RW Wity B B3 g

SCIENCE AND ENGINEERING RESEARCHE COUNCIL
RUTHERFORD APPLETON LABORATORY

INFORMATICS DIVISION

DISTRIBUTED INTERACTIVE COMPUTING NOTE 971
issued by
A J Kinroy

DISPLAY Performance Analysis
3 July 1984

DISTRIBUTION: SEG
A S Willianms
J Haswell

(see next page)



Changes to display May/June 1984

A study of the performance of the program was undertaken to see if it
could be determined what was -taking the most time and whether the speed
of output could be improved.

Step 1 - Procedure call counting

By implementing a general procedure which incremented a variable whose
address was passed to the procedure a count of the number of times each
procedure was called was obtained.

The results obtained from a sample of V7 troff output were:

Procedure no of calls calls per character
POINTSIZE 9

SETLEADING 29

CONTROL 112

FONTPOSITION 468

CHARPRINT 468

TROFFCHAR 471

SETESCAPE 575

DOENDPT 1884 4.02
MOVETO 2352 5.02
LINETO 9354 19.98
WORLDTOSCREEN 20592 44,00
RASTER-TO-TROFF 24349 _ 52.02
ROUNDTONEAREST 65535 140.03

Results from t.i.troff output were in similar proportions.

Theoretically if a character was considered as one continuous line
segment the procedure call tree would look like this:

charprint (l)‘“‘----'—---—.____________a
\\\\Slineto (n-1) doendpt(1l)

raster-to-troff (2n) worldtoscreen (2n) wline(n)
Tound-to~nearest (6n) ~ calls modf
wﬁere n is the number of Hershey points per character (typically 20)
The times for the above example as given by time (1) were:
real 1:08.0 (68)

user 49,5
sys 12.3

As a first attempt at reducing the number of procedure calls the raster-
to-troff and worldtoscreen procedures were replaced by macros.

The times after this change were:
real 1:04.0 (64)
user 45.5
sys 12.4



This is an improvement of about 6%.
Step 2 = Accounting for the time

From an article in PERQNEWS 4 the time to make a wline procedure call was
given as 1 ms when buffering is used.

In the example there are a total of 9354+1884=11238 wline calls which
would account for 11.238 of the 12.4 secs of system time.

To find out how much time was being taken in reading the 4 default font

files for V7 troff some exanples of minimal troff input (eg .sp) were
used. The times obtained for this were:

real 11
user 3.2
sys 1.9

To reduce the time in reading files when different fonts were selected it
was decided to bind in the font data at compile time.

The implementation details of this are described later.

The tlmes obtained for the seme ninimal troff input after the fonts had
been compiled in were:

real 10
user 0.l
sys 2.0

Thus the start-up time due to reading files has been exchanged for a slow
start-up time until the program has loaded but there will not be any time
dealays in switching to a different font with the new implementation.

The times for the original example with all the fonts compiled in were:

real 1.03 (63>
user 42.6
sys 11.9

In an attempt to determine where the user time of the program was being
spent some timings with the ftime system call were taken. The results
from this were inconclusive as trying to time procedures causes extra

overheads in system calls thus ruining the accounting of user and system
time by the time command.

In an attempt to give some visual indication of how long was being spent
in each procedure a set of areas on the screen were reserved for blacking
the area when the procedure was entered and clearing the area when the
procedure was exited. For frequently executed short procedures this
shows as a rapid flickering, for larger procedures the black area will be
more persistent. When this was implemented the results it gave were
qualitative rather than quantative. As expected the 'charprint' area
flickered intermittently and the ‘'roundtonearest' area flickered
continuously. An area for the main while loop in the charprint routine
was also displayed. This appeared black quite a large proportion of the
time indicating a lot of time was spent in this loop.

-2 -



An attempt was made to account for the 42 secs of user time by totaling
up operation and procedure call times given in CBP Assessment Note 10:
Results of Benchmarking UNIX systems. I managed to account for 4.3s in
if-else tests, while loops assignments and procedure call overheads, and
as a result of my own timings 9.5s in modf function calls making a total
of 13.8 out of 42.6s.

It is obviously unsatisfactory that so much of the user time is still
unaccounted for but in the absence of execution profiling on PNX it has

‘not been possible to proceed further.

Binding in compiled fonts

The original version of display read Hershey packed and index files into
memory for accessing fonts. In the case of V7 troff output the four
fonts selected at the start of the page were held in memory, for
‘tei.troff output the typesetter description file (which contains width
and code information for currently mounted fonts) and the Hershey files
for the currently selected font only were held in memory. This meant
there was a visible delay in reading font—-files into memory if there was
a change of mounted fonts in V7 troff or a change in selected font in

t.i.trofL, To overcome this it was decided to compile in the Hershey
font information.

As the fonts and their ordering in the statically defined tables now has
to be fixed it was necessary to introduce another table to index the
fonts. This table is set at run-time by interpreting the information in

the troff output which determines the fonts that should be associated
with each font position.

eg

compiled fonts B CIl DR H I R S e
font positioms 0 :i::EE:;ETE—“=§ff?:::::1”’a

(V7 troff)

T.i.troff has font pocitions ninbered 1 to n fcr general use and 0 for

special (overlaid) use. The indexing by this second table is exactly the
same.

The array in which the pointer indexes are held is called f-actual. It
is used to index tables of font abbreviations (fontabbv), font names
(mntfnts) and the Hershey points and indices (combined-font).

In order to make initialised C files of the Hershey characters and
indices the program ftupack was modified to make a program ftcom which
will read the packed & index files for a particular font and generate an
initialised C file containing the font data.

DIC44/ jg



