
-g{W~Et·;;·~;:~~~:~~~~~~JJJJ~~~~~%~~~~Yff!{{{{{{~{~~~~:;~~~~~~~~~mm~mt\\~~m\i~.~~~~t~~~J.{JfJ.tj~~{i{:~mImmHfiifiE~t~~~}.~~.t~~,~,~,t~.~.~}.tt~f.~ffj~~}~~}1}H333~~tti:~~;~~~ttj,~t~;;Xr~~~I~:;g;:~I.~~~~~~~{~~~~:~~;:;~~mmm:

SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 900

A Tour through Troff Issued by
Alan J Kinroy

6 October 1983

DISTRIBUTION: A J Kinroy
E V C Fielding
R W Witty
D R Gibson
C P Wadsworth
S T Frost
H K F Yeung
P J Smith
C Prosser

(

As a result of incorrect output on both PNX display and VAX fr, and
because the 8-bit codes generated by the troffi on these machines dif
fered from the 8-bit codes generated by POP11 troff I assumed there was
a common fault in the troff implementation on machines with 32-bit
integers. This document summarises how I attempted to find the fault by
tracing through some of the (uncommented) code in troff.

1. Troff output & Code Tracing

The output codes from each troff implementation for a standard sam
ple input file were generated on each of the three machines.PNX output
and VAX output were identical with the exception of pad characters. Both
differed from POP11 output in their horizontal motion codes (octal 0200
- 0377, see TROFF(5)).

To start tracing where these codes were output I examined the rou
tine ptesc() in file t10.c. With the insertion of suitable diagnostics
I found the value of variable esc was incorrect and consequently so was
the output code. (It is not clear why the procedure call oput(-~) is
commented out as the two lines of code which follow it are textually
identical to the code in the procedure body.)

Next I inserted diagnostics to find out where the escapement value
esc was being incorrectly set and I discovered it was in the routine
PtQut(i) in t10.c. Tracing through ptout I found this was due to ds,
de, temp, esct and inith all having incorrect values because the values
in the integer array-oIine were incorrect.(At least the integer values
were different e.g. -32744 POP 32792 PERQ).As the only place oline has
things added to it is at the start 6f the routine ptout and it adds its
integer argument if the bottom byte is not an newline character I then

- 1 -

-
had to trace where ptout was called.

Ptout is called from pchar1 in n2.c which in turn is called from
pchar in n2.c and newline in n7.c. Further investigation revealed the
error was whatever was calling pchar with the 16th (MOT motion) bit
set.

Tracing this back further led into n7.c and the routine horiz(i)
which calls pchar(makem(1». Examining -makem(1) in t6.c showed why
there were negative integers stored in oline. Makem does a bitwise OR
of its argument with MOT which sets the 16th bit which is the sign bit
on a POP11 making the number look negative.Comparing some of the bit
patterns in oline.on the different machines showed that they matched.

I still had a problem as I had discovered the first call to horiz
passed the wrong argument value.The call that was wrong was horiz(un) in
tbreak in n7.c. I discovered that un had an incorrect value in nof111()
in n7.c. --Further diagnostics indicated that nel was being incorrectly
set in storeline(~,~) as the result of a call to width(c).

Examining width(c) in t6.c showed that for arguments with the MOT
(16th) bit on only-the bottom 13 bits were returned as the result.For
other arguments a call to getcw (get character width?) could arise.
Getcw looks up a character array by using pointers & indirection and
does a bitwise ANO to get the bottom 8-bits

k = *(p+i) & BMASK ;
where p is char*, i and k are int, BMASK is 0377. Printing out the
values returned on POP & PERQ showed that they were ~uite diffe~ent even
allowing for signed characters on a POP and unsigned on a PERQ. Ini
tially I thought these data values were read into the array in routine
casefp in t6.c but this only happens in an explicit .fp command is used,
otherwise ~he widths for the four default fonts Roman, Italic, Bold,
Special are compiled in with troff in tab3.o.

The routine ~f2() has to skip over header information in the
semi-compiled stripped files which form the width tables.To ensure this
is done correctly it should do an Iseek (k,sizeof(struct exec),O) and
t6.~ should have a dependency on ~.out.~ in the makefile.On PNX there
may be an extra structure with loader version & time information and the
data may be aligned on a 512 byte boundary.

Checking the tab3.c file on my PERQ showed that it was the original
BELL V7 version and did not have the correct width information for the
Hershey fonts. If I had done my installation of Hershey font files
using the makefile instead of by hand this would have been detected and
tab3.c would have been updated.

Initially I thought I had correctly diff'ed the PNX troff srcs
against the POP11 troff srcs and found no difference in tab3.~. Somehow
I managed to do this incorrectly, there are problems in that one set of
files has to be transferred to the other machine and this is error
prone.A distributed file system (e.g.Newcastle Connection) might make
this process more reliable.

- 2 -

-
2. POP 11 Troff

To make a version of troff from sources on the POP11 which does not
print diagnostics on file descriptor 2 you need to use

get -r3.1 lusrlsrc/cmd/troff/s.n1.c
get -r2.1 lusrlsrc/cmd/troff/s.n3.c
get -r2.1 lusrlsrc/cmd/troff/s.n4.c
get -r2.l /usrlsrc/cmd/troff/s.n9.c

The binary made from these sources is not identical to the one in Ibin
and I don't know how the Ibin binary was made.Running tests on several
examples using the new binary gave the same output as the Ibin binary.

These anomalies will be removed when I insert some comments in the
source code and remove the diagnostic printing calls.

The tmake and nmake makefiles have to be modified to add -i to
CFLAGS and consequently suftab.o and hytab.o must be forced to remain in
the data segment by commenting out the ed .. < textscript lines. The
nroff/troff makefile does not specify dependencies on the.o files it
only tests for existence of the relevant binary file.Thus even if the
.c files have been updated (e.g. tab3.c) troff will not be remade. This
nee~s to be corrected on all machines.

There is also a problem that the existence of a.o file does not
allow detection of whether it was compiled with -ONROFF on the CFLAGS
command line or not. The safest way to overcome this is to always remove
.0 files and force nroff/troff to be remade.

3. Conclusions

I used a process of backward reasoning in assuming the fault was
within troff when a simple analysis of the symptoms of the problem and
some careful thought should have indicated the fault lay within the
width tables.

If I had read Kernighan's paper "A Typesetter Independent Troff"
more closely I w0uld have discovered the encoding for motions and char
acters at a much earlier date.

I was not careful enough about using the tools diff and make which
would have allowed the problem to be detected and corrected earlier.

Although I have wasted quite a lot of time finding the cause of the
problem I have gained some understanding of the troff code and of its
use of bit patterns.

- 3 -

..................... -- ::::...•..._. :::

