: be delayed. In cases where this is not
detected or is not possible, no-Of'S must be inserted into the code.
This does not slow do ..•.·n execution compared to a similar
machine ..•.ith hardware interlocks, but docs increase code size.
1he ~hifling of work to ~ reorganizer would be disadvanugcoos if
it 100\: excessive amounts of computation. It appears this is not a
problem for our first reorganizer.

MIPS has one instruction size. and all instrucuons execute in the
same amount of lime (one data memory cycle). This choice
simplifies tile construction or code generators for the architecture
(by eliminating many nonobv ious code sequences for different
functions) and makes the construction of a synchronous, regular
pipeline much easier. Additionally, the fact that each
macroinstruction is a ~inglc microinstruction of facd length and
execution lime means th3t a minimum amount of internal stale is
needed in the processor. The absence of this internal state leads to
a r:l~1er processor and minimizes the difficulty of supporting
interrupts and page laults.

Resou rees of the mieroenglne

-:

Tne major functional components of the microcnginc include:

• ALli resources: A hi!;h speed, 32-bit carry lookahead ALU
with hardware slIl"pon for multiply and divide: and a barrel
shiner ..•.ith byte insert and extract capabilities,

• Internal bus resources: Two 32-bit bidirectional busses,
each connecting almost all of tile functional components.

• On chip storage: Sixteen 32-bit general purpose registers.

• Memory resources: Two memory interfaces. one for
instructions and one for data. Each pan of the memory
resource can be 100% utilized (subject 10 packing and
instruction space usage) because one instruction felch and
either one store or load form data memory can occur
simultaneously.

• " multistage PC unit: An incrcmcntablc current PC with
storage of one branrn target as well as four previous PC
values These arc required by the pipclining of in~ructions
and interrupt and exception handling,

3
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.
"(he Instruction set

,
I

All MIPS instructions are 32·bits. The user instruction set is •
compiler-based encoding (i.e., rode generation efficiency is used
to choose alternative instructions) of the micromachine. Multiple
simple (and possibly unrelated) instruction pieces are packed
together into an instruction word. The basic instruction pieces
are: ALU pieces, load/store pieces, control no ..••pieces, and
special instructions.

The ALU pieces are all register/register (2 and 3 operand
Iormats). They all use less than 112 of an instruction word.
Included in this category are byte insert/extract, two bit Booths
multiply step, and one bit non restoring 6i,ide Step.

Load/store pieces load and sore memory operands, They use
between 16 and 32·bits of an instruction word. When l load
instruction is less than 32·bits. it may be packaged •.•.ith !noALU
instruction. which is executed during the Execution stage of the
pipeline.

Control now pieces include straight jumps and compare
instructions with relative jumps. MIPS docs not have condition
codes, but includes I rich collection of set conditional and
compare and jump instn.ctions. The advantages of this approach
Over a condition code approach have been discussed and
empirically demonstrated" The set conditional instructions
provide a powerful implementation for conditional expressions.
They set a reg ister to all 1's or D's based on one of 16 possible
comparisons done during the Execution stage. The compare and
jump instructions are direct cncodings of the micromachine: the
effective operand decode stage computes the address of the
branch target and the Execution cycle docs the comparison. All
branch instructions have a delay in their effect of one instruction:
i.e.. the next sequential instruction is aJ••••·a>·sexecuted,

The special instructions suppor; procedure and interrupt linkage.
The procedure linkage instructions also fit easily into the
micromachine formal of effective address calculation and
register- register computation instructions.

MIPS is a word-addressed machine. This provides several major
performance advantages over a byte-addressed archueeture".
First. the use of word addressing simplifies the memory interface
since extraction and insertion hard .••..are is not needed. This is
particularly important, since instruction and data fetch/store are
in a critical path. Second. .••..hen byte data (characters) can be.
handled in word blocks. the computation is much more efficient,
Finally. the effectiveness of short offsets from base register is
multiplied by a factor of Iour,

MIPS docs not directly support floating point arithmetic. For
applications where such computations are infrequent. floating
point operations implemented with integer operations and field
insertion/extraction sequences should be sum~icnl For more
intensive applications a numeric co-prCJC.CSSOT,.~iI2r to the Intel
8087 would be appropriate.

..- ... ..

Systems Issues

The key S) sterns issues arc the memory system. and internal traps
and external interrupt support,

The memory system

The use or memory mapping hard .••.'are (off-chip in the current
design) is needed LO support virtual memory. Modern
microprocessors (e.g.. Motorola 6:000) are already faced with the
problem L1J: the sum of the memory access time and the m!:mory
mapping time is too great to allow the processor LO run It full
speed. This problem is compounded in MIPS; the efTeet of
pipelining is tr.at a single instruction/data memory must provide
sccess et apptoxirnately t..•..in: the normal rate (for 641:RAI..,.~S~

In MIPS .•.•.'e obtain this increased memory bandwidth by using
to ir-struc.••.icn cache. This cache forces separation of cod: and
data. but this separation is 3..regular practice on many mac.1incs:
in the ~~IPS system it allows us LO ~!;niflC3ntly increase
performance. TJ.c-caU5e the instruction memory can be treaied u
read-only memory (except when 2 program is being loaced), the
cache control is relatively simple. The use of an instruction cach.e
allows increaseo performance by providing more time during the
critical instruction decode pipe stage.

Faults and Interrupts

The MIPS archneciure will support page faults. externally
generated interrupts. and internally generated traps (arilhmetic
overflow and soltwarc gencated). The necessary hardware to
handle Liese discontinuities within the instruction S1r~'T\ in I
pipclincd architecture arc usually large and complexl. 3. Further
{flore. this is an area where the lack of su fficienl hard .••..are SJpport
ma[ es the construction of systems soltware impossible, However,
because the MIPS instruction set is not interpreted by I

rnicrocnginc (with its own state), hard .••..are support for pqc fzulu
and interrupts is sisnirlcantly simplified.

To handle interrupts and page faults correctly. two important
properties are required. First. the architecture must ensure correct
shutdown of the pipe ••. ithout v:ccuting any faulted instructions
(such 1S the instruction which paSt faulted). Mast present
microprocessors «.s..Motorola 68000. lilog ZSCXXl, and the Intel
8086) cannot perform this function correctly. Second, the
processor must be able to correctly restore the pipe and oontinue
Ct ecution as if the interrupt or fault had not occurred.

These problems arc significantly cased in MIPS by the location of
writes .••ithin the pipe sta[:cs. In MIPS all instructions ,Ihich CUI

page fault do not write to any storage. either registers or memory,
before the fault is detected. The occurrence of a page faull need
only turn ofT writes generated by this and any instructions
following it which are already in the pipe. These fon'"-iIll
ins.•ructions also have not written to any storage before the faun
occurs, The instruction preceding the faulting instruction Is
guaranteed to be c.\CC'J\2h!cor to fault in I restartablc rr.znner
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~·ell after the insLruction following It faults. The pipeline Is
~6ir.ed wd conuol ts lransferl'Cd',to \ tcner:J1 purpose exception
hlndler, To correctly restart execution. two instructions need to
beTt"JeoJted. A multistage PC tracks these instructions and aids
b correctJ)' Cl ccc Iin& them.

Software Issues

TI',e t••..o major components of the MIPS software system are
c::~pi1e:; and ;iprline ~organlzt~, The input to I pipeline
l't'~rpnizer is I sequence of simple MIPS instructions or
bSJ'Uction pieces generated without taking the pipeline interlocks
r::~instruction packing features into account, This relieves the
CX'ipiler of the task of dealing with the restrictions tbt are
~;:Josd by the pipeline constraints on legal code sequences. The
rtOT&2Ilizerreorder; the instructions to rr.:ai:emaximum use of the
pi;::>elinewhile enforcing the pipeline interlocks in the code. It also
pt:l:s the instruciion pieces to rraxlmizc use of each instruction
'liord. Lastly. the pipeline reorganizer handles the effect of
b:-anc,"lc:1!ysC.

Since c.!: instrcctions execute in the same time arid most
i:':S1ruC'jonsgenerated by a code generator ..•••ill not be full MIPS
i:'s.ruction~. the instructiO:1 p:jcking can be very efTeetivc in
r:¢~cint 6:ecution time. In fully packed instructions. e.g., a load
t:C:nbinc~ with an ALU instruction. all the major processor
r::sources (both memory interfaces. the ALU. busses and control-,
brie) ~~eused lOO'k of the time.

The optimal packing of instructions is obviously a hard problem
(It leas! NP-complete): however. we arc investigating heuristics
t."Ial we believe will have acceptable running times, yet will
produce nearly optimal code in most c:asesS.6

To show the effectiveness of these optlrnizations, we ran versions
0(, prO$ram that does reorganization. packing, and branch delay
elimination of three input programs. The input programs consist
or an implem~ntalicin of computing Fibbonacci number; and two
implementations of the Puzzle benchmark 7• All the programs
ftre wriuen in e and compiled to instruction pieces by a version
of the Portable e Compiler. The d21J in Table 2 shows the
improyements in static instruction counts..

Table 1: Cumulative improvements with postpass opt:mization
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Implementation

The primary components or the implementaticn arc the data path
design and the control system. Because Mil'S requires only
simple decoding or instructions into control bits Ior the data path.
the control section is relatively uncomplicated, However, 10 allow
SJ frtcienl time to drive control lines and mamtaln lhe basic clod
speed, the control bus must be prcdecodcd (even this process
must occur relatively quickly). To accomplish lhis several parallel
PLA.'s arc used. one for each type of instruction piece. The PLA',
arc cycled to compute all the control bits during the Instruction
Decode cycle of each instruction, Outputs of one of the PLA's is
used to choose between the outputs of the other PLA's. A pipline
conuol PLA. is used to sequence the processor. handle exceptions.
and interface •••.ith the external world.

Figure 1 shows the Iloorplan of the chip. The dimensions of the
d1ip arc approximately 0.8 by 7.0 mm 'oj,itha minimum feature
size or 4 Jl (i.e.. " = 2 Jl) The chip area is heavily dedicated to
the cata path as opposed to control structure. but not as radically
as in RiSe implementation.

Figurt 1: MIPS Floorplan
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We plan to use an M-pin lead less thip carrier to package the
processor. This allows the use of 32 pins for each of the address
ar.d data busses. This package also dissipates ~ watts which
exceeds our current estimates of power requirements. Our current
design calls for the use of a relatively slow instruction cache and I
fast main memory. compared to other machines. To
accommodate standard bus structures. slower main memory and
full speed operation. a data cache may also be necessary.
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The data path

The data path is based around a 1\110 bus structure. The pitch of
the dau path is 33>'. The primary components of the data path
are the ALU. the barrel shilter, the register file. and the multi
stage PC-unit

One key component of our data path is a fast 32-bit carry
lookahcad ALU. The ALU docs an addition with wry while
simultaneously doing a logical operation (anyone of the 16
Boolean functions of two variables), Either of the input operands
may be complemented, allowing subtract and reverse subtract
operations. Either the arithmetic or the logical result is chosen for
the final result The ALU sets conditions to indicate zero,
negative, carry-out. and overflow (obtained by ~ clusive-onng
carries into and out of the high-order bit of the result).

The basic cell to produce the next-higher propagate and generate
signals from four lower-order propagates and generates USJ'-S only
two gate delays. These gates are short-channel. high-power
devices to reduce the effects of stray and wiring capacitances on,e basic RC delays. These cells. which logically arc the nodes of I

Loinary LIce.arc rcplkatcd in a straight line. and two-layer routing
interconnects them in the required tree structure (metal is used
for the long direction to virtually.eliminate diffusion delay). This
arrangement has the advantage that doobling the number of bits
merely requires ;: morc wiring channels for the next propagate
and generate layer. plus half a wiring channel for another layer of
intermediate carries (quadrupling the number of bits requires one
more carry channel). a total of about lOA. An optional
sopcrbuffer can be included in any bit slice for driving the earrr
out Cor that slice: these arc put into those cells with high fanout
and long carry lines. the lop two layers of the LIce. With the
Mead-Conway design rules (and a modified implant rule). the
ALU is about 300A high. Using buried rather than butting
contacts. shortens the length somewhat,

A test chip (or "the 32-bit version o~ the ALU Wa! fabricated at
Xerox over the summer at a A of 2 microns. With inputs stable.
the carry-in to caTTy-OUIdelay was S5 ns (induding the output
'ad driver). Because of fabrication defects. the worst-ease timing
could not be ascenained.

The barrel shifler selects any contiguous 32-bit field Cromthe 64
bit word made from the abutment of two words. one from each of
the busses. input multiplexers allow both 32-bit words 10 be taken
from the same bus, for rotates, Arithmetic and logical shifts arc
supported by making one word either zero or the extended sign
bit, Byte insert and extract logic is also included. A byte is
extracted from a 32-bit word by shifting it 10 the: lowest eight bit
positions and masting out the remaining 24 bits. A byte is
inserted by shifting the insert byte from the lowest position up to
the indicated position and then combining it with the three other
bytes of the target word via a byte multiplexer.

The barrel snifter is a two kvel switch amy. The three most
significant bits of the s,1'liftamount arc used to select a 35-bit
window, aligned at a nibble boundary. out of the 64·bil input

--
formed by logically concler-aUng the left and right Input busses.
This intermediate value is then used !S input to a second rank. of
multiplexors, controlled by the low order shin amount biu, ".'hich
selects the output function Irorn the intermediate ••••indo... The
intermediate value is developed en I 35-bil bus ""hich runs
perpendicular to the input and octput buS5CS,allowing bot"! ranu
of multiplexors to be distributed to appropriate sites in the ;"'TI),.

rather L'2n routing their inputs and cotputs, Select lines rull
diagonally through the array to control :"".c multipl~lng,.

The register file is a simple two-port s:.ructure. Each bit Ii
represented by a pair of inveners, &:h register may be loaded
Irorn either of Lie busses or rnay be read onto either of the busses.
In addition. if a register is no: I:J.aGcd in 8 glven cycle, its ds~ II
fed bad (or refresh. in general, reads are done on one cycle. and
loans or refresh on the other. However. in one case it is also
necessary 10 read a register onto thc bus going to the data pins m
Lie same clock phase, as cata may be loaded into some other
register from L'lcALU I'CS'IJll

Tne program counter contains Lie current virtual address of the
next instruction to execute, a history of past instruction addresses,
. and a possible future address L'tat may be loaded ccnditlonally.
The program C:O'Jn~r proper consists of the current instruction
pointer, the increment m:::..•..ianism with lookahead carry. I ~il\
register containing the last four PC values, and a possible future
value. The four previous values are needed to badtrac't lnd
restart instructions shO'Jld a Iault occur. The future VJ.lue
supports the branch instructions, The branch address for •
conditional branch is calculated in the OD cycle Cor I glvert
instruction and stored in the future PC register. Only Ir the
specified condition is satisfied is that register jammed into the PC
register itselr. A given PC can come from one of ~ree sources,
(ror? the future PC s.'lift register. from the inerenenter (the
normal source), or from the PC register itself Cor refresh.. The PC
may be read out onto the data bus Cor address olcul3tion.lnto the
memory address register (MAR) to send it to the address piM, or
into the first clement of the shin register.

The lookahcad carry half adder examines the eurrent PC in four
bit sections and indicates whcther carry should be propa~ted.
This carry is combined with the carry from the fourth previous bit
to generate the next carry-in. The PC also contains the MAR
iiscl]. This is a dynamic latch which may be loaded frorn either
the PC or a data bus. A supcrbuITer driver drives the metal lines
out to the pads. which increase the drive but contain no
additional latches,

Only half the S (Stale and Surprise) register resides physiC11ly
within the data path. 11 contains all the ocher state of the machine
outside the program counter, plus a rode field for traps and faults.
The trap code-field is IOJdcGfrom the data path on c:onditional Cl'
unconditional traps. The S12le bits include a field indicating the
types of faults occurring in a given cycle. the type of cycle in
which they occur. and two flag fl~lds. These two f1zt fields
indicate L'1ecurrent and prcvioos CPU satus. The flCld induces
user/supervisor mode bits. the interrupt enable flag. l1ld the

••
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o\'cd'lo' •.. enable flAg. On context fhnnge. the two fields are
interchanged, This sute word may be read or modilicd only by
suncrvisor mode processes, or by interrupts, traps. and hard faults
(ovcrflo ••.·or page rault~

Several smaller pieces are also included in the data path. A
displacement register contains the displacement ficld of the most
reccn~l) fetched instruction. 11may be used as one of the sources
of ajdrcss calculations. Similarly, small constants. to be used in
ALU operations, may be inserted into the data path Mid sign
extended,

The data path has been.laid out ••••ith standard Mead-Con .•••~y type
c~i~n rules. The two data busses which run the length of the PC.
~~:,:~r rile. and barrel shifter, were chosen to be metal. while the
control lines are polysiiicon. This is based on the observation that
the control lines are less th2r, half the length of the busses and
that they must connect to poly gates in any event, Naturally. the
power busses run parallel to the data busses in the PC and register
me. Each bit shares Vdd with one neighbor and ground with the
other. The barrel shiner required only ground internally. Sine:
the ALU is 2: the far end of the data path. both busses need nO{
run through it. Control signals and the lookahead C31'T)' paths are
allowed to run in metal This contributes significantly to the speed
of arithmetic operations.

P resent status and conclusions

The key components of thc MIPS implementation are the dau
path, the control system. and the software. The data path
components are all designed and specified: a data path 12yout is
near completion and should be sent for fabrication durin,
January 1981. The ALU has been fabricated and works, The
control system consists of a number of parallel PLA's and their
associated drivers and control bus, A SUM' program for
designing the control PLA's has been written and the PUs have
been generated. Code generators have been written (or both C
and h.101. These code generators produce simple instructions.
relying on a pipeline reorganizer to enforce pipeline interlocks
.and branch delays. and to pack instruction pieces. A first version
of the pipeline reorganizer and an instruction level simulator are
being used for dynamic benchmarking.

Early estimates of performance indicate that we should achieve
approx irnately 2 MIPS (using the Puzzle program' as a
benchmark) compared to other architectures executing compiler
generated code. We expect to have more accurate and complete
benchmarks available in the near future. Table 3 compares the
MIPS processor to the Motorola 68000. running the Puzzle
benchmark written in C with no optimization or register
allocation. MIPS uses 32-bit integers. while the 68000 uses 16-bit
integers. The Portable C Compiler (with different target machine
descriptions) generated code for both processors, The execuuon
time numbers for MIPS are an accurate approt irnauon.

-
Table 3: Comparing 68roJ and MIPS estimated performance

tl.ill !.l!l
Tranlhtor. e&.000 2&;00'

Cl~'k ..., ...,
Dati PIU 1&blU 3t-bIU

l'ltruttlo", \300 au
(Stille)

lr.lt rutt I•• ~3S0 2511
elt ••

[.,tut loft n.' '.1
TI•• (llt)

Ac I, no w led 9ment s
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Many people have contributed to the MIPS project. Among the
most important other contributors are: Wayne Wolf. data path
design: and Steven Przybylski. foult and trap system, , ;
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John K. roderaro, KorbiIl S.Vcn Dyke, end Dc-MdA. Pcllerson
Computer Science Division. University of Cohrornic. Berkeley

Last year, h'f described the design of RISe I t Fu zp atr ici: et
al. 1981)' a 44.500-transistor 32-bir microprocessor. AI that
lime. I\'e had not yet received our first chips. SOK' \<;f can tell a
complete story. including a moral and a happy ending, in which
promptness is punished. ,\furpny's Law is prove d . and per
severance and patience are rewarded,

, ISC stands for Reduced l nstrurtion Set Computer, a
ID! new class of simpler computers premising higher perfor
~ rnance using simpler hardware. Examples of RI SCs are
the IBM 801 (Radin 1982). the Berkeley RISC I (Patterson and
Sequin 1981) and the Stanford MIPS (Hennessy et 01. 198~).
RISe I was the first chip built as part of a new graduate
curriculum of the Electrical Engineering and Computer Scien
ces Department at the University of California. in which stu
dents propose and evaluate architectural concepts. learn
Mead-Conway design methods. form teams to build the sys
tem. and then test their design.

?.lSC CA.D

. In our environment. design tools dictate design style. Be
cause we had only five students. and had to complete a 32-bit
computer in 23 weeks. we had to rely on programs to increase
productivity. We used existing programs whenever possible.
building our own only when other solutions were not available.
W~ signed RISC I at two levels: a low-level mask description
an •........high-level functional description. The masks were en
tered via Caesar. a color graphics layout editor developed by
John Ousterhout (Ousterhout 1981). We used Clark Baker's
DRC program to check for layout errors. We counted on visual
inspection to discover the few layout errors that DRC over
looked (implant-to-gate spacing. gate overhang. and implant
overlay around gates).

The functional description was written in Slang. a LISP
based simulation language created by John Foderaro during the
development of RISC I (Van Dyke 1982). The most difficult
parts of our logical design were the timing and the rniscel
ianeous gates to drive the control lines. Because we expected to
have more errors in this area than in the data path. a program
that would simulate a description of the control circuitry to
discover timing and control errors was more important. The
RISC I Slung description. including all comrol line s. the PL.~·s.
and mi sce lla ne ous control logic. explicitly corr e sponds to
;,bout ~OOO tr ansistor s in RISC I:Slanr simulates the rest of the
::hip--C.500 transistors corresponding to the registers. ALL'.
and shifter-at a high level. We debugged the description by
runrur.g about a dozen small RISC I programs. called diagnos
tics. on the SI()nR description of RISC l. Limited time kept us

from uving formal fault-coverage models to decide whether
these diagncsuc s adccuatcly exercised the chip.

Two rnor e programs linked these two ce scripiions. Me xtro . a
circuit extraction program created by Dan Fitzpatrick. takes
mask de scrip.ions and derives a trcns.stor-leve! description.
Esim . G switch-level simulator created by Chris Terman.
sirnulate s the de riv ed de scription. Slang "swallowed" Esim to
monitor the values of several dozen imer e sting nodes in both
the functional- and switch-level simulations. This multi-level
simulation found dozens of disagreements between the two
levels of simulation-errors that would have kept RISC I from
working.

RISC Fabrication

On June 22. 1981. the RISC I design. using single poly and
single metal layers with no buried con.acts. was complete: it
passed all software checks. RISC I then became part of the
experiment to see whether commercial silicon foundries would
provide fabrication for small-volume custom designs.

When inexperience is combined with ambition. you get a
very large chip. The standard fabrication services were giving
fast turnaround to small chips using :'>-micron minimum
features. Even using 4-micron features. RISC I measures 10.3 x
7.75 mm (406 x 305 mil), Fortunately, the ~IOSIS lmpl.menta
tion Service at USCll SI agreed to use RI SC I to explore the
problems of fabricating large chips at 4 microns. 'Alan Bell and
Lynn Conway of Xerox PARC also ofiered to fabricate our
design. and we replied with a copy of the CIF file on July 17.
1981.

Although Xerox and MOSIS selected different mask
makers. both selected the same vendor for fabrication. The
.Xerox masks arrived first. but promptness was not rewarded. A
new vendor employee ran the wafers through the line using the
wrong process. The MOSIS masks arrived later and were sent
through the right process steps. but the poly lines were too wide
because of problems with one of the polysilicon processing
steps. As predicted by Murphy's Law. two more events at the
vendor's site kept us from receiving the chips until November:
a manag crne nt reorpanizarion and 2 fire in the ventilation
system.
.In t-.:0\ ember. Michael Arnold finished Lvrc , a new layout

rule checker (Arnold and Ousterhout 19S~). Lvra discovered
four 12:-- out errors-pte overhang arid implant-to-pare spacing
-0\ e r look ed by DRC. These probably would not have kept
the chip from working. but they might r,~ve reduced the yield.
The folly of visual inspection was illustrated while verif) inF the
errors. This early version of Lyra gave the location and layer of
the error: nevertheless. three people. using eae sar to explore
the de sipn , needed more than two hours to find the errors. The
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current version of LXrl! pinpoints the error and give s complete
error rnessapes.

MOSIS offered a new run in December 19l:::: therefore. we
submitted the corrected CfF to be fabricated by a second
vendor. This was an experimental run on a research line to try
4-micron Mead-Conway designs. Thus. the need for a second
run in April 1982 did not surprise us. Wafers with good process
inL:arrived at Berkeley in May 1982. MOSIS started another
run with the original vendor in late January. and we also
received their wafers in May.

In the meantime. because of the processing problems. the
original vendor refabricated chips from the original masks
(\117A) for Xerox. We received chips from this run in-January.
Table 1 shows the chronology of RISC 1 fabrication.

RlSC Testing-

Although the fabrication delays were longer than we had
expected. building the hardware and software to test the chips
kept us busy. The tester receives bit patterns for a test from a
host computer. applies these bit patterns to the inputs of the
chip under test. and sends the resulting output bit patterns back
to the host computer for analysis.

The tester was simply a buffer that could drive and record
any pattern of 64 bits every 250 ns. Figure 1 shows a photo
graph of the tester hardware. This tester provided variable
speed clocks and power supplies. and could repeat a test
indefinitely (although it could record only the 12S1 1024 entries).
We needed programs on the VAX to prepare the test pall ems
and massage the test results.

Once again Slang came to the rescue. as shown symbolically
in Figure 2. Slane uses the test programs and computes the
correct patterns for the tester and the correct results for those
patterns. Slang then checks the results from the real system.

P.lSCResults
Out test plan was founded on pessimism. We planned to drive

Scan-In-Scan-Out (SISO) hardware to test each block. Tnere
are 5 SISO loops in RISe~. one each for the shifter.Al.Ll input.
ALU output. the program counters. and control. We tested the
first chips from MOSIS (~1l7M). but no chip emerged with all
SISO loops working. We depended on a functioning control
loop to test some other modules in the chip, but this loop rarely
functioned. The SISO loops were routed after the main area
was laid out. resulting in very long poly lines which were
potentially more susceptible to yield errors.

Following the same plan. we tested the second batch from
Xerox during the winter. Testing proceeded slowly, owing to
both the debugging of the RISe I testing software and hard
ware, and to the other educational requirements of Foderaro
and Van Dyke (the only RISe I designers still at Berkeley). We
never found working SISO loops on this batch of chips. but two
chips displayed "signs of life" when programs were fed to
them. Further testing showed that in spn e of yield flaws or
design errors. these chips performed most of the intended
functions. A few bits of the data path were stuck at 0 or 1:
ne ve rthele ss these chips could still execute some instructions.

Van Dyke de signed and built a board for RISC I including the
rnisce llancous "glue-' around the CPL. the memory, the 1'0.
and the memory rnanapcmeni elements. A Xerox rcfab chip.
even with some of the upper bits stuck high, successfully ran
the first RISC I program on June II. 1%2. Figure 3 shows G
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Dale Event

Aoril 1980
Seniember 1980
January 1961
April 1981
June 22. 1981
July 17. 1981
October 22. 1981
October 25.1981
November 1981
December ~. 1981
January 7. 1982
January 29.1982
February 9. 1932
April 1982
'-'.ay 1982
June 11. 1982

Ex~romen;al·Archlle::lure Class
Mea~'ConwayClaSS
VLSI SystemsClass
VLSI "Tesuno' ClaSS
CIF sent to i.IaSIS
CIF sent to Xerox PARe
Crups trom Xerox PARe
Chips from I.~:JSIS
Lyra ftnos laY~:Jlerrors
Sunrrut new 'CIF to MOSIS
Ch:;:lS frem Xerox PARe via refab
MOSIS sends new CIF
'.'.0515 1.\10T failed tab
MOS!S refab
Waters Irorn t.l.::lSIS
p.lse I runs firs: program
on boart::
Deslon error c.s covereo
Flnd-'( RiSe I ole Without
yielo errors

June 15. 1982
July 2. 1962

CS292A
CS246
CS292X
CS292Y
M17M
M17A
M17A
I),m.l
••.•.IOT
1-/17A
M21Z
'-110T
M10T
'.'.21Z.M10T
••~17A.'CS2:51

,••,OT
••.•.21Z

7A.£L! 1. E:.slo:j of zisc 1.

nGUC: 1. ~ueker c=::., l:olls 250 probe station
1'rtthtester (",hita box ot!. the ngllt)_

--------------------------------------------
les:

Panems

j

B
~ I Compare

nG1:l1<! 2. Use o~Slc::::.~ it!. testing.

photograph of thai board. The first RISe 1 program rea
characters from the terminal. change d the text. and wrote ti;
characters back out.

Because \lo e considered the logical design to be largely co
recto w c ignored the SISO loops and began running diagno st
programs on the chips. Before this. we were ie srinc diced ar
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bonded chips. As the students' "lifetimes" were running short,
we skipped the dicing and bonding stages and tested whole
wafers from the second round of MOSIS fabrication. Figure I
also shows the probe station we connected to our VLSI tester.
These new chips ran the diagnostic programs used to verify ou
original design. We (foolishly) created new diagnostics and
uncovered a design error associated with the optional setting of
condition codes on the load and shift instructions. In defiance
of historical precedent for solving a design problem by turning
it around and calling the problem a new architectural
"feature." we decided to fix this error by modifying the RISC I
assembler. (This was possible because ALli operations prop
erly set all condition codes. whereas load and shift instructions
do not set the negative condition bit. The patch consists of
inserting an arithmetic test instruction when a conditional jump
needs the N condition from a load or shift operation.) At this
writing. we have tested about 40 chips from the second MOSIS
wafers. We have found four fully functional chips. (dlhouJ;h the
SISO circuitry has not been verified yet). giving a I07r yield.
This is a better yield than we had expected from such a large
chip.

The fastest of these chips runs ell dragnostics at 1.5 ~,1Hz at
room temperature. using the probe card with a fioaiinp sub
strate bias. or 2 J.1~ecper RISC I instruction. This rare was
calculated bv running the tester at t,..uvz : per insrur tion. Wilt":
the gap between the three non-ov cr lapped clock r:n~..,es bein;
as large as the clock. We had based our original performance
projections for RISC Ion a .4-J.1~ecrczisier-repister inviruction.
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derived from the .4·.u~ec re gister-regj ster operation of the 10-;:
~,lHz Motorola MC6S000 and the .3-.usec register-register opcr-i:
anon of the JO·~1H.z ~:Hional NS16031. :

Several factors caused this diffe rcnc e. To understand the],
speed of this fabrication process, we measured the speed of the[:
ring oscillator on the lest strip (which is routinely inserted bY~i
MOSIS). II ran at II MHz. Previous chips processed with the~
same de sign-rule features have run the same oscillator at 20~
MHz. The later stages of design involved connecting cells, and:~
we ccnceruratcd on logical correctness rather than circuit
speed. Although we follow ed the rule of avoiding long unbuf-~
fered lines. we had no tool to check for such mistakes. We':
re cently re-c xarnined the design, and found four long clocked
control lines that SPICE predicts will limit the rnax irnurn clock:
speed to 4 \fHz. Furthermore. many of our diagnostics can be ~
run with G 3·},fHz clock , suggesting that only a few RISC It
instructions (CALL and LOAD) are limiting the performance. ~
Finally. because we still have 200 more chips to test. we may~:
wel: find faster RlSC I's. :

Table 2 compares commercial microprocessors to a 1.5-MHz::
Rl SC 1 (includinc the assembler chances to fix the error). f
Han scn e/ Q!. (19S2) ran program s on a 5-}:1Hz 80S6 with no wait ~.
states on an Iruellec MDS III development system, an 8-MHz?
MC6S000 with two wait states on a Dual Systems Corporation [
Dua1831~. and a simulator of the newest version (release 3) oq
the Intel 43:':800. (an 8-MHz. 4-wait state system). As the table;
shows. a l.S·:-'iHz ruse I runs these programs a bit faster than ~
do current commercial microprocessors.

J... Retrospective Lool:::
Hindsight lets us see our mistakes and offer warnings for t

future designers. First. don't rely on visual inspection to catch t
any layout errors. (A second layout-rule checker would have I
found our mistakes in the first rnasks.) Our second mistake was i
incomplete diagnostics. A few more diagnostics would likely £
have found our only design error. 51S0 proved difficult to use: !
if we had written SISO diagnostics , we would have noticed the ~
difficulty and changed the chip. . ~

Although we were concerned with performance. the lack of a t
simulator between analog-level SPICE and switch-level Esim r
precluded performance-tuning of the complete design. Existing ~
higher-level timing analyzers. such as MOTIS-C and LOGIS. i
were not integrated into the UNIX environment; perhaps more t
importantly. they required a new description of the design I
which could not easily be extracted from the other descrip- t
tions. Manufacturers apparently have budgets for hours of t
SPICE runs on CRA)'-l·s-a luxury not likely to be found soon !:
in academe. We believe higher-level timing analyzers have a r
promising future.

We hope this article has made it clear that the work required
to build hardware and software to test a chip of this size app
roached the amount of effort required to design it. If we had
started over. we would have used more resources on this
tedious but important chore. ~lany people were working on
methods to improve chip design. but very few are working on
testing. This rese arch area is ripe for new ideas.

The short student "Jifetime " requires Ia st-rur nar ound
silicon. If v e h:J\ e chips with Food proc essin; wi.hin 3 months
after design. we can rely on students to test and pc rhap even to
improve the chips. If it takes a year. students can rarely enjoy
that irnpor iant advaruape. Therefore. one must balance ambi·.



tion with die size. MOSIS can provide a frweck turnaround for
standard-size chips 'tliat use the standard process (Cohen and
TFt"": 19S:!). Furthermore. even special runs have problems
with designs larger than 8 mm on a side. because the makers of
vendor software (to compensate the masks for the process) .
never dreamed of a chip that big.

Fortunately. hindsight has also shown succe sse s. For first
silicon. the chip had acceptable yield. (One terrible po- sibility
W:iS that the chip might be too large ever to result in a working
die.) The v.orking chips testify to the quality of the de 5ip tools.
(For more information about these tools. see Univ ersirv Scene
in this issue.) Perhaps the most unusual aspect of this approach

Perhapsthe most unusual asped of this
approach to desian was that we kept all~ .
Y.nowledgeof the chip on-line in "program
underslandable" form. Furthermore, the on
line description superseded any written
documentation.

to design was that we kept all knowledge of the chip on-line in
"program-understandable" form. Furthermore. the on-line
description superseded any written documentation. Because
the description was finished before the layout was done, we
could write a few programs to ask Slang what was connected to
a given line, or what nodes should be connected. Designers
usually keep a set of official logic diagrams for the chip in a
project notebook. and derive all other descriptions of the chip
from those logic diagrams. We believe that if we had done this..
the chip would have taken longer to build and contained more
errors. because you can't compare a sheet of paper with an
extracted circuit using a program. Unlike the procedure used
by most systems. control circuitry was draw- "on-line" using
specifications from our Slang simulator description.

The bottom line of the RISC I effort is that as part of the
graduate curriculum. students designed and evaluated an archi
lecture. learned VLSI design methods. built new CAD tools.
and tested their design. The end product. a 44 .OOO-transistor
integrated circuit. had one minor design error. worked on the
first good silicon. and ran diagnostic programs faster than com
mercial microprocessors.
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Carlo Sequin supervised the master's-degree projects by Wing-Cho
Feng and Bob Cmelik. who built the initial VLSI lester hard .••..are and
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zutornate testing. Jim Peek did the recent SnCE studies 0: RISC I
performance.

We thank Danny Cohen. Lee Richardson, Vance 1 ~rec, ;,;;d the res:
of the MOSIS ere .••..at USCJISI: and Alan Bell. Alan Paeth. Gaetano
Borr iello , and Lynn Conway of Xerox PARC for their cooperation and
hard wor], exploring this new field. Then commitment m~.1: RISC I
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We thought the readers of\'LSJ DES/G,'" rnipht like to know what;
happened to the Berkeley authors who appeared in the FourthQuarier .
1981 issue. Mosl graduates joined small start-up companies and. in one:
way or another. are capitalizing on their IC design experience. First. the.
students: .

Dan Fitzpatrick is finishing his Ph.D. thesis. and working on CAD:
tools at CADLlNC in Palo Alto. '

John Foderaro, the only RISC I designer stili at Berkeley, plans t(':
finish his Ph.D. in symbolic computation next year. He won the 198:!:
Dimitri Angelakos award as the person who gave the most help to his'
Iellr-w students.

Manolis Katevenis is working on RISC II. and doing his Ph.D. disser:
tauon on VLSI computer architecture. .

Howard Landman finished his M.S. thesis. and is now bui' ""g CAD
tools at Metheus in Portland, Oregon.
Jim Peek is finishing his M.S. thesis. and is now buildif\g a VLSJ

graphics chip at CADLlNC.
Z~i Peshkess finished his M.S. thesis. and is designin,!: analog chips

for a communications system at Silicon Systems inTustin. California.
Bob Sherburne is doing his dissertation on VLSI computer con

structs. and also working .••..ith Kaievenis on RISC I!.
Korbin Van Dvke finished his M.S. thesis and is now a VLSI svsterns

engineer at VU;J Technology in San Jose. California. Korbin is proh
ably one of the few people in the world who has investigated architec
ture. designed a microprocessor. tested the chip. built memory and UO
boards for the chip. written programs for the chip. and seen it all work.

Now the faculty:
Carlo sequin. chairman of the Computer Science Division, has beer

teaching seminars on VLSI de sipn across the U.S. He w as named ;:
Fellow of the IEEE this year.
Jobn Ousterhoul is reaching the VLSI layout class at Bcrkele y. In

addiuon to supervising new tools such as Lyra. he is bq:innin;: J(1work
on his next CAD system. His first system. Carsar. ha- been drstr ibuted
to 70 uni versiues and companies.

Dave Patterson is teaching the Exr-er irncrua' Architecture and VLS'!
Svsterns classes tn3! produced fUSC I. He is leadinp the ec,i_:::nof a r
instruction cache for RISC l l. ~nd is lookinp for" DC'" \ ehrcle ic
inv e stig are cost-effective. \'LSI·I::;,,~ed software svsrcrns. He "''''
awarded the 19S::! Di~tin;:i..!:~hcd Teaching Award by the Ac ••dcrmc
Senate of the University of Caliiorrua.
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