
Miles Barel

PERQ Pascal Extensions

Three Rivers Computer Corporation

October 27, 198~

Three Rivers Computer Corporation
72~ Gross Street
Pittsburgh, PA 15224
(412) 621-625~

The information in this document is subject to change
without notice and should not be construed as a commitment
by Three Rivers Computer corporation. Three Rivers Computer
Corporation assumes no responsibility for any errors that
may appear in this document.

1•

2.

3.
3.1
3.2

4.

5.

6.
6.1
6.2

7.

8.
8.1

9.
9.1

1121.
1121.1
1121.2

11.
11.1
11.2

12.
12.1
12.2
12.3
12.4
12.5
12.6

13.
13.1
13.2
13.3
13.4

14.
14.1
14.2

Table of Contents

Introduction

Declaration Relaxation

Extended Constants
Unsigned Octal Integers
Constant Expressions

Type Coercion - RECAST

Extended Case Statement

Control Structures
GOTO Statement
EXIT Statement

Sets

Strings
Length Function

Procedure/Function Parameters
Procedure and Functions as Parameters

Modules
IMPORTS Declaration
EXPORTS Declaration Section

Dynamic Space Allocation and Deallocation
New
Dispose

Integer Logical Operations
And
Inclusive Or
Not
Exclusive Or
Shift
Rotate

Input/Output Intrinsics
REWRITE
RESET
READ/READLN
WRITE/WRITELN

Miscellaneous Intrinsics
StartlO
Raster-Op

15.
15.1
15.2
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

Command Line and Compiler Switches
Command Line
Compiler Switches

File Inclusion
List Switch
Range Checking
Quiet Switch
Symbols Switch

The new syntax for the declaration section is:

PERQ Pascal Extensions

1. Introduction

PERQ Pascal is an upward compatible extension of the
programming language Pascal defined in PASCAL User Manual
and Report [JW74]. This document describes only the
extensions to pascal. Refer to PASCAL User Manual and
Report [JW74] for a fundamental definition of Pascal. This
document uses the BNF notation used in PASCAL User Manual
and Report [JW74]. The existing BNF is not repeated but is
used in the syntax definition of the extensions. The
semantics are defined informally.

These extensions are designed to support the
construction of large systems programs. A major attempt has
been made to keep the goals of Pascal intact. In
particular, attention is directed at simplicity, efficient
run-time implementation, efficient compilation, language
security, upward compatibility, and compile-time checking.

Inspiration for these extensions to the language are
motivated by the BSI/ISO Pascal Standard [BSI79], the UCSD
Workshop on Systems programming Extensions to the pascal
Language [UCSD79] and, most notably, Pascal* [P*].

2. Declaration Relaxation

The order of declaration for labels, constants, types,
variables, procedures and functions has been relaxed. These
declaration sections may occur in any order and any number
of times. It is required that an identifier is declared
before it is used. Two exceptions exist to this rule: 1)
pointer types may be forward referenced as long as the
declaration occurs within the same type-definition-part and
2) procedures and functions may be predeclared with a
forward declaration.

<block> ::= <declaration part><statement part>

<declaration part> ::= <declaration> I
<declaration><declaration part>

<declaration> ::= <empty> I
<import declaration part> I
<label declaration part> I
<constant definition part> I
<type definition part> I
<variable declaration part> I
<procedure and function declaration part>

(NOTE: Import declaration part is described in section

PERQ Pascal Extensions PAGE 2

112).1)

3. Extended Constants

3.1 Unsigned Octal Integers

Unsigned octal integer constants are supported as well
as decimal. Octal integers are indicated by a "t" preceding
the number.

The syntax for an unsigned integer is:

<unsigned integer> ::= <unsigned decimal integer>
<unsigned octal integer>

<unsigned decimal integer> ::= <digit>{<digit>}

<unsigned octal integer> ::= '<ogit>{<ogit>}

<digit> ::= 12) I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

<ogit> ::= 12) I 1 I 2 I 3 I 4 I 5 I 6 I 7

A change to this extension which would allow integer
constants with arbitrary radices is under consideration.

3.2 Constant Expressions

PERQ Pascal extends the definition of a constant to
include expressions which may be evaluated at compile-time.
Constant expressions support the use of the arithmetic
operators +, ,*, DIV, MOD and I, the logical operators
AND, OR and NOT, the type coercion functions CHR, ORO and
RECAST (RECAST is defined in section 4), and previously
defined constants. All logical operations are performed as
full 16 bit operations.

The new syntax for constants is:

<constant> ::= <string> I <constant expression>

<constant expression> ::= <cterm> I <sign><cterm> I
<constant expression><adding operator><cterm>

<cterm> ::= <cfactor> I
<cterm><multiplying operator><cfactor>

<cfactor> ::= <unsigned constant> I
(<constant expression>) I NOT <cfactor>
CHR«constant expression» I

PERQ Pascal has a more limited form of the
statement that is defined in Jensen and Wirth [JW74].
Pascal prohibits a GOTO statement to a label which is

GOTO
PERQ
not

PERQ Pascal Extensions PAGE 3

ORD«constant expression»
RECAST«constant expression>,<type identifier»

4. Type Coercion - RECAST

The type coercion function RECAST will convert the type
of an expression from one type to another type with the same
representation length. RECAST, as well as the standard
functions CHR and ORD, is implemented as a compile-time
operation. Thus the use of any type coercion function does
not incur run-time overhead. The RECAST function takes two
parameters: the expression to be coerced and the type name
to which the expression is to be coerced. Its declaration
is:

function RECAST(value:any-type; T:type-name):T

5. Extended Case Statement

Two extension have been made to the case statement:

r. Constant subranges as labels.

2. The "otherwise" clause which is executed
if the case selector expression fails to
match any case label.

Case labels may not overlap. A compile-time error will
occur if any label has multiple definitions.

The new syntax for the case statement is:

<case statement> ::= CASE <expression> OF
<case list element> {;<case list element>} END

<case list element> ::= <case label list> : <statement>
<empty>

<case label list> ::= <case label> {,<case label>}

<case label> ::= <constant> [••<constant>] I OTHERWISE

6. Control Structures

6.1 GOTO Statement

A change to eliminate this restriction is
consideration.

under

PERQ Pascal Extensions PAGE 4

within the same block as the GOTO statement.

The following example is illegal in PERQ Pascal:

program BADGOTO(input,output);
label 1;

procedure P;
begin
goto 1
end;

begin
1:
end.

6.2 EXIT Statement

The procedure EXIT is provided to allow forced
termination of procedures or functions. The EXIT statement
may be used to exit from the current procedure or function,
or any of its parents. The procedure takes one parameter:
the name of the procedure or function to exit from. Note
that the use of an EXIT statement to return from a function
can result in the function returning undefined values if no
assignment to the function identifier is made prior to the
execution of the EXIT statement. Below is an example use of
the EXIT statement:

program EXITEXAMPLE(input,output);
var STR: string;

procedure P;
begin
readln(STR);
writeln(STR)i
if STR = "This is the first line" then

exit (EXITEXAMPLE)
end;

begin
P;
while STR <> "Last Line" do

begin
readln(STR);
writeln(STR)
end

end.

If the above program is supplied with the following input:

PERQ Pascal Extensions P~E5

This is the first line
This is another line
Last Line

the following output would result:

This is the first line

If the procedure or function to be exited has been
called recursively, then the most recent invocation of that
procedure will be exited.

A change to allow a more general exception handling
mechanism is under consideration.

7. Sets

PERQ Pascal supports all of the constructs defined for
sets in chapter 8 of Jensen and Wirth [JW74]. Sets (of
enumeration values) are limited to non-negative integers
only. The maximum set size supported is 32,768 elements.
Space is allocated for sets in a bitwise fashion -- at most
2048 words for sets of 32,768 elements.

8. Strings

PERQ Pascal includes a string facility which provides
variable length strings with a maximum size limit imposed
upon each string. The default maximum length of a STRING
variable is 80 characters. This may be overridden in the
declaration of a STRING variable by appending the desired
maximum length (must be a compile-time constant) within []
after the reserved type identifier STRING. There is an
absolute maximum of 255 characters for all strings. The
following are example declarations of STRING variables:

LINE: STRING; { defaults to a maximum length of 80
characters }

SHORTSTR: STRING[12]; { maximum length of SHORTSTR
is 12 characters }

Assignments to string variables may be performed using
the assignment statement or by means of a READ statement.
Assignment of one STRING variable to another may be
performed as long as the dynamic length of the source is
within the range of the maximum length of the destination -­
the maximum length of the two strings need not be the same.

The individual characters
selectively read and written.

within a STRING may be
The characters are indexed

PERQ Pascal Extensions PAGE 6

starting from 1 through the dynamic length of the string.
For example:

program STREXAMPLE(input,output);
var LINE:string[25];

CH:char;

begin
LINE:='this is an
LINE[l] :='T';

example. ';
{ LINE now begins with}
{ upper case T }
{ CH now contains a space }CH:=LINE[5];

end.

A STRING variable may not be indexed beyond its dynamic
length. The following instructions, if placed in the above
program, would produce an "invalid index" run-time error:

LINE:='12345';
CH:=LINE[6] ;

STRING variables
irrespective of their
resulting comparison is
ASCII character set.
significant for lexical

(and constants) may be compared
dynamic and maximum lengths. The
lexicographical according to the
The ASCII parity bit (bit 7) is

comparisons.

A STRING variable, with maximum length N, can be
conceived as having the following internal form:

packed record DYNLENGTH:0 ••255
{ the dynamic length }

CHRS: packed array [l••N] of char;
{ the actual characters go here }

end;

8.1 LENGTH Function

The predefined integer function LENGTH is provided to
return the dynamic length of a string. For example:

program LENEXAMPLE(input,output);
var LINE:string;

LEN: integer;
begin
LINE:='This is a string with 35 characters';
LEN:=length(LINE)
end.

will assign the value 35 into LEN.

A change to remove
consideration.

this restriction is under

PERQ Pascal Extensions PAGE 7

9. Procedure/Function Parameter Types

9.1 Procedures and Functions as Parameters

PERQ Pascal does not support passing procedures and
functions as parameters to other procedures or functions.

10. Modules

The module facility provides the ability to encapsulate
procedures, functions, data and types, as well as supporting
separate compilation. Modules may be separately compiled,
and intermodule type checking will be performed as part of
the compilation process. Unless an identifier is exported
from a module, it is local to that module and cannot be used
by other modules. Likewise all identifiers referenced in a
module must be either local to the module or imported from
another module.

Modules do not contain a main statement body. A
program is a special instance of a module and conforms to
standard Pascal. Only a program may contain a main body,
and every executable group of modules must contain exactly
one instance of a program.

Exporting allows a module to make constants, types,
variables, procedures and functions available to other
modules. Importing allows a module to make use of the
EXPORTS of other modules.

Global constants, types, variables, procedures and
functions can be declared by a module to be private
(available only to code within the module) or exportable
(available within the module as well as from any other
module which imports them).

10.1 IMPORTS Declaration

The IMPORTS declaration specifies the modules which are
to be imported into a module. The declaration includes the
name of the module to be imported and the file name of the
source for that module. (Note: If the module is composed
of several include files(see section 15.2.1), only those
files from the file containing the program or module heading
through the file which contains the word PRIVATE must be
ava ilable.)

PERQ Pascal Extensions PAGE 8

The syntax for the IMPORTS declaration is:

<import declaration part> ::= IMPORTS <module name> FROM
<file name>

10.2 EXPORTS Declaration Section

If a module is to contain any exports, the EXPORTS
declaration section must immediately follow the program or
module heading. The EXPORTS declaration section is
comprised of the word EXPORTS followed by the declarations
of those items which are to be exported. These definitions
are given as previously specified (see section 2:
Declaration Relaxation) with one exception: procedure and
function bodies are not given in the exports section. Only
forward references (see chapter 11.C in Jensen and Wirth
[JW74]) are given. The inclusion of "FORWARD;" in the
EXPORTS reference is omitted.

The EXPORTS declaration section is terminated by the
occurance of the word PRIVATE. This signifies the beginning
of the declarations which are local to the module. The
PRIVATE declaration section must contain the bodies for all
procedures and functions defined in the EXPORTS declaration
section.

If a module is to contain no EXPORTS declaration
section, the inclusion of PRIVATE folIoing the module or
program heading is optional (PRIVATE is assumed). (Note: A
module with no EXPORTS would be useless, since its contents
could never be referenced -- it only makes sense for a
program not to have any EXPORTS.)

The new syntax for a unit of compilation is:

<compilation unit> ::= <module> I <program>

<program> ::= <program heading><module body><statement
part>.

<module> ::= <module heading><module body>.

<program heading> ::= PROGRAM <identifier>
identifier>

{, <file identifier>});

<file

<module heading> ::= MODULE <identifier>;

<module body> ::= EXPORTS <declaration part> PRIVATE
<declaration part> I PRIVATE <declaration part>
<declaration part>

PERQ Pascal Extensions PAGE 9

11. Dynamic Space Allocation and Deallocation

The PERQ Pascal Compiler supports the dynamic
allocation procedures NEW and DISPOSE defined on page 105 of
Jensen and Wirth [JW74], along with several upward
compatible extensions which permit full utilization of the
PERQ memory architecture.

There are two features of PERQ's memory architecture
which require extensions to the standard allocation
procedures. First, there are situations which require
particular alignment of memory buffers, such as 10
operations. $econd, PERQ supports multiple data segments
from which dynamic allocation may be performed. This
facilitates grouplng data together which is to be accessed
together, which may improve PERQ's performance due to
improved swapping. Data segments are multiples of 256 words
in size and are always aligned on 256 word boundaries. For
further information of the memory architecture and available
functions see the documentation on the memory manager.

11.1 NEW

If the standard form of the NEW procedure call is used:

NEW(ptr{,Tag1, •••TagN})

memory for Ptr will be allocated with arbitrary alignment
from the default data segment.

The extended for of the NEW procedure call is:

NEW(Segment,Alignment,Ptr{,Tag1, •••TagN})

Segment is the segment number from which the allocation
is to be performed. This number is returned to the user
when creating a new data segment (see the documentation on
the memory manager). The value 0 is used to indicate the
default data segment. .

Alignment specifies the desired alignment;
of two up to 256 inclusive is permissable.

Any power

If the extended form of NEW is used, both a segment and
alignment must be specified; there is no form which permits
selective inclusion of either characteristic.

If the desired allocation from any call to NEW cannot
be performed, a NIL pointer is returned.

11.2 DISPOSE

DISPOSE is identical to the definition given in Jensen

PERQ Pascal Extensions PAGE 10

and Wirth [JW74]. Note that the segment and alignment are
never given to DISPOSE, only the pointer and tag field
values.

12. Integer Logical Operations

The PERQ Pascal compiler supports a variety of integer
logical operations. The operations supperted include: and,
inclusive or, not, exclusive or, shift and rotate. The
syntax for their use resembles that of a function call,
however the code is generated inline to the procedure (hence
there is no procedure call overhead associated with their
use). The syntax for the logical functions are described in
the following sections.

12.1 And

Function LAND(Val1,Va12: integer): integer;

LAND returns the bitwise AND of Vall and Va12.

12.2 Inclusive Or

Function LOR(Val1,Va12: integer): integer;

LOR returns the bitwise INCLUSIVE OR of Vall and Va12.

12.3 Not

Function LNOT(Val: integer): integer;

LNOT returns the bitwise complement of Val.

12.4 Exclusive Or

Function LXOR(Val1,Va12: integer): integer;

LXOR returns the bitwise EXCLUSIVE OR of Vall and Va12.

12.5 Shift

Function SHIFT(Value, Distance: integer): integer;

SHIFT returns Value shifted Distance bits. If Distance
is positive a left shift occurs, otherwise a right shift
occurs. When performing a left shift, the least significant
bit is filled with a 0, and likewise when performing a right
shift, the most significant bit is filled with a 0.

12.6 Rotate

Function ROTATE(Value, Distance: integer): integer;

PERQ Pascal Extensions PAGE 11

ROTATE returns Value rotated Distance bits. If
Distance is positive a right rotate occurs, otherwise a left
rotate occurs. Note that the direction is opposite of
SHIFT.

13. Input/Output Intrinsics

PERQ's Input/Output
Jensen and Wirth [JW74].
below.

intrinsics vary slightly from
Only the differences are discussed

13. REWRITE

The REWRITE procedure has the following form:

REWRITE(F,Name)

F is the file variable to be associated with the file to be
written and Name is a string containing the name of the file
to be created. EOF(F) becomes true and a new file may be
written. The only difference between the PERQ and Jensen
and Wirth [JW74] REWRITE is the inclusion of the filename
string.

13.2 RESET

The RESET procedure has the following form:

RESET(F,Name)

F is the file variable to be associated with the existing
file to be read and Name is a string containing the name of
the file to be read. The current file position is set to
the beginning of file, i.e. assigns the value of the first
element of the file to FA. EOF(F) becomes false if F is not
empty; othewise, EOF(F) becomes true and FA is undefined.

13.3 READ/READLN

PERQ Pascal supports extended versions of the READ and
READLN procedures defined by Jensen and Wirth [JW74]. Along
with the ability to read integers (and subranges of
integers), reals and characters, PERQ Pascal also supports
reading booleans, packed arrays of characters and strings.

The strings TRUE and FALSE (or any unique
abbreviations) are valid input for parameters of type
boolean (both upper and lower case are permissable).

If the parameter to be read is a PACKED ARRAY[m ••n] of
CHAR, then the next n-m+l characters from the input line
will be used to fill the array. If there are less than

PERQ Pascal Extensions PAGE 12

n-m+l characters on the line, the array will be filled with
the available characters, starting at the m'th position, and
the remainder of the array will be filled with blanks.

If the parameter to be read is of type STRING, then the
string variable will be filled with as many characters as
possible until either the end of the input line is reached
or the static length of the string is met. If there are not
enough characters on the line to fill the entire string, the
dynamic length of the string will be set to the number of
characters read.

13.4 WRITE/WRITELN

PERQ Pascal provides many extensions to the WRITE and
WRITELN procedures defined by Jensen and Wirth [JW74]. Due
to the extensiveness of these extensions, the entire WRITE
and WRITELN procedures are redefined below:

1. write(pl, ••• ,pn) stands for write(output,pl, ••• ,pn)

2. write(f,pl, ••• ,pn) stands for BEGIN write(f,pl);
write(f,pn) END

3. writeln(pl, ••• ,pn) stands for
writeln(output,pl, •••pn)

4. writeln(f,pl, ••• ,pn) stands for BEGIN write(f,pl);
write(f,pn); writeln(f) END

5. Every parameter pi must be of one of the forms:

e
e
e

el
el e2

where e, el and e2 are expressions.

6. e is the VALUE to be written and may be of type
char, integer (or subrange of integer), real,
boolean, packed array of char or string. For
parameters of type boolean, one of the strings
TRUE, FALSE or UNDEF will be written; UNDEF is
written if the internal form of the expression is
neither 0 nor 1.

7. el, the minimum field width, is optional. In
general, the value e is written with el characters
(with preceeding blanks). With one exception, if
el is smaller than the number of characters
required to print the given value, more space is
allocated; if e is a packed array of char, then
only the first el characters of the array will be

PERQ Pascal -Extensions PAGE 13

printed.

8. e2, which is optional, is applicable only when e is
of type integer (or subrange of integer) or real.
If e is of type integer (or subrange of integer)
then e2 indicates the base in which the value of e
is to be printed. The valid range for e2 is 2••36
and -36••-2. If e2 is positive, then the value of
e is printed as a signed quantity (16 bit 2's
complement); otherwise the value of e is printed
as a full 16 bit unsigned quantity. If e2 is
omitted the signed value of e is printed in base
10. If e is of type real then e2 specifies the
number of digits to follow the decimal point. The
number is then printed in fixed point notation.
If e2 is omitted, then real numbers are printed in
floating point notation.

14. Miscellaneous Intrinsics

14.1 StartIO

There is a special QCode (STARTIO - See the PERQ QCode
Reference Manual) which is used to initiate input/output
operations to raw devices. PERQ Pascal supports a
procedure, STARTIO, to facilitate generation of the correct
QCode sequence for I/O programming. The procedure call has
the following form:

STARTIO(Unit)

where unit is the hardware unit number of the device to be
activated (for further information see the documentation on
IO programming).

14.2 Raster-Op

Raster-Op is a special QCode which is used to
manipulate arbitrary size blocks of memory. It is
especially useful for creating and modifying displays on the
screen. RasterOp modifies a rectangular area (called the
"destination") of arbitrary size (to the bit). The picture
drawn into this rectangle is computed as a function of the
previous contents of the destination and the contents of
another rectangle of the same size called the "source". The
functions performed to combine the two pictures are
described below.

In order to
that used for
that specify the
and destination:

allow RasterOp to work on memory other than
the screen bitmap, RasterOp has parameters
areas of memory to be used for the source
a pointer to the start of the memory block

PERQ Pascal Extensions PAGE 14

and the width of the block in words. The height of the
block is not needed. Within these regions, the positions of
the source and destination rectangles are given as offsets
from the pointer. Thus position (0,0) would be at the upper
left corner of the region, and, for the screen, (767, 1023)
would be the lower right.

The compiler supports a RASTEROP intrinsic which may be
used to invoke the Raster-Op QCode. The form of this call
is:

RASTEROP(Function,
Width,
Heigth,
Destination-X-Position,
Destination-Y-Position,
Destination-Area-Line-Length,
Destination-Memory-pointer,
Source-X-Position,
Source-Y-Position,
Source-Area-Line-Length,
Source-Memory-Pointer}

(NOTE: the values for the destination PRECEED those for the
s ou r ce ,)

The arguments to RasterOp are defined below:

"Function" defines how the source and the destination
are to be combined to create the final picture
stored at the destination. The Raster-Op
functions are as follows: (Src represents the
source and Dst the destination) :

Function Name Action
-------- -----

0 RRpl Dst gets Src
1 RNot Dst gets NOT Src
2 RAnd Dst gets Dst AND Src
3 RAndNot Dst gets Dst AND NOT Src
4 ROr Dst gets Dst OR Src
5 ROrNot Dst gets Dst OR NOT Src
6 RXor Dst gets Dst XOR Src
7 RXNor Dst gets Dst XNOR Src

The symbolic names are exported by the file
"Raster.Pas".

"Width" specifies the size in the horizontal ("x")
direction of the source and destination rectangles
(given in bits).

"Height" specifies the size in the vertical ("y")

name
<InFile> is the source file to be

<InFile> does not end with
compiled. If

••PAS", "•PAS"
the

will

PERQ Pascal Extensions PAGE 15

direction of the source and destination rectangles
(given in scan lines).

"Destination-X-Position" is the bit offset of the left
side of the destination rectangle. The value is
offset from Destination-Memory-Pointer (see
below).

"Destination-Y-Position" is the scan-line offset of the
top of the destination rectangle. The value is
offset from Destination-Memory-pointer (see
below).

"Destination-Area-Line~Length" is the number of
which comprise a line in the destination
(hence defining the region's width).
appropriate value to use when operating
screen is 48.

words
region

The
on the

"Destination-Memory-Pointer" is the 32 bit virtual
address of the top left corner of the destination
region (it may be a pointer variable of any type).
This pointer must be quad-word aligned, however.

"Source-X-position" is the bit offset of the left side
of the source rectangle. The value is offset from
Source-Memory-Pointer (see below).

"Source-Y-Position" is the scan-line offset of the top
of the source rectangle. The value is offset from
Source-Memory-Pointer (see below).

"Source-Area-Line-Length" is the number of words which
comprise a line in the source region (hence
de£ining the region's width). The appropriate
value to use when operating on the screen is 48.

"Source-Memory-pointer" is the 32 bit virtual address
of the top left corner of the source region (it
may be a pointer variable of any type). This
pointer must be quad-word aligned, however.

15. Command Line and Compiler Switches

15.1 Command Line

The syntax for the compiler command line is:

[<OutFile>=]<InFile>{/SW}

automatically be concatonated
attempting to open <InFile>.

onto <InFile> before

PERQ Pascal Extensions PAGE 16

<OutFile> is the name to be given to the output of the
compiler. ".SEG" will be concatonated onto the end of
<OutFile> if it is not already present~ If no <OutFile> is
given, <InFile> will be used, replacing ".PAS" with ".SEG".

Any number of compiler switches may follow the input
file specification. The format and functionality of
available switches are defined in the following sections.

15.2 Compiler Switches

PERQ Pascal compiler switches may be set either
according to the convention described on pages 100-102 of
Jensen and Wirth [JW74] or on the command line described
above (see section 15.1). Compiler switches may be written
as comments and are designated as such by a dollar sign
character ($) as the first character of the comment, or
after the input file specification in the command line
preceeded by the slash character (/). The actual switches
provided by the PERQ Pascal compiler, although similar in
syntax, bear only little resemblance to the switches
described in Jensen and Wirth [JW74].

The following sections describe the various switches
currently supported by the PERQ Pascal Compiler.

15.2.1 File Inclusion

The PERQ Pascal compiler may be directed to include the
contents of secondary source files in the compilation. The
effect of using the file inclusion mechanism is identical to
having the text of the secondary file(s) present in the
primary source file (the primary source file is that file
which the compiler was told to compile).

To include a secondary file, the following syntax is
used:

{$I FILENAME}

The characters between the "$1" and the "}" are
name of the file to be included (leading spaces
ignored). The comment must terminate at the
filename, hence no other options can follow the

taken as the
and tabs are
end of the
filename.

The string ".PAS" is automatically concatonated onto
the end of the filename if it is not already there.

The file inclusion mechanism may be used anywhere in a

PERQ Pascal Extensions PAGE 17

program or module, and the results will be as if the entire
contents of the include file were contained in the primary
source file (the file containing the include directive).

The PERQ Pascal compiler can support only a limited
number of nested file inclusions (the current maximum is 8).
Note: this limit also includes the nesting of IMPORT files.

Note: There is no form of this switch for the command
line, it may only be used in comment form within a program.

15.2.2 List Switch

The List switch controls whether or not the compiler
will generate a program listing of the source text. The
default is no list file generation. The format for the List
switch is:

{$L FILENAME}

or

/LIST:FILENAME

where FILENAME is the name of the file to be written. The
string n.LSTn will be concatonated to FILENAME if it is not
present. Like the file inclusion mechanism, the filename is
taken as all characters between the "$L" and the "}"
(ignoring leading spaces and tabs); hence no other options
may be included in this comment.

With each source line, the compiler prints the line
number, segment number, procedure number, and the number of
bytes or words (bytes for code, words for data) required by
that procedure's declarations or code to that point. The
compiler also indicates whether the line lies within the
actual code to be executed or is a part of the declarations
for that procedure by printing a "D" for declarations and an
integer to designate the lexical level of the statement
nesting within the code part.

The list file is required by the debugger to associate
code locations with source lines.

15.2.3 Range Checking

This switch is used to enable or disable the compiler
from generating additional code to perform checking on array
subscripts and assignments to subrange types.

PERQ Pascal Extensions PAGE 18

Default value: Range checking enabled

$R+ or /RANGE enables range checking

$R- or /NORANGE disables range checking

If "$R" is not followed by a "+" or "-" then "+" is
assumed.

Note that programs compiled with range checking
disabled will run slightly faster, but invalid indices will
go undetected. until a program 1S fully debugged, it is
advisable to keep range checking enabled.

15.2.4 Quiet Switch

This switch is used to enable or disable the compiler
from printing the names of each procedure and function as it
is compiled.

Default value: Printing of procedure and function
names enabled

$Q+ or /VERBOSE enables printing of procedure and
funtion names

$Q- or /QUIET disables printing of procedure and
function names

if "$Q" is not followed by a "+" or "-" then "+" is
assumed.

15.2.5 Symbols Switch

This switch is used to set the number of symbol table
swap blocks usedby the compiler. As the number of symbol
table swap blocks increases, compiler execution time becomes
shorter, however physical memory requirements increase. Any
number of symbol tables blocks from 1 to 24 may be used.
The default is 15. The format for this switch is:

/SYMBOLS:<# of Symbol Table Blocks (1-24»

Note: There is no comment form of this switch, it may
only be used on a command line.

PERQ Pascal Extensions PAGE 19

REFERENCES

[BSI79] "BSI/ISO Pascal Standard," Computer, April 1979.

[JW74] K. Jensen and N. wirth, PASCAL User Manual and
Report, Springer Verlag, New York, 1974.

[P*] J. Hennessy and F. Baskett, "Pascal*: A pascal Based
Systems programming Language," Stanford University
Computer Science Department, TRN 174, August 1979.

[UCSD79] K. Bowles, Proceedings of UCSD Workshop on System
Programming Extensions to the Pascal Language,
Institute for Information Systems, University of
California, San Diego, California, 1979.

PERQ Pascal Extensions PAGE 20

INDEX

(entries entirely in upper case are reserved words or
predeclared identifiers)

And • 10

CASE Statement • • • • 3
Command Line • • ••• 15
Compiler Switches •• 15, 16
Constant Expressions • 2
Constants •••••• 2
Control Structures • • 3

Declaration Part ••• 1
DISPOSE ••••••• 9
Dynamic Space Allocation and Deallocation 9

Exclusive Or ••••• 10
EXIT Statement • • • • 4
EXPORTS Declaration • 8

File Inclusion
Functions ••••

• • 16
• • 7

GOTO Statement • • 3

Include • • • • • 16
Inclusive Or ••••• 10
Input/Output Intrinsics 11
Integer Logical Operations 10

LAND • • • • •
LENGTH • • • •
List Switch
LNOT •
LOR
LXOR •

• • • • 10
• • • • 6
• • • 17

• • • • 10
. • • • • 10

• • • • • • 10

Modules • • 7

NEW • • • • • • • 9
Not • • • • • • • • • 10

Octal Constants ••• 2
OTHERWISE • • • • 3

Parameters • • • • • • 7
PRIVATE •••• • • • 8
Procedures • • 7

Type Coercion • 3

'PERQ Pascal Extensions PAGE 21

Quiet Switch ••••• 18

Range Checking · · · • 17
RASTEROP · · · · · · · 13
READ . · · · • · · · · 11
READLN · · · · · · • • 11
RECAST · · · · · · · · 2, 3
RESET · · · · · · · · 11
REWRITE · · · · · 11
ROTATE · · • • • · H.I

Sets . · · • · · · 5
SHIFT · · • ·. · • 1~
STARTIO • · • · · · · 13
STRING · · · · · · · · 5
Strings · · · · · 5
Switches · · · · · · · 15, 16
Symbols Switch · · · · 18

Unsigned Octal Integers 2

WRITE
WRITELN · . • • • • 12

• • • • • 12

