
New PERQ Tablet and Cursor Interface

New PERQ Tablet and Cursor Interface

Written by: Brad A. Myers

Abstract:

There is a new interface to the PERQ's tablet
and cursor that provides more functionality
than the old interface. The old interface
has therefore been removed and clients should
begin using the c~rrent interface with this
release(OS B.l). Note that any old programs
compiled under the old system will still
operate, but they will have to be modified to
compile under the new system. This document
describes the new interface.

L

Copyright (C) 1980
Three Rivers Computer Corporation

-1-

Dec 3, 1980

New PERQ Tablet and Cursor Interface Dec 3, 1980

Overview:

The old interface to the PERQ's tablet and screen cursor were
adequate for the first applications b~t were found to be too
limited for more powerful systems. A new l~terface.h~s.therefore
been designed that provides more of the baslc capabllltles of the
hardware to the client. This document describes the new inter
face which REPLACES the old one. All programs compiled under the
previous system will still operate, but to compile any program
under the new release, the changes described here will have to be
made.

All the procedures to interface to the tablet and the cursor
are provided by the module IO.PAS. Below is a listing of the
part of this module that deals with the tablet and cursor. Below
that is an explanation of the parts that changed and the usage of
the new procedures.

L

-2-

New PERQ Tablet and Cursor Interface Dec 3, 1980

{tablet/cursor procedures}
Type XXXOLDCurMode = (XXXAbsCursor, XXXRelCursor, XXXUserCursor,

XXXOffCursor}i {*****THIS TYPE NO LONGER
VALID. DO NOT USE*****}

CursFunctjon = (CTWhite, CTCursorOnly, CTBlackHole,
CTlnvBlackHole, CTNormal, CTlnvert, CTCursCompl,
CTlnvCursCompl)i

TabletMode = (relTablet, scrAbsTablet, tabAbsTablet);
CursMode = (OffCursor, TrackCursor, IndepCursor);
CursorPattern = array[0 ••63,0••3] of.integer;
CurPatPtr = ~CursorPattern;

Var TabRelX, TabRelY: integer; { tablet relative coordinates }
TabAbsX, TabAbsY: integ~r; { ·tablet absolute coordinates }
TabFinger: boolean; { finger on tablet }
TabSwitch: boolean; { switch pushed down }
DefaultCursor: CurPatPtr; { default cursor pattern }

Procedure XXXIOSetCursorMode(M: XXXOldCurMode }; {***THIS PROCEDURE
SHOULD NOT BE USED. USE IOSetTabletMode or IOCursorMode .***}

Procedure IOLoadCursor(Pat: CurPatPtr; pX, pY: integer);
{ load user cursor pattern }

Procedure XXXIOMoveCursor(x,y: Integer); {***THIS PROCEDURE SHOULD NOT
BE USED. USE IOSetCursorPos or IOSetTabPos ***}

Procedure IOReadTablet(var tabX, tabY: integer}; {read tablet coords}

Procedure IOSetFunction(f: CursFunction};

L

Procedure IOSetModeTablet(m: TabletMode}; { set the mode to tell what
kind of tablet is currently in use }

Procedure IOCursorMode (m: CursMode); { if track is true, then Tablet
coordinates are copied every 1/60th
second into the cursor position. if
indep, then coordinates are changed
only by user. If off, then no
cursor displayed }

Procedure IOSetCursorPos(x,y: Integer); {if trackCursor is false, then
sets cursor x and y pOSe If
tracking, then sets both
tablet and cursor. }

Procedure IOSetTabPos (x,y: Integer); { if trackCursor is false, then
sets tablet x and y pOSe If tracking,
then sets both tablet and cursor }

Procedure IOReadCursPicture(pat: CurPatPtr; var px, py: integer);
{ copies current cursor picture
into pat and sets px and py with
the offsets for the current cursor}

{Procedures to access the Time variable maintained by 'thetablet}
Procedure IOGetTime(var t: Double};
Procedure IOSetTime(t: Double);

{NOTE: Any names starting with "XXX" are not to be used.}
)

-3-

New PERQ Tablet and Cursor Interface Dec 3, 1980

The new type "CursFunction" describes the various ways the cursor
can be displayed. Cursor functions can be used to turn off the screen
display and to change the interpretation "of ones and zeros from
black/white to white/black. They can thus be used to flash the

_ screen. The client changes the function in use by calling IOSetFunc
tion. The' functions are:

CTWhite:

CTCursorOnly:

CTBlackHole:

Ones in the cursor appear black on the screen and
zeros appear white. The rest of the screen is
displayed as white irrespective of what is irithe
screen memory. This is useful when the screen
memory is being used for code or data.

This is the negative of CTWhite. Ones in the
cursor appear white on the screen and zeros appear
black. The rest of the screen is displayed as
black irrespective of what is in the screen
memory. This is useful when the screen memory is
being used for code or data.

This is currently implemented incorrectly and is
therefore essentially worthless. Ones in the
screen memory are displayed white, zeros black
(inverse). Zeros in the cursor are black and ones
let whatever is underneath show through.

CTInvBlackHole: This is the inverse of CTBlackHole. It is cur
rently implemented incorrectly and is therefore
essentially worthless. Ones in the screen memory

_.I are displayed black, zeros white (normal)• Zeros
in the cursor are white and ones let whatever is
underneath show through.

CTNormal:

CTlnvert:

CTCursCompl:

L

This is the default and the only mode previously
available. Ones in the screen memory are black
and zeros white (normal). Ones in the cursor are
black and zeros allow whatever is behind to show
through. Thus an OR is done between the cursor
and the screen.

This is the inverse of CTNormal. Ones in the
screen memory are white and zeros black (invert
ed). Ones in the cursor are white and zeros allow
whatever is behind to show through.

This is the a useful function that insures that
the cursor is always visible. Ones in the screen
memory are black and zeros white (normal). Ones
in the cursor show as the opposite of the screen
memory underneath. Zeros in the cursor allow the
screen to show through. Thus an XOR is performed
between the cursor and the screen.

CTlnvCursCompl: This is the inverse of CTCursCompl. Ones in the
) screen memory are white and zeros black (invert

ed). Ones in the cursor show as the opposite of

-4-

New PERQ Tablet and Cursor Interface Dec 3, 19813

the screen memory underneath. Zeros in the cursor
allow the screen to show through.

The various modes of the cursor in the previous systems have
been separated in this release into separate modes for the tablet and
the cursor. The tablet modes describe the types of tablets that can
be attached to the PERQ. With the 3RCC Touch Tablet, RelTablet allows
the tablet to be used in a relative mode where a touch is interpreted
as the current position and movements are offset from there (similar
to the way a track-baIlor "mouse" works). ScrAbsTablet takes the
upper left corner as (13,13)and all touches are determined from there.
TabAbsTablet uses the lower left corner as (13,0). Note that the name
refers to the PERQ screen which has (0,0) as the upper left corner.
The default is RelTablet and this should be sufficient for all
applications using either the BitPad or 3RCC Touch Tablet. The client
can set the tablet mode using the IOSetModeTablet procedure.

Unlike the tablet modes, clients may want to change Cursor Modes
frequeritly. The default mode, OffCursor, means the cursor is not
displayed. This is the default. TrackCursor means the tablet
positions are copied into the cursor positions sixty times a second.
IndepCursor means that the cursor is visible, but the tablet positions
are not copied into the cursor. This mode is useful when the client
wants to assign the cursor positions himself. The cursor mode is set
with the function IOCursorMode.

New procedures have been provided to manipulate the cursor and
tablet positions. In this release, they can now be manipulated
independantly using the two functions IOSetTabPos and IOSetCursorPos.
If the cursor is in TrackCursor mode, setting either of these will set
the other. Otherwise, the settings will be independant. Note that if
the client intends to set the cursor while off and then turn the
cursor to track and have it in the new position, the tablet position
should be set since as soon as the cursor is put in TrackCursor mode,
the cursor will ·jump to the position of the tablet and the old cursor
position will be erased.

L

IOLoadCursor, which sets the picture to be used for the cursor,
has not been changed. NOTE THAT THE CurPatPtr MUST POINT TO A ARRAY
WHICH IS QUAD-WORD ALLIGNED (e.g. one that was allocated using
-NEW{0, 4, myCursorPicture)n. The other two arguments to IOLoadCursor
tell IO where in the cursor picture, the position should be thought to
.be. Thus, if the curso~ was a circle of radius 21, the client might
specify that the position is in the center of the circle by passing
113,10to IOLoadCursor•..The numbers are the offsets from the upper
left corner. The default cursor is an arrow pointing towards the
upper left corner with offsets of 0,0. Note that only the leftmost 56
bits of width are used in the 4 words of the cursor. The rightmost 8
bits are-thrown away.

A new function has been provided that 'will return the current

-5-

New PERQ Tablet and Cursor Interface Dee 3, 1980

cursor picture. This is useful to clients that wish to change the
cursor and then restore it to its previous form. IOReadCursorPicture
also returns the old offsets. Note again that the array the pointer
refers to must be quad-word alligned. The rightmost 8 bits of the

_ array are not modified by this procedure •

.Variables exported by IO tell whether the tablet is pressed
(TabSwitch) and whether a finger is on the tablet (TabFinger). Note
that the latter is only meaningful for the 3RCC Touch Tablet; it is
always TRUE if a BitPad is in use. DefaultCursor points to an array
with the default cursor picture in it.

Two procedures not related to the cursor are also now exported
from IO.PAS. IOGetTime returns a double word that is incremented 60
times a second, and IOSetTime allows the client to set this value. In
future systems, this will be used as a time-of-day and date clock and
a procedure will be provided for translating the number into a time
and date.

L

-6-

