
Introduction and Reference Manual
R. M. Burstall, J. S. Collins and R. J. Popplestone

POP-2 PAPERS

POP-2 PAPERS

INTRODUCTION TO POP-2
BY

R. M. BURSTALL
AND

J. S. COLLINS

AND

POP-2
REFERENCEMANUAL
BY

R. M. BURSTALL
AND

R. J. POPPLESTONE

OLIVER & BOYD Edinburgh and London

Al

OLIVER AND BOYD LTD
Tweeddale Court. Edinburgh 1
39a Welbeck Street. London W.1

This document and all software referred to
therein is copyright of the Round Table.
Department of Machine Intelligence and
Perception. University of Edinburgh

First published 1968
© 1968 The Round Table

Printed in Great Britain by
T. and A. Constable Ltd Edinburgh

AN INTRODUCTION
TO THE POP-2
PROGRAMMING LANGUAGE

BY

R. M. BURSTALL
AND

J. S. COLLINS
DEPARTMENT OF MACHINE INTELLIGENCE AND PERCEPTION
UNIVERSITY OF EDINBURGH

CONTENTS

1 INTRODUCTION 3

2 ARITHMETIC AND THE STACK 4

3 SIMPLE VARIABLES 5

4 FUNCTIONS 5

5 CONDITIONALS. LOOPS AND LABELS 7

6 ARRAYS 9

7 LISTS AND NON-NUMERICAL VALUES 11

8 RECORDS 13

9 INPUT AND OUTPUT FACILITIES 14

10 ADDITIONAL EXERCISES 16

11 ADVANCED FEATURES 18

1

1. INTRODUCTION
POP-2 is a programming language based on R. J. Popplestone's POP-1
(1968) and further developed by R. M. Burstall and R. J..Popplestone.
The language is fully defined in the reference manual (Burstall and
Popplestone, 1968). The reference manual, although defining every feature
of the POP-2 language, is not a suitable introduction for the beginner
any more than a French-English dictionary is a suitable introduction to
French.
POP-2 differs from most programming languages because it is designed to

be suitable for non-numerical as well as for numerical uses. It also is a
conversational language which allows the user to communicate with the
system and vice versa while a job is in progress. The simplest use of a POP-2
system is as a rather powerful calculating machine in which each step in a
calculation is carried out immediately after it has been requested. At the other
end of the scale, it can be used as a conventional computing system in which
a complete program of instructions representing the whole job is given to
the system. In practice a combination of these two modes is used so that
the user can choose the size of a job step that is convenient to him at a parti
cular time. POP-2 is a powerful and sophisticated language for non
numerical calculations but is not intended for heavy duty numerical work
where high efficiency is requited.

The object of this manual is to introduce the reader to the POP-2
language, particularly its simpler features and terminology. Not all POP-2
facilities are described. Having read this manual, however, the reader
is then in a position to develop this kernel of knowledge with the aid
of the POP-2 reference manual. We have tried as far as possible to make
this introduction intelligible to someone with no previous knowledge of
programming.

One way to use this manual is to sit down at a POP-2 console and tryout
each example (and ones of your own) as it occurs in the text. It is possible
to follow the text without a console but it should be kept in mind that the
examples occur in sequence in each section so that if the variable x is given

3

PROBLEM-ORIENTED LANGUAGES

the value 2 in an example in the early part of a section it keeps this value
unless of course any intervening example changes it.
The notation used in this document is that of the reference manual. The

rules for typing POP-2 on a particular implementation will depend upon the
given implementation. These rules for the Elliott 4120 implementation are
described in the Multi-POP functional specification (Collins and Pullin, 1967).
The appropriate functional specification must be consulted before trying out
the examples that follow.

2. ARITHMETIC AND THE STACK
The simplest use of a POP-2 system is as a rather high-powered calculating
machine. If an arithmetic expression such as

12,0+2,5* (1·5 +5/2) ~
is typed, the expression is evaluated and printed thus

**22
The print arrow '~' typed after an expression (or series of expressions

separated by commas) causes the expression (or expressions) to be evaluated
and the value (or values) to be printed. '~' is typed as two characters' =>'.
As well as addition, subtraction, multiplication and division, mathematical
functions like square root and trigonometric functions are provided. Thus

2.510-2 * sqrt(3*3 +4*4) ~
causes the result

**0'125
to be printed. The subscript 10 followed by a positive or negative integer
scales a real number by moving the decimal point the specified number of
places to the right (positive) or left (negative).
Any expressions evaluated have their results placed on the stack. The stack

is like a stack of cards on which values are written and behaves similarly in
the sense that the last item placed on the stack is the top item and is the first
item to be removed from the stack. Thus if we type

1, 3·5+ 1·5, sqrt(2) ~
the three numbers 1, 5 and 1·414 are placed on the stack with 1·414 at the
top. The print arrow '~' prints (and destroys) the whole stack starting at
the bottom and hence in this case would cause

** 1,5, 1·414
to be printed.
As an exercise, try evaluating the following expressions using the POP-2

console:
2·5 * 2
-1·5*4 1+2(5-3)

BURSTALL AND COLLINS

3. SIMPLE VARIABLES
Values may be assigned to variables for later use. Variables have identifiers
consisting of up to eight letters and digits, beginning with a letter. Variables
must be declared before use. A typical declaration is

vars a b sum;
which declares variables called a, b and sum. The list of variables declared
is terminated by a semi-colon. (Although 'vars' is in heavy print here for
ease of reading, it is typed in the usual characters.) Initially a variable has
no value so if we print out the value of a by typing

a=>

the result
**undef

is printed showing that the value of a is undefined.
A variable may be given a value by using an assignment. The assignment

2·5 -+ a;

results in the variable a being given the value 2·5 ('-+' is typed as '- >').
Thus after this assignment, if we type

a=>

the result
**2·5

will be printed. Expressions of any complexity may appear on the left-hand
side of an assignment. Thus the sequence

2*2 -+ a;
3*a -+ b;
a*a+b*b -+ sum;
sum =>

will cause the result
**160

to be printed. Printing the value of a variable does not change its value.
Note that a semi-colon is used to separate each assignment from whatever

follows it. Failure to do this will result in an error.

4. FUNCTIONS
If a series of similar calculations need to be done with only one or two values
being changed between one calculation and the next, it is advantageous to
give a name to the sequence of steps involved so that only the name has to
be given for each calculation instead of the list of steps. This is, of course,

A2 5

PROBLEM-ORIENTED LANGUAGES

the crux of programming. Thus if we wished to evaluate a series of expres
sions such asj

3'5*3'5 +2'5*2'5
8·36*8·36+ 1'48*1'48
3·5*3'5+ 1'48*1·48

we could type out these expressions followed by a print arrow and get the
result printed in each case. It would be easier and more elegant, however,
to declare first a function which squares a pair of numbers and adds them
together. A suitable function declaration is

function sumsq x y;
x*x+y*y

end
Having declared the function sumsq, it can be used as follows:

sumsq(3·5, 2·5), sumsq(8·36, 1·48), sumsq(3·5, 1·48)=
causing the results

**18'5, 72·08,14·44
to be printed. The saving would of course be much greater for a complicated
function. We have now added to the list of built-in functions like sqrt, a
function of our own. Thus the user can build up a set of functions specially
designed for his own needs.
The body of a function declaration can contain several statements if

necessary. The result of the function is left on the stack. For example
function f x y;

vars u v;
x+y --+ u;
x-y --+ v;
u*u+v*v

end
The variables u and v have been declared within the function declaration for
use as workspace within the function. They are called local variables. This
is because u and v are declared only for use within the function body and do
not have any meaning anywhere else, thus avoiding possible interference
with other (coincidental) use of u or v for variables.

The variables x and y used in this function declaration are called formal
variables. They are used to represent the value which will later be supplied
as the parameter enclosed in parentheses when the function is used. Thus

f(5 +2,3) =
**116

Note that when statements and expressions are typed within a function
body they are not executed or evaluated immediately as they are when the
system is being used as a desk calculator, Within a function body, the state
ments and expressions themselves are stored away ready for use when the

6

BURST ALL AND COLLINS

function is used. A function can be used in quite a complex way.. Thus we
can type

sumsq(6,sumsq(4,3»
which prints the result

**661
As an exercise, declare a function of three parameters, say a, band c and

which has as results the two values representing the roots of the quadratic
equation ax2 + bx + c. These can be computed from the expressions

-b±J(b2-4ac)
2a

Having got this basic function working, improve it:
1. To take account of negative values of b2-4ac.
2. To take account of a zero value for a.
3. To avoid doing wasteful calculations such as taking the square root of

the same thing twice.

5. CONDITIONALS, LOOPS AND LABELS
In writing a function definition we may wish to make the outcome depend
upon certain tests

function max x y;
if x > ythenxelsey
close

end
function increment x;

ifx> O'then x-j-I ~ x else x-I ~ x
close

end
The expressions between if and close are called conditional expressions.

The condition may involve the operations =, <, >, = < (less than or equal)
or >= (greater than or equal), and a sequence of such simple conditions
separated by and's and or's may be used e.g.

if x > 3 and y = < 2 then x+y else x-y close

If the condition has the value true the part after then is done, otherwise the
part after else is done.
The expressions after then and else may be expressions having a value

such as x+3, or they may be statements or even sequences of statements e.g.
if x = 0 theny+1 ~ y; z+1 ~ z

eJsey-1 ~ y; z-l ~ z
close

The words else and close are sufficient to terminate these sequences: We
may wish to have more than one condition as in the following expression

7

PROBLEM-ORIENTBD LANGUAGES

if X = 1 then 2
elseif x = 2 then 3
elseif x = 3 then 4

else 0
close

Note the single word elseif used to introduce the extra conditions.
Sometimes it is convenient to specify only one alternative, and we omit

the else
if x = 3 then 0 --+ y close

This only makes sense when the then is followed by a statement. The
following does not make sense since it has no value if x is not 3

if x = 3 then 1 close
Sometimes we wish to repeat a calculation for a number of different values

of a variable. This is done by using a goto statement and a label. For
example to add up the squares of the numbers from 1 to n

function squares n; vars sum;
0--+ sum;

loop: sum+n * n --+ sum; n-l --+ n;
if n > 1 then goto loop close;
sum

end
Here sum is a local variable introduced purely for the internal working

of the function squares. As we keep going back to the label loop the next
three statements are repeated until eventually n = 1 and the function
terminates. Note how we first calculate sum and then write it at the end to
provide the result of the function.
To tabulate the values of a function f of two arguments from 1 to m and

1 to n
function tab f m n; vars i j;

1 --+ i;
li: if i =< m then 1 --+ j

lj: ifj =< n thenf(i,j) =>
j+1 --+ j; goto lj

close;
i+1 --+ i; goto Ii

close
end

Using the function sumsq defined previously
tab(sumsq,2,3);

**2
**5
**10

8

BURSTALL AND COLLINS

**5
**8
**13

The layout could be improved by avoiding the print arrow in
f(i,j) =>

and using instead pr{f (i,j)) which prints without a newline or asterisks.
We would then get

tab(sumsq,2,3); 2 5 105 8 13
Better stilI after 1 ~ j insert nl(l) which produces one newline

tab(su~sq,2,3);
2510
5813

Labels and goto statements can also be used to jump forward, i.e. to skip
over a piece of program. Although it is usually clearer to do this using a
conditional expression, there are occasions when the conditional would be
large and clumsy. An example of using labels:

ifx= 1 then 1 ~yelsel-+zclose
could be written (although less clearly)

if x = 1 then 1 -+ y; goto on close; 1 -+ z;
on:

Instead of using loops to repeat a piece of program we may use a device
known as recursion, i.e. a function which calls itself.
We can define the factorial function

by looping: by recursion:
function fact n;

vars p; 1 -+ p;
loop: if n = 0 thenp

else n * p -+ p; n - 1 -+ n
goto loop

function fact n;
ifn=Othenl

else n * fact(n-l)
close

end
close

end

6. ARRAYS
So far, variables have been used only to denote single values. It is some
times useful to give a name to an array of several values. The individual
component values of an array are extracted by means of one or more integer
subscripts.
The sequence
vars a;
newarray([% 1, 10, 1,20 %], sumsqi -+ a;

declares a variable a and makes it into an array with two dimensions. The
elements of the array a are accessed by means of two integersubscriptsjthe

9

PROBLEM-ORIENTED LANGUAGES

first in the range 1to 10 and the second in the range 1 to 20. The decorated
brackets [% and %] are used simply to delimit the subscript list. T4e value
of each element a(i,j) is initially set to the corresponding value of sumsq(i,j).
Thus for integer values of i and j within their appropriate ranges, a(i, j) is
not distinguishable from sumsq(i,j). However, because the individual values
of a are individually stored, anyone may be assigned a new value without
affecting the value of a(i, j) for other values of i and j. Thus a(2, 3) initially
has the same value as sumsq(2, 3) but the assignment

10 ~ a(2, 3);

gives a(2, 3) the new value of 10without affecting the value of aU,j) for other
values of i andj.
The similarity between functions and arrays is often extremely useful.

For example, if a function for multiplying arrays together is being used, it
will accept a function as well as arrays. The diagonal array

1 000
o 1 00
o 0 1 0
000 1

is much better represented by the function

function diag i j;
if i = j then 1 else 0 close

end

than an array which would take up more space, particularly if the matrix is
large.

An example of a function to do matrix addition:

function zero i j; 0 end
function matadd ml m2 ni nj; vars i j m3;

1 ~ i; newarray([% 1, ni, 1, nj %], zero) ~ m3;
iloop: if i = < ni then 1 ~ j;

jloop: ifj =< nj then ml{i,j) +m2{i,j) ~ m3(i,j);
j +1 ~ j; goto jloop
close;

i+1 ~ i; goto iloop
close;
m3

end;

Use this function to .add together the matrices

[

-4.5
2·51
6·24

and
0.36]

-0·1
5·09

with the first matrix represented first by a function and secondly by an array.
10

BURSTALL AND COLLINS

It would be much easier to define matadd as follows
function matadd ml m2 ni nj;

function sum i j; ml(i,j)+m2(i,j) end;
newarray([% 1, ni, 1, nj %J, sum)

end;

The function sum is here defined locally within matadd and only mentioned
once. We could avoid giving it a name and a separate definition as follows:

function matadd ml m2 ni nj;
newarray([% 1, ni, 1, nj %J, lambda ij; ml(i,j)+m2(i,j) end)

end

The lambda is used to denote an anonymous function.
lambda ij; ... end means 'the function of i andj whose definition is .. .',

Thus lambda replaces tbe word function and the name of the function.
Compare the function called 'sum' with a number called 'three'

1+2 ~ three;
4+ three =>

We could do without the name 'three', saying instead

4+(1 +2) =>

The latter case is like a lambda expression, which is an anonymous function
just as (1 +2) is an anonymous number.

7. LISTS AND NON-NUMERICAL VALUES
Programs do not only deal with numbers, and POP-2 allows items called
words. These look like identifiers but do not denote a variable, i.e. they have
no value. We use quotes to distinguish them from variables. Compare

vars cost; 8 -+ cost; cost =>
**8

with
"cost" =>
**cost

The list of expressions separated by commas and enclosed in decorated
brackets [% ... %J has already been introduced in the section on POP-2
arrays.
The sequence

vars i, j;
1 -+ i; 2 ~ j;
[% i, i+j, "dog", "cat" %J ~ u;

assigns the list of values

1 3 dog cat
11

PROBLEM-ORIENTED LANGUAGES

to the variable u. Note that each item in the list is evaluated before the assign
ment takes place. When all the items in a list are words or positive integers
instead of writing

[% "dog", "cat", 3, 57 %J
we can use the brackets '[' and 'J' and write more briefly

. [dog cat 3 57J

instead. These brackets behave in the same way as decorated brackets
within which all words are enclosed in quotes. Note that undecorated
brackets need no commas and may only contain words and unsigned numbers.

The first item in a list, whether it is a single item or itself a list is known
as the head of the list. The list remaining after the head of a list has been
removed is known as the tail of the list. The standard functions hd and tl
are used to split lists in this way. Thus as u is the list [1 3 dog catJ, typing

hd(u) =>

results in
**1

being printed and typing
tl(u) =>

results in
**[3 dog catJ

being printed. A function cons enables an item to be added before the head
of a list so that

cons("pig", u) =>

results in
**[pig 1 3 dog catJ

being printed. The operation :: can be used instead of cons; the previous
request could have been typed as "pig" :: u => instead of cons("pig", u) =>

There is another operation which joins lists together. The sequence
[a b cJ <> u <> [x y zJ =>

results in
**[a bel 3 dog cat x y zJ

being printed. We could use this joining operation to define a function
similar to cons which adds items to the end rather than the beginning of a
list. The declaration

function append x y;
y <> [% x %J

end
defines such a function. Having defined append, typing

append (4, [%1, i+1, 3 %J) =>
12

BURSTALL AND COLLINS
results in

**[1 234]
being printed.
Note that [% x %] is not the same as x. It is a list of one item. We

sometimes want an empty list, a list of no items. This is called nil, also written
[J. Thus

3 :: nil =>
**[3]

We can recognise an empty list using the function null. This is useful if
we want to process all items of a list. For example to find the largest element
of a list

function largest xs; vars x max;
-1000000 ~ max;

loop: ilnull(xs) then max
else hd(xs) ~ x; tl(xs) ~ xs;

if x > max then x ~ max close;
goto loop

close
end;
largest ([1 3 5 2]) =>
**5

As an exercise, define an analogous function for finding the smallest item
in a list.

8. RECORDS
Records are similar to arrays in that a number of component values are
associated with a single name. Unlike arrays, however, all records of a
particular record class must have the same number of components and these
components are referred to by name rather than by using a numeric subscript.

Having declared some variables:
vars consper destper forename surname male pI p2;

the standard function recordfns can be used to set up a record class and give
us some useful functions for dealing with records within this record class.
Thus

recordfns("person", 500,[00 1]) ~ male ~ surname ~ forename
~ destper ~ consper;

sets up a class of records called "person" for handling facts about a number
of people, say 500 or so. Each person has a forename, a surname and a
maleness. The maleness is either 0 (false) or 1 (true). The list [00 1] shows
the size of each item; 0 means any kind of item, and a positive number k
means an integer n such that 0 < n < 2k (hence for maleness k = 1 is
sufficient). The function consper creates a person from 3 suitable com
ponents and destper decomposes a person into 3 components.

A3 13

PROBLEM-ORIENTED LANGUAGES

To construct two persons:
consper(''john", "smith", true) -+ pI;
consperi'jane", "jones",Jalse) -+ p2;

.To examine them:
Jorename(pl) => .
**john
surname(p2) =>
**jones
male(p_l)=>
*~1

Note: 1 is used to represent true. To change a person:
surname(pl) -+ surname(p2);
surname(p2) =>
**smith

To decompose one of them:
varsJ s m; destper(p2r:_'m ~ s -+J;
J=>
**jane
s=>
**smith
m=>
**0

A function to marry a girl:
function marry boy girl;

if not(male(boy» or male(girl) then pr("illegal")
. else surname(boy) .-+ surname(girl)

close
end}.

As an exercise in the use of arrays and records, write a group of functions
for maintaining an array of records .describlng people say giving name, sex
and age. Functions should include .. '~".

...addname
delname
printall
birthday

to add a new name with properties.
to delete an existing name

, .,to print all properties of all names
, ,.to. increase the. age of a person with given name by one

", Prlntall can be 'refined to list selected properties for selected names. The
'selection of names might depend uponwhether.some condition is true or not
"for t)1egiven name. .
.', _. .: .' .

-;., . .. _' - ,.

9~ 'INPUT AND OUTPUT FACILITIES
-.:;,We have seen .already how output can be printed using the => symbol
which prints and elllptje~ the contents of the stack from the bottom upwards.

. ~ .

BURSTALL AND COLLINS

Other standard functions for input and output are:

sp (n)

reads one simple item producing its value as result.
outputs one item x.
outputs one item x and leaves x on the stack.
causes further output to' continue on a newline after"n""-l
blank lines.
skips n spaces across the page.

itemread ()
pr (x)
print (x)
nl (n)

For example, a function to read a list of numbers terminated by theword
"end' arid print the total might be defined as follows:

function sum;
vars x total; 0--+ total;

kl: itemread () --+ x;
if x = "end" thenpr (total);

else total + x --+ total; goto kl close
end

PROBLEM-QRIENTED LANGUAGES

function for outputting characters to the line-printer. This function is
assigned to printch. The function list simply reads and prints each character
in turn and continues to do so until the input file terminates.

It is also possible to make the system itself read from a device other than
the POP.2 console. For example,

vars a;
popmess ([ptin xyz prog4]) ~ a;
compile (a);

causes the system to continue reading and executing POP-2 text from the
paper tape file labelled [xyz prog4]. The function compile could be defined as

function compile a; fntolist (incharitem (a)) < > proqlist ~ proglist end

Further input continues from the on-line console when the paper tape file
is exhausted.
The output produced by any program using the standard functions nl, sp,

pr and print can be redirected to an alternative channel by assigning a charac
ter output function to the standard variable cucharout. Thus:

popmess([ptout abc output]) ~ cucharout;

would result in output being produced on a paper tape punch until further
notice.

10. ADDITIONAL EXERCISES
1. Write a function to print a table of numbers with their squares, cubes and

reciprocals from 1 to n.
2. Write a function to compute eX as 1+x+x2j2!+x3j3! ... continuing

until the terms are less than ·001. Check that eXeY = eX+JI to the expected
accuracy.

3. Write a function to find the average of an array of numbers. Write a
function to print all numbers in an array which are more than 3 times
the average value of the array.

4. Write a function to test whether a 2 dimensional array of integers is a
magic square (all rows, columns and diagonals have the same total and
every number from 1 to n is present).

5. Write a function to take an array whose elements are the words 'nought',
'cross' or 'blank' and test whether it is a winning position in noughts
and crosses. Write a function to put a nought in a square which creates
a win for nought if possible, or if not in one which prevents a win for
cross if possible, or otherwise in an arbitrary square.

6. Write a function to count how many items in a list of integers are greater
than n. Write a function to count how many have the property p, where
p is a given function which produces a truth value as its answer.

7. Write a function to convert a list of pairs into a pair of lists e.g. to
16 -

BURSTALL AND COLLINS

convert [[dog bitch] [cock hen] [drake duck]] into [[dog cock drake
[bitch hen duck].

8. Write a function 'edit' to delete from the middle of a list a given list
and replace it with another e.g.
edit([Jim is a son of a bitch and so is Bob], [son of a bitch], [* * * *])

=[Jim is a * * * * and so is Bob].
9. A point is a pair of real numbers.

A triangle is a point and a point and a point.
Create suitable functions for constructing and manipulating points and
triangles, and write a function to test whether a triangle is equilateral.

10. An 'expression' is either an integer or a compound which has 3 com
ponents, a function, an expression and an expression (the functions
may be any function of 2 arguments).
Create functions to construct and manipulate expressions and write a
function to find the value of an expression.

11. A dictionary is a chain of 3 component records thus:

1CAT 1CHAT 1 -1--1 DOG 1CHIEN 1 -1--·1 COW IVACHE INIL I
Write a function to add a pair of items to a dictionary producing a new

dictionary and a function to look up an item in a dictionary.

11. ADVANCED FEATURES
A number of features ofPOP-2 have been omitted from this introduction.

Two important ones are 'partial application' and 'dynamic lists'. 'these are
described in the reference manual but it might be worth while explaining
their uses briefly. Further explanation and examples may be found in
Popplestone (1968a).

Partial application is a device for obtaining from a given function another
function with fewer formal parameters, the missing parameters taking on
fixed values. Suppose that we have a function distance(u,v,x,y) and we often
want to use distances from the origin point (0,0). We could define

function distOu V; distance(u,v,O,O)end
In ,POP-2 we can say simply
distance(%O, 0%) ~ distO;

This 'freezes' the last two parameters of distance. The function distO
carries the values (0,0) for these parameters around with it.

Another use for partial application is where we want to use a function
with some free variables at a time when these variables have assumed other
values or are not defined at all e.g. the function! defined as

function! x; x+a end
which has a as a free variable. We can ensure that a always keeps the value
it had when the function was defined (not the current value when the function

17

PROBLEM-ORIENTED LANGUAGES

is usedj'by making it a parameter and then freezing it thus.
function! x a; x+a end;J(% a %) ~ f;

This gives a variant of the facility called a 'closure' devised by P. J, Landin
(1964). . . .
Dynamic lists are a device to make use of long perhaps infinite lists without

using much store. They are lists some of whose values are obtained by
calculating rather than being stored. Indeed the values may be read in so
that we can represent a paper tape reader as a dynamic list.
Normally a list finishes with the 'empty list' nil in its tail. Instead of this

we may insert a function of no arguments which may be called repeatedly.
This is used to calculate the remaining items in the list. The standard
functions hd and tl are so adjusted that by taking its tl repeatedly one may
process a list without knowing whether it is partly or wholly dynamic.
Moreover the values calculated are chained on to the end of the list so that
they may be reaccessed when required. If they are not required the storage
control scheme willeventually collect the space for re-use.
This gives a variant of the facility called a 'stream' devised by P. J. Landin

(1965).. '

REFERENCES

BurstaIl, R. M., and Popplestone, R. J. (1968). POP-2 reference manual. Machine In
telligence 2,205-44, also this volume, eds. E. Dale and D. Michie. Edinburgh: Oliver
and Boyd. . '.

Collins, J. S., .and Pullin, D. J; S. (1967). POP-2 functional specification. Mini-MAG.
Reports: No.1, Department of Machine Intelligence and Perception, University of
Edinburgh.

Landin, P. J. (1964). The mechanical evaluation of expressions. Computer Journal, 6,
4, 308~20.

Landin; P. J. (196~). A correspondence between ALGOL 60 and Church's lambda
notation. Part I. Communs. Ass. Compo Mach., 8, 2, 89-101. .

Popplestone, R. J. (1968). POP-I: an on-line language.. Machine Intelligence 2, 185-
194,eds, E. Dille and D. Michie. Edinburgh: Oliver and Boyd, _. .

Popplestone, R. J. (1968a). The design philosophy of POP-2. Machine Intelligence 3,
ed. D. Michie. Edinburgh: Univ. Press.

POP~2 .
REFERENCE
MANUAL

BY

R. M. BURSTALL
AND

DEPARTMENT OF MACHINE INTELLIGENCE AND PERCEPTION
UNIVERSITY OF EDINBURGH· .

R. J. POPPLESTONE

ADDENDA
Thesealterations are subsequent to the publication ofMachine Intelligence 2.

Errata for POP-2 Reference Manual

Section 2.2. Explanation of II, for 'O~r<b' read 'Irl< Ibl and r * a;;;'0'.
Section2.3. For 'there are also operations' read 'There are also functions'.
Section4.1. In definitionsofformal parameter list element and output local

list element, for 'ident' read 'identifier'. In definition of lambda expres
sion, after 'output local list' insert '?'.
In last line of page for '<lambda>' read 'lambda'.

Section 5.5. In definition of quasi compound expression, after 'dot
operator *' delete'?'.

Section 6.1. Last line, for 'elseif' read 'else if'.
Section 8.3. In definition of solidified, for '1' read 'I' throughout. After
exampleof list constant, for 'list expressionsare formed' read 'list expres
sions are evaluated'.

Section 8.5. In 'the boundslist is a list of integers, these two' delete
'two'.

Section 9.1. In definition of incharitem, for '(l) textitem' read '0=>
textitem'.

Amendments to POP-2 Reference Manual

Use of the language has suggested the followingminor revisions.
1. The function intofshould be made the same as Algol entier.

Section 2.3. Explanation of into/, after 'to the nearest integer' add
'not greater than it'.

2. It is more convenient for a destructor function not to delete the data
structure.
Section 7.1. First page, delete the paragraph 'After applying the
destructor to a structure it is deleted.'
Section 8.3. Replace the definition of dest by 'function dest I; hd (l),
tl (l) end'.
Last paragraph delete the line beginning 'next € ••• '.

CONTENTS

PAGE
1 INTRODUCTION

1.1 Aims
1.2 Main features
1.3 Examples
1.4 Notation for syntactic description
1.5 Notation for functions

3
3
4
6
7

2 ITEMS
2.1 Simpleand compound items
2.2 Integers
2.3 Reals
2.4 Truth values
2.5 Undefined
2.6 Terminator

8
9
9
10
10
10

3 VARIABLES
3.1 Identifiers
3.2 Declaration and initialisation
3.3 Cancellation

10
11
13

4 FUNCTIONS
4.1 Definition of functions
4.2 Application of functions
4.3 Nonlocal variables
4.4 Partial application
4.5 Doublets
4.6 Arithmetic operations

13
14
15
15
17
18

5 EXPRESSIONS AND STATEMENTS
5.1 Expressions
5.2 Precedence
5.3 Statements and imperatives
5.4 Labels and goto statements

A4 1

18
20
20
21

CONTENTS

PAGE
5.5 Assignment 22
5.6 Comments 23

6 CONDITIONALS
6.1 Conditional expressions 23
6.2 Conjunctions and disjunctions 24

7 DATA STRUCTURES
7.1 Functions of data structures 25
7.2 Records 27
7.3 Strips 28
7.4 Garbage collection 29

8 STANDARD STRUCTURES
8.1 References 30
8.2 Pairs 30
8.3 Lists 30
8.4 Full strips and character strips 33
8.5 Arrays 33
8.6 Words 34
8.7 Functions 35

9 INPUT AND OUTPUT
9.1 Input 36
9.2 Output 37

10 MACHINE CODE 38

11 MODES OF EVALUATION
11.1 Immediate evaluation 38
11.2 Macros 38
11.3 Evaluation of program text 39

Acknowledgments 39

2

1. INTRODUCTION

1.1. Aims
The following are the main design objectives for the pop-2 language:

(i) The language should allow convenient manipulation of a variety of
data structures and give powerful facilities for defining new functions over
them.

(ii) The language should be suitable for taking advantage of. on-line use
at a console, i.e. it should allow immediate execution of statements and
should have a sufficiently simple syntax to avoid frequent typing errors.
(Ui) A compiler and operating system should be easy to write and should

not occupy much storage.
(iv) The elementary features of the language should be easy to learn and

use.
(v) The language should be sufficiently self-consistent and economical in

structure to allow it to incorporate new facilities when extensions are desired.
In attaining these objectives certain other desirable features of program-

ming languages had to be relegated to secondary importance:
(vi) Fast arithmetical facilities on integer and real numbers.
(vii) Fast subscripting of arrays.
(viii) A wide variety of elegant syntactic forms.
Naturally whether (Ui) or (vi) and (vii) are attained is to a considerable

extent a matter of implementation.

1.2. Main features
The following main features are provided. Roughly analogous features of
some other programming languages are mentioned in brackets as a guide:
(i) Variables (cf. ALGOL but no types at compile time).
(ii) Constants (cf. ALGOL numeric and string constants, LISP atoms and list

constants).
3

PROBLEM-ORIENTED LANGUAGES

CUi) Expressions and statements Ccf. ALGOL).
(iv) Assignment (cf. ALGOL, also CPL left-hand functions).
(v) Conditionals, jumps and labels (cf. ALGOL but restrictions on jumps

and labels).
(vi) Functions (cf. ALGOL procedures but no call by name, cf. CPL and

ISWIM for full manipulation of functions).
(vii) Arrays (cf. ALGOL; cf. CPL for full manipulation of arrays).
(viii) Records (cf. COBOL, PLll, Wirth-Hoare ALGOL records, CPL nodes).
(ix) Words (cf. LISP atoms).
(x) Lists (cf. LISP, IPL-V).
(xi) Macros.
(xii) Use of compiler during running (cf. LISP, TRAC, FORMULA ALGOL).
(xiii) Immediate execution (cf. JOSS, TRAC).

Notes:
LISP: LISP 1.5
CPL: See Barron, D. W., et al. 1964. The main features of CPL, Computer

J., 6, 134-43.
CPL reference manual. Edited C. Strachey (privately circulated).
Wirth-Hoare ALGOL: See Wirth, N., and Hoare, C. A. R. 1966. A con

tribution to the development of Algol, Communs Assn Comput. Mach.,
9,413-32.

TRAC: See Mooers, C. N. 1966. TRAC, a procedure describing language
for the reactive typewriter, Communs Assn Comput. Mach., 9, 215-24.

ISWIM: See Landin, P. J. 1966. The next 700 programming languages,
Communs Assn Comput. Mach., 9, 157-166.

1.3. Examples
The following is an example of pop-2 program text. The sign =>(not to be
confused with that used in section 1.5 'Notation for functions') prints out
some results on a newline prefixed with two asterisks. These results are
included in the text below, as they would appear if the program were run
on-line at a console.

comment arithmetic;
12·0+2·5*(1.5+2.5)=>
**22.0
vars a b sum;
2*2~a; 3*a~b; aea+beb-s sum; sum =>
•• 160
function sumsq x y;

x.x+y*y
end;
sumsq(a, b)+ I=>
** 161

BURSTALL AND POPPLESTONE

function fact n; vars p;
I-+p;

loop: if n=O thenp else nep=p; n-I-+n; goto loop close
end;
fact(fact(3»=
** 720

comment arrays;
vars a ij;
10-+i; 20-+j;
newarray([%I, i, l,j%l, sumsqy-va;
0(2,3)=
** 13
lO-+a(2, 3); a(2, 3)=>
** 10
function arraysum aIa2 m n;

newarray ([%1, m, 1, n%l, lambda ij; al(i,j)+a2(i,j) end)
end;
arraysum (a, a, 10, 20)-+a; a(2, 3)=>
** 20
comment lists;
vars u;
l-+i; 2-+j;
[%i, i+], "dog", "cat" %]-+u; u=>
** [I 3 dog cat]
cons ("pig", u)=
** [Pig 1 3 dog cat]
function append x y;

if null (y) then [% x %] else cons(hd(y), append(x, tl(y») close
end;
append(4, [% 1, i+ 1, 3%])=
** [1 234]

conunentrecords;
vars consper destper forename surname male pI p2;
recordfns("person", 500, [00 1])-+male-+surname-+forename

-sdestper+consper;
consperi'jane", "jones",false)-+pl; consperi'sam", "smith", true)-+p2;
surname(p1)=
«e jones
datalist(p1)=
** [jane jones 0]
routine marry x y;

if male(x) and not(male(y» then surname(x)-+surname(y) close
5

PROBLEM-ORIENTED LANGUAGES

end;
marry(p2, pI); datalistip I)=:.
** [jane smith 0]

1.4. Notation for syntactic description
We use the BNF (Backus-Naur Form) notation as used in the ALGOL report:

::= indicates a syntax definition;
() are used to enclose the name of a syntax class;
1 denotes disjunction (union of syntax classes).

Concatenation denotes concatenation of any elements of two syntax
classes.
We also use a convenient extension of this notation due to R. A. Brooker:

* means that a class may occur n times, ;n';:; I;
? means that a class may occur n times, n=O or 1;
* ? means that a class may occur n times, n ';:;0,

e.g. the definitions
(astring): :=(a) (astring) 1 (a)
(bstring):: =(b) (astring)
(cstring):: =(c) (astring) 1 (c)

may be replaced by
(bstring):: =(b) (a*)
(cstring) ::=(c) (a* 7)

The characters (,) and * are used in the pop-2 reference language but no
confusion should arise.
When we wish to give examples of a syntax class we use the symbol

'e.g.: :=', for example:
(bstring)e.g.::=(b) (a) 1 (b) (a) (a) (a)

The character set of the pop-2 reference language is as follows.

(letter): :=alblcldlel f Iglhlililkillminiolplqlrlsitlulvlwixlylz
(digit):: =0111213141516171819
(sign):: =+ 1-1 ...•1/131&1=1(1)1:1£li
(separator)::=,I; ,
(period) ::=.
(sub ten): :=10
(bracket) ::=(I) 1[IJ
(bracket decorator):: = %
(quote)::=H
(string quote) ::=/1\

6

BURSTALL AND POPPLESTONE

Letters maybe writtenin lower ease, upper case or heavy type without any
change of meaning. It will be conventional however to use 4eavy type letters
for syntax words, i.e. those identifiers such as function, then, end and cancel
which have a special meaning for the POP-2 compiler and 'which characterise
certain syntactic forms.
Spaces, tabulate and new lines terminate identifiers, integers, reals and words

but otherwise they are ignored.
A distinction is made between the reference language used in this document

and a number of possible hardware languages used by particular computer
implementations of pop-2. Each character in the reference language should
be represented by a distinct character or sequence of characters in the hard
ware language. A particular letter, whether upper case, lower case, heavy
type or not is regarded as the same character in the reference language.
The symbols•and => used in this paper should be read as a typographical

abbreviation for the pairs of characters - > (minus greater than) and
=> (equals greater than) respectively.

1.5. Notation for functions
It is convenient to have a notation to specify the domain and range of func
tions. We will consider functions having several arguments (or possibly
none) and producing several results (or possibly none), the notion of functions
with more than one result being an extension of normal mathematical usage
(see section 4.2 'Application of functions'). We introduce a special symbol
'=>' which is not.to be confused with any identifier in the pop~21anguage.
. Suppose dl, d2, ... ; dm and 1'1, r2, ... , m are all sets of items. Then
dl, d2, , dm=>rl, r2, ... , m is the set of all functions whose domain is
dl, d2, , dm and range r1, r2, ... , rn, i.e. with arguments which are m-tuples
in dl x d2 x ... x dm and with results which are n-tuples in rl x r2 ... x rn. We
express the fact that a function f is a member of this set of functions by

f E dl, d2, ... ,dm => rl, r2,m
Some examples will make this clear.
add E integer, integer => integer
diurem E integer, integer => integer, integer

where dioremis 'divide with remainder', e.g. divrem (7, 3)=2, 1 and diorem
(14,4)=3,2

roundup E real => integer
prime E integer => truthvalue

If the function has no results we use an empty pair of parenthesesv.thus:
printout E integer => 0

The arguments or results may themselves be functions
differentiate E (real => real) => (real => real)

1

PROBLEM-ORIENTED LANGUAGES

Where we wish to discuss a number offunctions all having the same domain
and range it is convenient to abbreviate thus:

I, g, ... h all e ... => ••.
for

Ie ...=> .••
and

s « ... => .•••

and
he .,. => •••

Some functions do not have a fixed number of arguments and some do
not have a fixed number of results (see section 4.2 'Application of functions').
In such cases we may write for example

Ie integer => real, integer, ... , integer
for the domain or range, meaning that a real and a variable number of integers
are the results.

2. ITEMS

2.1. Simple and compound items
The objects on which one can operate are called Items. They are divided into
two distinct classes: Compound items, which are represented by addresses and
Simple items which are directly represented by bitstringswhich do not con
tain addresses (these bit strings are normally of fixed length for a given imple
mentation, being a single machine word). The address representing a com
pound item points to a bit string whose length may vary from item to item.
This bit string may contain other items. The areas of store immediately
pointed to by two different compound items do not overlap.
The following standard function recognises compound items:

iscompnd e item => truthvalue

Two kinds of simple item are distinguished: integers and reals. The
following standard functions recognise them:

isinteger, isreal all e item => truthvalue

The standard function = (an operation of precedence 7) is used to represent
equality of items. For integers and reals it has the usual meaning. Its
meaning for compound items is given in section 7.1 'Functions of data
structures' .

= e item, item ~ truthvalue
8

BURSTALL AND POPPLESTONE

2.2. Integers
Integers .are simple items. They may be positive, negative or zero. The size
of the largest and smallest integers allowed depends on the implementation.
The following functions on integers are standard:

intadd, intsub, intmult, all E integer, integer => integer
II E integer, integer => integer, integer

intplus, intminus all E integer => integer.
intsign e integer => integer
intgr, intle, intgreq, intleeq all E integer, integer => truthvalue

intadd, intsub, intmult and intdiv are the usual add, subtract and multiply.
II is divide with remainder and produces a quotient and a remainder (if allb
is (q, r), then qeb+r= a and O~r<b). It is an operation of precedence 4.

intplus carries an integer into itself and intminus complements an integer.
intsign produces -1, 0, or +1 according to the sign of the integer. The
remaining four functions are the relations 'greater than', 'less than', 'greater
than or equal to' and 'less than or equal to'.
The syntax of integers is:

(integery»: = (octal integer) 1(binary integer) I(decimal integer)
(octal integer):: =8:<octal digih)
<binary integer):: =2:(binary digit*)
<decimal integer):: =<digit*)
<octal digit):: =0111213.14151617
<binary digit):: =011

Example:
(integerre.g.»: =8 :777]2:1011016559

Integers may also be treated as bit-strings (the length depending on the
implementation) and the following functions are standard:

logand, logor, logshift all E integer, integer => integer
lognot E integer => integer

logand and logor are the usual bit by bit 'and' and 'inclusive or'; logshift
causes the first integer to be shifted left by the number of places given in the
second, unless the second integer is negative when shifting to the right takes
place (all new bits to fill up the end are zero in each case).

2.3. Reals
Reals are simple items. They may be positive, negative or zero. The size of
the largest and smallest reals allowed and the precision depends on the imple
mentation. The following functions on reals are standard:

realadd, realsub, realmult, realdiv all e real, real => real
realplus, realminus all E real => real
realsign e real => integer
realgr, realle, realgreq, realleeq all e real, real => truthvalue

9

PROBLEM-ORIENTED LANGUAGES

These are the usual add, subtract, multiply and divide on reals. realplus
carries a real into itself and realminus complements a real. realsign produces
.;_I, 0 or + 1 according to the sign of the real. The remaining four functions
are the relations 'greater than', 'less than', 'greater than or equal to' and
'less than or equal to'.
There are also operations to convert a real to the nearest integer and to

convert an integer to real: .
intof E real => integer
realof E integer => real

. ,The syntax of reals is as follows:
<real):: =<decimal integer ?).<decimal integer) <exponent ?)
<exponent):: =10+<integer) 11O-<integer) 11O<integer)

Ex;ample:
<real)e.g.:: = .511.9911.510-6

2.4. Truth values
The two items True which is the integer 1 and False which is the integer 0 are
called Truthvalues.
On entry to the POP-2 system the standard variable true is set to I and the

standard variable false is set to O. The following standard functions on
truthvalues are provided:

booland, boolor all E truthvalue, truthvalue => truthvalue
not E truthvalue => truthvalue

These are the usual functions 'and', 'inclusive or' and 'not' of propositional
calculus.

2.5. Undefined
The standard variable undef has the word "undef" as its value on entry to
the pop-2 system (see section 8.6 'Words') .. The programmer may use it as
the result of a function which fails to produce its normal result.

2.6. Terminator
The standard variable termin has the word il termin" as its value on entry to the
pop-2 system (see section 8.6 'Words'). It may be used as the first argument
of a variadic function (see section 4.2 'Application of functions') or to mark
the end of an input file (see section 9.1 'Input').

3. VARIABLES

3.1. Identifiers
An item may be the Value of a Variable (a variable is not itself an item).
An Identifier-is associated with the variable and this identifier is used to

. . 10 .

BURSTALL AND POPPLESTONE

refer to it in a pop-2 program. A number of distinct variables may have
the same identifier, but only one of them is Currently associated with it at a
particular time in the evaluation process.

An identifier may be restricted to a certain range of values and it may be
given special syntactic properties by being given a precedence (see section 5.2
'Precedence').
The syntax of identifiers is:
(identifier):: =(letter) (alphanumeric *1) I (sign *)
(alphanumeric):: = (letter) I (digit)

Example:

(identifier)e.g. ::=x I y99 I alpha I ula I +++ 1/+ I () 1* $ $ * .
Syntax words such as then, end, -+ and : have special meanings and,may

not be used as identifiers. Only the first 8 characters are significant.

3;2. Declaration and initialisation
A variable is. either Global. Local or Formal. A Declaration is used to
introduce an identifier and associate it with a global or local variable. A
Local Declaration, introducing a local variable, is a.declaration which occurs
in a function body. A Global Declaration, introducing a globalvariable; is
one which does not.
An'I~itialisation is used to introduce an identifier and associate it with a

formal variable and give the variable an initial value. It is achieved by
including the identifier in the formal parameter list of a function (see section
4.1 'Definition of functions').
A declaration or initialisation may also specify that the identifier is restric

ted to take only functions as values. This is not necessary but may make the
implementation more efficient. A declaration or initialisation may also
specify that the identifier is an Operation, i.e. it is restricted to take functions
as its values and is given a' precedence. This restriction is associated with
the unique name (see below) produced by the declaration or the initialisation.
" The syntax of declarations is:

(declaration) ::=vars (declaration list element *)
(declaration list elemenrn:= (identifier) I (restriction)
(restriction):: = (restrictor)(identifter) I (restrictor)«identifter *»
(restrictor) ::=function I operation (integer) "

Example:

(declaration)e.g. ::=vars x y Ivars x y function(f g) operation 7 ==
A declaration or initialisation has a Scope, which is a piece of pop-2 text.

An identifier may not be used to represent a variable outside the scope of a
declaration or initialisation of the identifier;

11

PROBLEM-ORIENTED LANGUAGES

The scope of a global declaration starts at the declaration and continues
until the identifier is cancelled.
The scope of a local declaration starts at the declaration and continues to

the end of the innermost function body enclosing it.
The scope of an initialisation is the body of the function in which it occurs.
Each declaration or initialisation gives rise to a unique mark and this

mark is associated with all occurrences of any identifier introduced by the
declaration or initialisation within the scope of the declaration or initialis
ation. An identifier together with its unique mark is called a Unique name.
Thus an identifier which occurs in more than one declaration or initialis

ation corresponds to more than one unique name.
The generation of fresh unique names for identifiers can be suppressed by

using the standard routines: .
nonunique, unique all EO=>O

If nonunique is applied, all declarations or initialisations of a given identifier
until unique is applied will give rise to the same unique name. This may save
storage space and can be used when no confusion is liable to occur.
To sum up:

A new identifier is introduced by introducing a fresh sequence of
characters.
A new unique name is introduced by each declaration or initialisation

(unless nonunique has been applied).
A new variable is introduced by each dynamic activation of a declaration

or initialisation.
A variable has an Extent which is a sequence of evaluations of expressions

and statements.
The extent of a global variable starts from its declaration and continues

indefinitely.
The extent of a local or formal variable starts on entry to the body of the

function in which it is declared or initialised and continues until exit from the
body. During this extent the extent of any other variable with the same
unique name is temporarily interrupted. This is called a Hole in the Extent
of the other variable. Its value is not altered but it cannot be accessed or
changed by assignment. Thus there is only one variable Currently Associated
with a particular unique name during any evaluation. Other variables
associated with the unique name are in abeyance.
More than one global declaration of the same identifier is not permitted

unless a cancellation of it intervenes in the text.
Similarly a declaration of a local variable is not permitted if there is already

a declaration of a local or initialisation of a formal with the same identifier
for the same function body.
A Standard Variableis a global variable which already has a value on entry

to the pop-2 system. A Standard Function (or Routine) is one which is the
value of a standard variable. Certain standard variables are Protected, i.e.
no assignment may be made to them.

12

BURSTALL AND POPPLESTONE

3.3. Cancellation
A cancellation terminates the scope of any declaration of an identifier and
removes the effect of any restrictions placed upon the identifier. The
cancellation must occur textually between the old declaration and any new
declaration. It may not occur in a function body.
The syntax of cancellations is:
(cancellation):: = cancel (identifier *)

4. FUNCTIONS

4.1. Definition of functions
A Function is a compound item. Definition and application of functions are
treated in this section and the next. Certain properties of a function regarded
as a data structure are treated in section 8.7 'Functions'.
A function consists of a Formal Parameter List which is a list of identifiers

of formal variables, possibly an output local list which is a list of the identifiers
of output local variables (see section 4.2 'Application of functions') and a
Body which is an imperative sequence (see section 5.3 'Statements and
imperatives').

A function which produces no results (see section 4.2 'Application of
functions') is called a Routine.

Functions may be referred to in the program by using a function constant,
called a Lambda Expression, or they may be standard functions provided by
the pop-2 system, or they may be created by partial application or by appli
cation of a standard function which produces a function as a result.
The syntactic representation of a function constant is :
<formalparameter list element):: =(ident) I (restriction)
<formalparameter list):: = (formal parameter list element *1)
(output local list element):: =(ident) I (restriction)
<output local list):: = => <output local list element *1)
(function body): :=(imperative sequence)
(lambda expression):: =lambda<formalparameter list)(output local list) ;

<function body) end

Example:
<lambdaexpression)e.g.:: =lambda x y; cons(x, cons(a, y» end

I lambda x; nl(l); print(x) end

We very often wish to declare a variable and then assign a function to it.
The syntactic form of this will be as follows:

vars <identifier) ;
(lambda) <formalparameter list); <function body) end -+ (identifier)

13

PROBLEM-ORIENTED LANGUAGES

This is so common that a special syntactic form is introduced which is
equivalent to it:

<function) ::=function I routine
<function definition):: =<function)<identifier)<!ormalparameter list);

<function body) end
The word routine is a synonym for function. It may be used for a function

with no results.
If the identifier has been previously declared at this level no new declaration

is implied and the function definition is equivalent simply to an assignment
of a lambda expression. The identifier may be an operation identifier.

Example:
(function definition)e.g.:: =function max x y; if x > y then x else y close

end
I routine enter u v; cons(conspair(u, v), dlcty-«

diet end
I function order x y ~ u v;

if x > y then x -+ u; y -+ v
else y -+ u; x -+ v close

end

4.2. Application of functions
An n-Tuple is an ordered sequence of n items (n ~ 0). An item is identical
with the l-tuple whose sole member is that item. An n-tuple and an m-tuple
may be Concatenated to produce an (n+m)-tuple.
A function of n arguments (i.e. with n formal parameters, excluding frozen

formals; see section 4.4 'Partial application'), may be Applied to an n-tuple,
whose members are called the Actual Parameters of the function. Application
of a function to its actual parameters produces an m-tuple, whose members
are said to be the Results of the function. A function producing no results
(i.e, an O-tuple) is called a routine (see section 4.1 'Definition of functions').
A function which does not take a fixed number of arguments is called

Variadic. A function which does not produce a fixed number of results is
called Variresult.
The application of a function to its actual parameters consists of the follow

ing sequence of events:

Entry: a new variable corresponding to each formal parameter is initialised
to the corresponding actual parameter value, or if it is a frozen formal to the
corresponding value in the frozen value list. A new variable corresponding to
each local variable declaration in the function body but not in any interior
function-body is then created. The variables previously associated with the
identifiers of formal or local variables can no longer be referred to but their
values are undisturbed.

Running: the function body is evaluated with the variables created on entry.
14

BURSTALL AND POPPLESTONE

Exit. Any items which have helm placed on the stack (see section 5.3 'State
ments and -imperatives') and were not there at entry are concatenated with
the values of any Output Local Variables to form the results of the function.
The variables created on entry are terminated and the variable associated
with each identifier reverts to what it Wason entry. There is no change in the
values of variables which were previously associated with the formal- or local
variable identifiers and have now been reinstated. The values of formal and
frozen vai:iables are lost. The frozen formals will be reinitialised from the
frozen value list on the next entry to the function normally with the same
values as last time; the frozen value list can be changed by usingJrozval (see
section 8.7 'Functions').

4.3. Nonlocal variables
Variables which occur in a function body and are not locals (i.e. declared in the
body) or formals (i.e. elements of the formal parameter list) are called Nonlocal
to the function. They may be globals or locals of some outer function body
which textually encloses it. Care must be taken not to apply a function with
nonlocals in a hole in the extent of some of its nonlocals (see section 3.2
'Declaration and initialisation') or outside their extent. Mention of the
identifier of such a nonlocal would refer to a quite different variable currently
associated with that unique name. The difficulty can arise for recursive
functions. Analogous trouble may arise if nonunique is used.
To avoid such difficulties a frozen formal may be used instead of the non

local, provided that it is not desired to assign a new value to the nonlocal as
a result of the call. The frozen formal can be initialised by partial application
to the value that the non-local would have taken. (Note that the frozen
formals can be used in this way to give the equivalent of CPL fixed functions,
see CPL Reference Manual privately circulated by C. Strachey, Programming
Research Unit, Oxford University.) In cases where assignment to the non
local is desired a frozen formal can be used and initialised to take a reference
(see section 8.1 'References') as value. The component of this reference can
then be assigned to, and so long as the reference is made the value of some
other exterior variable the value is accessible outside the function body.

4.4. Partialapplication
In section 4.2 'Application of functions' we explained the method of applying
a function to its arguments. There is a process somewhat analogous to
application called Partial Application. By this means some of the formal
parameters of a function may be made into Frozen Formals, producing a new
function with fewer arguments. The frozen formals are always initialised to
a fixed value when the function is applied and do Dot require any correspond
ing actual parameters (see however section 8.7 'Functions' for- means of
altering this fixed value). In other words the actual parameters corresponding

15

PROBLEM-ORIENTED LANGUAGES

to the frozen formals are supplied once and for all on partial application,
The values of the frozen formals are called the Frozen Value List.

For example by partially applying the two argument function 'multiply'
to 2 we get a one argument function to double a number, and by partially
applying it to 3 we get a function to triple a number. These two functions
can coexist, and in general one function can be used to generate any number
of others by partial application.
More formally we say that a function f of m arguments may be partially

applied to an n-tuple of actual parameters with ncm. We assume for the
moment that I has no frozen formals. The partial application produces a
new function f' with m-n ordinary formals corresponding to the first m-n
formals of f, and n frozen formals corresponding to the last n formals of f.
The function I' has a frozen value list consisting of the n items supplied as
actual parameters of the partial application.
Iff itself has some frozen formals already, say k of them, thenj' will have

n+k frozen formals and n+k corresponding items in its frozen value list.
The standard function partapply takes a function as its first argument and

a list as its second argument, and partially applies the functionto the elements
of the list.

partappiy Ejunction, list =>function

Note that partial application constructs a new function with a particular
frozen value list, it does not alter the original function in any way. A function
which has been produced as the result of partial application is called a Closure
Function. The frozen values of a closure function can be selected or updated
(see section 8.7 'Functions').
If a doublet (see section 4.5 'Doublets') is partially applied to one or more

items it produces a new doublet. The selector of the new doublet is obtained
by partially applying the selector of the original doublet to the given items.
The update routine of the new doublet is obtained by partially applying the
update routine of the original doublet to the given items.
A special syntactic form is also available for partial application. It is

similar to that for ordinary application (see section 5.1 'Expressions').

(partial application bracket) =(% I%)
(partial application): :=(non-operation identifier) (% (expression list) %)

I (lambda expression) (% (expression list) %)
The value of the variable currently associated with the identifier is partially

applied to the concatenation ofthe expressions in the expression list. Thus
for example:

vars c; cons(%[is a number1%)...+e;
eel) =>
*'" [1 is a number]
e(2) =>
.* [2 is a number]

16

BURSTALL AND POPPLESTONE

functionf x y z; .. etc. end;
f(% yl, zl %)~fl ;fl(xl)=>

4.5. Doublets
When dealing with data structures, functions called selectors are defined which
may be applied to a structure to produce its components (see section 7.1
'Functions of data structures'). To each selector there corresponds an update
routine which alters the value of the component in the structure to a given
new value.
Any function may have an update routine associated with it. This will

normally only be done for selector functions. The function is then called a
Doublet. When a function is created using a lambda expression its associated
update routine is not defined. An update routine may be associated with it
by using the doublet updater, (see section 8.7 'Functions').
When a variable whose value is a doublet is used as the operator of a

compound expression the selector function of the doublet is applied. But
when such a variable is used as the operator of a quasi compound expression
(i.e. as part of a destination of an assignment) the update routine is applied.

It is convenient to extend our notation for functions (see section 1.5
'Notation for functions') using the new symbol' ==>' to express concisely
the domain and range of the selector and update routines of a doublet.
Thus iff is a doublet we write

fe dI, ... , dk==> r
meaning that f has a selector s

s E dl ... , dk => r
and an update routine u

u e r, dI, ... , dk => 0
Example:
The standard function hd used in list processing (see section 8.3 'Lists') is

a doublet.
vars I; [1 2 3 4]~1; hd(l) =>
••I
5~hd(I); I=>
•• [5234]
hd(£)=>
•• 5
function second 1; hd(tl(l) end;
lambda x I; x~hd(tl(l) end~updater(second);
second(l) =>
*.2
6~. second(l); I ~.* [5634]

17

PROBLEM-ORIENTED LANGUAGES

4.6. Arithmetic operations
In sections 2.2 'Integers' and 2.3 'Reals' a number of standard functions were
introduced for performing arithmetic on integers and reals.

We say that an item is a Number if it is either a real or an integer. Arith
metic on numbers is performed by the following standard operations:

Operation Precedence Explanation Result
< 7 less than truthvalue
> 7 greater than truthvalue
=< 7 less than or equal truthvalue
>= 7 greater than or equal truthvalue
+ 5 add real or integer

5 subtract real or integer
* 4 multiply real or integer
/ 4 divide real
i 3 exponent real

These are defined in terms of intadd, realadd, etc. and isreal, isint and
realof. +, - and * produce an integer result if both arguments are integer
otherwise a real result.

5. EXPRESSIONS AND STATEMENTS

5.1. Expressions
An Expression is either a simple expression, a compound expression, a
conditional expression or an imperative expression (see section 5.3 'State
ments and imperatives').
A Simple expression is either an identifier or a Constant, a constant being

an integer, a real or a structure constant. If the simple expression is an identi
fier then its value is the value of the variable currently associated with that
identifier. If it is a constant then its value is the item denoted by the constant.
A Structure Constant is either a lambda expression which is dealt with. in
section 4.1 'Definition of functions' and in section 8.7 'Functions', a word
constant, a string constant or a list constant, all of which are dealt with in
section 8 'Standard structures'. '
A Compound expression has an Operator which is an expression and some

Operandswhich are an expression list. The value of a compound expression
is found by evaluating the operands and evaluating the operator, whose value
should be a function (see section 4.5 'Doublets' for the case where the opera
tor is a doublet). The sequence in which these evaluations are carried out is
not defined. The function obtained from the operator is then applied to the
n-tuple obtained by evaluating the operands. The case where the number of
arguments required by the function is not equal to the number of items
obtained by evaluating the operands is dealt with in section 5.3 'Statements

18

BURSTALL AND POPPLESTONE

and imperatives'. ' The results of this application are the value of the expres
sion. Thus the value of the expression is an n-tuple; with n == 0 if the function
is a routine.

Evaluation of conditio rial expressions is described in section 6.1 'Condi
tional expressions', and that of imperative expressions in section 5.3 'State
ments and imperatives'.
An expression list is evaluated by evaluating the expressions of which it

consists and concatenating the results. The order in which the evaluations
are made is not defined. The order in which the results of evaluating the
expressions are concatenated is the order in which the expressions occur.
The syntax of expressions is given below. There are a number of syntactic

forms for compound expressions. A further explanation of the syntax is
given in section 5.2 'Precedence'.

(non-operation identifier):: =(identifier) 1 nonop (operation)
(constant):: = (integer) 1 (real) 1 (structure constant)
(structure constant):: =(lambda expression) 1 (quoted word) 1 (string

constant) 1 (list constant)
(simple expression):: =(non-operation identifier) 1 (constant)
(operation):: = (identifier)
(parentheses) ::= (J)
(compound expression) ::=(non-operation identifier) «expression list»)

I(expression ?)(operation)(expression ?)
1 (closed expression ?)(dot operators')
1 (structure expression) _

(closed expression):: = (simple expression) 1 (list expression)
1 (conditional expression)

(dot operator):: = . (non-operation identifier)
(structure expression):: =(partial application) 1 (list expression)
(expression list)::=(expression?), (expression list) 1 (expression ?)
(expression):: = (simple expression) 1 (compound expression)

1 (conditional expression) 1 (imperative expression)
1 «expression list»)

Examples:
(simple expressionye.g.i: =x-I nonop+ 131lllIDbda x; x+ 1end I [3 59]
(operation)e,g.::~+I~~* 1 adjoin
<compoundexpression)e.g.::=f(x+l, y) 1 a*(b-i-c) Ix.hd

- If(%x %)1 [%x,x+l,x+2 %1
(expression)e.g.:: =a 1g(h(x+ I)) 1if x=O then y else z close -

i(x+ 1-e-x; y+ 1~y; x*y)
1 (x,y+ I, z-I)

The various syntactic forms of compound expressions denote the operator
and operands in the following way:
(i) <non-operationidentifier) «expression list». Here the operator is-the

identifier and the operands are the expression list.
19

PROBLEM-ORIENTED LANGUAGES

(iO (expression 1) (operation) (expression 1). This is equivalent to:
DODOP (operation) «expression ?), (expression ?») which is a special case
of (i) above.
(Ui) (closed expression ?). (non-operation identifier). This is equivalent

to:
(non-operation identifier) « closed expression ?») which is a special case of
(i) above.
(iv) (structure expression). This is equivalent to (i) above with a special

identifier for the operand. The exact rules are given in section 4.4 'Partial
Application' and section 8.3 'Lists'.

Note that there is no syntactic provision above for compound expressions
whose operator is an expression other than an identifier.

5.2. Precedence
If a compound expression or quasi compound expression is of the form

(expression ?) (operation) (expression ?)
the operator 1S the operation. In this case ambiguity might arise in the analy
sis of expressions such as

(expression) (operation) (expression) (operation) (expression)
which could be analysed with association to the left or to the right. This
ambiguity is resolved by the notion of precedence. A precedence is a positive
integer between 1 and 7 associated with an operation identifier. It is set by a
declaration and can only be changed by cancellation. The operator of a
sequence of expressions containing one or more operations is the operation
of highest precedence or if there is more than one operation of highest
precedence the rightmost of these.

It must be made clear that the difference between an operation and any
other identifier which is restricted to having function values is purely a
syntactic one.
It may be desired to use an operation in a context other than as the operator

of a compound expression. If so it must be prefixed with the word DODOP
in which case it is treated syntactically like any other identifier. The use of
DODOP overrules the precedence of the identifier but does not remove
restriction of its values to functions. This facility enables operations to
appear as operands and enables assignment to operations.
Example:
> has precedence 7, + and - have precedence 5 and * has precedence 4.
5-x+2*y>1+2 is the same as «5-x) + (2*y))>(1+2).

5.3. Statementsand imperatives
A statement is either an assignment, a goto statement, a machine code
instruction or an expression list. It may be labelled.

20

BURSTALL AND POPPLESTONE

An imperative is either a declaration or a statement.
The syntax is:
(statement):: =(assignment) I (goto statement)

I (code instruction) I (expression list)
I (labelled statement)

(imperative):: =(decJaration) I(statement)
(imperative sequence):: =(imperative); (imperative sequence) I

(imperative ?)

Example:
(imperative sequence)e.g.::=loop:x-l-+x;f(x)-+y; H xc-O then goto

loop;
I x+ l-+y; y; u-+y;-+z;

The evaluation of an Imperative Sequence consists of evaluating the state
ments in the sequence in which they occur, except when a goto statement
occurs and the sequence continues at the point indicated by the goto state
ment.

An Imperative Expression may be formed from an imperative sequence.
The syntax is:
(imperative expression):: =«imperative sequence»

The Stack is an ordered sequence of items. The last item to be added to
this sequence is said to be on Top of the Stack. Items can be added to the
top of the stack or removed from the top of the stack. On entry to the
pop-2 system the stack is empty. When a statement is evaluated any results
produced are added to the top of the stack. The results of an imperative
sequence are the items left on the stack when the sequence has been evaluated.
Evaluation of a statement which is a compound expression may affect the

stack as follows. If the number of arguments required by the function
obtained by evaluating the operator is not the same as the number of items
produced by evaluating the operands, these items are loaded on to the stack
in sequence. The function then takes its arguments off the stack, the last
argument being the one which was on the top of the stack. Thus suppose that
the function requires m arguments and the operands yield n items. If m>n the
first m-n arguments are taken off the stack. If m-en the first n-m items
produced by the operands are left on the stack. If m=n the stack is not
affected by evaluating the compound expression. Exactly analogous remarks
apply to quasi compound expressions.

5.4. Labels and goto statements
A Label may be attached to a statement. Evaluation of a Goto Statement
using that label causes the sequence of evaluation to be changed so that the
labelled statement is evaluated next. A goto statement may not refer to a
label outside the function body in which it occurs. If a goto statement occurs

21

PROBLEM-ORIENTED LANGUAGES

in an operand of a compoundor quasi compound expression it may not refer
to a label outside that operand. The syntax is:

(labelled statement)::=(laqel): (statement ?)
(goto statement):: =goto (/Clbe/) I return ..
<label) ::= (identifier) "

The statement return causes transfer of control to the exit of theinnermost
current function body. There is a standard macro.exit which is synonymous
with return close.
If an identifier or sign is used for a label it may not appear as an identifier

associated with a variable in the text constituting that function body.
Goto statements and labelled statements may only occur inside a function

body.
Note that a label.is not an item.

Example:
loop: x+ I-tx; y*y-ty;

if x=O then goto loop close.

5.5..•.Assignmen~
An Assignment consists of a Source, which is an expression 'or .sequence of
expressions and a Destination List, which is a sequence of elements each of
which is either an identifier or a Quasi Compound Expression.
A quasi compound expression has. an operator which is an expression and

some operands, i.e. a sequence of expressions (possibly an empty sequence).
Note that a quasi compound expression is not an expression and cannot be
evaluated alone to produce an item; it is merely a component of an assign
ment. .It is syntactically the same as a compound expression but cannot be
evaluated in isolation.
An assignment is evaluated as follows. First the source is evaluated to

yield an n-tuple (where n;;;:.k, k being the number of destination elements).
The last k elements of this n-luple, which we will call the' Source Items, are
then taken in sequence starting from the last and each source item is com
bined with the corresponding destination element (taken in sequence starting
from the first) as follows: .
.(i) If the destination element is a variable the source item becomes the new

value of that variable: .
(ii) .If the destination element is a quasi compound expression the operator

arid operands of this expression are evaluated. The value of the operator
must be a doublet (see section 4.5 'Doublets') and its update routine IS
applied to the concatenation of the source item and the values of the
operands.
The, syntax of quasi compound expression is given below, A further

explanation of this syntaxis given in section 5.2 'Precedence'.
(quasi compound expression) ::= (non-operation ident ifier>(<expression

list»
.~~

BURSTALL AND POPPLESTONE

I (expression?) (operation) (expres-
sion ?) .
I (closed expression ?)
(dot operator * ?)

The syntax of assignments is:
(assignment)::=(expression list>(destination *) I<function definition)

I(macro definition)
(destinations»: = ~ (non-operation identifier) I ~ (quasi compound

expression)
Example:
(assignmenrre.g.i: =x+ 14 Y Iu+ v~a(i,j) I x//y~u~v

In the second example a(i,j) is a quasi compound expression and the whole
assignment is a euphemism for al(u+v, i,j) whereal is the update routine
of the doublet a.
Function definitions and macro definitions are special syntactic forms for

assignments.

5.6. Comments
The word comment and all characters after it up to and including the next

semicolon are ignored.

6. CONDITIONALS

6.1. Conditional expressions
A conditional expression is composed of three components which we will

call the Condition, the Consequent and the Alternative. The condition is an
expression with a single result, a conjunction or a disjunction (see section
6.2 'Conjunctions and disjunctions'). The consequent and the alternative
are imperative sequences each having the same number of results, The
method of evaluation ofa conditional expression is as follows:
The condition is first evaluated. If its value is the truth value true then

the consequent is evaluated and its value becomes the value of the expression.
But if the value of the condition is the truth value false then the alternative
is evaluated and its value becomes the value of the expression.
The alternative of a conditional expression may be omitted if it is an empty

.imperative sequence.'
It will often happen that the alternative is itself a conditional expression.

The syntax of conditionals is arranged to provide a compact notation to
express t\l~s:- .- ''. ' :'.-

(conditional body):: =(imperative sequence)
(conditional expression) :<=if{condition) then <conditionalhotly)

. . - ..<elseif clause *?>'<elseclause .~) close.:6.3 . ". . - - - ... -

PROBLEM-ORIENTED LANGUAGES

(elseif clause)::=elseif (condition) then (conditional body)
(else clause)::=else (conditional body)

Example:
(conditional expression)e .g, : := if x> 0 and x <3 then y elseif x> 3 then z

else 0 close
I if x=O then l-+y close

If there are no elseif clauses the conditional body is the consequent and
the else clause is the alternative (which may be omitted). If there are elseif
clauses then the first expression is the condition, the second is the consequent
and the remainder is the alternative, and it is to be regarded as the conditional
expression obtained by replacing the first elseif by if and inserting an extra
close before the close, e.g.

if p then x elseif q then Jl else z close
is equivalent to

if p then x elseif q then y else z close close.

6.2. Conjunctions and disjunctions
A Conjunction is composed of two component expressions each producing

a single result. The method of evaluating a conjunction is to evaluate the
first component expression and if its value has the truth value false the
value of the conjunction has truth value false, otherwise the second expres
sion is evaluated and the conjunction has a truth volue equal to that of the
second component expression.
A Disjunction is composed of two component expressions each producing

a single result. The method of evaluating a disjunction is to evaluate the
first component expression and if its value has the truth value true the value
of the disjunction has truth value true, otherwise the second expression is
evaluated and the disjunction has a truth value equal to that of the second
component expression.
A number of conjunctions and disjunctions can be combined to form a

condition.
The syntax is: _
(condition):: = (expression) and (condition) I <expression) or <condition)

I (expression)
These three kinds of conditions are respectively a conjunction, a disjunction

and an expression.
Thus and and or associate to the right.

(condition)e.g. ::=x< 10 and xc-O Ix> 10 or x<O Inull(x) Ib
Ip(x) and q(x) or rex)

In the last example the following cases can occur (' - ' means that the expres
sion is not evaluated)

24

BURSTALL AND POPPLESTONB

p(X) q(X) rex) value of condition
false false
true false false false
true false true true
true true true

7. DATA STRUCTURES

7.1. Functionsof data structures
A Data Structure is a compound item which has other items as its Components.
For each class of data structures there is a family of functions called the
Characteristic Functions acting upon structures of that class. These functions
are a constructor, a destructor, selectors and update routines. A given
compound item may represent a number of different data structures by being
used in association with more than one family of functions and hence having
different components.
Given values for its components it is possible to construct a data structure

using a Constructor function, say c.
c E component, ..• , component => data structure

It is possible to select the value of a component of a data structure. For
each component there is a Selector function, say si.

si E data structure => component
It is possible to update a component of a data structure, i.e. to give it a

new value. For each component there is an Update Routine, say ui:
ui E component, data structure =>0

When a data structure is updated the old version is overwritten.
It is convenient to define another function called a Destructor function, say

d,which is the inverse of the constructor, i.e. given a data structure it produces
its components as results.

d e data structure => component, ... , component
After applying the destructor to a structure, the structure is deleted.
There is a relation called equality (see section 2.1 'Simple and compound

items') which may hold between two compound items. It is denoted by the
standard function = (an operation of precedence 7). This function is also
defined for simple items with the usual meaning.

= E item, item => truthvalue
Thus if the value of an expression •EI' is equal to the value of an expression

'E2' then the expression
El=E2

has value true.
25

PROBLEM-ORIENTED LANGUAGES

Equality means that the two compound items contain the same address,
i.e. they point to the same area of store. If the items are not equal they point
to entirely different areas of store. We say that a compound item is Copied
at the Top Level if a new item is formed pointing to a new area of store which
contains items equal to those of the given compound item. The new item
and the previous one are not equa1. They are however Equivalent.
Equivalent compound items are defined as items which are either equal or

all of whose components are equivalent.
Updating an item alters a component item in the store area pointed to by

the item but does not cause copying.
We will now give a more formal explanation of equality, but the model in

terms of addresses and storage may be kept in mind.
Equality is an equivalence relation, i.e. it is
(i) reflexive (x=x);
(ii) symmetric (ifx=y then y=x); and
(iii) transitive (if x=y and y=z then x=z),
It has the following other properties:
(iv) The value of a formal parameter variable is equal to the corresponding

actual parameter.
(v) If an item is assigned to a variable then the value of the variable is

equal to that item.
(vi) An item, other than a word or simple item, which is read in (see section

9.1 'Input') is not equal to any other item.
(vii) The rules for equality of words are given in section 8.6 'Words'.
(viii) Two integers or two reals are equal according to the usual rules of

arithmetic. An integer is never equal to a real.
Items are equal only if their equality follows from the above properties.
We can now state some relationships between the various functions on

data structures. We will use a and b for data structures, xl, ... , xi, '" , xk for
items occurring as components, sl,si, ... ,sk for selectors, u1, "', ui, ... ,uk
for update routines, c for a constructor and d for a destructor.
(i) sl(a), ... , sk(a) is the same n-tuple as d(a), i.e. they have equal

elements.
(ii) si(c(x1, , xi, ... , xk»=xi is true.
(iii) c(sl(x), , sk(x»=x is always false, but the left-hand expression is

equivalent to x.
(iv) After evaluating ui(xi, a),

si(a)=xi is true.
(v) After evaluating ui(si(a), a), a is unchanged.
(vi) Ifa=bthen ui(xi, a) is evaluated, .

si(b)=xiis true and a=b is still true.
(vii) From (i) and (ii) above d(c(xl, ... ,xk» is the same n-tuple as

xl, ... ,xk, i.e. they have equal elements.
If a and b are data structures and a is not equal to b and updating a com-

2()

BURSTALL AND POPPLESTONE

ponent of a also updates some component of b then a and b are said to
Share.
When we wish to discuss a class of data structures which do not all have

the same number of components (such as strips, see section 7.3 'Strips') it is
convenient to define a General Selector function and a, General Update
Routine.
The general selector function, say s, has as arguments, an integer, i, and a

data structure. It selects the ith component of the data structure.
s E integer, 'data structure = component

Thus if si is the ith selector sU, a)=si(a).
Similarly for the general update routine, say u,
u E component, integer, data structure =0

Thus if ui is the ith update routine, u(xi, i, a) has the same effect as
ui(xi, a).
The programmer is able to create new kinds of data structures called records

and strips (see section 7.2 'Records' and 7.3 'Strips'). He can also create
functions by methods already described. He may be able to create other
kinds of data structures using extra standard functions or machine code but
this depends on the implementation. Certain classes of records and strips
are standard and these are described in section 8 'Standard structures'.
There are a number of special expressions called 'structure expressions'

used to construct these standard structures (see section 5.1 'Expressions').
Given a class or several classes of data structures with their associated

functions it is possible to define functions which characterise a new family of
data structures. Suppose for example that we have a class of structures with
two selectors, say s1and s2, and components which are full items and members
of the same class of structures. We can then define a new class of structures
whose selectors are given by:

function sl1 a; sl(sl(a» end; function s12 a; sl(s2(a» end;
function s21 a; s2(sl(a» end; function s22 a; s2(s2(a» end;

If c is the constructor of the first class we define the new constructor:
function cc xl x2 x3 x4; c(c(xI, x2), c(x3, x4» end;

Note that if it is associated with two or more families of functions the same
compound item can represent two or more structures, one of each class.
However, for each class of compound items there is one Primitive Data
Structure Class and other data structures are defined in terms of this primitive
class. A primitive data structure does not share with any other primitive
data structure.

7.2. Records
A Record is a compound item which is a member of a Record Class; Tll~
Size of a set of items is an integer item. If all the items in the set are,restricted

27

PROBLEM-ORIENTED LANGUAGES

to be non-negative integers less than 2n, the size is the integer n, otherwise if
the component is a Full Item (i.e. the set is not restricted) the size is the integer
o. For each component of a record there is a size associated with the set of
possible values of that component. The Specification of a Record is the list
of sizes associated with its components. A record class is a set of records
which all have the same specification, and this is said to be the specification
of the record class. Note that a record class is not an item. A word is associ
ated with each record class.
A family of functions is associated with each record class to form a primi

tive class of data structures. This family comprises a set of selectors (E record
=> component) and a set of corresponding update routines (E component,
record => ()), a constructor (E component, ... , component => record) and a
destructor (E record => component, ... , component). Each selector function
may be paired with the corresponding update routine to form a doublet
(E record ==> component). The standard function recordfns is used to
create a new record class. It requires as arguments the word to be associated
with the record class, an estimate of the number of records in the record
class (this is purely to help in efficient implementation) and the specification
of the record class. It produces the constructor, the destructor and the
doublets for the record class. The number of its results depends on the
length of the specification list. Normally the programmer will immediately
assign these resulting functions to variables.

recordfns E word, integer, specification => constructor, destructor,
doublet, ... , doublet

There is a standard function which converts a record to a list of its com
ponents:

datalist E record => list
There is a function dataword which given a record produces the word

associated with its record class.
dataword E record => word

The function copy copies a record at the top level.
copy E record => record

The functions datalist, dataword and copy are defined over records of any
class, and whenever recordfns is used to create a new record class these three
functions are extended to deal with records of that class.
The routine enddata may be given the word associated with a record class

and removes all records in that class. It also adjusts the three functions just
mentioned so that they no longer deal with that record class.

enddata E word =>0

7.3. Strips
A Strip is a compound item which is a member of a Strip Class. All
components of a strip must have the same size (see section 7.2 'Records'

28

BURSTALL AND POPPLESTONE

for definition of size) which is called the Component Size of the strip. All
strips in a strip class must have the same component size but not necessarily
the same number of components. A word is associated with each strip
class.

A family of functions is associated with each strip class to form a primitive
class of data structures. This family includes a general selector function
(s integer, strip => component) and a general update routine (s component,
integer, strip => 0). The selector function may be paired with the update
routine to form a doublet. It also includes for each strip class an initiator
function (e integer => strip). This constructs a strip with the given number
of components, but the values of these components are not defined. The
initiator may be used with the update function to define a constructor function
for strips of the strip class.
The standard function stripfns is used to create a new strip class. It takes as

arguments the word to be associated with the strip class, an estimate of the
total number of all components of all strips in the strip class (this is purely to
help in efficient implementation) and the component size of the strip class.
It produces as results the initiator function and the doublet for the strip
class:

stripfns e word, integer, size => initiator, doublet

There is a standard function which converts a strip to a list of its com
ponents. This is datalist (see section 7.2 'Records'). There is a function
which given a strip produces the word associated with its strip class. This
is dataword (see section 7.2 'Records').
The function copy copies a strip at the top level (see section 7.2

'Records').
The functions datalist, dataword and copy and the routine enddata act for

strips just as for records.

7.4. Garbagecollection
Storage for the construction of data structures is made available by a storage
control system. This system must be able to make use of areas of store which
have been used but are no longer required. This is achieved by a process
known as Garbage Collection which is undertaken whenever the system runs
short of store. This first of all discovers what items can still be referred to
by the programmer, e.g. because they are the value of a variable whose
extent has not finished (see section 3.2 'Declaration and initialisation'). Any
items which can no longer be referred to are destroyed, i.e. their storage area
is returned to the system for use in constructing other items. Since he cannot
refer to them the programmer is not aware of this destruction.
If variables refer to compound items which are no longer in use, the garbage

collector cannot recover the associated storage. The. variable should be
reset, e.g. to zero. In the case of identifiers the identifier can be cancelled
(see section 3.3 'Cancellation').

29

PROBLEM-ORIENTED LANGUAGES

To avoid too frequent garbage collection compound items can be deleted,
i.e. returned to the storage control system, using the standard routine:

delitem E item => ()

When an item is deleted its components are not deleted.
After an item has been deleted it is no longer available and the onus is on

the programmer not to use it.. The implementation may not give an error
message if he does use it, the value simply not being defined.

8. STANDARD STRUCTURES

8.1 . References
There is a standard record class called References. These have one com
ponent which is a full item. The word associated with the class is "ref".
Thus before entry to the POp-2system this class is created using recordfns,
and the resulting functions are assigned to variables to give the following
standard functions:

constructor: consref E item => reference
destructor: destref E reference => item
doublet: cont E reference ==> item

A reference may be used e.g. as an actual parameter of a function to
enable the function to cause side effects by updating the reference.

8.2. Pairs
There is a standard record class called Pairs. Records of this class have two
components which are both full items. The word associated with the class
is "pair". Thus before entry to the pop-2 system this class is created using
recordfns, and the resulting functions are assigned to variables to give the
following standard functions:

constructor: conspair E item, item =>pair
destructor: destpair E pair => item, item
doublets: front, back all Epair ==> item

An Atom is an item which is not a pair. Atoms are recognised by the
standard function atom.

atom E item => truthvalue

8.3. Lists
There is a standard data structure called a Link which is used to construct

another data structure called a List. Lists in pop-2 include structures
analogous to LISP lists, but also structures which compute the elements
dynamically (cr. P. J. Landin's 'streams').
The word "nil" is used to represent the Null List and the standard variable

30

BURSTALL AND POPPLESTONE

nil takes this value on entry to the pop-2 system. The null list is also repre
sented by a pair whose front is true and whose back is a function.
The standard function null recognises the null list
null E list => truthvalue

A list is either the null list or it is a link,
A link is either:
(i) a pair whose front component is any item and whose back component

is a list, or
(ii) a pair whose front component is false and whose back component is a

function with no arguments and one result.
In case (if) the function is one which when repeatedly applied produces

a succession of items, not necessarily all the same, i.e. normally the function
will side-effect itself. The last item produced should be the terminator. For
example this enables us to convert an input file to a list. Lists with this sort
of link are dynamic and some or all of their elements are computed rather
than stored statically.
The characteristic functions of a link are:
constructor: cons E item, list => link
destructor: dest E list => item, list
doublets: hd E link = => item

tl E link == => item
(called the 'head')
(called the 'tail')

These functions are very similar to those for pairs, but in the case of a link
of the second kind special precautions are taken to make sure that on applying
the selector tl the front component is not lost but preserved in a pair. Thus
if x has a list as its value and tl(x) is evaluated there is a side effect on x,
but matters are so arranged that this side effect is not detectable using the list
processing functions. The function cons is the same as conspair and produces
a link of the first kind. The following standard function produces a link of
the second kind or the null list given a function of no arguments:

fntolist E (0 => item) => list
function fntolist I: cons(false,j) end

The other characteristic functions are defined as follows:
First an auxiliary function (not standard) to convert the first link of a

dynamic list to static form.
function solidified 1; vars f x;

if isfunc(back(l»
then back(l)-+f;fO -+ x;
if x= termin then true-vfrontti')

else x-sfront (I); conspair(false,j)-+back(/)
close; I

else 1
close

end;
31

PROBLEM-ORIENTED LANGUAGES

function hd I; front(solidified(T)) end;
lambda l I; i+frontisolidlfiedil) end-tupdater(hd);

function tl l; back(solidified(l) end;
lambda i I; i-tback(solidified(/» end-tupdater(tl);.
function dest I; vars f;
if isfunctbackil) then back(/)-tf; (fO,/)

else (front(/),back(/»
close

end;
function null I;
if I=nil then true
elseif isfuncibackil)
then if hd(/) or null(solidified(I» then true else false close

else false
close

end;
A list may have no components (if it is the null list) or one or more (if it

is a link).
If it is a link its first component is the head component of the link and its

remaining components are the components of the list which is the tail
component of the link. Thus the characteristic functions for lists can be
defined in terms of those for links.
There are two special syntactic forms for constructing lists. These are

list constants and list expressions. List constants may have lists, integers,
reals, words or strings (see section 8.4 'Full strips and character strips') as
components. The list is constructed at compile time.

(list constant brackets):: =[I]
(list constant):: = [(list constant element *?)]
(list constant element):: =(list constant) I (character group)

Example:
(list constant)e.g.:: =[I 2 DOG CAT] I [[I 2] [4 5] 6]

List expressions are formed by evaluating a number of expressions at run
time and constructing a list.

(list expression brackets):: =[% I %]
(list expression):: =[%(expression list) %]

Thus
[% %fis equivalent to nil
and [% <expression) %] is equivalent to cons«expression), nil)
and [% <expression), (expression list) %] is equivalent to
consicexpressiony, [%(expression list) %D

Example:
(list expression)e.g.::=[%x+l, [%x+2, x+3%], tl(y)%]

32

BURSTALL AND POPPLESTONE

For convenience the following functions are standard:
next E list-e-item, list (similar to dest but non-destructive)
: :(a synonym for cons but an operation of precedence 2)(> E list, list=» list (concatenates the lists, an operation of precedence 2).

8.4. Full strips and character strips
Two strip classes are standard.
The first is Full Strips with full items as components and associated word

"strip". The characteristic functions are:
initiator: init E integer ~ full strip
doublet: subscr E integer, strip = => item
The second is Character Strips (also called 'Strings') (for characters see

section 8.6 'Words') with component size 6 and associated word "cstrip", The
characteristic functions are:
initiator: initc E integer => character strip
doublet: subscrc E integer, strip ==> integer of size 6
The components of a character strip may be any integers of size not more

than 6, they need not necessarily be used to represent characters.
There is a structure constant to construct character strip constants at

compile time.
(string bracket>::= / I -,
(string constant):: =/(string constant element .••?)"
(string constant element):: =(string"constant) I (any character except

a string bracket)
Example:
(string constant)e.g.: :=/ ...rubbish. please type / sorry" -,

Spaces and newlines are significant in string constants.
There are functions to input and output character strings stored as charac

ter strips (see section 9.1 'Input and output'). The external format is as for
string constants.

8.5. Arrays
Arrays give a convenient method of accessing and updating structures indexed
by integers. An array has components, which are items of a given size. Each
component is associated with a sequence of integers called Subscripts. The
number of subscripts is known as the number of Dimensions of the array.
An array is a doublet:

array E subscript,subscript = => component
This is in contrast to strips which have a general selector and a general

update routine associated with a whole class of strips and take the actual
strip referred to as a parameter. Arrays can be formed from strips (or from
other data structures) by using partial application. The programmer is free

33

PROBLEM-ORIENTED LANGUAGES

to do this in any way he chooses but standard functions for creating arrays
are provided.
There is a standard function to create a many dimensional array of items

of any size. Updating a component of this array does not affect any other
component. This function is:

newanyarray E boundslist, (subscript, ... ,subscript => component),
strip initiator, strip doublet => array

The array produced will normally be immediately assigned to a variable.
The boundslist is a list of integers, these two integers being alternately the

lower and upper bounds for each subscript. The second parameter is a
function used to initialise the components of the array. It must produce the
appropriate component for each combination of subscripts. The strip doublet
and strip initiator are the characteristic functions of a strip class whose
components are of the same size as that required for the array components.

There is also a standard function to create arrays of full items:
newarray E boundslist, (subscript, ... ,subscript => component) => array

This is obtained by partial application and is equivalent to
newanyarray (% init, subscr %).

8.6. Words
There is a standard record class called Words. It has 8 components of size 6
called Characters, and a component called the Meaning. The word associated
with the record class is "word". The standard functions characterising words
are:
constructor: consword E character, ... , character, integer => word
destructor: destword E word => character, "', character, integer, item
doublets: charwordEword ==> character, ... ,character, integer

meaning E word ==> item

Each character of the pop-2 character set corresponds to a unique integer.
The correspondence rule depends on the implementation. Note that the
functions above are variadic and work on a variable number of characters
followed by that number as an integer. If there are less than 8 characters
supplied to the constructor the remaining character components are not
defined and they are not produced by the destructor or selector. The
constructor does not take a meaning component as argument. The meaning
of a word is undefined unless the word has been updated to have a particular
meaning.
Words may occur in the program as quoted words, i.e. word constants,

with the following syntax:
(unquoted word)::=(letter) (alphanumeric .•.?) I (sign .•.)

I (decorated bracket) I (bracket decorator)
I (separator) I (period) I(exponent) I (quote)

34

BURSTALL AND POPPLESTONE

<decoratedbracket):: =(I) I (% I %)
I[I] I [% I %]

<quotedword) ::="<unquoted word) 1/

Example:
<quotedword)e.g.:: = "big" I "+ +" I" %)" I """

Words may also occur as components of constant lists (see section 8.3
'Lists'). Only the first 8 characters are significant.
Words may also be read as data (see section 9.1 'Input'). Words which

occur as constants or are read as data are Standardised, i.e. if a word with the
same characters already exists no new word is constructed and the compound
item produced is the previously existing word, but if no such word exists a
new word is constructed with undeJas its meaning. Words constructed using
consword are also standardised, but the update routines do not standardise.

8.7. Functions
Functions are compound items. There is no constructor or destructor for
functions. They can be constructed by the methods described in section 4.1
'Definition of functions', and they can be deleted by the routine delitem
(see section 7.4 'Garbage collection'). There is a family of characteristic
functions associated with the class of functions to form a primitive class of
data structures.

Functions have an accessible component which may be used to associate
extra information with the function. It is accessed by the standard doublet

Jnprops Efunction =~ item
Functions have an update routine (see section 4.5 'Doublets'). For a

function constructed by using lambda or function or routine this has initially
no defined value. This component may be selected or updated by using a
standard doublet:

updater E junction =~routine
Closure functions i.e. those constructed by partial application, have a

doublet to select or update the values of their frozen formals
jrozval E integer, closureJunction=~item

The integer determines which of the frozen formal values is affected,
counting from the front (if a closure function is obtained by successive partial
applications only the formals frozen by the last one are counted). There is
also a doublet to select the function from which the closure function was
constructed or replace it with another function.

Jnpart E closureJunction =~Junction
The standard function = follows the usual rules for compound items when

applied to functions, i.e. equality is preserved over assignment, updating
and actual parameter/formal parameter correspondence but each construction
of a function produces a different one.

35

PROBLEM-ORIENTED LANGUAGES

The following standard function recognises functions:
isfunc E item => truthvalue

9. INPUT AND OUTPUT

9.1. Input
Information which is input to the pop-2 system is organised into Files, each
of which comes from a Device.
Before a file can be accessed it must be Opened. From then on it can be

read one character at a time. Eventually it must be Closed.
The naming of files and devices depends on the operating system of the

implementation. The names of files are lists and the names of devices may
be any item. A device name may refer to more than one device.
There is a standard variresult function popmess used for communicating

with the operating system
popmess E list=>item, .. , item

This is used for various input and output purposes.
To open a file from a given device,popmess is used to produce a function to

read characters from it i.e. a function E O=>character. The list supplied to
popmess has a head which is an input device name and a tail which is a file
name.
To close a file before reaching the end of it, popmess is again used. The

list supplied to it has a head which is the word "close" and a tail which is a
list of one element: a character reading function obtained when the file was
opened. No result is produced by popmess in this case.
The sequence of characters making up a pop-2 text may be split up into

Character Groups each of which represents a Text Item. A text item is either
an integer, a real, a word or a string. It is represented by a character group,
thus:

(character group):: =<integer) I (real) I <unquoted word)
I (string constant)

Character groups are terminated by spaces or newlines where necessary to
separate them from the following character group.
There is a standard function to convert a function which produces a

character whenever it is applied into a corresponding one which produces a
text item whenever it is applied.

incharitem E (0 => character) => «1) text item)
The program is input on a standard file called the Standard Input File from a

standard device called the Standard Input Device. There is a standard func
tion to read characterx from the standard input file:

charin EO=> character
36

HURSTALL AND POPPLESTONE

The program is compiled from the text item list which is the value of the
standard variable proglist. Initially this has as value the list of text items
from the standard input file. It may be assigned to by the programmer who
wishes to compile from a different source.

For convenience there is a standard function itemread producing the next
item of the list which is the value of proglist.

itemread EO=> text item

It is defined thus:-
function itemread; proglist . dest ~ proqlist end;

9.2. Output
Information which is output from the pop-2 system is organised into files,
each of which is sent to a device (see section 9.1 'Input').
To open an output device the standard function popmess (see Section 9.1

'Input') is used to produce a routine to deliver characters to it i.e. a routine
E character =>O. The list supplied to popmess has a head which is an output
device name and a tail which is a file name.
There is a standard function to convert a routine which delivers a sequence

of characters to an output file into one which delivers a sequence of text
items.

outcharitem E (character => 0) => (text item => 0)
Compiler messages and results of computation are normally output on a

standard file called the Standard Output File to a standard device called the
Standard Output Device. There is a standard routine to output characters to
the standard output file:

charout E character =>0
There is a standard variable cucharout which contains the routine to output

characters to the Current Output File. This contains initially the routine for
the standard output file but it may be assigned to if a different output file
is to be made current. An output file is closed by outputing the terminator.
There are standard routines to output spaces or newlines to the current

output file:
sp E integer => 0
nl E integer =>0

There is a standard function which outputs any item to this file in some
suitable format and produces that item unchanged as its result.

print E item => item

There is a standard macro which uses print and causes the items on the
stack starting at the bottom to be printed on a newline preceded by two
asterisks. These items are removed from the stack. In a function body only
the top item of the stack is affected. This macro is denoted by the pop-2

37

PROBLEM-ORIENTED LANGUAGES

identifier => (not to be confused with the => used in this manual to show the
type of functions). A semicolon is implied before and after so that immediate
evaluation can occur (see section 11.1 'Immediate evaluation').

10. MACHINE CODE

It is possible to insert sections of machine code in an imperative sequence.
The rules depend on the implementation. A code instruction is represented
by the identifier $ followed by any sequence of characters which do not
include' ;'

(code instruction):: =$(any sequence of characters other than ;)

11. MODES OF EVALUATION

11.1. Immediate evaluation
A pop-2 program consists of a sequence of imperatives and cancellations:

(program element):: =(imperative) I (cancellation)
(program):: =(program elementt); (program)

The program elements are evaluated in sequence in the same way as an
imperative sequence. Each program element is evaluated as soon as the
terminal semicolon and a space has been read by the compiler. The body of
any function in the program element will be compiled and kept so that it may
be evaluated when that function is applied.

11.2. Macros
A Macro is a routine which is applied at compile time.

The definition of a macro routine is similar to that of any other routine
except that macro is used instead of routine and no formal parameters are
allowed.

(macro definition):: =macro (identifier); (function body) end
A macro, like an operation, is applied whenever it is mentioned and does not
need parentheses after it.
Although a macro has no parameters the function itemread (see section

9.1 'Input') may be used to read the text items following the macro identifier.
There is a standard routine which, when applied in a macro body to a list of
text items, concatenates these items to the right of the macro identifier in
the program sequence of text items.

macresults e text item list =>0
If it is applied more than once it concatenates to the right of the previously

inserted items. On' exit from the macro the inserted text items are evaluated
as program.

38

BURSTALL AND POPPLESTONE

Example:
macro - ~; vars x y; itemread ~ x; itemread ~ y;

macresults ([% "~", y, "~", x%])
end;
7//2 -~q r;

This is the same as 7//2~r~q;
The correspondence between a list of text items and pop-2 program is as

follows. Syntax words, identifiers and unquoted words are represented by
corresponding words in the list. A quoted word is represented by a word
with the word quote (consisting of the character quote) before and after it in
the list. Integers and reals are represented by integers and reals. String
constants are represented by strings.

11.3. Evaluation of program text
A standard function popvaZ is provided which will evaluate a list of text
items treating it as a pop-2 imperative sequence. The sequence is evaluated
immediately. It may contain function definitions and assignments to current
variables. Any declarations in it which are not in a function body are global.
The list must terminate with the word goon. For the correspondence between
a list of text items and pop-2 program see section 11.2 'Macros'.

The result of the application of popvaZ is the result of evaluating the
imperative sequence.

popvaZE text item list => item, ... , item
Note that popval is used to evaluate an imperative sequence at run time and

the list of text items may have been produced as the result of computation.
It may temporarily affect the standard variable proqlist (see section 9.1 'Input').

Example:
I ~ a; popval([vars x; a+2 ~ x; x*x goon]) =>
**9

The standard routine setpop may be applied in the imperative sequence.
This restores the system to execute mode. The stack is cleared. The variable
currently associated with any identifier is not altered. After setpop has been
applied the rest of the imperative sequence is ignored and all function bodies
currently being evaluated are abandoned. The system then evaluates the
next program element. setpop may also be applied in a function body.

setpop EO=> 0

ACKNOWLEDGMENTS
This language is a development ofR. J. Popplestone's 'pop-I' programming

language (see the paper in this volume). The debt to the ALGOL, LISP, CPL and
39

PROBLEM-ORIENTED LANGUAGES

ISWIM programming languages should be obvious. We are indebted to a
number of people in this department and elsewhere for helpful discussion
and criticism, to Dr David Park who contributed to discussion of the storage
control scheme and to Mrs Margaret Pithie and Miss Eleanor Kerse who
typed this report. Mr M. Healy kindly pointed out a number of errors and
obscurities in a draft. .
The work has been undertaken on a grant from the Science Research

Council under the supervision of Dr D. Michie, whose encouragement has
been invaluable.

TECHNICAL TERMS

actual parameters: 4.2
alternative: 6.1
applied: 4.2
assignment: 5.5
atom: 8.2
body: 4.1
character groups: 9.1
character strips: 8.4
characteristic functions:

7.1
characters: 8.6
closed: 9.1
component size: 7.3
components: 7.1
compounds: 2.1
compound expression: 5.1
concatenated: 4.2
condition: 6.1
conjunction: 6.2
consequent: 6.1
constant: 5.1
constructor: 7.1
copied at the top level: 7.1
currently associated: 3.1.

3.2
data structure: 7.1
declaration: 3.2
destination list: 5.5
destructor: 7.1
device: 9.1
dimensions: 8.5
disjunction: 6.2
doublet: 4.5
entry: 4.2
equivalent: 7.1
exit: 4.2
expression: 5.1
extent: 3.2
false: 2.4
files: 9.1
formal parameter list: 4
formal: 3.2
frozen formals: 4.4

SYNTAX DEFINITIONS
alphanumeric: 3.1
assignment: 5.5
binary digit: 2.2
binary integer: 2.2
bracket decorator: 1.4
bracket: 1.4
cancellation: 3.3

INDICES

frozen value list: 4.4
full item: 7.2
full strips: 8.4
function: 4.4
garbage collection: 7.4
general selector: 7.1
general update routine: 7.1
global declaration: 3.2
global: 3.2
goto statement: 5.4
hole in the extent: 3.2
identifier: 3.1
imperative expression: 5.3
imperative sequence: 5.3
initialisation: 3.2
items: 2.1
label: 5.4
lambda expression: 4.1
link: 8.3
list: 8.3
local declaration: 3.2
local: 3.2
macro: 11.2
meaning: 8.6
n-tuple: 4.2
nonlocal: 4.3
null list : 8.3
number: 4.6
opened: 9.1
operands: 5.1
operation: 3.2
operator: 5.1
output local list: 4.1
output local variable: 4.2
pairs: 8.2
partial application: 4.4
primitive data structure

class: 7.1
program device: 9.1
program file: 9.1
protected: 3.2
quasi compound expres

sion: 5.5

closed expression: 5.1
code instruction: 10.0
compound expression: 5.1
condition: 6.2
conditional body: 6.1
conditional expression: 6.1
constant: 5.1

41

record class: 7.2
record: 7.2
references: 8.1
results device: 9.2
results file: 9.2
results: 4.2
routine: 4.1
running: 4.2
scope: 3.2
selector: 7.1
share: 7.1
simple expression: 5.1
simple: 2.1
size: 7.2
source items: 5.5
source: 5.5
specification of a record:

7.2
stack: 5.3
standard function: 3.2
standard variable: 3.2
standard input device:
9.1

standard input file: 9.1
standard output device:

9.2
standard output file: 9.2
standardised: 8.6
strip class: 7.3
strip: 7.3
structure constant: 5.1
subscripts: 8.5
text item: 9.1
top of the stack: 5.3
true: 2.4
truthvalues: 2.4
unique name: 3.2
update routine: 7.1
value: 3.1
variable: 3.1
variadic: 4.2
variresult: 4.2
words: 8.6

decimal integer: 2.2
declaration list element: 3.2
declaration: 3.2
decorated bracket: 8.6
destination: 5.5
digit: 1.4
dot operator: 5.1

INDICES

else clause: 6.1
elseif clause: 6.1
exponent: 1.4, 2.3
expression list: 5.1
expression: 5.1
formal parameter list
element: 4.1

formal parameter list: 4.1
function body: 4.1
function definition: 4.1
function: 4.1
goto statement: 5.4
identifier: 3.1
imperative sequence: 5.3
imperative: 5.3
integer: 2.2
label: 5.4
labelled statement: 5.4
lambda expression: 4.1
lambda: 4.1

letter: 1.4
list constant brackets: 8.3
list constant element: 8.3
list constant: 8.3
list expression brackets: 8.3
list expression: 8.3
macro definition: 11.2
non-operation identifier: 5.1
octal digit: 2.2
octal integer: 2.2
operation: 5.1
output local list: 4.1
output local list element:

4.1
parentheses: 5.1
partial application: 4.4
period: 1.4
program element: 11.1
program: 11.1

STANDARD FUNCTIONS AND VARIABLES

quasi compound expression:
5.5

quote: 1.4
quoted word: 8.6
real: 2.3
restriction: 3.2
restrictor: 3.2
separator: 1.4
sign: 1.4
simple expression: 5.1
statement: 5.3
string bracket: 8.4
string constant element: 8.4
string constant: 8.4
string quote: 1.4
structure constant: 5.1
structure expression: 5.1
sub ten: 1.4
unquoted word: 8.6

<: 4.6 destref: 8.1 newanyarray: 8.5
): 4.6 destword: 8.6 newarray: 8.5
=<:4.6 enddata: 7.2 next: 8.3
)=: 4.6 fnpart: 8.7 nextchar: 9.1
+: 4.6 fnprops: 8.7 nl: 9.2
-: 4.6 fntolist: 8.3 not: 2.4
*: 4.6 front: 8.2 null: 8.3
[: 4.6 frozval: 8.7 outcharitem: 9.2
t :4.6 hd: 8.3 outitem: 9.2
1/2.2 incharitem: 9.1 par/apply: 4.4
=:2.1, 7.1 init: 8.4 popmess: 9.1
=?: 9.2 initc: 8.4 popval: 11.3
:: : 8.3 intadd: 2.2 print: 9.2o. 8.3 intgr: 2.2 proglist: 9.1array: 8.5 intgreq: 2.2 realadd: 2.3atom: 8.2
back: 8.2 intle: 2.2 realdiv: 2.3

booland: 2.4 intleeq: 2.2 realgr: 2.3

boolor: 2.4 intminus: 2.2 realgreq: 2.3

charin: 9.1 intmult: 2.2 realle: 2.3
charout: 9.2 intof: 2.3 realleeq: 2.3
charword: 8.6 intplus: 2.2 rea/mult: 2.3
closefile: 9.1 intsign: 2.2 realminus: 2.3
cons: 8.3 intsub: 2.2 realof: 2.3
conspair : 8.2 iscompnd: 2.1 realplus: 2.3
consref: 8.1 isfunc: 8.7 rea/sign: 2.3
consword: 8.6 isinteger: 2.1 realsub: 2.3
cant: 8.1 isreal: 2.1 recordfns: 7.2
copy: 7.2 itemread: 9.1 setpop: 11.3
cucharout: 9.2 logand: 2.2 sp: 9.2
datalist: 7.2 lognot: 2.2 stripfns: 7.3
dataword: 7.2 logor: 2.2 subscr: 8.4
delitem: 7.4 logshift: 2.2 subscrc: 8.4
dest: 8.3 macresults: 11.2 tl: 8.3
destpair: 8.2 meaning: 8.6 updater: 8.7

42

INDICES

SYNTAX WORDS
:: 5.4
~: 5.5
=<>: 4.1
and: 6.2
cancel: 3.3
close: 6.1
else: 6.1

elseif: 6.1
end: 4.1
function: 3.2
goto: 5.4
if: 6.4
lambda: 4.1
macro: 11.2

nonop: 5.1
operation: 3.2
or: 6.2
return: 5.4
routine: 4.1
then: 6.1
vars: 3.2

43

POP-2 Papers: Introduction and Reference Manual
R. M. Burstall, J. S. Collins and R. J. Popplestone

The Department of Machine Intelligence and Perception of the University of
Edinburgh has developed POP-2 a programming language for a wide range of
computer applications, with special emphasis on non-numerical work.

POP-2 has been designed for on-line use, varying from simple 'scratch-pad'
calculations to the solution of problems where complex data structures must be
processed. It has been used as a tool for the Department's researchwork in
machine intelligence on topics such as heuristic problem solving, theorem proving
and conversational question answering. Advanced features include immediate
execution of expressions,a record processingschemewhich allows list processing
asa special case, 'dynamic' lists and a full treatment of functions. The language,
following the CPL and ISWIM languages, has powerful facilities for creating and
operating on functions. Consistent use of this basic concept has enabled the
language to be simple and easy to learn.

The 'Introduction to POP-2' explains the elementary features of the language
assuming little or no knowledge of programming. For the more experienced
reader it will also serve as a useful preface for the more formal exposition of the
'ReferenceManual'. The latter contains a complete definition of the languagewith
full indices of technical terms,syntax definitions and standard functions.

In an editorial article on artificial intelligence Nature said, '•.. the field on which
the group at Edinburgh is embarked has the most exciting promise. Enough has
already been done ..• to demonstrate the great interest of attempts to use com
puters for tasks other than wooden and repetitive arithmetic ... there is the real
prospect that everybodywill be stimulated and improved by work of the kind now
being undertaken:

Theauthorsaremembersof the Departmentof Machine IntelligenceandPerception,
University of Edinburgh.

Published by Oliver & Boyd Ltd. Tweeddale Court 14 High Street Edinburgh 1

. Net Price 21s.

