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Abstract 
 
A new package of programs, called GFUN, has been developed for designing and 
calculating the fields of two-dimensional and three-dimensional magnets. The field 
due to the magnetisation of the iron is calculated directly. “DRAW” subprograms 
simplify the input of data for the iron and current regions, and display a picture of the 
iron and current elements for checking as they are read in. “GETB” subprograms 
allow the field at a point, along a line or over a region to be typed, graphed or 
contoured. Automatic optimisation is provided. GFUN results have been checked 
against TRIM1 calculations and against the measured fields of existing magnets. 
GFUN is being used for several magnets currently being designed at the Rutherford 
Laboratory. 
 
I. Introduction 
 
Over the past two years we have developed at the Rutherford Laboratory a magnet 
design package called GFUN. We used three criteria in deciding how to develop it. 
 
1. It should be easy for the magnet designer to use. Most of the work of data 
input should be done by the computer. The input data should be displayed for 
checking. Results should be displayed in a way to make interpretation simpler. 
 
2. It should be interactive. Calculating interactively saves the magnet designer 
time. His train of thought is not broken as it is when he must submit a job and wait 
minutes or days for the results. His ideas or doubts can be checked immediately. For 
example he can see from the picture if he has set up the problem incorrectly or 
awkwardly, or he can follow up anything interesting the graph of the field reveals. He 
can stop when a line of thought proves unprofitable, and he need not provide in 
advance for all possibilities. For these reasons GFUN has been designed as an 
interactive package. However online facilities are not always available, and much of 
GFUN can be used in an off-line mode. 
 
3. It should be available in both two-dimensional and three-dimensional versions, 
which the user operates with similar commands. This criterion led to the choice of a 
direct calculation approach. The difficulties of a general mesh generator in three 
dimensions and the resulting enormous set of finite difference equations seemed a 
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daunting task. The finite element approach, which also leads to a very large number of 
equations, was more attractive from the data generator aspect, but had not yet been 
developed sufficiently. The fact that only the iron regions need to be divided into 
elements and produce equations to be solved seemed a definite advantage of the direct 
method. Our experience to date supports our choice. 
 
Even in two dimensions, direct calculation of magnetisation fields is more convenient 
for the magnet designer than finite-difference or finite-element methods. With those 
methods, the boundary value of the field or potential must be prescribed. In practice 
the boundaries must be located far from the magnet, and the field must be calculated 
over this external region, which may be of no interest to the designer. Even worse, the 
whole system - conductor, iron and free space - must be spanned by a mesh, which 
has to be as complex as the most complex part of the system. With a direct-calculation 
method, on the other hand, only the iron region need be divided into elements. There 
are far fewer elements; and, however complex the current geometry, the mesh of iron 
elements can take advantage of the simplicity of the iron geometry. 
 
II. Hardware and Software 
 
GFUN is used with the 1BM360/l95 at the Rutherford Laboratory. Although the 
central computer has two megabytes of core storage, only 160 kilobytes are available 
for an on-line program, and GFUN operates in that. Two peripherals are used; a 
typewriter for input and output of text and a Computek 400/15 Storage Tube Display 
for output of pictures and text. 
 
A satellite computer (Honeywell DDP224) handles messages between these 
peripherals and the GFUN program in the central computer. Locally written software 
in the 360/195 communicates with routines in the supervisor program, which manages 
all on-line input and output. The overall system is known as DAEDALUS 2 . Further 
software packages 3, 4 in GFUN prepare the graphical output and diagnose errors in 
messages from the typewriter. 
 
III. The Direct Calculation Method 
 
Background 
 
In contrast to the partial differential equation method the integral equation or direct-
method has not been used extensively in the solution of the magnetostatic problem. 
The preliminary work of A Halacsy5 at the University of Nevada, USA, in the dipole 
formulation is well known and the series of computer programs RENO 1, RENO 2 
and RENO 3 apply the direct solution method to the solution of the magnet problem. 
A formulation in terms of vector potential for an assembly of dipoles was described 
by S Sackett6 of LRL and a passing reference was given to a program called TAMI 
based on the method. Recently there has appeared several papers from a group at 
Toronto University, Canada, giving detailed analysis of the different formulations of 
the integral equation method. Notably Zaky7 and Robertson8 who described several 
mathematical models and gave results for some linear problems. 
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Our approach has followed similar lines in as much as we have used the magnetic 
field intensity vector formulation but our method of discretisation is to replace the 
iron regions by a number of arbitrarily shaped elements and to treat the magnetisation 
as constant throughout each element. 
 
How it Works 
 
In GFUN , the field due to the currents and the field due to the magnetisation 
of the iron are each found directly and added to give the total field: 

cH mH

 
mc HHH +=                                                       (1) 

 
In the usual magnet design situation, in which the currents are specified, the field 

can be calculated at any point by integrating over the volume of the conductors. In 
two dimensions, the calculation is analytic and in GFUN is carried out using the 
techniques described by Beth 

cH

9 . 
 
The field can be written in terms of the scalar potential: mH
 

mH = -grad Vm                                                       (2) 
 
with the scalar potential written as a volume integral of the magnetisation over the 
iron region. In SI units, 
 

dVVm ∫
⋅

= 3

.
4
1

r
rM

π
                                                (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Geometry of the simple example used to describe the direct method. 
 
 
If we:   

(a) Divide the iron region into N elements and treat the magnetisation as          
constant over each; 

(b) Take the gradient of Eq.  (3); and 
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(c) Integrate over z to make the equation two-dimensional, 
 
we obtain the following equation for the field at the centre of element k due to the 
magnetisation of all the elements: 
 

l

N

l
kmk MCH ∑

=

=
1

                                                        (4) 

 
where each C factor depends only on the geometry of the field point and source 
element. 
 
For simplicity, let us consider the case in which there are only one current element 
and two iron elements, as shown in Fig. 1. From Eq (1) and (4), the field at the centre 
of each element is given by 
 

bbbabacbb

babaaacaa

MCMCHH
MCMCHH

++=
++=

                                                 (5) 

 
But the magnetisation M can be expressed in terms of the magnetic susceptibility, χ  
i.e. HM χ=  so that 
 

                                      
bbbbaabacbb
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HCHCHH
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χχ

++=
++=

 

 
which can be arranged to read 
 

( )
( ) cbbbbbaaba

cabbabaaaa

HHCHC
HHCHC

−=−+
−=+−

1
1

χχ
χχ

                                          (6) 

 
Each of the equations in Eq (4) through Eq (6) is a two-component vector equation; 
each C is a two by two tensor. 
 
If we knew the susceptibilities aχ  and bχ , Eq (6) would be four simultaneous linear 
equations which could be solved immediately for and . Instead we must choose 
initial values for the susceptibilities, solve for the fields at the centres of the elements, 
find the values of susceptibilities corresponding to these fields from the table of 
known values for the material, and repeat. Depending upon the saturation of the iron, 
and the number of elements, convergence to a few gauss out of several kilogauss 
requires twenty to one hundred iterations. 

aH bH

 
Then the magnetisation can be determined from the converged values of H and can be 
stored. Thereafter the field at any point can be found from the stored magnetisation 
and the appropriate computed C coefficient. 
 
If the magnet being calculated has a plane of symmetry, then only half the current and 
iron elements need enter the calculation. Likewise, if it has two planes of symmetry, 
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the calculation need include only the elements in one quadrant. The C coefficients are 
calculated for both the direct and reflected positions of the elements, and the results 
added or subtracted depending on whether the magnetisation component of the 
reflected element has the same or opposite sign as the component of the direct 
element. 
 
IV. How the GFUN Package is Used Data Preparation 
 
To begin a new problem in GFUN we might specify the B-H curve of the iron and the 
symmetry the magnet is to exhibit, e.g. ‘no’ symmetry, dipole, quadrupole, or axial 
symmetry. Next the iron and current regions are specified. An advantage of the GFUN 
package is that new shapes of elements and arrays of elements can be added to the 
“DRAW” sub-program without requiring extensive reprogramming of subsequent 
sub-programs. Shapes that have proved useful are: triangles, rectangles, arrays of 
triangles or rectangles, and annular sectors or quadrilateral regions mapped by tri-
angles. Examples can be seen in Figure 4. 
 
For current elements, the current density or total current density or total current are 
also specified. Elements can be deleted, replaced, rotated or translated; and after each 
change they are drawn on the screen for checking. 
 
Calculation 
 
The GETM subprograms calculate the magnetisation of the iron elements, as 
described above. After each iteration the greatest change in field in an element is 
displayed, until convergence is reached. All data on the problem can at any stage be 
stored on a disk data set, then read back later and calculations resumed. 
 
Finding the magnetisation of an iron array of N elements requires repeatedly solving a 
set of 2N equations and thus storing a 2N by 2N matrix. For more than 32 elements, 
calculation of the magnetisation is done off line. In three dimensional problems, in 
which 3N equations must be solved and in addition more elements are usually needed, 
the magnetisation calculation is always done off-line. 
 
Display of Results 
 
Once the magnetisation is known, the field at any point can be found immediately. 
The field due to the current is calculated directly, and the field due to the iron is 
evaluated by Eq (4) with the C coefficients calculated for each source element and the 
specified field point. 
 
The GETB subprograms permit the field at any specified point to be typed out, but 
also permit several optional graphical displays of the field. The variations of the total 
field, any component of field, or its homogeneity along any horizontal or vertical line 
can be computed, and its graph displayed. See, for example, Fig. 2, 3, and 8. Also 
contours of equal strength can be drawn over a region, for total field or any 
component. This option is of obvious value in judging the homogeneity of the field in 
its useful region, but is also useful in finding where the highest field occurs in a 
superconducting coil. See for example Fig. 9 and 10. 
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V. Optimisation 
 
It was decided at the outset that we 
should include both automatic and 
manual optimisation in the GFUN 
program. So far we have 
concentrated upon the problem of 
determining conductor shapes to 
achieve high homogeneity. 
However the system is capable of 
generalisation so that any reason-
able function of the magnetic field 
can be minimised over a defined 
region. The command OPTI is 
used for optimisation. The user 
specifies an elliptical region over 
which the field has to be uniform 
and the parameter of the conductor 
he wishes to vary. Thus, for 
example, if the conducting 
elements are set at right angles all 
the x coordinates of the bottom left 
hand corner may be varied to find 
the optimum positions. 
Alternatively the positions may be 
fixed and the length of the 
rectangles varied to determine the 
optimum size. The upper and lower 
limits may also be specified to 
prevent overlapping and non-
practical cases. 
 
The program chooses suitably 
spaced points within the elliptical 
region and constructs a function by 
forming the sum of squares of the 
quantity 0/ BBδ  where Bδ is the 
difference of the field at the point 
and at the centre of the region, and 

is the value of the field at the 
centre of the region. The function 
is minimised by use of an 
algorithm designed by Powell

0B

10. 
 
Example: Design of a 
Superconducting Dipole 
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Suppose we want to design a superconducting dipole magnet, with a specified 
cylindrical iron yoke and a specified useful area over which we want to optimise the 
field uniformity. We could start with four current regions, set up and drawn by the 
DRAW subprogram as shown in Fig. 2. Homogeneity along the x axis, calculated and 
plotted by the GETB subprogram, is seen in Fig. 2 to be poor. Figure 2, and in fact all 
the figures except Fig. 1 are hard copies of the screen. 
 

 
 
Optimisation by the OPTI subprograms results in the conductor geometry shown in 
Fig. 3 with a homogeneity of better than one part in l04. 
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Next the iron yoke is put in, divided into 32 elements, again by the DRAW 
subprograms; see Fig. 4. The GETM subprograms solve for the field and 
magnetisation in each iron element. Fig.5 shows how the field converges in 60 
iterations. But as Fig. 6 shows, the total field now has more than one per cent 
inhomogeneity. So the current is re-optimised, and the magnetisation recalculated. 
Because the change in magnetisation is fairly small, convergence this time requires 
only a few iterations. Figure 7 now shows a homogeneity of one-half per cent, and 
repeating the process yields 0.2, 0.09 and 0.04 per cent in subsequent steps. 
 
This design of a superconductor dipole magnet with field homogeneity of 0.04 per 
cent was carried out in a single on-line session. Figure 8 shows the field homogeneity 
in both the x and y directions. Figure 9 shows a contour plot of homogeneity over the 
useful region and Figure 10 a contour plot of total field in the windings to reveal the 
point at which the field is maximum. 
 
VI. Extension to Three Dimensions 
 
The principal changes in going from GFUN as described in the above sections to a 
three-dimensional version are: 
 

1. In general the fields due to currents cannot be found analytically as they 
can in two dimensions. 

 
2. There are nine, rather than four, C coefficients between any two elements, 

and the coefficients are more complicated. 
 

3. Consequently there are three equations per iron element to be solved rather 
than two. 

 
4. Usually more elements are needed to give a satisfactory solution. 

 
5. The geometry of the current and iron elements is not completely specified 

by one picture on the screen. 
 
The first point is met by numerical integration, and merely adds length to the 
program. For example, combinations of iron and current elements in which the field 
from the currents is axisymmetric and the field from the iron has either two or three 
planes of symmetry, can be used for C magnets, picture-frame magnets, or pot 
magnets with non-axisymmetric return paths. 
 
The second, third and fourth points result in a larger number of equations to solve, 
requiring more time and space. At present the iron elements must be triangular or 
rectangular prisms, because the C coefficients have not yet been found for other 
shapes. 
 
The fifth point results in an addition to the graphics capabilities of GFUN. In trying to 
present all geometrical information about a three-dimensional structure of elements, 
one view is insufficient, and two or three orthogonal views are not immediately 
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interpretable, and may be misleading for complicated designs. A rotated projection or 
a perspective view presents well-known difficulties. If hidden lines are shown, the 
picture is confusing at best and ambiguous at worst. If they are not shown, all 
information is not included and some errors will not be detected. 
 
We decided to produce stereoscopic views on the screen and attach a stereo viewer for 
viewing them. That way the user has all the geometrical information at one glance. 
The STEREO subprograms enable the designer to look at any number of iron 
elements he chooses and to view them from any angle. Stereo views of the iron for 
two magnets appear in Fig. 11, and 14. Presumably the reader who has consulted 
Morse and Feshbach11 has come to terms with his ability or inability to view stereo 
pairs on a printed page; viewing bright lines against the dark screen with a suitable 
viewer is much easier. 
 
VII. Results 
 
The two dimensional version of the program has been used extensively in the design 
of many magnets including polarised target magnets, inflector magnets, separator 
magnets, superconducting dipoles, and others. Because of space limitations details of 
these results will not be included in this paper. However, some results of calculations 
on a polarised target magnet and a superconducting dipole appear in another paper 
published in these Proceedings12. 
 
The following examples are given of the use of the three dimensional version of the 
program. 
 
It has been proposed that the magnet of the Rutherford Laboratory helium bubble 
chamber be modified for use with a rapid-cycling hydrogen bubble chamber. The coil 
separation would be increased and the iron return path modified. As a preliminary 
step to the study of how these changes would affect the field, we have used GFUN to 
calculate the magnet as it exists and have computed the results with measurements of 
the field. 
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The magnet consists of a Helmholtz pair of 2 x 6 double pancake coils, two hexagonal 
pole plates, and six return legs. In the calculation, the field due to the coils was taken 
as axisymmetric, and by the symmetry of the design, only one octant of the iron was 
required. Each half return leg was divided into eight triangular prisms, a total of 
twelve in the octant. The quarter hexagonal pole plate with a circular hole was 
approximated by twelve triangular prisms filling an annular region. Figure 11 shows 
stereo views of one octant of the iron. 
 
Another calculation was performed in which the quarter pole plate was approximated 
by forty triangular prisms filling an annular region. The total number of iron elements 
was 52. See Fig.12. Figure 12 shows a projection of the iron on the x-y plane, and a 
plot of total field against radius. 
 
The field had been measured at the centre of the magnet and at points where the edges 
of the bubble chamber occur. The measured and calculated field at these points are 
compared in Table 1. The results with 24 iron elements and with 52 iron elements are 
much the same and are one per cent lower than the measured values. It should be 
noted that assuming axial symmetry, i.e. replacing the return legs by an annular region 
as well, gave results that differed from the measured field by about 10 per cent. 
 

TABLE 1. Comparison of Measured and Calculated Fields for the RHEL Helium 
Bubble Chamber Magnet 

 
Point (cm) Measured (kG) Calculated 52 

element 
Calculated 

Current only 
(0,0,0) 20.95 20.86 14.83 

(0,0,20.3) 19.82 19.97 14.41 
(40.6,20.3,20.3) 22.52 11.49 15.67 

 
 
A year ago, a calculation was 
performed with TRIM, assuming 
axial symmetry, to find the current 
needed to produce a central field of 
23 kG. Although a GFUN 
calculation assuming axial symmetry 
disagreed with the measured field in 
the magnet, it might agree with the 
TRIM calculation which also 
assumed axial symmetry. So the 
same 36 element GFUN geometry 
shown in stereo view in Fig. 13 was 
rerun at the same higher current used 
in the TRIM calculation. The TRIM 
calculation yielded a central field of 
23.00 kG; GFUN gave a 22.88 kG. 
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Comparison of the respective GFIJN calculations with the actual measurements and 
with the TRIM calculations suggests that GFUN promises to be useful in three-
dimensional field calculations. 
 
C Magnet 
 
Extensive modifications of a C Magnet at the Rutherford Laboratory have spawned 
several TRIM calculations and some recent measurements. An attempt has been made 
to calculate this C Magnet with the three-dimensional version of GFUN but GFUN is 
at present inadequate in two ways. First the pole tips are tapered; but as GFUN 
accepts only prismatic elements, the calculations must use stepped pole tips. Second 
the yoke of the magnet is mild steel and the pole tips are made of 38% Cobalt iron, 
but GFUN accommodates at present a single B-H curve for all iron elements.  
 

As it is a C Magnet, there are 
only two symmetry planes and 
a full quadrant of the iron must 
be calculated. The field due to 
the coils is axisymmetric. A 
quadrant of the iron is shown in 
stereo in Fig. 14. A quadrant of 
the C is made up of 16 
triangular prisms. The half pole 
piece is approximated by two 
half-hexagonal solids, each 
divided into 12 triangular 
prisms, there are a total of 40 
iron elements.  Figure 15 gives 
a stereo view of the half pole 
piece. Figure 16 shows an x-y 
projection of the pole piece and 
a z-r projection of the current 
elements. 
 
Two calculations were 
performed. In the first the 
entire iron structure was 
assumed made of mild steel; in 
the second it was assumed to be 
38% Cobalt iron. A curve of 
the variation of total field 
against radius in the mid-plane 
shown for one calculation in 
Fig. 17. 
 

 
The measured central field is 25.00 kG; the field calculated assuming all mild steel is 
20.28 kG; and the field calculated assuming 38?~ Cobalt iron is 23.66 kG. The 
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agreements are not as good as with the helium bubble chamber magnet, probably 
because of the inadequacies described above 
 
VIII. Conclusions 
 
The two-dimensional program represents three major advances on most existing 
programs, and the extension to three dimensions satisfies a long standing requirement. 
 
The first advance is in the use of the direct method. The removal of the boundary 
condition problem; the ability to represent accurately small discontinuities in the 

regions are valuable features. 
The second advantage is in the use 
of interactive 

conductors; and the abolition of elements in the air 

graphics. Data 

nce is in the use of 
ptimisation routines. Intelligent 

ds 
rogramming iron and current 
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Appendix: The C Coefficients 
 
Two-Dimensional Calculations 
 
Equation (4) is a vector equation: both Hmk and Ml. are two component vectors, and Ckl 
the coefficient between element l and field point k is a two by two tensor. If we let 

and A( ) ( )( 2/12
lklk yyxxr −+−= ) l be the area at element l, then the Ckl, can be 

written as: 
 

( ) ( )[ ]
ll

A

lklk
xlkx dydx

r
yyxx

C
l

∫∫
−+−

= 4

22

, 2
1
π                                 (A1a) 
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( ) ( )[ ]
ll

A

lklk
lykc dydx

r
yyxx

C
l
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−−

= 4,
2

2
1
π

                              (A1b) 

 
lykxlxky CC ,, =                                                                                        (A1c) 

 
lxkxlyky CC ,, −=            If point k is outside element l                           (A1d) 

 
lxkxlyky CC ,, 1−−=       If point k is inside element l                             (A1e) 

 
If the magnet has one or more planes of symmetry, the Eq (Al) are evaluated for the 
direct element and for each reflected element; the coefficients are added or subtracted 
depending on the symmetry. Eq. (Alc) — (Ale) will hold for each direct or reflected 
element separately; but because the two components may be added or subtracted 
differently they will not hold in general for the net coefficients. 
 
Equation (Al) can be solved analytically if the element l is a polygon of n sides. Let us 
simplify our notation by writing xk = x0 ,  yk = y0 , xl = x, yl = y.  Let us use the 
subscript j to denote the vertex of the polygon, taken anti-clockwise order. Then Eq 
(A1a) and (A1b) yield: 
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)(
)(

tan
1
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Care must be taken in evaluating Eq (A2) to use the correct value of the multi-valued 
arc-tangent function, especially in evaluating them when the field point is inside the 
element.  
 
Eq (A2) can conveniently be written in terms of the complex variables z = x + iy and 
z0= x0 + iy0. If following Beth we let   

j
i

j
jea φφ sin−=   

and )ln()(21 0
1

1 zzaa jj

n

j
j −−= ∑

=
+πG   

then C   lykylxkx CG ,, )Re( −==
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and C   lxkylykx CG ,, )Im( −=−=
where Re and Im denote respectively the real and imaginary parts. 
 
Three - Dimensional Calculations 
 
If in the steps leading up to Eq (4) we do not integrate over z, the same Eq (4) results; 
but now H  and M  are three-component vectors and Cmk l kl is a three by three tensor. 
Let  [ ][ ][ ] 2/1222 )()()( lklklk zzyyxxr −+−+−=   and Vl  be the volume element. Then 
 

[ ]
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r
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with analogous expressions for the other seven components. The diagonal elements 
obey: 
 

lk
lkCCC lzkzlykylxkx

element  inside is point  field  theif  1
element   theoutsive is point  field  theif    0,,,

−=

=++
                (A7) 

 
The Equations (A6) have been solved analytically for elements which are triangular or 
rectangular right prisms orientated in the z direction. Again let us adopt the notation  
 
xk = x0, yk = y0, zk = zo, xl = x, yl = y, zl = z 
 
Let the subscript I = 1, 2 label the top faces of the prism and the subscripts j, m = 1, 2, 
3 label the vertices and sides of each triangular face. Then if we introduce the 
expressions: 
 

[ ]
[ ]mjmjij
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00

0001
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[ ]ijmjmjijm rxxyyU +−+−= φφ cos)(sin)(ln
2
1

00                                    (A8c) 

 
we can write the coefficients: 
 

[ ])(cos)(sinsin)1(
2
1

1,,1,

3

1

2

1
, ++

==

−−−−= ∑∑ jiijjjjiijjj
j

j
i

i
lxkx LLTTC φφφ

π
          (A9a) 
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[ ])(sin)(coscos)1(
2
1

1,,1,

3

1

2

1
, ++

==

−+−−= ∑∑ jiijjjjiijjj
j

j
i

i
lykx LLTTC φφφ

π
          (A9b) 

[ ])(cos)(sincos)1(
2
1

1,,1,

3

1

2

1
, ++

==

−+−−= ∑∑ jiijjjjiijjj
j

j
i

i
lyky LLTTC φφφ

π
          (A9c) 

)(sin)1(
2
1

,1,

3

1

2

1
, jjiijj

j
j

i

i
lzkx UUC +

==

−−−= ∑∑ φ
π

                                                  (A9d) 

)(cos)1(
2
1

,1,

3

1

2

1
, jjiijj

j
j

i

i
lzky UUC +

==

−−= ∑∑ φ
π

                                                     (A9e) 

Also  
 
      Cky,lx  =  Ckx,ly 
     
      Ckz,lx  =  Ckx,lz 

 
      Ckz,ly  =  Cky,lz 

 
       Ckz,lz = - Ckx,lx – Cky,ly             If the field point k lies outside the element l 
 
       Ckz,lz = -1 - Ckx,lx – Cky,ly       If the field point k lies   inside the element l 
 
 
 
 
Addendum 2 February, 2002 
 
As conference proceedings are now difficult to obtain this paper has been copied 
without any substantive changes, other than those needed to reformat the text. The 
original computer output has been retained throughout and only very minor 
corrections to the text have been made. The current E Mail addresses of the authors 
are as follows: 
 
M J Newman:        mike.j.newman@btinternet.com 
C W Trowbridge:   bill@trowbridge.org.uk 
L R Turner:            Thanz3000@aol.com 
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