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ABSTRACT 
 
A method of computing magnetostatic fields is described that is based on a numerical 
solution of the integral equation obtained from Green's Theorems. The magnetic 
scalar potential and its normal derivative on the surfaces of volumes are found by 
solving a set of linear equations. These are obtained from Green's Second Theorem 
and the continuity conditions at interfaces between volumes. Results from a two-
dimensional computer program are presented and these show the method to be 
accurate and efficient. 
 
1. INTRODUCTION 
 

The present generation of computer programs for calculating magnetostatic fields in 
three dimensions are expensive to use and they will continue to be until new 
algorithms are developed. Changes in computer hardware, e.g. parallel processors, 
may make it possible to obtain solutions more quickly, but, it is doubtful whether the 
amount of storage available will change significantly. In this paper the numerical 
solution of an integral equation derived from Green's Theorems is shown to have 
many advantages over existing integral equation methods. 
 
Integral equation methods are now widely accepted and the Rutherford Laboratory 
program GFUN3D [1], which solves the integral equation for the volume distribution 
of induced magnetisation, has been successfully used for the design of many magnets. 
As an example of the accuracy of this program the measured and computed results for 
the homogeneity of an essentially two-dimensional C shaped dipole magnet are shown 
in Figure I. This accuracy (better than 1 part in 104) was obtained by using 10 minutes 
of CPU time on an IBM 360/195, a cruder model capable of 1% accuracy would 
typically require 10 seconds CPU time. In the case of strongly three dimensional 
magnets however, 60 minutes of CPU time are probably required for accuracy better 
than 1%. Furthermore, for complex problems even when the magnetisation 
distribution has been computed, the time taken to compute fields at particular points is 
not trivial. Iselin [2] has proposed a scalar potential method that may prove to be more 
efficient than GFUN3D which uses the three component magnetisation. An alternative 
approach is the Boundary Integral Method; this method is based on the numerical 
solution of an integral equation for the magnetic scalar potential, derived from Green's 
Theorems. This approach has already been used for the solution of linear flow and 
elasticity problems [3, 4, 5]. 

 
For linear problems, i.e. constant permeability, it is only necessary to define the 
boundaries of regions with different permeability, together with a far field boundary 
condition - however the far field boundary can be expanded to infinity. A region may 
consist of several surfaces that do not touch or intersect and this fact together with the 
                                                 
§ First published in Compumag Conference Proceedings, RAL, Oxford, 1976, pp 5-14 



2 

use of symmetry allows the calculation of fields with minimal effort. In an appendix 
an extension is discussed that will make it possible to include non-linear permeability. 
 
 

 
 
 

FIGURE 1 - Measured and computed homogeneity of the field produced by a c-shaped magnet with 
small pole tip shims 

 
To determine the magnetic field distribution in a region the magnetic scalar potential 
and its normal derivative to the boundary must be computed over the surface of the 
region. This is done numerically by sub-dividing the surface into small areas over 
which the potential and normal derivatives are assumed constant. The distribution is 
then found by solving a set of linear equations for the potential and its derivative. A 
two-dimensional computer program was written to test the method and compare the 
accuracy with existing programs. Results from several tests are given. It is expected 
that this method will be even more attractive for three-dimensional calculations. 
 
2. THEORY 
Green's second theorem can be used to relate the magnetic scalar potential V(p) at a 
point p inside a volume to the magnetic scalar potential and its outward normal 
derivative on the surface of the volume [6]. The equation connecting them is: 
 

 21 1 1 1 1 1( )
4 4 4v S S

VV p Vdv dS V dS
r r n n rπ π π

∂ ∂ ⎛ ⎞= ∇ + − ⎜ ⎟∂ ∂ ⎝ ⎠∫ ∫ ∫  (1) 

 
 
where r is the distance between the point p and an element of the volume or surface of 
the region. If the permeability of a region is constant then: 
 
 2 0V∇ =   
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and therefore the first integral in equation (1) is zero. In Appendix 1 the use of a 
perturbation term based on the volume integral is shown as a possible means of 
extending the method to non-linear permeability. If a surface is defined just inside the 
boundary of a volume and this surface is subdivided into small areas over which V 
and /V n∂ ∂     are constant then equation (1) becomes: 
 

 
1,

1 1 1( ) ( )
4

j j

j
j j j

j m j jS S

dV
V p dS V dS

n r n rπ =

∂ ⎛ ⎞= − ⎜ ⎟∂ ∂ ⎝ ⎠
∑ ∫ ∫  (2) 

 
where the surface is subdivided into m area elements. Equation (2) can also be used to 
express the potential of a point on this surface as a function of the potential and its 
outward normal derivative on each surface area element. 
 
If the geometric factors relating to the potential and its derivative on every element of 
the surface are calculated for points at the centroid of every area element, then 
providing V or /V n∂ ∂  is known on every area element, the unknown values can be 
found by solving a set of exactly determined linear equations. 
 
Of more interest is a problem consisting of regions with different permeability where 
there are interfaces between the regions. For example, consider a two-region problem, 
where region 1 has permeability µ1 and region 2 has permeability µ2 (This could 
correspond to region 1 being iron and region 2 air). There must be some driving field; 
however this is at present of no account except that a distribution of field Hv is 
assumed to be produced by a set of current carrying conductors. A surface is defined 
just inside each region and this surface is subdivided into small elements with an 
exact correspondence between the elements across the interface between the regions.
    
Equation (2) then gives for each surface element:    
  
   

                     1
1 1

1, 1

( )1 1 1( ) ( ( ) ) 0
4

i i

i
j i i i

i n i iS S

dV RV R dS V R dS
n r n rπ =

∂ ⎛ ⎞− − =⎜ ⎟∂ ∂ ⎝ ⎠
∑ ∫ ∫                      (3) 
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4

i i

i
k i i i

i n i iS S

dV RV R dS V R dS
n r n rπ =

∂ ⎛ ⎞− − =⎜ ⎟∂ ∂ ⎝ ⎠
∑ ∫ ∫                      (4) 

 
where ( 1)jV R  are the potentials in region 1 and ( 2)kV R  are potentials in region 2. On 
the interface between the two regions V and /V n∂ ∂  on the surface elements are 
unknown in both regions. If V or /V n∂ ∂  is known on the surface elements that are 
not on the interface then the set of linear equations formed from (3) and (4) will still 
be under-determined. Two extra equations must be introduced for each interface 
element and these can be obtained from the interface continuity conditions. The 
equations are: 
 1 2( ) ( )j kV R V R=  (5) 
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( 1) ( 2)( ( 1)) ( ( 1))
j j

j k
n n

j k

V R V RH R H R
n n

µ µ
∂ ∂

− + = + +
∂ ∂

 (6) 

where ( 1)
jnH R is the outward normal component of the driving field on element j of 

region 1. The same ideas can be applied to problems consisting of any number of 
regions. 
 
It is interesting at this stage to examine the set of equations generated to determine V 
and /V n∂ ∂  in a two region problem, where there is an interface between the regions. 
A pictorial representation of the equations is shown in Figure 2. There are nl and n2 
sides and ml and m2 unknowns in region and 2 respectively. The submatrix (1) is 
dense and is formed from the coefficients from equation (3) applied to the element of 
region 1. Similarly submatrix (4) comes from region 2. The submatrices (2) and (3) 
are sparse (two unknowns per row) and are generated from the interface conditions. 
The other areas contain zeros. If on the boundary surfaces where the potential or its 
derivative is known the value is zero then all the right-hand sides are zero except 
those corresponding to the normal B continuous boundary conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 - A Representation of the Set of Linear Equations Required to Solve 
 For the Potential and its Normal Derivative in a 2 Region Problem 

  
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3 - Submatrices (1) and (2) are dense, (3) is sparse 
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In order to make the most efficient use of existing computer programs for solving 
linear equations the interface conditions can be used to replace unknowns on the 
interface in region 2 by the values in the equivalent elements in region 1. The order of 
the matrix can be reduced using this technique but at the expense of the loss of the 
blocking that previously existed. From a long term point of view it would be more 
efficient to use the blocked matrix and special factorising methods. Figure 3 shows 
the structure of the set of equations after order reduction has taken place. In the case 
of a problem only consisting of interfaces the order is reduced to half its previous size. 
 
3. SYMMETRY 
 
The number of unknowns in a problem can be reduced significantly when the 
geometry and its associated potential distribution possesses a known rotational or 
reflective symmetry. The two methods that can be employed to make use of this 
symmetry are shown pictorially in Figures 4 and 5. In Figure 4 a model of a dipole 
magnet is shown where the Dirichlet and Neumann boundary values have been used 
to imply the rest of the model. In Figure 5 the whole model is shown but, because the 
potentials in the 2nd, 3rd and 4th quadrants have an exact equivalence to those in the 
first quadrant, the potentials in the first quadrant are the only ones which must be 
computed explicitly. 
 
The far field boundary shown in Figure 5 can be expanded to infinity because there 
are no boundary connections between it and the magnet; the far field boundary then 
has no effect on the problem whatsoever. This is obvious for real problems where the 
potential and its normal derivative to the far boundary can be defined as zero. It is not 
immediately clear in the two-dimensional infinite limit because the potential from a 
boundary side becomes infinite at large distances. However the divergence of the 
potential from a complete surface must be zero and therefore the contributions from 
all elements of a surface will cancel to produce zero potential at infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Boundary integral method model using Neumann and Dirichlet 
boundary values 
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4. APPLICATIONS OF THE METHOD 
 
A two-dimensional magnetostatic computer program was written to test the accuracy 
and efficiency of the method. The results for the program were very encouraging. In 
the program the fields from infinitely long conductors with polygonal cross section 
and curvilinear faces were computed using existing analytic expressions [7]. The 
boundaries between regions of different permeabilities were subdivided into plane 
faces over which the potential and its normal derivative were assumed to be constant. 
The expression for the potential and field from such faces are given in Appendix 2. 
The integrals can be evaluated for higher order basis functions but this leads to 
problems at external corners because the integrals have singular kernels. This problem 
can be solved but it was simply avoided in the present program by computing the 
potentials at the centroid of each element where the integral is well behaved. The 
program can be run interactively on. the Rutherford Laboratory. IBM 360/195 and in 
this version an elegant data input package was used for specifying the boundary data 
of polyhedra [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5 - Boundary integral method model using symmetry -   the far field boundary is infinity 
 
5. RESULTS 
 
The results from two test cases are included in this section; a comparison of analytic 
and computed results for the field in a hollow, infinitely long, constant permeability 
cylinder in a uniform external field; and a comparison of the GFUN and Boundary 
Integral Method computed fields for a two-dimensional C magnet. 
 
(a) Hollow Cylinder. The fields in a hollow infinitely long constant permeability 
cylinder in a uniform field perpendicular to the axis of the cylinder were computed 
using the Boundary Integral Method. The inside radius of the cylinder was 5 cms and 
the outside radius 10 cms. The cylinder was approximated by many-sided polyhedra 
and symmetry was used so that only potentials and derivatives in the first quadrant 
were computed explicitly. In Figures 6 and 7 the computed shielding factor of the 
cylinder is plotted as a function of the number of boundary faces for cylinders with 
relative permeabilities of 100 and 1000. The accuracy is very good, and most of the 
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error is due to the polygonal approximation. The field in the hollow centre should be 
uniform and in the computed cases the homogeneity was always better than 2 in 104. 
An interesting point to note about the results is that the fields at points inside the 
cylinder were obtained as accurately as the shielding factor; this is not true in the 
GFUN program where eigenvalue solutions can be obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 - Shielding factor of hollow ferromagnetic cylinder – Inside Radius 5 cm.  
Outside radius 10 cm. permeability 100 - as a function of the number of independent boundary faces in 

the model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7 - Shielding factor of a hollow ferromagnetic cylinder – dimensions  as figure 6, 
permeability 1000 - as a function of the number of independent boundary faces. 

 
 
(b) C-Shaped Dipole Magnet The geometry of this magnet is shown in Figures 8 and 
9, Figure 8 shows the GFUN model and Figure 9 the Boundary Integral Method 
model. The results in Figure 1 have shown that GFUN gives accuracies of the order of 
0.01% for the homogeneity of this type of C magnet. GFUN was therefore used to 
compute the field homogeneity of the magnet shown in Figure 8 for steel with a 
relative permeability of 1000.0. In Figure 10 the GFUN results are compared to those 



8 

obtained using the Boundary. Integral Method (BIM) for several different models. 
Symmetry was used and therefore only the upper Y plane was computed explicitly. 
(In both these cases the far field boundary was at infinity.) The results for this case are 
again good. Figure 11 shows a computed map of lines of constant scalar potential for 
the 140 element BIM model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8 - GFUN Model of a two-dimensional C-magnet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8 - BIM Model of a two-dimensional C-magnet 
 
 
6. CONCLUSIONS 
 
The results achieved for two-dimensional magnet problems are encouraging and 
appear to be competitive with other methods. The extension of the Boundary Integral 
Formulation to three dimensions is relatively straightforward and should in principle 
lead to a more efficient algorithm than the one currently in use in GFUN. For 
example, the table I compares predicted computing time (seconds) for a range of 
problems, i.e. for existing GFUN, BIM and the Scalar Potential Integral Equation [2] 
formulation. The table also gives times for computing a single field point. 
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FIGURE 10 - Computed homogeneity of the field under the pole tip of the C- magnet shown in figure 

8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 11 - A map of the computed magnetic scalar potential for a C-magnet 
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Table I: Computing Times 
 

GFUN 
Magnetisation method BIM Scalar Int. Eq. 

Volume 
   Elements 

Surface 
  Elements 
  in BIM Int. Eq.

    Single 
Field 
Point 

Int. Eq.
 Single 

Field 
Point 

Int. Eq. 
Single 
Field 
Point 

216 216 114 2.16 12 0.36 4.2 2.16 

343 294 450 3.43 30 0.49 18.0 3.43 

512 384 1488 5.12 70 0.64 55.0 5.12 

730 486 4320 7.30 133 0.80 162.0 7.30 

 
It can be seen that, as the number of elements increases, BIM compares very 
favourably with the Scalar Integral Equation method both for the main solution and 
for fields at single points. Since the existing program is restricted to constant 
permeability problems the best method for solving the non-linear problems must be 
established - the multi-region option outlined in Appendix I Section 2 will be tried 
first by modifying the existing two-dimensional program. 
 
Finally, it should be emphasised that this method has a far wider range of applicably 
than Magnetostatics for example, solution of current flow potentials in association 
with eddy currents [8]; also it may be used to advantage in improving the efficiencies 
of programs already developed such as GFUN for computing the fields at single 
points. 
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APPENDIX 1 
 
EXTENSION OF THE GREEN'S THEOREM APPROACH TO NON-LINEAR 
MAGNETOSTATIC PROBLEMS. 
 
There are two possible methods of extending the method to cover non linear 
problems; the first involves using a perturbation term based on  the volume integral in 
equation (1); the second would require the whole  of an iron volume to be subdivided 
into separate volume elements on the surfaces of which the potential and its normal 
derivative are computed. 
 
(1) Perturbation term method. The magnetic field HT at a point can be divided into 
two parts - HC due to currents and HM due to the iron. 
 
 T C MH = H + H  (7) 
Since Div B = 0, then: 
 
 ( )Div 0C Mµ µ+ =H H  (8) 
(only isotropic materials are considered here) 
 
From equation (8) 

( ) ( ) ( ) ( ) ( )2Div H . . . Div
Since:
Div( ) 0

M M M C

C

Vµ µ µ µ µ µ

µ

= ∇ + ∇ = ∇ − ∇ = −

=

H H H H

H
 

 2 1 . MV µ
µ

∇ = ∇ H  (9) 

 
Combining equations (2) and (9): 
 

 ( )1 1 14 ( ) . M
v S S

dv VV p dS V dS
r r n n r

π µ
µ

∂ ∂ ⎛ ⎞= ∇ + − ⎜ ⎟∂ ∂ ⎝ ⎠∫ ∫ ∫H  (10) 

 
 
This equation could be solved numerically by calculating the contributions of the 
volume integral when the solution for V and /V n∂ ∂  is known. Using a simple 
iterative scheme the values of V and /V n∂ ∂ could then be updated by resolving 
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equations (3) and (4) with the volume integral contribution added to the right-hand 
sides and the continuity conditions modified. 
 
(2) Volume subdivision method. The existing two-dimensional program can be used 
to evaluate this method. The ferromagnetic regions of a problem must be divided into 
small elements over which the change in permeability is small. The equations to be 
solved are unchanged but an iterative method must be used to converge the solutions 
for the permeabilities. This method has several advantages; the matrix to be solved is 
banded and sparse and has a similar structure to those obtained in finite element 
methods; a numerical calculation of the gradient of µ is not needed. It is hoped to try 
this second method if present improvements to integral equation methods[2] do not 
fulfil their promise.  
 
APPENDIX 2  
 
EXPRESSIONS FOR THE FIELD AND POTENTIAL FROM SINGLE AND 
DOUBLE LAYER SURFACE CHARGES ON INFINITELY LONG PLANE 
FACES OF FINITE WIDTH 
 
A typical region consisting of many boundary faces is shown in Figure 12. All the 
expressions given below are for points in the local coordinate system of a boundary 
face - Figure 13. The faces are infinitely long and of the plane of the paper - in the Z 
direction: 
 
(1) Potentials The integrals to be evaluated are shown in equation (2). 
 
The potential at a point p(x,y) is: 
 

1 2 1 2( ln( / ) ln( / ) 2 )1( ) (2 ) 2
4

j
j

V x r r b r r b y
V p V

n
θ

θ
π

∂ + − +⎡ ⎤
= +⎢ ⎥∂⎣ ⎦

 

 
where 2b is the width of the face. 
 
(2) Fields.  The field at point p(x,y) is: 
 

grad ( )V p= −H  
 
Therefore: 
 

( ) ( ) ( ) ( )

( ) ( )

2 2

1 22 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2
1 2 1 2 1 2 2 1

1 1 1[ { ( ) ln( / ) ( ) ( )}]
2

1 ( ) ( )[ { ( ) ( ) ( ) }]
2

j
x j

j
y j

V x b x b x b x b y yH V y x r r b
r r n r r r r r r

V x b x bx b x b y y y yH V x y b
r r n r r r r r r

π

θ
π

∂ + − + −⎛ ⎞
= − + − + + − + −⎜ ⎟ ∂⎝ ⎠

∂ − +⎛ ⎞− −
= − + − + − + − +⎜ ⎟ ∂⎝ ⎠
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FIGURE 12 - Global coordinate system 
A boundary surface subdivided into elements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13 - Local coordinate system of an element 
 
 
Addendum 9 May, 200 
As conference proceedings are now difficult to obtain this paper has been copied 
without any substantive changes, other than those needed to reformat the text. The 
original computer output has been retained throughout and only very minor 
corrections to the text have been made.  
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