COMMERCIAL-IN CONFIDENCE

FEFG Migrgprogrammers Guige

Erian Fioser

Thres Fivers Eomputer Eorporation

November $12,197 \%$

Three Riverc Compiter Rorporation
16O North Graia Strest
Fitteturef, FA 1 Eiga
(412) $621-6250$

The intormetian contained in this doctment is consiogred abmpery Gonfidential at this time and shout hot be reproduced of diseeminatet to anvone without the experss permission of Three Fivers Gomputer Gopporation.

The information in this dacumert is subject to rhange without rotire and should not be Eonstrued es a Eommitment br Three Rivers Gomputer Gorporation Three Rivers Eomputer Lorporation assumes ros responsibility for arr errors that mar appes in this dorament.

The FERD is implemented uith a high speed micriprogrammed processar Gzpable at゙ eseruting a microinstructign in 170 ns. The microinstruction is as oits wide. The width of most of the data paths in the míno ensime is 20 wits. The data womins in and out of the processor (IG and Memorr data For instance) is 16 bits. The extra 4 Lits allow the microprogrammed processor to azleulatermal addresses in a 1 mesaword addressing spase. Tine assumption is that real addresses are kept in a goutreword in memory but Ealculetions gr addresses can be single precision within the processor. The pascal frogremmer riever sees the ab tit paths. The major data paths are与iagrammed telow:

The XY registers (2Gb resisters x 20 bits) form a double ported file af gereral purpose registers. The X fort autputs are mutiplexer with several ather sources (the Amlix) to form the A input to the ALu* The Y port outputs, multiplexed with an gro is bit Constant via the EMUX Forms the E input tothe ALU. The ALU outputs (F) are fed back to the XY registers as well as the Memurronta autput and Mamarraddress resisters. Memory Data Eoming from the memary is sent co the ALU via the AMLix. A $1 E$ bit I/G Bus (IDE) is read via AMIX and writter from R.

Qpasdes and operands that are part at the instraction brte stream
 time from the MD inputs. The autput of OF is g oits wide and is read via fMux ang Gan te sent tu hhe micrumaddessing sectian for Gpogde dispatch. The read port of GF is addrassed by the (B bit) BPG (Byte Frogram Eounter)

A Shift matrix (SHIFT), whinh is part of the special harduare provided For the fiaster op operator, Gan be astessed by lazding an item to be shifted via the fi tus, and reading the shifted result on fMuX.

A 1 a leval push down stack (ESTK) is written fram R and read on Ambx, The stait is used br the Q-code interpreter to evaluate axpressions. BFG and the micrastate Gondition Godes Gan be read as the Mindo State Fiegister (LGTATE) via Amilx.

The Micre Instrumtion:

Eield Width Use
$X \quad B \quad$ Address for X port of $X Y$, Elsu address used to urite xy
$Y \quad B \quad$ Adoress far Y port gf $X Y$. also 1 aw bits of Gonstant
A
E
1.

1
Write, $X Y[X]:=$ Fif $\mathrm{if}=1$
H
1
Hold - If set, bu rot allaw IG devices to artess memory Also uEed with amp Fielato modify address inputs

ALU

F

SF
Z

CND

2 Functignt Eontrols uszae of SF and Z fields E SE 山EE $\quad Z$ use
O）Epecial Func．Eunstarit／Short Mump
1 Memor\％Contog Short dump
2 Specizl Fuma．Shift Gontrol
3 Lans Jump Lang olump
4 Special Function，
upper 4 tits gf address for long jump and memory control functions（see F）． When used as Epecial Fumc：

0 NOP
1 Shiftraf
2 StackReset
3 TVS：＝（F）（TGP IF ESTR ）
4 Fush（ESTK）
5 FGP（ESTK）
6 Cnt1RasterDp：$=$（R）
7 Ercfiaster．Op：＝（R）
B DstRasterop：＝（R）
9 WidthRasterOp：＝（F）
10 LO日dOP（DP：＝MII）
11 EFC＝（Fi）
12 WOS［15．00］$:=$（R）
13 WCS［31．．16］：$=$（F）
14 WOS［47， 22$]=$（م）
15 IOB Function
θ
Lou 8 bits of dump Address， High E wits of Gonstant， Shift Control（ses F），also IUB address．

4 Eondition．What to test for Eoriditional jump．
0 True（alwars jump）
1 False（never jump）
2 BFC［S］－if sety need to refill MF 3 G19－Earro out of mith af data peth 4 Interruptspendine
5 A［0］－odt／Even
$\Leftrightarrow \quad A[7]-$ arte sisn
7 A［15］－sign bit
10 Eタ1
11 Neq
12 Btr
13 Eeq
14 Lss
15 Leq
16 Earry \｛out aitit 15〉
17 Dverfiow（of tiat 15）

JMP 4

－lump はこt	trol．See EIA $=$ Eur NIA $=\mathrm{NE}:$ Addr＝$=$ ZFill $=$	documentation instrumtion nstruction fod （Long）or EIA （ErBits），，O，Z	ar further dress． 35 （Short） owerBits）
Code	Name	Eass	Eail
0	numpzero	NIA：$=0$	NIA：$=0$
1	Eal1	NIA：＝Addr． Pusti	$N I A:=C I A+1$
2	NextInst／Revivevictim		
	$H=0$	NIA：$=$ DF	NIA：$=0 \mathrm{P}$
		＋ZFILL	＋ZFILL
	$H=1$	NIA：＝Virtim	NIA：＝Victim
3	BGTO	NIA：＝Adsr	NIA：$=$ CIA +1
4	FushLoad	NIA：$=\mathrm{CI} A+1$	NIA：$=\mathrm{CI} A+:$
		Fush	Push
		$E:=$ Addr	
5	Cixl13	MIA：$=$ Addr	MIA：$=5$
		Fush	Pusti
6	Vertor／bispateri		
	$H=0$	$\begin{aligned} & \text { NIA: }=\text { Vertor } \\ &+2 F i 11 \end{aligned}$	NIA：$=\square I A+1$
	$H=1$	NIA：$=$ Lispatch	NIA：$=1.1 A+1$
		＋ZFill	
7	Gotas	NIA $=$ Addr．	NIA：$=\mathrm{S}$
ε	Fepeatlogp		
	IF 60	NTA：$=$ CSTK	NIA：$=\mathrm{ETK}$
		$S=5-1$	$5:=5-1$
	if $=0$	$N 1 A:=1 / \mathrm{A}+1$	NIA：＝IA 1
		Fop	Fop
9	Repeat		
	if 50	NIA：$=$ Adur．	NIA：$=$ Addr ．
		$S:=5-1$	$S:=S-1$
	if $3=0$	NIA：$=\mathrm{CIA+1}$	$N I A:=C I A+1$
		Fop	Pap
10	Return	NIA $=$ CSTK	$N I A:=C T A+1$
		Pop	
11	Hamprop	NIA：$=$ Addr	NIA：$=\mathrm{L} I \mathrm{I}+1$
		Fop	
12	La玉dS	NIA：$=\mathrm{CIA}+1$	NIA $=\mathrm{CI} \cdot \mathrm{IA}+1$
		Si＝Addr．	S：＝Addr
13	LGOP	NIA：$=E T \mathrm{C}$	NIA：＝CIA 1
		Fop	

14	Next	$N I A:=I A+1$	NYA: $=1 \mathrm{I}+1$
15	Threeharbrantiot		
	it $5<0$	NIA: $=\mathrm{CI}$ I +1	NIA: $=$ CSTK.
		For	
		$5:=5-1$	$5:=5-1$
	if $3=0$	$N I A:=1 / I A+1$	NIA: =Addr
		FGP	Fop

 ar $S F=0$ then Y is an B bit anstant.

GldLacex (ir ALU functions 13 and 15) is the carry from the immediately preceeding microinstruction, it is used for multiple precision arithmetis.

The Z field is used for mary things: as part of a jump address, the upper 8 tits of a Gunstant, Shift Eontrol, ardas an IOB address. The F field decodes do rot riscessarily enforce restrictions on the use of the Z field, ther merelr enable same of them. In particular, when
 the Z field is frees and can be used for , fump or IoB addresses. When $F=3$, the Z field is logded into the shift rontroj reaister. These are the anly specific artions taken by the harduare that affect the usage of the Z fieid. There is mathing that prevents the processar. From using the Z rield for both a constant (if FandsF $=0$ and $B=1$) anu a jumpaddress in the same instrurtiorn This also applies to Z Used as an IOB address. The assembler will flas questionable Z field usages.

Memucy Lantcul. The memory system cycles in bso ns iexactly 4 mínorvcles). Microcreles are rumbereg starting at 0 (to, ti, t2 ard
 respertivelr). Fequests must be made on a particular crcle (which crole depends on the trpe of request). If a memorr request (Fetch or Sture) is made on the wrong GYele, the frobessor will te suspended urtil the Gorrect cyole. There are g types of memory referemces, Eoded into the gF field when $F=1$.

SE	ITes	Descciption
16	Fetch	Feteh 1 word From Memory.
17	Store	Store 1 word into Memorr
12	Feriha	Feten 4 wards (0 mad 4 address)
13	Stere4	Store 4 worde (0 mod 4 address)
10	Fetch4R	Feter 4 words, transport in reverse grder
11	Store4R	Store 4 words, trensport in reverse urder
14	Fetchz	Fetch 2 words (0 mod 2 address)
15	storez	Store 2 words (0 mod 2 adtress)

The address for all memory references romes from Ra Dn a Fetrin trpe reference, the address (and the request itself) are latehed at to ard data is available as an AMIX source at tis. If AMMX = 3 ar 4 (MDI ar. MLX) durins a ti ar t2 fallowing a fetah trpe memory referencen the probessor is suspended until GB . The memorr data will remain available until the next memory reference"s t2 (exceptions see the note about lo memorr references). It is possitie to read the (same) data severizl times, but not after the next reference rearhes tz.

For Fetch4 references, the first word is available at t3, and the succeeding words arrive at $t 4, t 5$ and the In this rase, the processor. must read MD during tS - to; the data does not wait for rou to read it. However, attempting toread the firs reward during ti ar t2 will Gause suspension.

For a Sture referemien the address and store command is given in the t-1 Grcle \{tz of pregeeding GrGle) and the data to be writteri is supplied (on Result) in the to Grole following the Store command.

In a Store4 trpe reference, the Eummand and address is given in crele to, and the data is supplied in the nest four cyoles (th, t2, to and t4). Fetch4 and stare4 trpes of references use two memory eveles (1. 2 usec) since another memory request is not allowed durins the t 4 crole (a to, at least potentially) because the microirstruction cansot specify both an address and a data word in the same microword. (This is not quite true during Fiastergp, where the hardware nan send data through the Rasterop data paths at the same time the processor is sereratirs adaresses.)

The Feteh4F arid Etore4F trpes are ideritical to the Fetcha arad Store4 references except that word 3 of the quad word is received/sent from/to the memorr first, and ward o last. (This is generelly onlr useful for Riasterlp so that it Gan do left to right as well as right to left trarisfers.)

Here are examples af earh trpe af reference and how ther are coded (TheAddr, TheData, QuadAddr, arid Datao-3 are XY registers):

Fetchurae:	```MA := Thefddr., Fetrh; ... TheData := MDI;```	$\begin{aligned} & \{t o\} \\ & \{t 1\} \\ & \{t 2\} \\ & \{t 3\} \end{aligned}$
FetchFour:	```MA:= EuadAdri, FetchA; * .. Data0:= MDI; Matal := MaI: Iataz := MDI; Intas:= MOI;```	$\{t 0\}$ (t1) \{t2\} $\{ \pm 3\}$ \{t4\} (t5) \{tes)
Sturebue:	MA : = TheAddr, Stare; MLIO : = Themata;	$\begin{aligned} & \{t 7=t 3=t-1\} \\ & \{t 0\} \end{aligned}$
StareFour:	MA : = QuadAddr, Store4; MLD : = DataO; MLO : = Data1: MDO $:=$ Datazi MDO: = Lata3:	$\begin{aligned} & \{t 0\} \\ & \{t 1\} \\ & \{t 2\} \\ & \{t 3\} \\ & \{t 4\} \end{aligned}$

The IO sristem an request memory brcles at anr time. The memarr srstem gives prioritr to the Ir srstem so that if the prosessor and the IO sustem request arcles, the In will get it. The Hold bit, if set, locks gut IO requests while it is set. Sirice the ID srstem can get a memory crole ary time Hold is not set, there is no guarantee that the MDI deta will te valid fallouing the t2 after a fetcha evert if the processor doesn t start a new rycle.

Gerodes and aeemands. The op resister file contains a 4 word sequence of instruction brtes. The intended usage of the af file and the BFO reaister that addresses it is as fallows. The guad word address of the current instruction is contained in a XY reaister (IFC), and the s bytes painted to by IFC are stored in OP. The lower 3 bits of the IFC \{which wote in a quad word) is kept in BPC. a hardware register. BPC addresses OP to choose a brte. BPC is astuallr a 4 tit counter. It is incremented whenever a bute is taken but of OF br Nextinst (.MMF=6, $H=0$) or Nextop (AMUX=1). The 4th bit of EPC (BFC[3]), which is the "overflow" of the counter, is testable via a jump condition and indicates that all butes in op have been used.

The Nextop function (AMuX=1) gets the next brte out of the instruction sute streain for use as an operand. It is coded with an "If EFC[S] GoTg(Refill)" jump clause. If BFC is overflowed, then cantral will go to Retill which increments IFC br brtes and starts a Fetch4 to DP. The special function Loadop must be executed in the t_{2} of the fetch to cause the Op file to be loaded with the data coming on MLI. Refill must then get back to the instruction which needed the byte. This instraction must be re-executed. The instruction which executes Nextop nust be capable of being executed twice conce when BPC was overflowed, and once when it is re-exeruted after Refill). This prectudes instructions such as $R:=$ Nextop $+R$.

In order for Refill to get back to the instruction which needs to be re-executed, the address of the failed Nextop is saved in a hardware register (Victim) whenever Nextop is executed when BCF[S] is set. The last instruction in Fiefill is coded with FeviveVictim (. $\mathrm{MF}=2, \mathrm{H}=1$), whish sends contro\} back to the "failed" Nextop.
dump and Call Q-codes calculate IFG and BPC and laad of with the appropriate quadword. They can optimize execution by checking to see if the right quadword is alreadr in OF (new IPC = old IPC) and just 10ad BFC.

The Nexthast dMF enables OF (whirh is inverted) into the "Ador" input of the microinstruction sequencer shifted left br 2 bits, and ored with ZFill, sending control ta address ZFill + (af * 4). If
 ZFillob, which is another version af Refill. This Refill also does the Fetch4 to GP, zeroes BPC, increments IFG, and does the Lazdop, but then repeats the instruction dispatch instead of returning viz Victin.

In order ta speed up the execution of Refill, the Loador Sparial Function loads all 4 words via hardware. The Loadop should be giver in the to following the Fetch4. The instrution which follows the Loadop can go back to the NextInst/Nextop since the first brte is quaranted to be in. The three remaining words arrive and are placed in OP by hardware without further microcade assistance. This daesnt work with Q-code jumps since the low bits of the target for the jump are not suaranteed to be o.

Shift Cantcal allows the micropragram to use the shift/mask hardware. The shifter Gar rotate a 16 bit item o to 15 places and apply a mask to the shifter outputs. To use the shift hardware, the Z
field of the instruction can be coded with the trpe of shift to be done with the F field set to $F=2$. Godins of the Z field uses two 4 bit nibbles:
Z Eield
$0-15,0$
$0-14,1$
$0-13,2$
$0-2,13$
$0-1,14$
$0-15,15$
$8-15,14$
$8-15,13$
$0-15,15-0$

Gtifis
1 bit field starting at bit 0-15
2 bit Field startins at bit 0-14
3 tit Field etarting at tit 0-13
14 bit field starting at bit 0-2
!5 bit field starting at bit o-1
Left shift 0-15
Fatate
Fiotate 0-7
Rightshifto - 15
The item to tes shifted is flaced on R, and the shifted and masked result can be read via Ambx $=0$ on the next instruetion. The shift contral logickeeps the last value lozaed so that the shifter ran shift a succession of words without respecifring the shift control furictiah. The shift outputs alwars have the shifted value af what was last on R.

The Shiftonf special function allows a shift function to te a variable. The shift Gontrol is obtained froin the R bus and thus can be a data item. The usase seauence would be 1) put the shift contral item on R and exente Shiftonf, 2) put the item to be shifted on R, and 3) read the shifted result an SHIFT.

ESIK is used to evaluate expressions. Items to be pushed on the stack are placed on fiwith Gpecial Function Fush. Items can be fopped off the stack with special function fop. The Top of the stack can be written without pushing or pgppins with the Tos: $=$ special function. Tos can be read at any time with $:=$ TOS (AMUX $=7$). The stack is 16 levels deep (15 pushes) The stact can be reset (no items on the stark) br the StackReset EF. Stack emptr and full ran be read as condition bits in USTATE.

Iab is the Input Dutput tus for FERQ. The IOB is a 16 bit tidirectional bus plus a 7 bit address bus. The Adresses are supplied on the Z bus. The eighth bit indicates the direction of
 Do war takes a single crcle, and is used when the logic in the device can decode its address very rafidty. It is coded with an io address in the 2 field, and $A=2, S F=1$ with $F=0$ or 3 . some devices mar not respond fast enough, and may require restricting Alu functians to lasical (no carry) operations.

The other way to read an $I 0$ reaister is to code the $\mathrm{SF}=1, \mathrm{~F}=0$ ar 3 without coding $A=2$. In this case, the ro register is latehed in the processor such thet a succeedirg microinstructign man read it with $A=2$ (no special function needed). Io registers can be written by putting the appropriate address in Z and waing the $10 B$ special functian ($\mathrm{SF}=1, \mathrm{~F}=0$ or 3).

Consult documeniation on individual I/D deviges ta determine which form of IOE should be used.
 its . MP Field rormally gets it fromthe Z field. Sinae Z is arly B Lits lons, and the Gontrol stare is 4ky arother 4 bits of address are
 the Eurrent migrainstructian (EIA). TG gata an arbitrarr logation,
 the upper 4 bits of address.

The Ador for jumps misht rot come from the Z (and Ef) : several UMF Godes Gadse the Addr inputs to the micrasequencer to come from ather sources. There are three asses in which the address is a
 war dispateh besed on the opadde is gores the mispateh ompy which Gauses ま 16 way (or fewer) dispatoh on the lower 4 bits gf the SHIFT mutputs, and vector dispateh wrimetorariohes to 1 of g micro ariterrupt servies routimes. Fgr all af these branches, the 2 field of the míaro instrastign supplies the ather bits. For instruction dispateh, the resulting address is:

$$
\begin{array}{llllllllll}
& \square & G & G & \square & \square & \square \\
Z & \angle & F & F & F & F & F & F & Z \\
7 & 6 & 6 & 4 & \ddots & 2 & 1 & 0 & 1 & 0
\end{array}
$$

Which results is a zst way branch with a spacing of 4 instruttighs between entro points. The Dispatrh , forf branohes on a Field seleoted vie the shifter at נf to 4 bits. The address is:

$$
\begin{array}{llllllllllll}
Z & 2 & Z & Z & 2 & Z & 3 & 3 & 3 & 5 & 2 & Z \\
7 & \ddots & 5 & 4 & 3 & 2 & \ddots & 2 & 1 & 0 & 1 & 0
\end{array}
$$

The vertor maf dispatehes on the gutputs or the miorointerrupt priority encoder (V), which determines the highest priority míra-interfupt worgition. The address is:

$$
\begin{array}{llllllllllll}
Z & Z & Z & Z & Z & Z & - & Y & V & y & z & Z \\
7 & G & 5 & 4 & Z & z & 0 & z & 1 & 0 & 1 & 0
\end{array}
$$

As previnusly mentioned, ReviveVictimenables the Vietin reaister into the address input of the miarosequencer.

Laleccuets. The harduare implements a mirrolevel interrupt whith is used to allow the microprocessor to help IO davices. There are 《a
 harduare into a 3 bit Vestac. When ant of the interrupt reauests is Esserted, the Eranch agndition Interruptspending will sumbeed. The interded usage of this Feature is that at ronvenient places in the microcode an instruction whirh has "If Interruptsperiding Gall (Versrv)" is used. IF anr interrufts are pending, eontrol will pass tovecsov which would contain E Vector shmp field which serad agrtrol to Vector*a In the Eantrol stare, with the Interrupted GiA on the stark. The Interrupt micromode can service a device, and return ilfe a sutroutime would.

USIATE. The USTATE reaister mantains various intaresting items,

191615	10	9	8	7	6	5	4	3	0
O i uld	d	F	E	N	C	2	V		

```
BFG - Byte Frogram Eounter
N - Negative (ALU resu}t < O)
Z - Zero (ALU result = 0)
E - Earr% (fl| Earr% gut of bit 1S)
V -- Overflow (ALU gverflow ocrured)
SE - ESTK Emptr (imverted data --. - O = Emptr)
SF - EgTK Full (inverted data -- 0 = full)
```

Quicks. As of 10/14/79, the herdware has severial shortoomings Geused br sone unforturate datz inversigns. Most af the iriversians are fixed br the assembler, some are up to the microprogramer to fio. The iriversiors area

- The In bus WFiTE date is inverted (mirrgprogrammer beware)
- The Z field is inverted for Shift funteions (Assembler does it)
- The Dp file is inverted or NextInst (Assembler Dpoade abes it)
- The Z field is inverted for all addresses (Assembler does it)

- USTATE is inverted (MF beware)
- BFC: = mast have inverteg data (MF beware) :

