COMMERCIAL-IN CONFIDENCE

FERD Microrroarammers Guilde
EBrian Rosen
Three Rivers Computer Coreoaration

Maovember 12, 197%

Three Rivers Computer Coreoration
160 Nerth Crais Street
Fittebursh, PR 135213

(412) ARL-&250

confidential at thisz tiwme and should nobt pe reprodyced or dissemindbad
sermission of Three Rivers Comeoter

The infFormation contained in this document is considered Comesny

;l
i

ta anvone withoult the ewpre
Copporation.

The information in this document is subldect to chanse without netice
and showuld not be construed as a comritment bv Three Rivers Computer
Corporation. Three Rivers Computer Corporation AT BUMES ro
respoansioniiity for any errors that may arpear 10 this document,

FERE MICROPROGRAMMERS GUIDE Fag

fo
ry

The PEREZ is imelemented with a hiod speed micropProvramned processor

carabie af executinu & microinstruction in 170 ns. The
wicroinstruction is 42 bits wide. The width of most of the data eaths
in the micro enwine is 20 bits. The data coming in and out of the
processor (IO and Memory data for instance) i1s 146 bits., The extra 4
bits allow the microeprosrammed processor to calenlate real a-dresses
in a 1 mesawoerd addressing sparce, The assumption is that eal
addresses are kerpt in a deubleword in memory but ca]cu]ations b3y

addresses can be sinsle pPrecision within the Prracessor, The FPASCAL

Programmer never sees the 20 bit paths. The madjor data paths are
diazramned brelow?l

Bx8 1 0P
L z
B % op [78 n [5
X :
[cy el 1’: > MDO
A L | ustate ™] I v
ST e
@ Mbi {15:0]
. “MDIBOIO] . —
MD1L s (mox) 1 ESTK !,N R / 5 MA
x_l : SHIFT 16 X 20 | 8
XA
T "zoA L[], resuur
Di X' B ALU * T3n
256X 28 YO s |
YA @lle 1 s e IOB
v @,Z ——
2 10 ADDRESS
UA , Z —————) ‘>> T
SF i ——————
0P ———3JMUX| ,9/p UA
VECTOR ————y
Z,SH) F T , VICTIM
1 3 3]
VIETIM e A1 j‘% 12 X
Y
e B
= i CONDITION] U MICRO STORE .:LU'
= R SHIFT wis ZK X 48 PROM v
= L 4R X H8 RAM o
i | JMP
RASTER OP ‘
] ey AND f——f—3 MDO
s & SHIFTER @
Z

PERQ MICRO PROGRAMMING MODEL

FERG MICROFROGRAMMERS GUIDE - _ - Fage =

The XY reaisters (254 resisters = 20 bits) form a double pPorted
file of seneral purpose resisters. The X port ocutputs are multiplexed
aral other sources (the AMUX) to form the A inPut to the ALLL

with sev - Ny .
The Y port outputs, multielexed with an 8 or 14 it CONSTant via the

BMUX forms the B ineut to the ALU. The ALY outputs (R) are fed back
to the XY resisters as well as the MemorvData outeput and MemorvlBddrecs
registers. Memory Oata coming from the memory 1s sent to the ALL via
the AMUX. A 14 bit I/0 Bus (IO0B) is read via AMUX and written from R.

Opcades and operands that are epart of the instruction byite stream
are buffered in a special & »x & ram (OP). OF is written 14 bits at a
time From the MD inputs. The outeut of OF is 2 bits wide apd is read
via AMUX and can be sent to the micro-addressins section for opcode
disepatch. The read port of OF is addressed by the (2 bit) BPZ (Byvte
Froaram Counter)

A Shift matrisx (SHIFTY, which is part of the special hardware
praovided Ffor the Rasterle operator, can be accessed by leading an item

ta be shifted via the R bus, and readine the shifted result on AMUX.

A 14 Tevel push down stack (ESTK)Y is weitten from R and read on
AMLIX . The stack is8 used by the [-cade interpreter tno evaluate
CHPrEsSS1lans, BFZ and the micraoastate condition cades can we read as

the Micra State Resilster (UZTATE) via AMUX.

FERZ MICROPROGRAMMERS GUIDE

The Micro Instruction:

= b= FCIBN 1 T | 4 2 4 o 4 4

d X i Y T A TRIWIHD ALLY 0 FLOSE G Z VONDY L JMF

Eield Widlkh Use

X = Address fFar X eport of XY,
also address used to write XY

<
jnK]

Address far Y rort of XY,
also low & bits of constant

A = AMIIX Select
0 SHIFT

1D

MOI Memory Data Inputs.
AMUIXD17. .16 3= O
AMUXELLS, 001 1= MOL15E..00]

4 MOX Memory Data Ineput extended
AMIXC1IY. . 143 = MOLOZ,.003]
AMUXLELIS, . 003 3= 0

LSTATE

XY {(RAM)

ESTK

FTLE N

NI 0

23 b | BMUX select. O = XYLY1, 1 = Constant
W i Write, XYEX] 2= R iFf W = 1

H 1 Hiotd ~ I+ sets oo not allow IO
devices to access memary
Also used with JMP fField to
madify address inputs

AL 4 ALl function

0
1
4 and E
] and B

o~ 0

nand B
ar B
or- B
nor R
Hor B
=nor R

e P
; b D NG]

(Y
et o0

-
I
PDITPDDIDDDITDITImDD DD

B

+ B o+ OldCarey
B
B

- UldCarcey

-
o

Fase

' FERR MICROPROGRAMMERS GUIDE

F = Function. controls usase of 5F and Z fields
k= SE use L use
%) mpecial Funco. Constant/Short Jume
1 Memoary Contral Short Jdume
= Srecial Func. Shift Control
I Long Jume Long Jump

= 4 Srpecial Function,
upprer 4 bits of address for loang Jjums

and memaore
When

0

DI ST I (W o

~N g

ol

Lo

[]
[xx]

Hiah &
Shift Control

N 4

3

.
't

1 e DY RO

0

~d

Conditicn.

control
sed as Sprecial
MOP
ShiftOnR
ZtackReset

TOS $= (R)
Fush (ESTH)

Foap (ESTED

CntlRasterlp
SrcRasterdp
DstRasteridp

WidthRasterUp

functions (see F).
Func:

(Tap OF ESTED

(R)
: (R)
1= (R)
(§29)

LoadOp (OF 1= MOI)

BPC i= (R)
WEEL15,. . 0017
WCSL21..146]
WomL47., 321
IO Function

Jume A
x] 1:

2 opits of
bits
{(see

True (alwaws
False {(never

BRCE3T -

1% =

if

CErTY

InterruptsFe
ALO]
ar71 -~ bwvte

AL1IS] — sien
Eal

Mea

ik T

Gea
l.ss
Lea

Carry {out o
Overtiow {(of

What to test

(R)
= {(RJ
{

didr-ess,

Constant,

F)s also [0OB address.

Ffor conditional Jdume.
Jump)
Jume)
sety need to
ot of msh of

ndine

refill OF
data path

~ odd/even

sian

bit

f kit 15)
Bit 13)

Fase

!

FERE MICRDPRDGRQMMERSIGUIDE

JMPE 4

(]

o~
bed

b

L

10

11

Jume Conteal.
details.

1]

CIA =
MIA =
Godde =
ZEa
Nemg

JdumpZero

Call

<=

210 documentation

Current instruction
Mext Instruction Add

SF,.Z (Lonz:) or CIA

Z(UPP@FBitS)17stZ
Eass
NMIA: =0

MIA:=Addr
Fush

Nex=tInst/ReviveVictim

H = 0

H o= 1
GoTo
Fushload
Calls

NI1&:=0p
+ZFILL
NIAs=Victim

NIA:=Addr
NIA:=CIA+1
Fush
Si=Addr

MIAI=Addr
Fush

Vector/Oispatch

H =

h
EE s

(=N

“t

Bl
i

Return

dumeFore

Loads

Loap

i)

NIA:=Vectuor
ZEE 1

NifA:=Dispatch
+ZF111

NIAz=Addr

NIA: =CSTE
GGl
NIA:=CIA+1
Pop

NIA:=Addr
e |
NIA=CTA+]
Fop

NIA:=Addr
Fop

NIA:=CIA+1
S:=Addr

MIA:=05TH
Fap

Faoe &

for Ffurther
Address

ress

s 0 L (Sh':'r‘t)
{LowerBits)
Eail
NIA:=0

NIA:=CIA+1

MIA:=0P

+ZFILL
NIA:=Victim
MIA:=CIA+1
NIA:=CIA+.
Push

MIA:=2
Fush
NIA:=CIA+L

NIA:=CIA+]
NIA:=%

NIA: =C5TH
Se=5-1
NIA:=CIA+1
Faop

NIA=Addr
Si=5-1
MIA2=CIA+]
Fap

NIA:=CIA+1

NIA:=CIA+]

PERG MICROFPROGRAMMERS GU[LE

ThreekWarBranch

B

s
-

R

Q

NIA:=CIA+L

MIG:=CIA+L
Fae

Se=t-l
NIA:=CIA+1
Fop

NIA:=CIA+1

NIAI=CETK

F1=5~1
NIA:=
Fop

ddr

S —— oy s P ——— D—

PER? MICROPROGRAMMERS BUIDE
Constants can be & or 16 bits. If BMUX = 1. F = 0 and SF = 0,
the Y and Z fields form a 14 kit constant. I+ BMUUX = 1 and either F

ar SF <% O then Y is an 8 bit censtant.

GldCarrwe (in ALY functions 12 and 153) is the carrv from the
immediately preceedins microinstruction, it is wused for multiple
precision arithmetic.

The Z field is used for many things! as pPart of a Jump address,
the upper 8 bits of a constant, 3hift Control,. and as an INB address.
The F field decodes do not necessarily enforce restrictions on the use
of the Z field, they merely enable some of them. In particular, when
SF and F = 0, the constant will be 14 bits (B = 1), If B <> 1 +then
the Z Field is free, and can be used for Jump or IDB addresses. UWhen

F = 3, the Z field is loaded into the Shift Control reaister. These
are the only seecific actions taken by the hardware that affect the

usaae of the Z fie’d. There is nothine that erevents the processor
from wusing the Z vield Ffor both a constant (iFf F andSF = 0 and B = 1)
and a JumpP address in the same instruction. This also applies tao Z
used as an IOB address. The assemibler will flags Questionable Z field
Usasas.

Memory Conitcol. The memory svstem cvocles in 420 ns {exactly 4
microcycles). Microcwoles are numbered startine at © (20, t1. t2 and
t3, Plus t4, t3 and t4 which averiar the fFollowing 0, t1 and t2
respectively). Regquests must be made on a particular cycle (which

vizle derpends on the tvyee of reguest). I¥ a memory request (Fetch or
Store) is made on the wrona cveles the processor will he susrended
until the correct ovcle. There are 2 types of memory references.
coded into the SF field,. when F = 1.

S5E Tupe Descrpietian

14 Fetch Fetch 1 word from Memory.

17 Store Store 1 word into Memory

12 Fetzhd Fetch 4 words (O mod 4 address)

13 Stored Store 4 words (O mod 4 address)

i0 FetehndR Fetch 4 words, transeort in reverse order
1 StoredRr Store 4 words, transport in reverse order
14 Fetohd Fetch 2 words (O ynod 2 address)

15 Store? Stoare 2 words (O mod 2 address)

The address for all memory references comes from R, On a Fetoh tyvee
reference, the address (and the reauest itself) are Tatched at t0 and
data is available as an AMUX source at b3, If AMIIX = 2 or 4 (MOI or
MOX) durins a t1 or t2 followine a fetch type memory reference, the
processar 1s suspended until B3 The memory data will remain
available until the next wmemory reference’s t2 (excertion? se¢ the
note about 10 memory references). It is pPoassible to read the (same)
data several times. but not after the next reference reaches t2.

Far Fetchd references, the first word is available at t3, and the
succeeding words arrive at t4, t39 and té. In this rcase, the Processor
must read MDD during t3 - thHs the data deoes not walt for vyou ta read
i B3 However, attemptine to read the first word during t1 or t2 will
CAUSE SusPension.

"PERG MICROPROGRAMMERS GUIDE . ——— Py g0

For a Store reference, the address and store command is given in
the t-1 ecveole (32 of preceedine cvole) and the data to be written 1s
supplied (on Result) in the tO cvecle followins the Store command.

In a Stored tvepe reference, the command and address is aiven in
cvele t0, and the data is supplied in the next four cycles (tl, t2, 3
and t4). Fetch4 and Stored tvpes of references use twe memorvy cveoles
(1.2 wusec) since anather memory reauest is not allowed durinas the t4
crele (a tO, at least potentiallyw) becauwse the microinstruction cannot
specify both an address and a data word in the same micraword. (This
is pot auite true durine Rasterlp, where the hardware can send data
thraoueh the Rasterlr data paths at the same tiwe the pProcessor is
gseneratine addresses.)

The Fetohd4R and Stored4R tvpes are identical tao the Fetch4 and
Btored references excert that word 2 of the guad word is received/sent
from/te the memory First, and word O last. (This is senerally onlw
useful for Rasterdp so that it can do left to risht as well as risht
to left transters.)

Here are examples of each tvee of reference and how ther are
coded (TheAddr, TheData, GuadAddr, and Datad—-2 are XY resisters):

Feteohilnes MA = Thehddr, Fetchs {t0}
e {t13
- (2}
TheData 2= MDI; {t3)
FetchFours MA &= Wouadfaddr. Fetoh4ds (L03
BE 5 {t1l
i {t23
Datan := MDIs {t3)
Datal := MDI; {142
Dataz := MDI; {t33
Datad := MDIL; {tad
Storeline? MA = TheAddr, Stores {(t7 = 2 = t-13
MO i= Thellmtas {tQ2
StorefFour: MA = RuadAddr. Storeds (102
MO 3= Dataos {ti?
MO = Datals tt23
MDD 1= Data?s {t33
MO 2= Datals {t4s

The IO swstem can request memory cyvcles at any time. The memory
system @ives eriority to the I0 svstem so that i+ the pProcessor and
the IQ svystem reguest cycles, the I0 will set it. The Hold bit, if
set, Tocks out IO reguests while it is set. Since the ID swstem can
agt a memory cvcle any time Hold is not set, there is no guarantee
that the MDI data will be valid foalliowine the t2 after a fetcoch. even
if the processor doesn’t start a2 new ovole,

FERR MICROPROGRAMMERS GUILDE - N ' I T Pase 10

Oeprodes and asercands. The OF register file contains a 4 word
sequence of instruction bvtes. The intended uwusase of the OF file and
the BPC resgister that addresses it is as follows. The aqauad .word
address of the current instructicon is contained in a XY reaister
(IFC), and the & bvtes pointed to by IPC are stored in OP. The lower
% bits of the IPFC (which bwte in a auad woerd) is kept in BPC, a
hardware register. BPC addresses P to choose a pyte. BFC is
actually a 4 bit counter. It is dincremented whenever a bvte is taken
out of OF by Nextlnst (UMP=6, H=0) or NMextler (AMUX=1). The 4th bit of
BPL (BPCL21), which is the "overflow" of the counters is testable via
a Jjump condition and indicates that all bvtes in P have been used.

The Nextler Ffunction (AMUX=1) a9e¢ts the next byte out of the
instruction fvte stream for use as an operand. It is coded with an
"If BPCL3] GoTol(RefFil1)" Jume clause. I+ BFC is overflowed. then
conteol will ao o Refill which increments IFPC bv 2 bvtes and starts a
Fetch4 to OF. The special funcltion Loadle must be executed in the t2
of the fetch to cause the Op file to be Toaded with the data coming on
MOI. KRefill must then set back to the instruction which needed the
orte. This instruction must be re—executed. The instruction which
executes Mextide must be carable of beine executed twice (once when BPC
was overflowed, and once when it is re—executed after Refill). This
preciudes instructions such as R = NextOp + R.

I order for Refill to aet back to the instruction which needs to
e re—-executed, the address of the failed MNextdr is saved in a
nardware register (Victim) whenever Mextdes is executed when BCPL3Z] is
set. The lYast instruction in Retilld is coded with ReviveVictim
(JMF=2, H=1), which sends control back to the "failed” Ne=xtle.

Jume and Call B-codes calculate IFPC and BPC and load OP with the
arpropriate aquadword. Ther can optimize execution by checkina to see
if the rigsht asuadwoerd is alreadwy in OF {(new IPC = old IPC)Y) and Just
Twad BFC.

The NextlInst JMF enables OF (which is inverted) into the “Addr®
inPut of the microlnstruction sequencer shifted left by 2 bits. and
ared with ZFill, sending control to address ZFi11 + (QOF° % 4}, If
BFRCL21 is true, OF is farced o 25%5, sending control to location
ZFil1+0, which is another version of Retfill. This Refill also does
the Fetochd to 0P, zeroes BPC, increments IFC: and dees the Leadlde, but
then repeats the instruction dispatch instead of returning via Victim.

In order to speed up the execution of Refill, the Loadler Special
Function deads a1l 4 words via hardware. The LoadOp shonld be siven
in the t2 fallowing the Fetchd4., The dnstruction which follows the
Loadlde can o0 back to the NextlInst/Nextlp since the first bywte is
quaranteed to be in. The three remaining words arrive and are placed
in 0P by hardware without further microcode assistance. This doesn’t
work with R-code Jumps since the 1ow bits of the target for the Jump
are not suaranteed to be 0O,

Shifi Cootrool alloews the microprcaram to use the shift/mask
hardware. The shifter can rotate a 14 bit item O to 15 places and
arply a mask toe the shifter osutpPuts. To use the shift hardware, the Z

PERR MICROPROGRAMMERS GUILE Pase 11

field of the instruction can be coded with the type of shift to be
done with the F field set to F = 2. Coding of the Z field uses twe 4
it nibbles:t

Z Eield Shift ‘

0-15,0 1 bit field startine at bit 0-15

0-14,1 2 bit field startins at bit 0-14

0-12,2 2 hit field starting at bit 0-12

0-2,13 14 bit field startineg at bit 0-2

0-1,14 15 bhit Field startineg at bit 0O-1

Q- 1‘115 Left shift 0 - 15

2—-15,14 Rotate o — 139

2-15,132 Rotate O - 7

0-15, 150 RightShift 0 - 15

e item to be shifted is rlaced on R, and the shifted and masked
result can he read via AMUX = O an the next instruction. The shift
control losic keers the last value loaded so that the shifter can
shift a succession of words without respecifyins the shift control
function., The shift outruts alwavs have the shifted value of what was
last on R.

The ShiftOnR special Function allows a shift function teoe be a
variable. The shift contrel is ocbtained from the R bus and thus can
be a data item. The usase sequence would be 1) put the shift control
item on R and execute ShiftOnR, 27 pPut the item to te shifted on R,
and 2) read the shifted result on SHIFT.

ESZTIE is used to evaluate expressions. Items to be pPushed on the
stack are placed on R with Seecial Function Fush. Items can be pPorped
off the stack with sepecial function Fop, The Toep OFf the Stack can be
written without pushins or popping with the TOSi= gpecial function.
TO3 can be read at any time with 1= TS (AMUX = 7). The stack is 1A
levels deer (13 pushes) The stack can be reset (no items on the stack)
by the StackReset SF. Stack empty and full can be read as condibtion
hits in USTATE.

I0B is the Inrput Quteut bus for PERD, The IOB is a 1& bit
bidirectional bus eplus & 7 bit address bus, The Addresses are
suprplted on the Z bus. The eisghth it indicates the direction of
transfer l=write. O=read. There¢ are two wavs to read an 10 resister.

Jne way takes a sina!e cycley and is used when the lozic in the device
can decade its address very rasidlv. It is coded with an I0 addres
in the Z field: and A=Z, SF=1 with F=0 or 2. Some devices may not
respond fast enoush. and may resuire restricting ALY functioens to
Tagical (no carrv) operations.

The other way to read an IO register is to code the SF=1, F=0 ar
2 without coding A=2. In this case, tH& IH register is latched in the
processor such that a succeeding microinstruction can read it with A=Z
(no spPecial function needed). Id reaisters <can be written v pPuttine
the appropriate address in Z and coding the I0B srecial Function
(SF=1, F=0 or 3).

FERE MICROFROGRAMMERS GUIDE Fase 12

Cronsult dJoecwmencation on individual I/0 devices to determine
which form of I0OB should be used.

Shoct/Zbons Jdumes. Any instructien needing an "Addr”" as part of
its JME field normally sets it from the Z field. Since Z is only
bits lang, and the control store is 4k, another 4 bits of address are
needed, Short Jdumes branch to & location on the same 254 word page is
the current micrailnstruction (ZIAY. T as te an arbitrary location,
the F field can specify Lons Jump (F =) which uses the ZF field for
the upper 4 bDits of address,.

]

The Addr for Jumes might not come from the Z {and SF)3 several
JME codes cause the Addr dnputs to the microsequencer to come from
cther sources. There are three cases in which the address is a
multi—way brancn., The three cases are’ MNMextlnst diseatch, where a 254
way dispatch based on the orcode is dones the Dispatch JMP, which
causes a 1éa way {or fewer) dispatch on the lower 4 Dits of the SHIFT
cuteuts, and Vertnr dispatch wnich branches to 1 of 2 micro interrupt
service routine For all of these branches, the Z field of the micra
instruction QUPP] ies the other bits. For instruction diseatoch, the
resylting address iss

il
=)
)
]
)
[]
i

I IPFPFrPPRPPPPPPPZIZ

Fo&H T s 40321 010
Which results is a Z546 wavy Lran'h with a spacine of 4 dinstructions
between entry pPolinis, The Dispatoh JMFP branches on o a Field selecter
via the shifter of up ta § blts. The address is:

r Z L T L L % = 2 2

7 &5 a4 5 3 O 1 0
The Vector JMP dispatches on the ou tPut» o the wmicrointerrupt
Priority appzoded (Vs winich determines the hiahest Priority

micro-interrurt condition. The address iss

7L Z T =N N
7 Al 2 e d 1 od 6

As rreviously mentioned,. ReviveVictim enables the Victim reeister into
the address insut of the wmicrosequencer.,

Inltercuets. The hardware implements a microlevel interruet which
g uwsed to allow the microrrocessor to helr IO devices. There are (a
maximm oFf) 2 lotervupt reauests wnioh are assigned priorities by the
hardware intoe a 3 bit Meckaco. When anve of the interruprt restuests is
asserted, the Branch condition InterruetsPending will succeed, The
intended wusase oF tThis feature is that at convenient P]aue: in the
microcode an instruction which has "If InterruptsPFendineg Call (VecSrv)®
is used. I¥ anry interrupts are pPending,. control will Pass to YVecoSrv
which would contain & Vector Jump field which send control to Vectorsd
in the cControl stora, witih the Interruepted CIA on the stack. Thea
Interrurt microcode Can service a device, and return like a subroutine
wiould,

FERE MICROPROGRAMMERST GUILE ~PFage 13

USIAIE. The USTATE register contains variouws interesting items,

pPacked in a single word. The USTATE resister {(AMUX=5) looks lTike:

1% 146 15 10 o o 7 & i 4 3 0
0 upused VOSEF D SE VN T DOV 2OV BPL 1

s e i G o St vt Vo) Wi S P P A 0 AR B A Tk s St et A bSS Gnint St e o ek Y Mane S000w i e bed et W P Ay foan i e T M WAt 11 ottt e T

BFC —~ Byte FProavam Counber
N - Neagative (AL result < O)
7 - Zerao (ALY result = 0

& - Carry (ALY carewy out of bit 15)
v — Overflow (ALY overflow occured)
SE ~ ESTH Empty (inverted data —— O = empty)

SF 0 - ESTHE Full {inverted data —— O = full)

Guicks. As of 10/14/77%, the hardware has several shortcomines

caused by some wunfortunate data inversions. Most of the inversians

are
The

timed bv the assembler:; some are ur to the microprogranmer to fix.
inversions are! '
The ID bus WRITE data i1s inverted (microprosrammer beware)

The Z field is inverted for Shift funcitions (Assembler dones it)
The Op Ffile 1g inverted on MextInst (Assembler Opcoade does it)

The Z field is inverted Ffor all addresses (Assembler does it)

The ALOT, AL7Y anag ALLIES]T Jumpe are inverted sense (MP beware)
WSTATE 1s inverted (MF beware)

BFC:= must have inverted data (MF beware)d:s

