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Abstract 
 
The Partial Differential and Integral Equation formulations for the solution of the non-linear 
magnetostatic problems are reviewed. The advantages of the latter for numerical work are stressed. 
A brief survey of the literature of computer programs developed in various countries is made. The 
need for on line programs for use by magnet designers is discussed. The Rutherford Laboratory 
interactive magnet design program GFUN, which features optimisation, is described. Some results 
for both two and three dimensional problems are presented with comparisons of the TRIM program 
with measurement. 
 

I. INTRODUCTION 

 
Some ten years ago magnet designers were predicting that in the not too distant future a magnet 
design would be adequately carried out entire1y by purely computational techniques [1].  Has this 
prediction been realised? The answer to this question is only a qualified yes. A designer today can 
certainly expect to obtain from a computer a reliable approximation to the field for those magnets in 
which the current and iron regions can be idealised in two dimensions. Indeed there are many 
excellent computer programs available which are capable of achieving good accuracy, and can be 
used for assessing the performance of high homogeneity magnets [2]. Furthermore, since the power 
of computers has increased a greater degree of sophistication Is now possible. Already programs 
which handle three dimensional geometries are being developed and tested. 
 
However there is more in design than computing the field for a given geometry. The more pertinent 
question is the inverse of this: compute the geometry to achieve a specified field shape. This is a 
problem of optimisation and optimisation of one type or another is the essence of design. Several 
workers, notably J Colonias [3], and K Halbach [4] at LRL Berkeley have been very active in 
applying the computer to optimisation, and later in this paper an account of some recent work 
carried out at the Rutherford Laboratory will be given. 

                                                        
§ First Published in Proceedings of the Fourth International Conference on Magnet Technology, Brookhaven, USA, PP 617 to 626, 1972 
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At the heart of any computer program for field optimisation is the 'analysis program', the algorithm 
for computing the field for a specified configuration. There is an extensive literature on the subject 
of field analysis programs, as the excellent bibliographies prepared by A Halacsy [5] at the 
University of Nevada demonstrate. 
 
The first part of this paper surveys the various techniques that have been used in some of these 
analysis programs, and tries to highlight their range of applicability and limitations. 
 

II. ALTERNATIVE FORMULATIONS OF THE MAGNETOSTATIC PROBLEM 

    
The magnetostatic problem can be conveniently formulated in two ways. Consider first the classical 
approach in which the partial differential equations describing the field are solved. This method has 
proved most useful in the analytic solution of field problems. These equations are: 
   

 curl =H J                                        (1) 

 div 0=B                                        (2) 

where H and B are the magnetic field Intensity and magnetic-flux density at a point respectively 
and J is the current density. The field vectors H and B are related by the constitutive equation: 
. 

 (H)µ=B H                                   (3) 

where µ is the permeability a known property of the material depending upon B or H. The material 
is assumed to be isotropic. It is usual to solve the field equations by introducing associated potential 
functions of various kinds. The effect of introducing these potential functions is to transform the 
coupled first order differential equations to a single second order equation of the elliptic type. The 
numerical procedure is to replace the continuous partial differential equation by a system of linear 
algebraic equations which connect the values of the potential function at neighbouring points of a 
mesh spanning the whole domain of the magnet. The known values of the potential or its deriva-
tives at the boundaries ensure that the number of unknowns is the same as the number of interior 
mesh points. 
 
The second approach, the direct method, in which there has been a great deal of interest shown 
recently following the pioneering work of A Halacsy [6] and others, is to solve an integral equation 
for the magnetic field inside the iron. The field at a point inside the iron is the sum of the field due 
to external current sources Hs and that due to the internal magnetisation sources Hm. If the iron is 
considered as a conglomeration of dipoles then the field at a point r due to the magnetisation 
sources is given by: 
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where M is the magnetisation at the source point r' and-the integration extends over the volume V ′  
of the iron. H is further related to M by the classical expression for the magnetisation: 
 

 χ=M H                                             (5) 

where χ is the susceptibility. Hence the field at a point inside the iron can be expressed as an 
integral equation: 
 

 1( ) ( ') ( '). '
''
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V

χ
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H r H r H r

r r
                   (6) 

 
Of course there are, as with the partial differential equations method, alternative forms. The 
numerical procedure is to replace the continuous integral equation by a set of algebraic equations 
which connect the values of the field function at every point of a mesh spanning the domain of the 
iron only. The values for the field due to the current sources are readily available by direct 
integration of the known current density over the volume of the conductor. This ensures that the set 
of algebraic equations can be solved provided the value of χ is known. 
    
The partial differential equation method has several limitations which do not arise in the integral 
equation method. In the first place consider the boundary values, which in the PDE method usually 
have to be prescribed at a distance far away from the region of interest to achieve a satisfactory 
solution, whereas in the IE method the boundary values are taken care of in the formulation. This 
corresponds to the physical situation when the boundary of the field is at infinity and so the IE 
method can compute fringe fields and far fields naturally. In the second place the potential function 
used in the PDE method has to be differentiated to obtain the field components and numerical 
differentiation is a difficult process. In the third place the mesh used in the PDE method has to span 
the entire geometry of the magnet and the space around which introduces several difficulties, for 
example it is difficult to represent interface boundaries and regions with small gaps and sharp 
corners, although the elegant mesh generator introduced by A Wins1ow [7] in his TRIM program to 
some extent solves this problem. 
    
In the IE method there is a far greater degree of freedom in the choice of mesh since only the 
magnetic material itself has to be discretised. A wide variety of element shapes can be easily used in 
the same magnet. This is of great importance in the extension to three dimensions where it is 
relatively easy to per form integrations over volumes but seemingly a daunting task to generate an 
irregular mesh embracing solid objects in three dimensions. The resulting sets of equations in the 



4 

two cases are different in character, the set in the PDE method are of a banded nature with a sparse 
matrix of coefficients and it is customary to solve these by iterative means, e.g. successive over 
relaxation. The corresponding set in the IE method whilst fewer in number are not banded and 
generally not even symmetric so solution by direct methods is preferable to iterative methods. 
    
In both approaches the form of the field equations and the way in which the field equations are 
discretised provide several alternative methods for computation, and some of the computer 
programs based on these methods are discussed briefly in the next section. 
 

III.  SELECTED COMPUTER PROGRAMS 

 
1) Potential Functions 
 
Before listing some of the computer programs available to magnet designers, it is convenient to 
state the three main potential functions upon which they are based. 
 
Scalar Potential V  
 
This is the ordinary magnetostatic potential which is widely used in analytic techniques for iron-air 
regions. If the field Hs due to the current sources is considered as known then by equation (1) Hm 
the field due to the magnetic material can be expressed as the gradient of a scalar potential V and so 
by equations (2) and (3) it can be seen that V satisfies: 
 

     .( ) ( )V div sµ µ∇ ∇ = H                              (7) 

 
with the boundary condition that V → 0 at infinity. The interface condition between air and iron 
required is obtained by applying the condition that the normal component of B is continuous: 
  

 ( )1 2 1 21 2

V V
snn n

µ µ µ µ∂ ∂⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
H                              (8) 

 
Hence the solution of the problem is obtained by solving for V in equation (7) subject to the 
interface condition in equation (8), and the boundary condition that V is zero at infinity. This 
approach appears to be the most successful to date for three dimensions .but apart from infinite 
permeability problems has rarely been used in two dimensions‡. 
 

                                                        
‡ Note in 1972 3-D problems could only be solved in practise for very   simple cases owing to the difficulties of 3d mesh generation.  
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Vector Potential A  
 
The vector potential which has been widely used in the analytic solutions of problems involving 
current and iron regions has been successfully used as the basis of many computer programs. The 
vector potential A is introduced through the relation: 
 

 curl=B A                                         (9) 

 
This does not determine A uniquely since the gradient of some scalar function may be added to A to 
obtain the same result. This difficulty is avoided by imposing an extra constraint on A, namely: 
 

  div 0=A                                             (10) 

 
From equations (I) and (9) the PDE for A is obtained: 
 

          1
µ

⎛ ⎞
∇× ∇× =⎜ ⎟

⎝ ⎠
A J                                            (11) 

 
Since A has only one component for problems in two dimensions equation (11) reduces to: 
 

 1. .
µ

⎛ ⎞
∇ ∇ =⎜ ⎟
⎝ ⎠

A J                                      (12) 

 
The constraint imposed by equation (10) can be further used to simplify equation (12)§. The 
interface conditions of A following from the continuity of the normal component of B at an air-iron 
boundary: 
 

 1 1

1 21 2

A A
n nµ µ
∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

                                (13) 

 
Hence the two dimensional problem is solved by solving equation (12) subject to interface 
conditions equation (13)  

                                                        

§ Eq. (12) becomes the scalar Poisson Equation ( )1
z zA J

µ
∇ ∇ =  
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Modified Scalar Potential ψ  
 
The modified scalar potential introduced by M H B1ewett [1] for the computation of AGS magnets 
has been used as the basis of many two dimensional programs. Consider an associated vector C 
which like H satisfies the field equation (1). It then follows that: 
 

 curl( ) 0− =H C                                (14) 

 
and a modified scalar potential ψ will exist. 
 

 grad ( )ψ− = −H C                                  (15) 

 
The vector C, unlike H, has not been uniquely defined and-so in general the divergence of C may 
be permitted to have non zero values. Hence by taking the divergence of both sides of equation (15) 
will result in: 
 

2 divψ∇ = − C                                (16) 

 
In order to define C it is usual to stipulate that C has only an x component from which it follows 
that: 
 

 constdy= − +∫C J                          (17) 

 
The value of the constant can be chosen to further simplify the problem. From equation (17) it can 
be seen that the modified scalar potential is identical to the ordinary scalar potential for all points 
outside the current region. The boundary values for ψ can be found from equation (15) by inte-
grating along the boundary contour: 
 

( ).0
0

S
d

s
ψ ψ= + −∫ H C s                        (18) 

 
and so for problems where the iron boundaries are essentially equipotential, the field is everywhere 
normal to the boundary, the value of ψ at the boundaries depends only on the choice of the arbitrary 
constant in equation (17). It is usual to use this method for the air-coil region and it can be used 
directly for low field problems. For problems with saturation a two potential method is used - 
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modified potential in the air-coil region and vector potential inside the iron. 
 
2) Programs which are based on the PDE formulation. 
 
The entries listed in Table I give some information on those programs known to the author. No 
attempt has been made to discuss the very important topic of the type of relaxation that some of 
these codes use. Neither has any attention been given to such matters as accuracy nor to the 
economics of using them in magnet design. These matters are covered in the references cited. 
   
The advantage of the two potential method over the vector potential, for programs using a 
rectangular mesh, is that it avoids the complicated boundary conditions arising with the vector 
potential in the case of irregular contours. This complication is avoided in the TRIM program by the 
use of the irregular triangular mesh. 
 
One of the earliest programs to be successfully used to solve the non-linear problem was SYBYL 
written by R Christian [11] in 1963. This program has been the model for a series of codes using the 
two potential approach. One of the most sophisticated of these is the CERN code MARE, written by 
R Perin and S van de Meer [20] in 1965 which has been successfully used in the design of the ISR. 
The two potential approach is inherently less satisfactory for magnets with highly saturated iron 
regions since the boundaries of the iron regions will have tangential components of field. 
 
The vector potential method in principle can be applied quite generally and several important codes 
have been developed. These include the SLAC code NUTCRACKER (1965) by E Burfine, L 
Anderson and H Brechna1[17], the LRL code TRIM (1964) by A Winslow [7] already mentioned, 
and the BNL code GRACY (1970) by G Parzen and K Jellet [26]
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TABLE I: Summary of Computer Programs which solve the non-linear PDE for  

Magnetostatics in 2 dimensions 
 
Date Name/Centre Author Method Discretisation Remarks 
1963 SIBYL  

MURA-LRL 
(Other variants 
include LYNDA) 
 

R Chrlstian [11] 
P Dahl 
G Parzen  
J Dorst [12] 
J Colonias [13] 
 

Two potential finite 
difference. SOR 
 

Fixed topology and 
geometry. Rectangular 
meshes in the two 
regions 
 

Design tool for HEP 
apparatus at LRL Good 
agreement with 
measurements 
 

1964 
 

 
 
 

F C Trutt [14] 
 

Scalar potential Fixed topology and 
fixed geometry. 
Rectangular mesh 
Interfaces have to 
coincide with mesh lines 

 

1964 TRIM/LRL 
 
Modification  
 

A Wlnslow [7]. 
 
J Colonlas [3]  
N Diserens [15]  
R Lari [6] 
T Khoe 
 

Vector potential 
Variational and finite 
difference SOR 
 

Fixed topology and 
variable geometry.  
Triangular mesh. 

Design tool for all kinds of 
magnets. In regular inter-
national use at LRL, RHEL, 
NAL, etc. Good agreement 
with measurements over 
wide range of fields 
into saturation. 
 

1965 NUTCRACKER 
/SLAC 
 

E Burflne [18] 
L Anderson 
H Brechna 
L R Anderson [19] 
 

Vector potential finite 
difference SOR 
 

Fixed topology and 
geometry. Rectangular 
mesh. Later version 
appears to have variable 
geometry for current 

At SLAC used for HEP 
apparatus. 
Good agreement with 
measurement 
 

1996 MARE/ CERN 
 

R Perin [20] 
S van der Meer 
 

Two potential. Extensive 
use made of J Hornsby 
[21] program for solving 
elliptic PDE. 
Finite difference and 
SOR 
 

Fixed topology and 
geometry 
 

Powerful design  tool at 
CERN. Used for design of 
ISR and numerous HEP 
magnets. Good agreement 
with measurement. 
 

1966 Colorado Univ. 
 

E A Erdelyi [22]  
S V Ahmed 
R E Hopkins 
 

Vector potential Finite 
difference. Novel method 
of 
SOR 
 

Rectangular and polar 
meshes. Variable 
geometry 

Design tool for 
electromagnet machinery 
 

1968  K Reichert [23] 
 

Vector potential SOR 
 

Rectangular and polar 
lattices 
 

Applied to MDH magnets 
and to various rotationally 
symmetric magnets. Good 
agreement with experiment. 
 

1970 McGill Univ. 
 

P Silvester [24]. 
M Chari 
 

Vector potential. Finite 
element (Variational 
method ) 
Gaussian for the linear 
part, Newton-Raphson 
for the non-linear 
variable part. 
 

Variable topology and 
geometry. Triangular 
mesh. 
 

One of the first attempts in 
applying the finite element 
method. Good agreement 
with measurements. 
 

1970 FATIMA 
CERN 

C Iselin [25] Vector Potential 
Finite Element(with first 
and second order) SOR 

Fixed Geometry and 
variable topology. 
Triangular mesh 

Treats anisotropy effects. 
Good agreement with 
measurement 

1970 GRACY G Parzen [26] 
K Jellett 

Vector Potential 
Finite difference SOR 

Fixed geometry and 
topology. Rectangular 
and Polar mesh 

Used in study of saturated 
yokes in superconducting 
dipoles 
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TABLE II: Summary of Computer Programs which solve the non-linear PDE for  

Magnetostatics in 3 dimensions 
 
Date Name/Centre Author Method Discretisation Remarks 
1967 Carnegie 

 
M Foss [27] 
 

Scalar potential finite 
difference. 
 

Three dimensional 
lattice 
 

Written for CDC G21 in 
local software 
Little information available 
 

1970 
 

MIMI A 
CERN 
 

S Caeymax [28] 
 

Modified Scalar 
Potential. Air-Iron only 
at present. Infinite µ 
boundaries. Finite 
difference SOR 

Thee dimensional lattice 
with variable spacing in 
Z direction 

Used for assessing the 
performance of  beam 
handling magnets with end 
effects. Good agreement 
with measurements. 

1971 ARG-Telefunken 
Germany 
 

W Muller [29] 
 

Scalar Potential Finite 
difference SOR 
 

Cylindrical polar lattice 
with variable spacing 

To be used in the design of 
turbine generators 
 

1971 LRL 
 

S Sackett [30] 
J Colonias 
 

Vector potential finite 
element SOR 
 

Triangular Prism 
elements irregular in in 
xy plane 

Under development 
 

1971 RHEL 
 

N Diserens 
C W Trowbridge 
O Zienkiewicz 
 

Scalar Potential 
Finite element 
Frontal solution 
 

Isoparametric elements 
 

Under development 
 

1971 LAMPF 
 

R Christian [31] 
H Vogel 
 

Scalar Potential 
Infinite boundaries, use 
made of analytic 
functions for corner 
regions 
 

Three dimensional 
lattice 
 

Used for the design of 
C-Magnets. Reasonably 
good agreement with test 
models 
 

 
 
 

TABLE III: Summary of Computer Programs which use the IE Method 
 
Date Name/Centre Author Method Discretisation Remarks 
1967 TASMI 

 
S Sakett [32] 
 

Vector potential 
Dipole Magnetisation 
 

Rectangular Blocks 
 

Experimental only 
Reported instabilities in the 
relaxation rocess 
 

1967-1970 
 

RENO 
 

A Halacsy [33] 
J Scneider [34] 
 

Scalar Potential 
Dipole magnetisation 
Non relaxation method 
Iterative loop for variable 
permeability 

Regular cubes Well established program 
but owing to limitations in 
size of memory results only 
available for simple cases 

1970 University of 
Toronto 
 

S Zaky [35] 
S Robertson [36] 
H Karmarker 
 

Three methods used. 
Scalar potential, 
magnetisation currents 
and vector potential 
 

Variety of meshes used 
in 2D, 
Regular blocks in 3D 

Under development. 3D 
version tested on on constant 
µ problem. Good agreement 
with measurements 
 

1971 RHEL 
 

M Newman [10] 
C W Trowbridge 
L Turner 
 
 

Dipole magnetisation. 
Equations solved for 
magnetisation field 
vector by Gaussian 
elimination. Non-linear 
loop for variable µ by 
simple iterative scheme 
 

Current and Iron 
elements for a wide 
variety of shapes for 2D 

2D Version fully operational 
with established reliability. 
3D version under advanced 
development with good 
agreement with 
measurement 
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TRIM is a very versatile program and has travelled to many parts of the world. Many improvements 
to the code have been made to suit local requirements [15,16]. One of the most exciting 
developments has been by J Colonias [3] at LRL where TRIM has been used in conjunction with an 
on-line graphics display system. In the formulation of programs such as SYBYL, MARE, 
NUTCRACKER and GRACY finite difference methods were employed to discretise the PDE. In 
this technique the mesh topology is fixed and since boundaries and. interfaces between regions do 
not In general coincide with mesh lines special irregular star' equations have to be introduced. The 
TRIM program mesh has variable geometry which ensures that the mesh lines coincide with 
boundaries while still keeping the mesh topology fixed. Several mathematical techniques can be 
used for obtaining the difference equations including the variational method which is the basis of 
the Finite Element Method [37]. 
 
The finite element method has been used for many years in the solution of structural problems and 
has recently been applied to the magnetostatic problem. This approach enables both the topology 
and geometry of the mesh to be varied and a two dimensional program based on this method has 
been developed by P Silvester and M Chari [24]. The program FATIMA by C Iselin [25] also uses a 
finite element formulation and includes the treatment of anisotropy effects in the iron. 
 
Finally a mention of some of the attempts that have been made to correct the errors introduced by 
use of false external boundaries. N J Diserens [15] has modified the TRIM program 
for .axisymmetric problem so that the field is forced to follow a dipole law at the false boundary. A 
Riche [38] describes an iterative method which combines the relaxation of the mesh equations with 
a polynomial expression representing the solution up to infinity. 
 
The programs listed in Table II give some information on three dimensional programs. Some of 
these programs are still under development and all are limited in one way or another. It is hard to 
believe that programs based on the PDE method, with iteration relaxation of the enormous set of 
equations over meshes spanning the entire magnet, will be as successful in three dimensions as they 
have been in two dimensions. 
 
3) Programs which are based on the IE formulation. 
 
Nearly all the programs listed in Table 3 were either conceived as three dimensional or can readily 
be extended to three dimensions. The entries in Table III indicate that a great deal of interest is 
being shown in the integral equation formulations and the author regrets that time has not permitted 
a closer study of this work. The experience gained by A Halacsy [33] with the RENO program 
demonstrated that there are problems with convergence and symmetry. He also stresses the severe 
limitation of computer memory. The experience gained with the GFUN program at RHEL [10] has 
shown that agreement to one per cent can be achieved for a 3D problem with relatively few 
elements. It is a feature of this program that relatively large elements are used - the basic 
assumption made is that the magnetisation over the volume of each element is constant. In the 
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papers by S Zaky et al [35,36] several alternative formulations are given with a mathematical 
analysis of the effects of discontinuities in permeability. 
 

IV. GFUN PROGRAM 

 
There is always a requirement at laboratories specialising in High Energy Physics apparatus to 
assess rapidly the performance of proposed magnet designs. Two years ago new graphics facilities 
became available at RHEL and this fact coupled with the development of on-line [8] and graphics 
software [9] created the right conditions for the development of a new magnet design program. 
     
The new program should be user interactive. In one sense all design work performed by the 
computer is interactive. Magnet design is a problem of minimising some function of many variables 
subject to certain constraints. Examples of typical functions are performance to cost ratio, and field 
homogeneity. Usually both the function and the constraints are nonlinear. A great deal of progress 
has been made in providing automatic optimisation routines for such problems, but explicit 
formulation is often very complicated. Designers usually break the problem down into smaller 
problems and ignore the coupling. Even then, unless the initial values are not too far from the 
optimum, automatic routines will fail. Furthermore, there appears to be no automatic routine which 
will find a global minimum among several local minima. In practice, computer programs for 
magnet design such as TRIM [7] or MARE [20] for example which normally run in the batch are 
complicated and slow so that all optimisation is done by the designer while the computer is used to 
compute the function. In this situation the limiting factor in the time to optimise a design is the 
computer turn round time. The designer using the batch system is at the mercy of the turn round 
time and may have to wait for periods varying from minutes to hours depending upon the work load. 
Even for the most trivial data changes he has to wait - there is no feedback enabling him to have 
second thoughts. Because of this the designer usually takes many days, sometimes weeks, to 
prepare data for a complex magnet shape. 
 
For these reasons the use of on-line computing will speed up the design; with the right combination 
of magnet design and expertise and skill at using the program, the time for a design should speed up 
dramatically. If use can be made of automatic optimisation routines guided by the designer this 
progress will be even more rapid, and frequently a better optimum found. 
 
Another important advantage is that the designer has the opportunity to concentrate his mind on the 
problem in hand for relatively long periods thus reducing the possibility of losing his train of 
thought. 
 
Structure of the Program 
 
The GFUN program is described in detail in the paper by Newman, Trowbridge and Turner [10]. 
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The program is controlled by a user at a remote terminal which consists of a Computek 400/15 
display on line to the Rutherford laboratory IBM 360/195 Computer via a Honeywell DDP224 
Satellite. 
 
The program consists of a collection of routines which perform three principal tasks. 
 
 1. Data input. 
 2. Data processing. 
 3. Data retrieval. 
 
Each task is initiated by a set of commands and parameters. To enable parameters to be checked 
against a dictionary of valid parameters a special message decoding system was developed. Data 
input is utilised mainly by the DRAW command which allows the user to enter a wide variety of 
element shapes to represent his magnet. Further commands allow these elements to be erased, 
modified, replaced and rotated. Also the material data in the form of a table of flux density values 
versus magnetisation field values can be entered. At any stage the data can be named and the 
complete file stored on a direct access disk. Earlier magnet data files can be read into the program 
from the disk as well, thus ensuring continuity between different on-line runs and users. 
 
The data processing task for the calculation magnetisation is initiated by the GETM command. For 
reasons outlined in the second section of this paper the IE method is used. Firstly, the coefficients of 
the set of algebraic equations are computed by specially written routines which perform integrations 
over the volumes of each iron element. Secondly, these set of equations are solved for the magnetic 
field at the centre of each iron element assuming that the magnetic susceptibility is constant 
everywhere. This process is then repeated successively with the updated values of susceptibility for 
each element now available. At the end of each iteration the changes in field are detected and the 
largest change is displayed allowing the user to assess the convergence of the problem. Usually 
some 10 to 100 iterations are required to converge the solution to a few gauss in several kilogauss. 
After the convergence the magnetisation is computed and can then be stored on the named magnet 
file. 
The final task of data retrieval is to interrogate the results. The command GETB is used to plot the 
fields long lines on the display or to store values on a mesh. The command MAP is used to draw 
contours over defined regions. Examples can be seen in Figures 1, 2 and 3. 
  
NB: All the figures shown in this paper were software generated hard copies of the pictures 
appearing on the Computek screen. 
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Fig. 1: Contour plots of field after optimisation for a superconducting polarised target magnet currently under design. 
 
A further auxiliary task is to compute the Harmonic content of the field. The command HARM calls 
routines which Fourier analyse the field over a defined region, by least squares fitting Another task 
is to optimise the shape of conductor region to achieve maximum homogeneity over a defined 
region. Here the command OPTI is used to vary in a continuous manner the geometry and position 
of current elements to minimise the sum of squares of the field homogeneity over an elliptical 
region. After each OPTI process the magnetisation has to be recalculated so the user controls a 
cycle of OPTI followed by GETM commands in order to achieve an optimum. A complete sequence 
of user and automatic optimisation for a dipole is given in the paper already cited [10]. 
 

V. THE PDE METHOD COMPARED WITH IE METHOD 

 
In this section the results from the TRIM program are compared with those for GFUN. TRIM has 
been in regular use at Rutherford Laboratory for many years and until recently was the only 
program available for computing magnets with saturation effects. The accuracy of a new program 
must be established, and it is usual to make analytic comparison to start with and then proceed to 
comparisons with other established programs and finally with measurement. 
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a. Magnetic cylinder 
 
The elementary problem of the magnetic thick cylinder placed in a transverse uniform magnetic 
field was chosen as the first comparison. The low field limit can be compared with value calculated 
exactly. Table IV shows this result and also the results for a range of external fields into the 
saturation region. Figure 2 shows the GFUN error as a function of distance for the low field case. 
For this problem the accuracy is of the order of one part in 104. 
 

TABLE IV.  Thick Cylinder TRIM/GFUN Comparison 
 

 External Central Field 
Permeability Field  (Gauss)  
 (Gauss) GFUN TRIM Analytic 
Fixed 100 1,000 50.50 48.20 51.61 
Variable 10,000 6,498 5,824  
Variable 20,000 18,060 17,394  
Variable 30,000 28,820 27,988  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig, 2: Field homogeneity plot inside a magnetic cylinder immersed in a uniform magnetic field of 1000G. 
Cylinder dimensions:  Outside radius = 20 cm, Inside radius = 10 cm. 
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The results presented in Table IV show a difference of about 4% at all field levels. This difference 
between the two programs can be accounted for by the fact that the external field for the TRIM 
program has to be specified along a boundary at some finite distance from the cylinder. Whereas in 
GFUN the boundary is at infinity by virtue of the formulation so this problem does not arise. 
 
b. Dipole magnet 
 
Consider the magnet shown In Figure 3; this magnet is a possible design for a superconducting 
dipole to 'operate with good field quality up to 5.5 Tesla. The current region consists of 6 layers of 
the layer [2] type and the iron region a thick cy1indrical shell. Figure 3 shows the discretisation 
used in the GFUN program and Figure 4 the mesh generated for the TRIM program. Figure 3 also 
shows the GFUN field plot in the median plane with the TRIM computed values added for 
comparison. The data for the GFUN program was entered and the fields obtained in one single 
half-hour on-line session. The data for the TRIM run was prepared by an expert user and it took him 
approximately 6 hours. This included calculation of boundary points, a relatively easy task in this 
case since the boundaries are circular arcs, and the punching of 240 cards. This time could be 
reduced by a suitably written special pre-program for this type of magnet. Two test runs were 
needed to check and eliminate errors in the data. The computing time and storage requirements for 
these two programs are given in Table V. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3: Comparison of GFUN and TRIM for a six layer design for a superconducting dipole 
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TABLE V. Program Statistics for the TRIM-GFUN run on 
IBM 360/195 

 

Program Core 
K/Bytes

CPU 
sec Mesh Cycles for 

convergence 

TRIM 330 132 4950 points 600 

GFUN 220 60 64 elements 40 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: The generated triangular mesh used in six layer dipole computations by TRIM program. 

VI. THREE DIMENSIONAL GFUN COMPARED WITH MEASUREMENT 

For this comparison the measured results for the Rutherford Laboratory Helium Bubble Chamber 
Magnet were used. The details of the magnet and discretisation used in GFUN are given in the 
paper by Newman, Trowbridge and Turner [10]. It is a feature of this 3D version to display the 
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geometry stereoscopically and thus enable errors to be detected quickly online. Figure 5 shows 
stereo views of one octant of the iron and Figure 6 a plot of the field as a function of x in the x-y 
plane at a height of 20 cm above the median plane. The measured values are also shown for 
comparison. In fact the predicted field agreed with the measurements to better than 1% everywhere 
in the bubble chamber volume. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Stereo views of one octant of the Helium Bubble Chamber Magnet, divided into twenty-four iron elements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Comparison of GFUN with the measured values of the Helium Bubble Chamber magnet. The plot shows the 
variation of the total field in the x-y plane at a height of 20 cm. The yoke is divided into 52 elements. 
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VII.  CONCLUSIONS 

 
1 The application of the Integral Equation Method for the computer solution of the magnetostatic 
problem has been used successfully at many centres and overcomes some of the limitations of the 
partial differential equation method. The progress made towards three dimensional solutions using 
the integral equation formulation is very encouraging but techniques which minimise computer 
memory requirements must be sought if complex systems are to be represented. 
 
2. The advantages of user-interaction with programs for magnet design are numerous, and efforts 
must be made to discover the best way of implementing the necessary hardware and software in 
order to achieve an acceptable balance between 'batch' and 'on-line' processing. 
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Addendum 8 May, 2005 
 
As early conference proceedings are now difficult to obtain this paper has been copied without any 
substantive changes, other than those needed to reformat the text. The original computer output has 
been retained throughout and only very minor corrections to the text have been made. The current E 
Mail address of the author is as follows: 
 
C W Trowbridge:   bill@trowbridge.org.uk 


