
COMME (0 FIDENCE
PERQ QCode Reference Manual

Miles A. Barel
John P. strait

Three Rivers Computer Corporation

September 3, 1980

Three Rivers Computer corporation
160 North Craig Street
Pittsburgh, PA 15213
(412) 621-6250

The information in this document is subject to change
without notice and should not be construed as a commitment
by Three Rivers Computer Corporation. Three Rivers Computer
Corporation assumes no responsibility for any errors that
may appear in this document.

1•

1.A

1.B
1.B.l
1.B.l.a
1.B.l.b
1.B.l.c
1.B.2
l.B.2.a
1.B.2.b
1.B.2.c

1.C

2 •

3.

4 •

4.A
4.A .1
4.A.l.a
4.A.l.b
4.A.l.c
4.A.l.d
4.A.l.e
4.A.l.f
4.A.2
4.A.2.a
4.A.2.b
4.A.3
4.A.4
4.A.5
4.A.6

4.B
4.B.l
4.B.2
4.B.3
4.B.4
4.B.5
4.B.6
4.B.7

4.C

4.D

Table of Contents

Q-Machine Architecture

Definitions

~emory Organization
Memory Organization at the Process Level
Global Data
Local Data
Run-Time Stack Organization
Memory organization at the System Level
System Segment Address Table
System Segment Information Table
Code Segment Organization

Error Handling and Fault Conditions

Instruction Format

Pointers

QCode Descriptions

Variable Fetching, Indexing, Storing and Transferring
Loads and Stores of One Word
Constant One Word Loads
Local One Word Loads and Stores
Own One Word Loads and Stores
Global One Word Loads and stores
Intermediate One Word Loads and Stores
Indirect One Word Loads and Stores
Loads and Stores of ~ultiple Words
Double Word Loads and Stores
Multiple Word Loads and Stores
Byte Arrays
Strings
Record and Array Indexing and Assignment
Dynamic Variable Allocation and De-allocation

Top of Stack Arithmetic and Comparisons
Logical
Integer
Reals
Sets
Strings
Byte Arrays
Array and Record Comparisons

Jumps

Routine Calls and Returns

4.E Systems Programs Support Procedures

PERQ QCode Reference Manual
Q-Machine Architecture

1. Q-Machine Architecture

1.A Definitions

Segment - A segment is the underlying structure· of PERQ's
virtual memory system. It is the largest area of
contiguous memory, and also the unit of swappability.
Segments come in two types: code segments, which are
byte-addressed, read-only, and fixed in size with a
maximum size of 64K bytes (32K words); and data
segments, which are word-addressed, read-write, and
variable in size with a maximum size of 64K words.

MSTACK - Memory Stack. A data segment which contains the
user run-time stack.

ESTACK - Expression Stack. A 16 level expression evaluation
stack (internal to the PERQ processor).

MTOS - Top of MSTACK. MTOS refers to the virtual address of
the top of the memory stack. (MTOS) denotes the item
on the top of the MSTACK.

ETOS - Top of ESTACK.
the ESTACK.

(ETOS) denotes the item on the top of

~ Activation Record - Stack segment fragment for a single
routine containing local variables, parameters,
function result, temporaries (anonymous variables),
other housekeeping values (Activation Control Block -
defined below), and a copy of the EStack at the time
the activation record is created.

CB - Code Base (register). Physical adddress of the base
of the current code segment.

SB - Stack Base (register). Physical address of the base
of the current stack segment.

PC - program Counter (register). Physical address of the
current instruction.

GDB - Global Data Block. A GOB contains the global
variables for a particular module. GDBs are always
begin on a double-word boundary.

ISN - Internal Segment Number (compiler-generated).

SSN - System Segment Number (systern~generated). Note,
System Segment 0 is reserved and may never be used~

LL Lexical Level. Note: the Lexical Level of the main
body of a process is always 0.

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 2

RN ..•.Routine Number (register). RN
number of the current routine.
the range 0 to 255.

contains the ordinal
Note: RN must lie in

cs - Code Segment (register). Cs contains the system
segment number (SSN) for the current code segment.
This segment must be resident in physical memory for a
process to be runnable.

5S - Stack Segment (register). SS contains the system
segment number (SSN) for the current stack segment.
This segment must be resident in physical memory for a
process to be runnable.

S0 - Auxilary Segment 0 (register). S0, if non..•.zero,
contains the system segment number (SSN) for a
segment, other than the code and stack segments, which
is needed for a process to be runnable. Note: SSN 0
is reserved for the system segment address table,
which is always resident; hence if S0 contains 0,
this indicates that no auxilary segment is needed.

Sl ..•.Auxilary Segment 1 (register). Same as S0.

PS - Parameter Size. PS is the number of words in an
activation record which are used for parameters.

RPS - Result + Parameter Size. This is the number of words
in an activation record which are used for function
result and parameters.

LTS.- Local + Temporary Size.
an activation record
temporaries (anonymous
a main program body is

LTS is the number of words in
which are used for locals and

variables)• (Note: the LTS of
always forced to 0.)

AP ..•.Activation Pointer (register). AP contains the
physical address of the current activation record.

DL Dynamic Link. This is the AP of
respresented as an offset from SB.

the caller,

SL Static Link. This is the AP of the surrounding
routine, represented as an offset from SB.

TP ..•.Top Pointer (register). TP contains the physical
address of the top of the run..•.time MStack.

TL ..•.Top Link. TP of the caller, represented as an offset
from SB.

GP Global Pointer (register). Physical address of the
GDB for the current code segment.

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 3

GL - Global Link. GP of the caller, represented as an
offset from SB.

LP - Local Pointer (register). Physical address of the
current activation record. When the LP is stored in
an activation control block (ACB), it is represented
as an offset from SB. Unlike other values in the ACB,
the LP value is the current value of the Local
Pointer, not some previous value.

XGP - eXternal Global Pointer. Pointer to another code
segment's GDB, represented as an offset from SB.

XST - eXternal Segment Table. For a given program module,
the XST translates ISNs to SSNs and XGPs.

RS - Return Segment. RS is the CS of the caller.

RA - Return Address. PC of the caller, represented as an
offset from CB.

RR - Return Routine. RN of the caller.

RD - Routine Dictionary. Each code segment contains a
routine dictionary which is indexed by RN. For each
routine, the routine dictionary gives the lexical
level (LL), entry address, exit address, parameter
size (PS), result + parameter size (RPS), and local +
temporary size (LTS).

ACB - Activation Control Block. The ACB contains
housekeeping values in the activation record. It
contains the SL, LP, DL, GL, RS, RA, and RR. In the
ACB, the DL, GL, RS, RA, and RR are the AP, GP, CS,
PC, and RN of the caller, respectively. The SL is the
AP of the routine that surrounds the current one. The
LP in the ACB is the current local pointer.

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 4

1.B Memory Organization

The PERQ's virtual memory system features a segmented
32 bit virtual address space mapped into a 20 bit physical
address space. The segment is.the unit of swappability, and
comes in two types:

1) Code segments which are byt~-addressed, read-only,
and fixed in size with a maximum size of 64K bytes
(32K words).

2) Data segments which are word-addressed, read-write,
and variable in size with a maximum size of 64K
words.

A PERQ process is a collection of up to 64K code and
data segments. One of the data segments is the stack
segment. Every process must have a stack segment and at
least one code segment.

All segments are allocated in
in physical memory are aligned
Note: A single segment must exist
may not be fragmented.

256 word chunks and when
on 256 word boundaries.
in contiguous memory, it

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 5

1.B.l Memory Organization at the Process Level

The memory organization is designed with the following
attributes in mind: 1) to allow separately compiled code
segments to be grouped into a single process, 2) to allow
code segments to be shared among processes, 3) to allow each
code segment to have its own global variables, and 4) to
allow one code segment to reference routines and global
variables in other code segments. To achieve this, the
following high-level characterisics are implemented:

1) All code is re-entrant.

2) Each code segment only refers to other code segments
by internal (compiler-generated) segment numbers,
which are not necessarily the same as the
system-assigned segment numbers.

3) Each code segment in a process has its own global
data block on the run-time stack.

4) Each code segment has an exteinal segment table to
permit referencing global variables and routines
from other code segments.

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 6

I.B.l.a Global Data

At the global level, there is a Global Data Block (GDB)
and an external Segment Table (XST) associated with each
code segment in a process. For a particular program module,
the GDB contains the global variables, and the XST
translates internal (compiler-generated) segment numbers
(ISNS) to actual system segment numbers (SSNs) and eXternal
Global Pointers (XGPs). In order to simplify the system, we
devote a songle pointer to reference both the current GDB
and XST. This Global Pointer (GP) points to the lowest
address in the GDB and is ALWAYS aligned on a double word
boundary.

SB ---->1
undetermined space

XST 1

GDB 1

+--~------------------~-+
XST i

GP ---->1
1 GDB i
1

toward the top of stack

The XST for each segment is indexed by the internal
segment numbers (ISNs). The entry is at GP - 2*ISN (Note:
There is no entry for ISN 0; ISN 0 always refers to the
current segment). Each entry contains the offset from stack
base (SB) of an external data block (XGP) and the actual
system segment number (SSN) of the external segment. The
XGP values are set by the linker, and the SSN values are set
by the loader.

PERQ QCode Reference Manual
Q-Machine Architecture

/

I.B.I.b Local Data

+-------------------------------+external Global pointer (XGP)I

System Segment Number (SSN)+~~-~~---~-~~~------------------+

PAGE 7

At the local level, there is an activation record,
which consists of local variables, function result,
parameters, temporaries (anonymous variables), the
Activation Control Block {ACB}, the previous EStack, and
extra values that the routine may push and pop from the
run-time stack. Three pointers are used to access and keep
track of this information: the top-of-stack pointer {TP},
the current-activation pointer (AP), and the local-variables
pointer (LP).

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 8

+-----------------------+
1 Result m-l

+------~----------------+
1 Parameters m-l
+-----------------------+
1 Locals m-l 1

1 Temporaries m-l

1 ACB m-I
+-----------------------+
I EStack m-2
+-----------------------+
1 Extra m-l
+-----------------------+

LP ---->1
I Result m
1

1 Parameters m
1
+-----------------------+
1
1 Local m
1

1
1 Temporaries m
1+-----------------------+

AP ---->1
1 ACB m
1

1
1 EStack m-l
1
+-----------------------+
1
1 Extra m

TP ---->1
+-----------------------+
toward the top of stack

The function result, parameters, locals and temporaries
are located by an offset from LP.

'--_

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 9

Each ACB has the following form:

+---------------------------------------+
I Static Link (SL)

I Local Pointer (LP) (current)
+---------------------------------------+
I Dynamic Link (DL)

I Global Link (GL)
+---------------------------------------+
I Top Link (TL)
+---------------------------------------+
I Return Segment Number (RS)
+---------------------------------------+
I Return Address within Segment (RA)
+---------------------------------------+
I Return Routine Number (RR)
+---------------------------------------+

toward the top of stack

The values in the ACB are the AP of the surrounding
routine (SL), the current (not previous) LP, the AP of the
caller (DL), the GP of the caller (GL), the TP of the caller
(TL), the SSN of the caller (RS), the PC of the caller (RA),
and the RN of the caller (RR). Note: When previous pointer
values are saved in the ACB they are called links: SL, DL,
GL, TL; Because the current (not previous) LP is stored in
the ACB, it is called a pointer, not a link.

The EStack image immediately follows the ACB and looks
like this:

+-----------------------+
I Number of Words Saved I
+-----------~-----------+

(ETOS)

(ETOS-l)
+-----------------------+

(ETOS-n)

toward the top of stack

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 10

1.B.l.c Run-Time Stack Organization

The following is an outline of the stack for a process
of n segments, executing the mth routine call, which is in
the ith segment:

+-----------------------+
SB ---->1

1 undetermined space
1

1 XST I

1 GDB 1
+-----------------------+

+-----------------------+
1
1 XST i
1

GP ---->1
1 GDB i
1

....
+-----------------------+
1 XST n

1 GDB n

1 ACB " (main program)
+-----------------------+
1 Extra "+-----------------------+
1 Result I

1 Parameters I
+-----------------------+
1 Locals I
+-----------------------+
1 .. Temporaries I
+-----------------------+
1 ACB 1
+-----------------------+
1 EStack "+-----------------------+
1 Extra I
+-----------------------+

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 11

....
+~~~------------~~------+

LP ---->1
1 Result m
1

+-~---------------------+
Parameters m

Locals m

+-------~---------------+
Temporaries m

AP ---->1
1 ACB m
1+-----------------------+

EStack m-l

+------------------~----+
1
1 Extra m

TP ---->1
+-----------------------+
toward the top of stack

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 12

1.B.2 Memory Organization at the System Level

The system makes use of two tables to control memory
usage, the System Segment Address Table and the System
Segment Information Table. The former contains all
information which is needed by the Q-Code micro-code
(location, size, resident, etc). The latter contains other
information which is only referenced by the operating system
(reference, I/O and lock counts, maximum size, etc).

1.B.2.a System Segment Address Table

The System Segment Address Table is a dynamic table,
which is always resident in physical memory starting at
physical address 0. This table contains two words per
segment, and contains all information that the Q-Code
micro-code needs to know about each segment. The
information contained in this table is:

1) Segment Base Address (upper 12 bits)

2) Segment Size (number of 256 word blocks - 1)

3) Flags
Not Resident
Recently used
Moving
Sharable
Segment Kind
Segment Full
Segment Table Entry In Use

The Segment Base Address is the upper 12 bits of the
physical address of the base of the segment. If the segment
is not resident in physical memory, this field is undefined.
The lower 8 bits of the Segment Base Address are always
guarenteed to be zero (since all segments are aligned on 256
word boundaries).

The Segment Size plus one is the size of the segment in
256 word blocks (i.e., Segment Size 0 = 256 words).

The Flags have the following meanings and uses:

Not Resident - When true, this flag indicates that
the segment is either swapped out or that
the segment table entry is not in use. When
false, this flag indicates that the entry is
in use and the segment it describes is
resident in physical memory. (See the
"Segment Table Entry In Use" flag.)

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 13

Recently Used - This flag is set when a segment· is
accessed. It is used by the swapper to
determine which segments are likely
candidates to be swapped out when space is
needed.

Moving - This flag, when true, indicates that the
segment is being moved from one location in
physical memory to another. If moving is
true, Resident will be false. Moving is
used only by the swapper to determine how to
handle segment faults. (Not used by the
Q-Code micro-code).

Sharable - When true, this flag indicates that a
segment may be shared by several processes.
(Not used by the Q-Code micro-code)

Segment Kind - This flag indicates whether the
segment is a data or code segment. (Not
used by the Q-Code micro-code)

Segment Full - This flag, when true, indicates that
the entire data segment has allocated (via
the Pascal New procedure). This flag is
needed to distinguish full and empty data
segment (and has no relevant meaning for
code segnents). (Not used by the Q-Code
micro-code)

Segment Table Entry In Use - This flag is set true
when the segment table entry contains a
valid segment.

The arrangement of these fields within the two words
are shown below:

Bit

Word 0 I Base Addr (bits 8-15) Flags

Bit

Word 1 Segment Size I BA (16-19)

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 14

The positions of the flags within the low byte of
Word 0 are:

Bit Flag

0 Resident
1 Moving
2 Recently Used
3 Sharable
4 Segment Kind
5 Segment Full
6 Table Entry In Use
7 not used

1.B.2.b System Segment Information Table

There is no inforoaticn in
Information TabJe which is needed by
hence it is not described here. See
the Memory Manager.

the System Segment
the Q-Code micro-code;
the documentation on

l.B.2.c Code Segment Organization

A code segment contains the code for all routines
segment and a routine dictionary which contains
information about each of thesE routines.

in a
vital

The firs t word 0 f- eve ry code segment is the offset from
the base of the segment to the first word of the routine
dictionary. The second word contains the number of routines
which are defined in the segment. These two words are
followed by the actual code which comprise the routines.
Finally, the code is followed by the routine dictionary.
The code is padded with 0 to 3 words of 0s (by the compiler)
so that the routine dictionary is aligned on a quad-word
boundary. This is possible since the compiler knows that
the base of the segment will also be aligned 011 a quad-word
boundary. It should also be noted that each entry in the
dictionary is exactly 2 quad-words long (8 words). The
routine dictionary is indexed by (Base Address of
Dictionary)+8*RN. Each entry has the following form:

PERO QCode Reference Manual
Q-Machine Architecture

PAGE 15

+-------------------------------+I Parameter Size (PS)

! Result + Parameter Size (RPS)

! Local + Temporary Size (LTS)
+-------------------------------+! Entry Address Within Segment

+-------------------------------+I Exit Address Within Segment
+---~---------------------------+I ~exical Level (LL) I

I not used 1
+-~--~--------~---------~-------+I not used 2
+~-------~----------------------+

toward high memory

The Entry and Exit Addresses are the offsets from code
base (eB) to the beginning of the routine and the beginning
of the "terminate code" of the routine.

PERQ QCode Reference Manual PAGE 16
Q-Machine Architecture

The following is a sample of a code segment containing
3 routines:

+-------------------------------+I Pointer to Routine Dictionary I)--++~~-~~~-~~-----------------~----+I
I Number of Routines (3) I
+----~--~-----------------------+ I, I
I Code for Routine 1 v
I I
+-------------------------------+ II I
I Code for Routine 2 v
I I
+--~~---------------------------+ I
I I
I Code for Routine 3 v
I I
+-------------------------------+ II RD Entry for Routine 1 I (--+

I RD Entry for Routine 2

I RD Entry for Routine 3

+-------------------------------+
toward high memory

PERQ QCode Reference Manual
Q-Machine Architecture

PAGE 17

l.e Error Handling and Fault Conditions

Errors and faults are handled by performing CALLVs to
special routines (See section 4.D). The variable routine
descriptors for these special routines can be found in a
special table, the location and format of which will be
known by the micro~code.

PERQ QCode Reference Manual
Instruction Format

PAGE 18

2. Instruction Format

Instructions on the Q-machine are one byte long
followed by zero to four parameters. Parameters are either
a signed byte (B: range ~128 to 127), an unsigned byte (UB

range 0 to 255) or a word (W). Words need not be word
aligned (unless specified). The low byte is first in the
instruction byte stream.

Any exceptions to these formats are noted with the
instructions where they occur.

3. Pointers

There are five different types of pointers, defined as
follows: (Note: 20 bit offsets may only exist on the
EStack) •

Word Pointer: A 20 bit offset from StackBase
(StackBase is the 20 bit physical address of the
base of the stack).

Byte Pointer: A 20 bit offset from StackBase to the
base of the byte array (TOS-l) and a byte offset
into the array (TOS).

String Pointer: Same as a byte pointer.

Packed Field Pointer: A 20 bit offset from StackBase
to the base of the word the field is in (TOS-I)
and a one word field descriptor (TOS).

Field Descriptor:

Bits 0~3: The field width (in bits) minus 1

Bits 4-7: The rightmost bit of the field.

Pascal Pointer: Obtained by declaring a variable as a
pointer to another data type. (i.e., var
I:"'Integer;) (TOS-I) is the system segment number
that contains the datum. (TOS) is the offset from
the segment base to the datum.

Implementation Note: Stacks grow from low addresses to high
addresses (i.e., if the address of TOS is 10 then the
address of TOS~l is 9 -~ not 11) •

. ..

PERQ QCode Reference Manual
QCode Descriptions

PAGE 19

\._.I 4. QCode Descr ipt ions

4.A variable Fetching, Indexing, storing and Transferring

4.A.l Loads and Stores of One Word

4.A.l.a Constant One Word Loads

LDC0 ..1~ 0.-15 Load tll/ordConstant. Pushes the
value(0 ••15) , with high byte zero,
onto the EStack.

LDCN 22 Load Constant Nil. Pushes the value
of NIL onto tbe EStack.

LDCMO 16 Load Constant -1.

LDCB B 17 Load Constant Byte. Pushes the next
byte on the EStack, with sign
extend.

LDCW W 18 Load Constant Word. Pushes the next
word on the EStack.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 20

4.A.l.b Local One Word Loads and stores

LDL0 .•15 109-124 Short Load Local Word. LDLx fetches
the word with offset x in the
current activation record and pushes
it onto the EStack.

LDLB UB 107 Load Local
-Fetches the
the current
pushes it on

Word/Byte Offset.
word with offset US in

activation record and
the EStack.

LDLW W 108 Load Local
Fetches the
the current
pushes it on

Word/Word Offset.
word with offset W in

activation record and
the EStack.

LLAB UB 125 Load Local Address/Byte Offset.
Pushes a word pointer to the word
with offset UB in the current
activation record on EStack.

LLAW W 126 Load Local Address/Word Offset.
Pushes a word pointer to the word
with offset W in the current
activation record on EStack.

STL0 ••7 129-136 Short Store Local Word. Store
(ETOS) into word with offset x in
the current activation record.

STLB UB 127 Store Local Word/Byte Offset. Store
(ETOS) into word with offset UB in
the current activation record.

STLW W 128 Store Local Word/Word Offset. Store
(ETOS) into word with offset W in
the current activation record.

Implementation ~ote: The address of the first local (offset
0) is contained in the Local Pointer register (LP).
The address of the Nth local is computed as (LP) + N.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 21

4.A.l.c Own One Word Loads and Stores

LD00 ••15 139-154 Short Load Own Word. LDOx fetches
the word with offset x in the
current Global Data Block (GDB) and
pushes it on the EStack.

LDOB 137 Load Own Word/Byte Offset. Fetches
the word with offset UB in the
current Global Data Block (GDB) and
pushes it on the EStack.

UB

LDOW Load Own Word/Word Offset. Fetches
the word with offset W in the
current Global Data Block (GDB) and
pushes it on the EStack.

W 138

LOAB UB 155 Load Own Address/Byte Offset.
Pushes a word pointer to the word
"vith offset UBin the current Global
Data B10ck (GDB) on EStack.

LOAW hT 156 Load Own Address/Word Offset.
Pushes a word ·pointer to the word
w ith offset W in BASE activation
record on EStack.

STOel••7 159-166 Short Store Own Word. STOx stores
(ETOS) into the wo rd with offset x
in the current Global Data Block
(GOB) •

STOB 157 Store Own Word/Byte Offset. Stores
(ETOS) into the word with offset UB
in the current Global Data Block
(GDB) •

UB

STOW 158 Store Own Word/Word Offset. Stores
(ETOS) into the wo rd with offset W
in the current Global Data Block
(GDS).

w

Implementation Note: The address of the first own (offset
0) is contained in the Global Pointer register (GP).
The address of the Nth own is computed as (GP)+N.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 22

4.A.l.d Global One Word Loads and Stores

LDGB URl,UB2 192

LDGW 193UB,W

LGAB UBl,UB2 194

LGAW UR,W 195

LGAvM wi ,\-,12 181

STGB UBl,UB2l96

STGW UB,\"! 197

Note: To ach ieve LDGv.T

Load Global Word/Byte Offset.
the word with offset UB2
Global Data Block (GDB) for
segment UBI onto EStack.

Loads
in the

program

Load Global Word/Word Offset. Same
as LDGB except a full word offset is
used.

Load Global Address/Byte Offset.
Pushes a word pointer to the word
with offset U82 in the Global Data
Block (GeE) for program segment UEI
onto EStack.

L0a~ Global Address/Word
Same as LGAB except a
offset is used.

Offset.
full word

Load
Word
full

Address/Word Segment,
Same as LGAB except a
used both for the

and the offset.

Global
Offset.
word is

segment number

store Global Word/Byte Offset.
Stores (ETOS) in word with offset
UE2 in the Global Data Block (GDB)
for program segment UBI.

store Global Word/Word Offset. Same
as STGE except a full word offset is
used.

and STGW
numbers,
STIND.

with full
use LGAltVW

segment
LDIND or

word
with

Implementation Note: Self-relative pointers to the Global
Data Blocks (GDB) for each ~xternally referenced
segment are contained in the External Segment Table
(XST) , pointed to by the Global Pointer (GP). The
address of the first global (offset 0) in the
designated GDB is computed as GP - 2 * ISN, where ISN
(Internal Segment Number) is the program segment number
specified in the load or store instruction. The Nth
global is addressed by the base address (computes as
above) plus N.

\,_.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 23

4.A.l.e Intermediate One Word Loads and Stores

LDIB UB1,UB2 215 Load Intermediate Word/Byte Offset.
UBl indicates the number of static
links to traverse to find the
activation record to use. UB2 is
the offset within the activation
record of the desired word. The
datum is pushed on EStack.

LDIv.l 216 Load Intermediate Word/Word Offset.
Same as LDIB except a word offset is
used.

UB,W

LIAB Load Intermediate Address/Byte
Offset. A word pointer is pushed on
EStack (determined as in LDIB).

UBI,UB2 217

LIAW 218 Load Intermediate Address/Word
Offset. A word pointer is pushed on
FStack (determined as in LDIW).

UB,W

STIB UBl,UB2219 Store Internediate Word/Byte Offset.
Stores (ETOS) in memory (address
deternined as in LDIS).

STIW store Inte rmed iate \'Jord/'vvordOff set.
Stores (ETOS) in rnemory (address
determined as in LDIW).

UB,W

Implementation Note: The Activation Pointer register (AP)
contains the address of the current Activation Control
Block (ACB). Within the ACE is the Static Link (SL) to
the previous ACD. To compute the address of the first
intermediate word of the desired level, traverse the
Static Links to the correct ACB. Within the ACB is the
Local Pointer (LP) for that activation record.

PERQ QCode Reference Manual
QCoee Descriptions

PAGE 24

4.A.l.f Indirect One Word Loads and Stores

STIND /,1 Stor(; Inc'i.rc:ct. (ETCSj
into the word pc_~~ed

. t '~Trc 1)pOl f. _o r ~L -.)•....- •

i.s stored
to by word

LDIND 173 Load Indirect.
wo rd po inter
F.St<lck.

Word pointeC to by
(ETOS) is push cd on

PERQ QCode Reference Manual
QCode Descriptions

'PAGE 25

4.A.2 Loads and Stores of Multiple Words

4.A.2.a Double Word L02ds and Stores (Reals and pointers)

LDDe <block> 237

LDDW 239

STDW 183

Load Double ~0rd Constant. <block>
is a doutle word constant. Load the
constant onto ESt~ck.

Lo ad Double wo rd, (ETeS) is a word
pointer to a double word. The
double word is pushed onto EStack.

Store Double Word. (ETaS) ,(ET03-1)
is a doubLe word ar«; (CTOS-2) is a
word pointer to a double word block
of memory. The ~ouble word is
popped from ESTACK into the double
word pointed to by (ETOS-2).

4.A.2.b Multiple Word Loads and Stores (Sets)

UB,<block> 236 Load Multiple Word Constant. UB is
the number of words to load, and
<block> is a block of UB words, in
reverse word order. Load the block
onto the HS tack ,

LDMC

LDMW 238

STMW 182

Load
word
block
block

Multiple words. (ETaS-I) is a
pointer to the beginning of a
of (ETOS) words. Push the
onto the MStack.

Store Multiple Words. The MStack
contains a block of (ETOS) words,
(ETOS-l) is a word pointer to a
similar block. Transfer the block
from MStack to the destination
block.

PERQ QCode Reference Manual
QCode Descriptions

4.A.3 Byte Arrays

Pl~GE 26

Note: A byte pointer is loade~ onto the stack with a
LLA, LOA or LGA of the base address of the array followed by
the computation of the offset.

LDB 23

STB 24

MVBB 167UB

MVBW 168

Load Byte. Push the byte (aiter
zeroing the high Byte) pointed to 0y
byte pointer (ETOS), (ETOS-l) on
EStack.

Store Byte. Store the low byte of
(ETOS) into the location specified
by byte pointer (ETOS-l) ,(ETOS-2).

Move Bytes/Byte Counter.
(ETOS), (ETOS-l) is a source byte
pointer to a block of UB bytes, and
(ETOS-2) ,(ETOS-3) is the destination
byte pointer to a similar block.
Transfer the source block to the
destination clock.

Move Bytes/Word Counter. Same as
MVBB except (ETOS-l) ,(ETOS-2) is the
source byte pointer,
(ETOS-3) ,(E'IOS-4) is the destination
byte pointer, and (ETOS) is the
number of bytes to transfer.

PERQ QCode Reference Manual
QCode Descriptions

4.A.4 Strings

LSA UB,<chars> 19

SAS 184

LDCH 25

STCH 28

PAGE 27

Load string Address. UB is the
length of the string constant
<chars>. A string pointer is pushed
on EStack (the virtual address of UB
is pushed followed by a zero). us
is word aligned.

String As s iqr.; (ETOS-l), (ETOS-2) is
the source string pointer, and
(ETOS-3) ,(ETOS-4) is the destination
string pointer. (ETOS) is the
declared length of the destination.
The length of the source and
destination are compared, and if the
source string is longer than the
destination a run-time error occurs.
Otherwise all bytes of source
containing valid information are
transferred to the destination
string.

Load Character. (ETOS), (ETOS-I) is
a string pointer. (ETOS) is checked
to insure that is lies within the
dynamic length of the string. If
so, the character pointed to by
(ETOS), (ETOS-I) is pushed;
otherwise, a run-time error occurs.

Store Character. (ETOS) is a
character and (ETOS-l), (ETOS-2) is a
string pointer. (ETOS-l) is checked
to insure that is lies within the
dynamic length of the string. If
so, the character (ETOS) is stored
in the string, at the position
pointed to by (ETOS-I) ,(ETOS-2) ;
otherwise a run-time error occurs.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 28

4.A.5 Record and Array Indexing and Assignment

MOVB UB 169

MOVW 170

SIND0-7

t':oveWords/Byte Counter. (ETOS) is
a word pointer to a Llock of UB
words, and (ETOS-I) is a word
pointer to a similar block. The
block pcinted to by (ETOS) is
transferred to the block pointed to
by (ETOS-l).

Move Words/Word Counter. Same as
MOVB except (ETaS-I) is the source
pointer, (ETOS-2) is the destination
pointer, and (ETaS) is the number of
words to be transfered.

173-180 Short Index and Load Word. SINDx
indexes the word pointer (ETOS) by x
words, and pushes the word pointed
to by the resul t on ESTACK. (Note:
SIND0 is synonymous to LDIND).

INDB UB 171

INDW w 172

INCB UB 232

INCW W 233

static Index and Load Word/Byte
Index. Indexes the word pointer
(ETaS) by UB words, and pushes the
word pointed to by the result on
ESTACK.

Static Index and Load Word/Word
Index. Same as INDB except a full
word index is used.

Increment Field Pointer/Byte Index.
The word pointer (ETOS) is indexed
by UB words and the resultant
pointer is pushed on ESTACK.

Increment Field Pointer/Word Index.
Same as INCB except a full word
index is used.

Note: INCB and INCW are equivalent to add UB or W to
(ETOS) •

IXAB UB 222 Index Array/Byte Array SIze. (ETOS)
is an integer index, (ETOS-l) is a
word pointer to the base of the
array, and UB is the size (i n words)
of an array element. A word pointer
to the first word of th e indexed
element is pushed on ESTACK.

IXAW 223 Index Array /viot'dJ\rray Size. Same

PERQ QCode Reference Manual
QCode Descriptions

PAGE 29

as IXAB except (ETOS-1) is the
integer index, (ETOS-2) is the word
pointer to the base of the array,
and (ETOS) is the size (in words) of
an array element. (GenlA) full word
is used for the array element size.

IXA2 ••4 224-226 Index Array/Short Array Size. Same
as IXAB except array element sizes
are fixed at 2-4.

IXP UB 214 Index Packed Array. (ETOS) is an
integer index, and (ETOS-1) is a
word pointer the base of the array.
Bits 4-7 of UB contain the number of
elements per word minus 1, and bits
0-3 contain the field width (in
bits) minus 1• Compute and push a
packed field pointer.

LDP 26 Load a Packed Field. Push the field
described by the packeC! field
pointer (ETOS) ,(ETOS-I) on ESTACK.

STP 27 Store into Packed Field., Store
(ETOS)· in the field descr ibed by the
packed field pointer
(ETOS-1) ,(ETOS-2) •

ROTSHI UB 221 Rotate/Shift. (ETOSi-1) is the
argument to be rotated or shifted,
and (ETOS) is the distance to rotate
or shift. If UB is " then a right
rotate occurs, and if UB is 1 then a
shift occurs. The direction of the
shift is determined from (ETOS); If
(ETOS))= 0 then a left shift
occurs, otherwise a right shift.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 30

4.B Top of Stack Arithmetic and Comparisons

4.B.1 Logical

LAND 30 Logical "'.dd. AND (E'i'OS) intu
(ETOS-1)•

LOR 31 Logical Or. OR (ETOS) into
(ETOS-l).

LNOT 32 Logical Not. Take one's complement
of (ETOS)•

EQUBOOL 33 Boolean =,

NEQBOOL 34 <>,

LEQBOOL 35 <=,

LESBOOL 36 < ,

GEQBOOL 37 >=,

GTRBOOL 38 and >
comparisons. Compare (ETOS-l) to
(ETOS) and push true or false on
ESTACK.

PERQ QCode Reference Manual
QCode Descriptions

4.8.2 Integer

ABI 71

ADI 72

NGI 73

SBI 74

MPI 75

DVI 76

MODI 77

CHK 78

EQUI 39

NEQI 40

LEQI 41

LESI 42

GEQI 43

GTRI 44

PAGE 31

Absolute Value of Integer. Take
absolute value of (ETOS). Result is
undefined if (E'IOS) is initially
-32768.

Add Integers.
(ETOS-l)•

Add (ETOS) and

Negate Integer. Take the
complement of (ETOS).

two's

-subtract Integers, Subtract (ETOS)
from (ETOS-I).

Multiply Integers. Multiply (ETOS)
and (ETOS-I). This instruction may
cause overflow if the result is
larger than 16 bits.

Divide Integers. Divide (ETOS-I) by
(ETOS) and push quotient (as defined
by Jensen and Wirth).

Modulo Integers. Divide (ETOS-I) by
(ETOS) and push the remainder (as
defined by Jensen and Wirth).

Check Against Subrange Bounds.
Insure that (ETOS-I) <~ (ETOS-2) <=
(ETOS), leaving (ETOS-2) on top of
the stack. If conditions are not
met a run-time error occurs.

Integer =,

<>,

<=,

< ,
>=,

comparisons. Compare
(ETOS) and push true
ESTACK.

and
(ETOS-I)

or false

>
to
on

PERQ QCode Reference Manual
QCode Descriptions

4.B.3 Reals

PAGE 32

All over/underflows cause a run-time error.

FLT 79

TNC 80

RND 81

ABR 82

ADR 83

NGR 84

SBR 85

MPR 86

DVR 87

EQUREAL 45

NEQREAL 46

LEQREAL 47

LESREAL 48

GEQREAL 49

GTRREAL 50

Floa t , The intege r (ETOS) is
converted to d floating point number
ana pushea onto EStack.

Truncate Real. Tlie real
(ETOS) ,(ETOS-I) is truncated (as
defined by Jensen and Wirth),
converted to iln integer, and pushed
onto EStack.

Round Real. The real
(ETOS) ,(ETOS-I) is rounded (as
defined by Jensen and Wirth),
truncated and converted to an
integer, and pushed onto EStack.

Absolute Value of Reals. Take the
absolute value of the real
(ETOS) ,(ETOS-I) •

Add Reals. Add (ETOS) ,(ETOS-I) and
(ETOS-2), (ETOS-3).

Negate Real. Negate
(ETOS), (ETOS-I).

the real

Subtract Reals.
(ETOS), (ETOS-I)
(ETOS-2) ,(ETOS-3) •

Subtract
from

Multiply Reals.
(ETOS) ,(ETOS-I)
(ETOS-2), (ETOS-3).

Multiply
and

Divide Reals.
(ETOS-2) ,(ETOS-3)
(ETOS) ,(ETOS-I) •

Divide
by

Real =,

<>,

<=,

<,

>=,

and >

~'

PERQ QCode Reference Manual
QCode Descriptions

comparisons.
ESTACK.

_,

PAGE 33

Push true or false on

PERQ QCode Reference Manual
QCode Descriptions

4.B.4 Sets

PAGE 34

ADJ UB 185 l'.djust Set. The set on the top of
the fvlSTACK is forced to occupy UB
words, either by expansion or
compression, and its length word is
popped from ESTACK.

SGS 66

SRS 68

INN 88

Build Singleton Set. The integer
(ETOS) is checked to insure that 0
<= (ETOS) <= 32,767, the set
(ETOS)] is pushed on MSTACK, and
the size of the set is pushed on
ESTACK. If (ETOS) is out of range,
the null set is pushed (a zero is
pushed on ESTACK, the MSTACK is not
altered).

Build SubRange Set. The integers
(ETOS) and (ETOS-l) ore checked as
in 5GS, the set (E'I'OS-I)•• (ETOS))
is pushed onto MSTACK, and the size
of the set is pushed on ESTACK.
(The null set is pushed if (ETaS-I)
> (ETOS) or either is out of range).

Set Membership. See if integer
(ETOS) is in set COli tained on the
top of MSTACK, and with length
(ETOS-I), pushing TRUE or FALSE on
ESTACK.

UNI 89 Set Union. The union of the two
sets contained on the top of MSTACK,
and sizes (ETOS) and (ETOS-l) is
pushed on l'1STACK,and the length of
the result on ESTACK.

INT 90 Set Intersection. The intersection
of the two sets contained on the top
of MSTACK, and sizes (ETOS) and
(ETOS-I) is pushed on MSTACK, and
the length of the result on ESTACK.

DIF 91 Set Difference. The difference of
the two sets contained on the top of
MSTACK, and sizes (ETaS) and
(ETOS-I) is pushed on MSTACK, and
the length of the result on ESTACK.

EQUPOWR 63 Set = ,
NEQPOWR 64 <>,

r
PERQ QCode Reference Manual
QCode Descriptions

LEQPOWR 65

GEQPOWR 67
comparisons
of ESTACK,
(ETOS-I)•

PAGE 35

<= (subset of),

and >= (superset of)
of the two sets on top

with sizes {ETOS} and

PERQ QCode Reference Manual
QCode Descriptions

4.B.5 Strings

EQUSTR 51

NEQSTR 52

LEQSTR 53

LESSTR 54

GEQSTR 55

GTRSTR 56

PAGE 36

String =,

<>,

<=,

<,

>=,

and >
comparisons. The string pointed to
by string pointer (ETOS-2),(ETOS-3)
is lexicographically compared to the
string pointed to by string pointer
(ETOS),(ETOS-l).

PERQ QCode Reference Manual
QCode Descriptions

PAGE 37

4.B.6 Byte Arrays

EQUBYT UB 57 Byte Array =,

NEQBYT UB 58 <>,

LEQBYT UB 59 <=,

LESBYT UB 60 < ,

GEQBYT UB

GTRBYT UB

61

62

>=,

and >
comparisons. <=, <, >=, and> are
only emitted for packed arrays of
char. The argument, UB, if
non-zero, is the size of the array.
If UB is equal to 0 then (ETOS) is
the size of the array.

PERQ QCode Reference Manual
QCode Descriptions

4.B.7 Array and Record Comparisons

EQUWORD UB 69 Word or multiword structure =

NEQWORD UB 7QJ
comparisons. The argument,
non-zero, is the size of the
If UB equals 0, then (ETOS)
size of the array.

PAGE 38

and <>
UB, if
array.
is the

PERQ QCode Reference Manual
QCode Descriptions

4.C Jumps

JMPB B 204

JMPW W 205

JFB 206B

JFW 207W

JTB 208B

JTW 209W

JEQB 210B

JEQW 211W

JNEB B 212

JNEW 213W

PAGE 39

Unconditional Jump/Byte Offset. B
is added to the IPC. Negative
values of B cause backward jumps.

Unconditional Jump/Word Offset. W
is added to the IPC. Negative
values of W cause backward jumps.

False Jump/Byte Offset. Jump (as in
JMPB) if (ETOS) is false.

False Jump/Word Offset. Jump (as in
JMPW) if (ETOS) is false.

True Jump/Byte Offset. Jump (as in
JMPB) if (ETOS) is true.

True Jump/Word Offset. Jump (as in
JMPW) if (ETOS) is true.

Equal Jump/Byte Offset. Jump (as in
JMPB) if integer (ETOS) equals
(ETOS-I)•

Equal Jump/Word Offset. Jump (as in
JMPW) if integer (ETOS) equals
(ETOS-l)•

Not Equal Jump/Byte Offset. Jump
(as in JMPB) if integer (ETOS) is
not equal to (ETOS-I).

Not Equal Jump/Word Offset. Jump
(as in JMPvJ) if integer (ETOS) is
not equal to (ETOS-I).

XJP Wl,W2,W3,<Case Table> 100

Case Jump. WI is word-aligned, and
is the minimum index of the table.
W2 is the maximum index. W3 is the
offset to the code to be executed if
the case specified has no entry in
the case table. The case table is
W2 - WI + 1 words long and contains
offsets to the code to be executed
for each case.

If (ETOS), the actual index, is not
in the range Wl ••W2 then W3 is added
to IPC. Otherwise (ETOS) WI is

PERQ QCode Reference Manual
QCode Descriptions

PAGE 40

used as an index into the case table
and the index entry is added to IPC.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 41

4.D Routine Calls and Returns

Note: There can be at most 256 routines in a segment •.

CALL UB 186

CALLXB UBl,UB2 234

CALLXW W,UB 235

LVRD W,UBl,UB2 98

CALLV 187

Call Routine. Call routine UB,
which is in the current segment.

Call External Routine/Byte Segment.
UBI is the internal segment number
(ISN) which contains the routine
numbered UB2 to be called. First
the ISN is translated to the correct
SSN, and residency of that segment
is checked. If the segment is
resident, the call proceeds; if
not, S0 is loaded with the SSN, Sl
is cleared, the PC is backed up so
that the call will be re-executed,
and a segment fault occurs. The
second attempt is guarenteed to
suceed, since the process will be
unable to resume execution until the
segment in S0 is resident.

Call External Routine/Word Segment.
Same as CALLXB except the internal
segment number (ISN) is given in a
full word.

Load Variable Routine Descriptor.
This Q-Code pushes a Variable
Routine Descriptor on the EStack for
the routine UBI in segment ISN W, at
lexical level UB2. The following
values (which comprise a variable
routine descriptor) are pushed:
ETOS = System Segment Number (SSN);
ETOS-l = Global Pointer, represented
as an offset from SB;
ETOS-2 = Routine Number; and
ETOS-3 = Static Link (determined as
if a call were actually performed to
the routine here).

Call variable Routine. (ETOS)
(ETOS-3) are a variable routine
descriptor (as described above in
LVRD). Residency of the segment are
checked. If the segment is
resident, the call is made as will
CALL, except the GP and SL are taken
from the variable routine
descriptor; if not, a segment fault

PERQ QCode Reference Manual
QCode Descriptions

RETURN 200

EXIT W,UB 92

EXGO WI,UB,W2 29

PAGE 42

occurs as with CALLX.

Return from Routine. Return from
the current routine. If the routine
was a function, the function value
is left on the top of the MStack.
Since the first word of a code
segment is not code, but an offset
to the routine dictionary, if the RA
which is being returned to is 0, the
return is performed to the exit code
of that routine. (This will prove
useful for the EXIT and EXGO Q-Codes
described below).

Exit from Routine. Exit from all
routines up to and including the
most recent invokation of the
ro~tine UB in ISN W. This is
accomplished by setting the RAs in
all the ACBs to 0, from the most
recent through and including the
first ACB which was created from an
invokation the routine to be
exitted, and jumping to the exit
code of the current routine.

Exit and Goto. Exit from all
routines up to, but not including,
routine UB in ISN WI, and then jump
to the instruction with offset W2
from CB. The implementation is
similar to EXIT, except the last RA
modified is loaded with W2.

PERQ QCode Reference Manual
QCode Descriptions

PAGE 43

~ 4.E Systems Programs Support Procedures

NOOP 93

REPL 94

REPL2 95

MMS 96

MES 97

MMS2 2f2l1

MES2 2f2l2

PSW 1f2l1

RASTER-OP 1f2l2

No-operation.

Replicate. Replicate (ETOS).

Replicate Two. Replicate
top-of-estack words (i.e.,
push original (ETOS-l), then
origina1 (ETOS))•

two
first
push

Move to Memory Stack. Push
onto MTOS (16 bit transfer).

(ETOS)

Move to Expression Stack. Push
(MTOS) onto ETOS (16 bit transfer -
top 4 bits are zeroed).

Move Double to Memory Stack.
Transfer the top two words from the
EStack to the MStack. The order is
reversed; old (ETOS) will be
(MTOS-I), (ETOS-I) will be (MTOS).

Move Double to Expression Stack.
Transfer the top two words from the
MStack to the EStack. THe order is
reversed; old (MTOS) will be
(ETOS-l), (MTOS-l) will be (ETOS).

Process Switch.

(ETOS) and (ETOS-I) are word
pointers to RODef records. (ETOS-2)
and (ETOS-3) are the height and
width respectively of the transfer
to be performed. (ETOS-4) is the
function to be performed.

RODef Record:

First 2 words
address to the
image area.

are the virtual
first word of the

The next word is the length of a
scan line in words.

Next 2 words are the X and Y bit
offsets of window to be transferred.

Function Codes:

PERQ QCode Reference Manual
QCode Descriptions

STARTlO 103

BLOCK 104

lNTOFF 105

106lNTON

EXCH 230

EXCH2 231

TLATEI 227 .

PAGE 44

e - Source

1 - NOT Source

2 - Destination AND Source

3 - Destination AND (NOT
Source)

4 - Destination OR Source

5 - Destination OR (NOT Source)

6 - Desintation XOR Source

7 - Destination XNOR Source

The above functions can replace,
merge, erase, or compliment black on
white or white on black data (Note:
a "1" is a black pixel, a "0" is a
white pixel).

Note: scan lines are word aligned.

(ETOS) is the channel on which to
start 10. Performs a block if 10 is
to be synchronous.

Return control to the schedular.
Set process as not runable (until
set runable by some other process).
More to be added.

Disable interrupts.

Enable interrup~s.

Exchange.
swapped.

(ETOS) and (ETOS-I) are

Exchange Double. The pair (ETOS)
and (ETOS-l) are swapped with the
pair (ETOS-2) and (ETOS-3).

Translate Top of Stack.
(ETOS),(ETOS-l) is a virtual
address. If the segment SSN
(ETOS-l) is resident, convert the
virtual address to an offset from
stack base (SB) and execute the next
Q-Code (what ever it may be), with
out interrupts, to competion. If

PERQ QCode Reference Manual
QCode Descriptions

TLATE2 228

TLATE3 229

STLATE UB 240

LSSN 99

LDTP 203

ATPB SB 188

ATPW 189

PAGE 45

the segment SSN (ETOS-I) .is
non-resident, restore the EStack to
its previous state, backup the PC to
re-execute the TLATEI and perform a
segment fault.

Translate Top of Stack - 1. Same as
TLATEI except the virtual address is
at (ETOS-l),(ETOS-2).

Translate Top of Stack - 2. Same as
TLATEI except the virtual address is
at (ETOS-2),(ETOS-3).

Special Translate. This translate
is similar to the previous translate
Q-Codes, except is can specify a
greater "depth that TLATE3, and that
it may specify the translation of 2
virtual addresses. Each half of UB
is interpretted as the depth of the
System Segment Number word of the
virtual address to be translated
(prior to any stack alteration). A
depth of 0 indicates no translation.
All segments specified in the STLATE
must be resident before any
translations occur, otherwise a
segment fault occurs. Note, if both
nibbles of UB are non-zero then the
low order nibble (bits 0-3) must be
less than the high order nibble
(bits 4-7).

Load Stack Segment Number. Pushes
the system segment number of the
MStack onto EStack.

Load Top Pointer (plus 1). Pushes
the value of Top Pointer (TP) plus 1
onto EStack.

Add to Top Pointer/Byte Value. Adds
S8 to TP.

Add to Top Pointer/Word Value. Adds
(ETOS) to TP.

PERQ QCode Reference Manual
Index

PAGE 46

INDEX '---

AB! 31
ABR • 32
ACB 3
Activation Record 1
ADI 31
ADJ 34
ADR 32
AP 2
ATPB 45
ATPW 45

BLOCK 44

CALL 41
CALLV 41
CALLX 41
CB 1
CHK 31
CS 2

DIF 34
DL 2
DVI • 31
DVR 32

EQUBOOL 313
EQUBYT 37
EQUI 31
EQUPOWR 34
EQUREAL • • • • • 32
EQUSTR 36
EQUWORD 38
ESTACK • 1
ETOS • 1
EXCH • 44
EXGO 42
EXIT 42

FLT 32

GDB 1
GEQBOOL • 313
GEQBYT 37
GEQI • 31
GEQPOWR 35
GEQSTR • 36
GL • 3
GP 2 '-.-GTRBOOL • 313

PERQ QCode Reference Manual PAGE 47
Index

\ GTRBYT • 37~
31GTRI •

GTRREAL • 32
GTRSTR 36

INC • 28
IND 28
INN 34
INT 34
INTOFF • • 44
ISN 1
IXA 28 29
IXP 29

JEQ 39
JF 39
JMP 39
JNE 39
JT 39

LAND • • • 30
LDB 26
LDC • • • • • • • 19
LDCH 27
LDCMO 19
LDCN 19
LDDC • • • • 25
LDDW • 25
LDG • • • • • 22
LDI 23
LDIND 24
LDL 20
LDMC 25
LDMW 25
LDO 21
LDP • 29
LDTP 45
LEQBOOL 30
LEQBYT 37
LEQI 31
LEQPOWR 35
LEQREAL 32
LEQSTR 36
LESBOOL 30
LESBYT 37
LESI 31
LESREAL • 32
LESSTR • • • 36
LGA 22
LIA • 23
LL • 1

"-- LLA 20
LLAW • 20

------~

PERQ QCode Reference Manual PAGE 48
Index

LNOT • 30
LOA • • 21
LOR 30
LP 3
LSA 27
LSSN 45
LTS • 2
LVRD • 41

MES 43
MES2 43
MMS 43
MMS2 43
MODI 31
MOV 28
MPI 31
MPR 32
MSTACK 1
MTOS 1
MVB • 26

NEQBOOL 30
NEQBYT 37
NEQI • 31
NEQPOWR • 34
NEQREAL 32
NEQSTR • • • • 36
NEQWORD 38
NGI • • 31
NGR 32
NOOP 43

PC 1
PS • • • • • 2
PSW 43

RA • 3
RASTER-OP • • 43
RD 3
REPL • • • • • 43
RETURN • .. • • • • 42
RN • 2
RND • • • • 32
ROTSHI • 29
RPS • • 2
RR • • • 3
RS • 3

S0 • 2
Sl • • 2
SAS 27
SB 1 ,--.
SBI 31

PERQ QCode Reference Manual PAGE 49
Index

___., SBR • 32
Segment • 1
SGS 34
SIND 28
SL 2
SRS • • • • • 34
SS • • 2
SSN 1
STARTIO 44
STB 26
STCH • 27
STOW 25
STG 22
STI 23
STINO 24
STL 20
STLATE 45
STMW 25
STO 21
STP 29

TL 2
TLATEI 44
TLATE2 45
TLATE3 45
TNC • 32
TP • • • • • • • • 2

UNI • • 34

XGP • • • • • 3
XJP • 39
XST 3

