
COMME -I 'CONFIDENCE
F'EF~C! Micr'opr'09r'amn"2r's Guid0

.I

Th~e0 Riv0rs Computer Corporation

November 12, 1979

Three Rive,'s Computer C0r'poratio~
160 North C~ai3 Stre0t
Pittsburgh, FA 15213
(412) 621--6250

The information contained in this CI)f'JS i .jer·~d
con-fldl?f!'-,i.d.Iat i:h,'s. i:ill"t\':' and shou l d not b'3::r"2Pc'O.jI.JC'2d,:<r' di:':,S0!I!,i(!'lt ..;~d
to anyone without the express
COf'PCtr·ation.

r=e r-rn i s s t o n of Three Rivers C i) IT,P Ij t. '2 r

The information in this docljm~nt
and should not be construed as
Corporation. Three Rivers

is subject to change
a commitment by Three
Computer Corporation

notice
F<iver's COfi'IPut.?r

a:s SU(!It:; S n t)

I



- of

PERQ MICROPROGRAMMERS GUIDE 2

The PERQ is implemented with a high speed Inic~oproBrammed processo~
capable 0,: e xe c ut i n a a m i c ro i n s t r-uc t i o r. irl 170 n s , The
mi c r-o i n s t r-uct i on is 4::;: bits ui i de , Th e width oi: most of the data paths
in thi:.'rn i cro ens i ne is 20 bits. The data corni ns in and out of the
processo~ (10 and Memory data for instance) is 16 bits. The extra 4
bits allow the micropro9rarnmed processo~ to calculate real addresses
in a 1 megaword addressing space. The assumption is that reaT
addri:.'~5eS are kept in a doubleword in memorY but calculations on
addresses can be sin91e precision within the processor. The PASCAL
programmer neve~ see~ the 20 bit paths. The major data paths are
dia9r"amtrtedbelow:

OP

105---1

RESULT
2D

JOB(/),(/J,Y
~,z.y__J

2.9ff/J

Z~RESS
., ''8 V Ie rUA"Z-----'\i

SF /IZ -----:)
o P J 1'\UX
VECTOR.---~
7.,SHIFT'----ot
VICTII"\---~

UA

VICTIM
12

"I
MICRO STORE
"ZK x '18 PROfit
4 K" x Lie RAM

(ONomON

RASTE~ OP
MD1-~--~ A~D

16 5HIFTER
I--I--~ MDO

16

z-------l

PERQ MICRO PROGRAMMING MODEL ..'..~-,



• ..._ __ "IIIIoIr ~ ..,- •• __ ._

PERQ MICROPROGRAMMERS GUIDE

'fhe XV resisters (256 resisters x 20 bits) form a double ported
'-- i:i 1<.:;- oi: s e rie r-al pur'pose re s i s t e r-s • Th'2 X p(,r·t outputs ar·e rnul tiple::<ed

with several other sources (the AMUX) to form the A input to the ALU.
The Y por·t outputs, multiplexed with an 8 or' 16 bit CONSTant via the
BMUX forms the B input to the ALU. The ALU outputs (R) are fed back
to the XV re9isters as well as the MemorvData output and M9morvAddre~~
resisters. Memory Data comins from the memory is sent to the ALU via
the AMUX. A 16 bit 1/0 Bus (lOB) is read via AMUX and written from R.

Opcodes and operands that are part of
are buffered in a special 8 x 8 ram (OP),
t ime f,'om the I'm inputs. The output (,f ()P

the instruction byte stream
OP is written 16 bits at a

is 8 bits wide and is read
via AMUX and can be sent to the micro-addressing section for opcode
dispatch. The read port of OP is addressed by the (3 bit) BPe (Byte
Pro9ram Counter)

A Shift matrix (SHIFT), which is part of the special ha rduiar-e
provided for the RasterOp operator, can be a~cessed by loadiny an item
to be shifted via the R bus, and readin9 the shifted result on AMUX.

A 16 level push down stack (ESTK) is written from R and read on
AMUX. Th~ stack is used by the Q-code interpreter to evaluate
exr=res s i ons , BF'C and thl? mi c ro s t a te c ond rt Lon c odes can be re ad as
t he rt icr« ~:::tateH'29ister' (U!::TATE)via Al'lUX.



PERG! M ICROPROGRAMMER!3 GtjTDE~--"'''''::='''

) The Micro Instruction:

2:3 1 1 1 4 4 4 4

x
-----------------------------------------------------------

y : A :B:W:H: ALU : F: SF : z : eND : ,_IMP:

Ei.ald Wi.dth

x

y

A ,-,..:.

B

w
H 1

ALU 4

Us.a

Address for X port of XV,
also address used to write XY

Address for Y port of XV,
also low 8 bits of constant

AI'"IUX~;e1eel:
o !::;HIFT
1 i'lextOp
2 IOD
3 MDI Memory Data Inputs.

AMUX[19 ..16] ~= 0
AMUX[15 ..00] := MD[15 ..00]

4 MDX Mem0~y Data Input extended
AMUX[19 ..16J .- MD[03 ..00J
AMUX[15 ..00] := 0

5 USTATE
r.:. XY (RA1"1)
7 C:::TI<

1. BMUX select. 0 = XYEYJ, 1 = Constant

1 \.Jr- i t e , XV [ X J : = R i i: I", =: 1

Hold - If set, do not allow IO
d~~v ice s t (t .3.C '.: e s s meIII0 r'Y
Also used with ~MP field to
modify address inputs

ALU function
0 A
1 B
'-. A"..::.
:;: B'"
4 rv and BH

5 A and B'"
b A rlal'ld H
7 A or B
,-, A (·r' B".:1
9 A nor- B

10 A >~I)r- B
11 A x n o r- B
12 A + B
1':- A + B + 01 dCo3.f'r"'('-'
14 A -- B
15 A -- B -- 01 dC;::'.f'r·y



- ...- ..-.-
PERQ MICROPR6GRAMMERS GUIDE

- - .--------------------------Page 5

F :2 Function. controls usage of SF and Z fields
E SE use Z use
o
1

.-:.,_,

~=;pel:ial FIJnc.
!'lemorv C.) nt r-I) 1
::::pecialFunc.
L,:,n9._lurnp

Constant/Short Jump
:::h0 r- t -Jurn=
Sh i i:tContro 1
LI)ns ,_lljIltP

Special Function.
upper 4 bits of address for long jump
and memory control functions (see F).

When used as Special Func:
o NOP
1 :;:;hi f tOnR
2 :::ta,:kReset
3 TOS := (R) (Top Of ESTK)

4-

C"._,

7
....•
•;;>

9
10
11
12
1·-·.:'1
14
1~S

4 Pu5h (E::;TK)
P,)P (E:::;TK)
CntlRasterOp := (R)
SrcRasterOp := (R)
DstRa5terOp := (R)
WidthRasterOp := (R)
LoadOp (OP := MOl)
BPC := (F\)
we:::[ 15•• oo J : = (R)
WCS(31 ••16J := (R)
WCS[47 ••32J := (R)
108 FIJr, c t i 0 f'

6

l Low 8 bi~s of Jump Address,
High 8 bits of Constant,
:::hift Contro l (see F), 03.151) IOB a.ddr-e ss,

C:oi,ditiOI",. t.Jhatt o test for' c ondrt ional .Lurn=,
o True (always Jump)
1 False (never Jump)

CND 4

2
.-,.:'1
4
t::._,

10
11
12
1:3
14
15
16
17

BPC[3J - if set. need to refill OP
C19 - carry out of msb of data path
InterruptsPendins
A[OJ - odd/even
A[7J - byte siyn
A[15J - sign bit
E91
N<:"!
Citr'
Ge"!
Lss
Le"!
Carry (out of bit 15)
Overflow (of bit 15)



- _....••...--- "'_ -_ .. -
PERQ MICROPROGRAMMERS GUIDE

Jump Cont~ol. See 2910 documentation.for further
details. CIA::::;Current Instruction Address

NIA = Next Instruction Address
Addr = SF"Z (Lon9) or CIA"Z (Short)
ZFill = Z(Uppe~Bits)"O"Z(LowerBits)

Code ~arue Ea~~ Eail
o JumpZero NIA:=O NIA:=O

,JMP 4

1 Ca 11 I".!IA: :;:Ad d r'
Push

Nextlnst/ReviveVictim
H ::::;0 NIA==OP

+ZFILL
H ::::;1

GoT.:, !'IIA:=Addr'

4 Pu s ht.o a d NIA:=CIA+l
Push
!::: =Ad dr-

c-
'-' NIA= =Ad dr

Push
Ca 11!3

b Vector/Dispatch
H = i)

NIA:=CIA+l

NIA:=OP
+ZFILL

NIA:=Victim

NIA:==C!A+l

NIA:=CIA+1
PIJsh

NIA:=S
Push

NIA:=Vector .NIA:=CIA+l
+ IF i 1 1

NIA:=Dispatch NIA:=CIA+l
+ZFi 11

H = 1

7 NIA: =Ad dr-

8 RepeatLoop
if!::; <> 0

if!::; - O NIA:=CIA+l
F'(lp

R.,:-peat
if!:; <> 0 !'-.IIA:=Addr'

if!:::=O NIA:=CIA+l
POP

1.0 Ret ur-ri NIA: =CS;TK
POP

11 NIA: =Addr
Perp

.JJJmpPop

1·")..:.. Load:=:; NIA:=CIA+l
!::;: =Ad dr-

1 .-:.
J. ._t Lo o r= NIA:=CSTK

POP

NIA:=S

NIA:=CSTK
S:=8-1
NIA:=CIA+1
POP

NIA= =Ad dr-
S: =~3-1
NIA:=CIA+1
POP

NIA:=CIA+l

NIA:=CIA+l

NIA:=CIA+l
!3:""Addr-

NIA:=CIA+1



-
PERQ MICROPROGRAMMERS GUIDE

14

1"'"0_'

NIA:=CIA+1

Th roeet..laoolooBroan 0:: h
if S <> 0 NIA:=CIA+1

PO:IP

if :3 - o NIA:=CIA+1
POP

Pa""ge 7

NIA= =C:IA+l

NIA: ==C:3TK

NIA:=A,jdr
PCIP



-- . "OCt."."",...-r.<_------------ -------
PERQ MICROPROGRAMMERS GUIDE 8

COQstaQts can be 8 or 16 bits. If BMUX = 1, F = 0 and SF = 0,
the Y and Z fields form a 16 bit constant. If BMUX = 1 and either F
or SF <> 0 then Y is an 8 bit constant.

O~dCacc~ (in ALU functions 13 and 15)
immediately preceedin9 microinstruction,
precision arithmetic.

is
it

the
is

carry from the
used for multiple

The Z field is u s e d for'many things: as par·t .:.,:a .jIJOIP addr-ess,
the upper 8 bits of a constant, Shift Control, and as an lOB address.
The F field decodes do not necessarily enforce restrictions on the use
of the Z field, they merely enable some of them. In particular. when
SF and F = 0, the constant will be 16 bits (B = 1). If B <> 1 then
the Z field is free, and can be used for Jump or lOB addresses. When
F = 3, the Z field is loaded into the Shift Control resister. These
are the only sp~cific actions taken by the hardware that affect the
usage of the Z fie~d. There is nothing that prevents the processor
from using the Z iield for both a constant (if F andSF = 0 and B = 1)
and a Jump address in the same instruction. Ttlis also applies to Z
used as an lOB address. The assembler will fla9 9uestionable Z field,
usages.

~emu.C:.-x:Coutcol. The memorv sv st ern cvc les in 6f:0 ns (e:x:actly 4
microcycles). Microcycles are numbered starting at 0 (to, tl, t2 and
t3, plus t4, t5 and t6 which overlap the following to. tl and t2
respectively). Re9uests must be made on a particular cycle (which
cycle depends on the tvpe of re9uest). If a memory re9uest (Fetch or
Store) the processor will be suspended
until types of memory references,
coded

BE
it.
17
12
1:3
10
11
14
15

is ma de on HIt? wr-ong cv c le ,
the c or-r-ec t c v c l e , There ar-e ...•

.:'
into the S;F field. when F :: 1.

I:-.::.E!~
Fet.:h

D~.s.s::ci.Ei:.i.s:&.o
Fetch 1 word from Memory.
Store 1 word into Memorv
Fe t ch 4 words (0 Inod 4 addr-ess)
Store 4 words (0mod 4 address)
Fe t c h 4 uro r- ds, t rans p.;:. r- tin rever-se (I r- de r
Store 4 wo~ds, transport in reverse order
Fetch 2 uro rds t o mo d :2 addr-ess)
=::;t.:rr-e:2 wor-ds (0 n••:.d 2 addr-ess)

!3t(Ire
Fet ch-l
!::;tor-e4
Fe h:h4R
St(.r·e4R
Fet.::h2
Stor'e2

The address for all memory references comes from R. On a Fetch type
reference, the ad~ress (and the re9uest itself) are latched at to and
data is available as an AMUX source at t3. If AMUX = 3 or 4 (MDI or
MDX) durin9 a tl or t2 followin9 a fetch type memory reference, the
=ro cessor- is suss=ended until t:3. The merno rv data will r-emain
ava t l ab le urrt i 1 the next memor-y r-e+e r-ence r' s t2 (e:x:ception:see the
note about 10 mernor-v r-eFer-ences), It is possible to r-ead the (same)
data several times, but not after the next reference reaches t2.

For Fetch4 references. the first word is available at t3, and the
succeedins words arrive at t4, t5 and t6. In this case, the processor

'--- must r-e ad MD during t::::- t6; the data ooes n ot wait for y.)u t o read
it. However, attempting to read the first word during tl or t2 will
cause suspension.



-,
"

- PERI).MICROPROGRAMMER::;;GUIDE

tr

t

t

~
..•.

!~~
r.
r-'
1
r

\........
"

For
the t-l
supplied

a Store refe~ence, the address and store command is given in
cycle (t3 of preceedins cycle) and the data to be written is

(on Result) in the to cycle following the Store command.

In a Store4 type reference, the command and address is given in
cycle to. and the data is supplied in the next fo~r cycles (tl, t2, t3
and t4). Fetch4 and Store4 types of references use two memory cycle~
(1.2 usec) since another memor~ re9uest is not allowed during the t4
cycle (a to. at least potential1J) because the microinstruction cannot
speclty both an address and a data word in the same microword. (This
is not 9uite true durins RasterOp, where the hardware can send data
through the RasterOp data paths at the same time the processor is
generating addresses.)

The Fetch4R and Store4R
Store4 refe~ences except that
from/to the memory first, and
useful for RasterOp so that
to left tr·ansfers.)

types ar-e identical to the Fetch4 and
uror-d 3 o f the 9uad word is r-eceived/sent
wor·d (I last. (This is sener-a11v on 1··,··
it can do left to right as we·ll as right

Here are examples of each type of reference and how they are
coded (TheAddr-. TheData. QuadAddr, and DataO-3 are ·XY registers):

FetchOn<2! !VIA ·- TheAddr. Fetch; {to}·-
(to
{t2}

TheData ..- MDI; Ct3).-
t1A ·-- OuadAddr·, Fetch4; (to)·-

{tU
(t2)

DataO ·- MDI; Ct3-}
Datal ·- MDt; Ct4)·-
[1.3. ta2 ·- MDI; (t5)·-
Data:=:·- I'1DI; Ct.6}·-
MA ·- Th~Addr·? St(lr~e; {t7 = t·? = t-1}._'
MDO ·-- TheData; (to)·-
MA ·-- (.!uadAddr·, Stor·e4; (to)
MDO ·- DataO; Ctl)·-
MDO ·- Datal; c.t2}·-
NDO ·- Da"ta2; {t3}·-
MDO ·-- Data3; Ct_4}·-

FetchFolJr·:

The 10 system can r<29Uest memory cycles at any time. The m~mory
system sives pr-ior·it··...to the 10 system so that if·the pr·o.:ess;:.r·and
the 10 system request cycles, the 10 will get it. ihe Hold bit, if
set, locks out 10 re9uests while it is set. Since the 10 system can
get a memory cycle any time Hold is not set, there is no guarantee
that the MDI data will be valid following the t2 after a fetch, even
if the processor doesn't start a new cycle.



PERQ MICROPROGRAMMERS GUIDE
....- __ .. ..' 4_..._ . ~_ .....

DS£Ddes and Dsecands. The OP register file contains a 4 word
Si:9'Ji:nCi: of i ns t ruc t i on bytes. The intended usas€' of the OF' fi I e and
the BPC resister that addresses it is as follows. The ~uad word
address of the current instructioi) is contained in a XV resister
(IPC), and the 8 bytes pointed to by IPC are stored in OP. The lower
3 bits of the IPC (which byte in a 9uad word) is kept in BPC, a
hardware register. BPC addresses OP to choose a byte. BPC is
actuallY a 4 bit counter. It is incremented whenever a byte is taken
out of OP by Nextlnst (JMP=6, H=O) or NextOp (AMUX=I). The 4th bit of
BPC (BPe[:3]), which is the "ove r-Fl our'' (.f the coun t e r, is testabl e via
a Jump condition and indicates that all bytes in OP have been used.

The NextOp function (AMUX=l) gets the next
instruction byte stream for use as an operand.
"If BPC:[3] 130T.:,(Refi11)" jump c laus e . If BPC is

byte out of the
It is coded with an

overflowed, then
control will gO to Refill which increments IPC by 8 bytes a~d starts a
Fetch4 to OP. The special function LoadOp n,ust be executed in the t2
of the fetch to cause the Op file to be loaded with the data comins on
MDI. Refi 11 ITI'Jsttherl get back to the Ln st r-u ct a on which [,£.eded t he.
byte. This instruction must be re-executed. The inst~ucfi~n which
executes NextOp o,ust be capable of being executed twice (once when B~C
was overflowed, and once when it is r~-ex~cuted after Re~il1). Thi~
precludes instructions such as. R := NextOp + R.

In order for Refill to get back to the instruction which needs to
be re-executed, the address of the failed NextOp is saved in a
hardware register (Victim) whenever NextOp is executed when BCP[3J is
set. The last instruction in Refill is coded with ReviveVictim
(,JMP==2,H=l), uihi ch sends cont ro l back t o the "failed" NextOp.

Jump and Call Q-codes calculate IPC and BPC and load OP with the
appropriate ~uadword. They can optimize execution by checking to see
if the right 9uadword is already in OP (new IPC = old IPC) and Just
lQad BF'C.

The Ne x t Ln st ,_IMPe r.ables OP (which is inver·ted) i nt o the ':Addr'"
input of the microinstruction se~uencer shifted left by 2 bits, and
ored with ZFill, sending control to ~ddress ZFill + (OP~ * 4). If
BPC[3] is true, OP is forced to 255, sending control to location
ZFill+O, which is another version of Refill. This Refill also does
the Fetch4 to. OP, zeroes BPC, increments IPC, and does the LoadOp, but
then repeats the instruction disp~tch instead of returning via Victim.

In order to speed UP the execution of Refill, the LoadOp Special
Function loads all 4 words via hardware. The LoadOp should be given
in the t3 following the Fetch4. The instruction which follows the
LoadOp can gO back' to the Nextlnst/NextOp since the first byte is
9uaranteed to be in. The three remaining words arrive and are placed
in OP by hardware without further microcode assistance. This doesn/t
work with Q-code Jumps since the low bits of the tarset for the jump
are not 9uaranteed to be O.

Sbi£~ CaD~~Ql allows the microprosram to use the shift/mask
hardware. The shifter carr rotate a 16 bit it~m 0 to 15 places and
apply a mask to tile shifter outputs. To use the shift hardware, the Z

--r
t
$

f

I
fos,
t

, i

L
1

\
i

i

I
.,.



_--
PERQ MICROPROGRAMMERS GUIDE 11

fi~ld of the instruction can be coded with the type of shift t,)be
\_ done with the F field set to F ~ ~ Codins of the Z field uses two 4k.

bit nibbles:

,,
~,

~~.~- ,

Z ELe~d SbL£~
0-15.0. 1 bit field startin9 at bit 0-15
0~14,1 2 bit field startins at bit 0-14
0-13,2 ~ bit field starting at bit 0-13~

0-2,13 14 t,it field starting at bit 0-2
0-1.14 1~ bit field starting at bit 0-1~
0-15.15 Left shift 0 - 15
8-15,14 Rotate 8 - 15
8-15.13 Rotate 0 - 7
0-15,15-0 RishtShift 0 - 15

The item to be shifted is placed on R, and the shifted and masked
result can be read via AMUX = 0 on the next instruction. The shift
co~~trol losic keeps the last value loaded so that the shifter can
shift. a succession of words without respecifyin9 the shift control
function. The shift outputs always have the shifted vaiue of what was
last ~n R.

The ShiftOnR special function allows a shift function to be a
variable. The shift control is obtained from the R bus and thus can
be a data ite~. The usase se~uence would be 1) put the shift control
item on R and execute ShiftOnR, 2) put the item to be shifted on R,
and 3) read the shifted result on SHIFT.

ESIK is used to evaluate expressions. Items to be pushed on the
stack are placed on R with Special Function Push. Items can be popped
off the ·st~ck with special function PoP. The Top Of the Stack can be
written without pushins or popping with the TOS:= special -function.
TOB c~n be read at any time with := TOS (AMUX = 7). The stack is 16
lev~ls deep (15 pushes) The stack can be reset (no items on the stack)
by the StackReset SF. Stack empty and full can be read as condition
bits in USTATE.

LOB is the Input Output bus for PERQ. The lOB is a 16 bit
bidirectional bus plus a 7 bit address bus. The Addresses are
~uPplied on the Z bus. The eighth bit indicates the direction of
transfer~ l=write, O=read. There are two ways to read an 10 register.
'One ~ay takes a single cycle, and is used when the .losic in the device
can. desode its address very rapidly. It is coded with an 10 address
in the .~ field, and A=2, SF=1 with F=O or 3. Some devices may not
respond ·fast enough, and may re9uire restricting ALU functions to
logical (no carry) o~eratlons.

The other way to read an 10 resister is to code the SF=!. F=O or
3 without coding A=2. In this case, the 10 resister is latched in the
processor such that a succeeding microinstruction can read it with A=2
(no special function needed). 10 resisters can ~e written by putting
the appropriate address in Z and coding the lOB special function
(SF=l, F=O or 3).



PERQ MICROPROGRAMMERS GUIDE

Consult documentation on individual
'-.__.... uih i c h +orm (If rOB should be u s e d ,

1/0 de v i c e s to determine

Shur:.±.LLuu.!::l .Jumes . An"'"i nst r-u c t i on ne e d i rrs an "Addr'" as par·t (If
i t s.. _lMP field n o r-rna l l v s e t s it +roru the Z field. Since Z is on h·' ::::
bits lon~, and the control store is 4k, another 4 bits of address are
needed. Short Jumps branch to a location on the same 256 word page is
th<?
the
th,,::

current microinstruction (CIA). To 90 to an
F field can specify Lon9 Jump (F ~ 3) which

upper 4 bits of address.

arbitrary location,
uses the SF field for

The Addr for jumps nlieht not come from the Z (and SF); several
JMP codes cause the Addr inputs to the Inicrose9uencer to come from
(I thE!r' s0 IJ r'ce s • The r'ear' to thr'ee cas e 5 in w h ich the ;;:..d d I:e 505 is a
multi-way branch. The three cases are: NextInst dispatch, where a 256
wa"( d i s r=atc h b a s e d on the o r- c o de is done, the Dispatch ._lMP, which
causes a 16 way (or fewer) dispatch on the lower 4 bits of the SHIFT
outputs, and Vector dispatch which branches to 1 of 8 micro lntE'rrupt
5 e r-vie <2 r' I:IIJ tin e s • F I) r- a I I 0 f tt. '2 Se b r- an ch.e s , the Z f ie 1 d (I f thE' fTIi c r- I)
Ln s t r-u c t i o n suppl ies. thE' other' bits. For' i n s t r-u c t i o n d i s r=at c h , the
'-'esu"ting a d dre s s i s :

0 [I (I (I 0 0 0 0
Z Z P j=' f' F' F' F' P F' Z Z.
-, l:;_ -7 f:.. ~~i LJ· :;: ,-. 1 o 1 I)I I ..::.

Which ~esult5 is a 25f:.. way br'anch with a spacin9
tle-cw<2en e n t r. r o i n t s • The D i s r=at c h ._lMPb re nc he s
via the shiftE!r of UP to 4 bits. The address is:

of 4 instructions
on a field selected

z -r Z Z l '7 :3 r-. :::; sL L .::-
7 f:.. e- "1-

...., 2 .-. .-, 1 o._' ..:, .: ..::.
z Z
1 (>

The'VE'ctor'
pr·ior·it·.•..

,_li"1F' d i sr-atche s
<,?n I: I) d e j"' (v ) ,

(f rl the 0 Ij t F' I..)ts
which determines
The addr-ess is:

oft he HIiI: r-0 in t<2r' r' IJpt
the highest priority

micro-interrupt condition.

z z z Z
7 t. ~i 4

z Z
.:' •••·f

'-' ..::.
v V V Z Z

(I 2 1 (l 1 (I

As previously mentioned, ReviveVictim enables the Victinl register into
the address input of the microse9uencer.

InLeLLuets.. The hardware implements a micr'olevel interrupt which
is used to allow the microprocessor to help 10 devices. There are (a
maximum of) 8 interrupt requests which are assigned prioritiE!5 by the
hardware into a 3 bit ~ec±'ar:.. When any of the inter~upt re9uests is
asserted, the Branch condition InterruptsPendin9 will succeed. The
intended usage of this feature is that at convenient places in the
mi cro code an i ns t ruc t i on which has "If Ln t e rr-uwt sPe rtd i rrs Call (Ve cSr-v)"
is used. if any interrupts a~e penJins, control will pass to VecSrv
which would contain a Vector Jump field which send control to Vector*4
in the control store, with the Inter~upted CIA on the stack. The
I n te r- r- I..)pt mic r- i) .: I;'oje can se r' vie e a de v iI:e , a nd r'e t IJr' n 1ik 8 a sub r' 0 I.Jt i r IE'
llIould.



PERQ MICROPROGRAMMERS GUIDE 1'-_'-;»

USI~IE. Th~ U::;TATE r~9ister contains various inter~stins it~ms,
Th~ USTATE resister (AMUX=5) looks like:packed in a sin91e word.

19 16 1:5 10 7 5 4 -?,_, (I

----------------------------------------------------
o : unus~d : SF : SE : N : C : z : V: BPC

BPC - Byte Pro~ram Count~r
N - N~sativ~ (ALU r~sult < 0)
Z - Z~ro (ALU r~5ult ::::0)
C - Carry (ALU carry out of bit 15)
V - Ov~rflow (ALU ov~rflow occur~d)
SE - ESTK Empty (inv~r·t~d data -- 0 ~ empty)
::W - E:3TK Full (t nve rt e d data -- 0 ::::full)

QU~Lks. As of 10/14/79, the hardware has several shortcominss
caused by s onre un+ort une t e data i nv e r-s i ons . Most (.f tt-:ei nve rs i ons
are fi:>::edby the a ssembl e r SOI(l~ar-e IJP to the mi cr-o r-r-o s r-aromer- to fi:x:.
The inversions ar~:

The 10 bus WRITE data is i nve r-t ed (m i cro er-osr-ammer- bewar'e)
The Z field is inverted for Shift functions (Assembler do~s it)

- The Op file is invert~d on Nextlnst (Assembler Opcode does it)
- The Z fi~ld is invert~d for all addresses (Assembler do~s it)
- The A[OJ 7 A[]J arl,::iA[ 15J .j IJITIP!':.ar·e inve r-te d se nse (MP belL1ar'e)
- USTATE is inv~rted (MP bewar~)

BPC: ~ ruu s t hav e i nve rt e d dat;;:1.(MF' bew;.:i.r·,,,,);


