COMPUTATIONAL
PROBLEMS IN
ABSTRACT ALGEBRA.

Proceedings of a Conference held at Oxford
under the auspices of the Science Research Council
Atlas Computer Laboratory, 29%th August to 2nd September 1967

EDITED BY

JOHN LEECH

Reader in Computing Science,
Stirling  University

WITH A FOREWORD BY
DR. J. HOWLETT
Director, SR.C. Atlas Computer Laboratory

#

&

PERGAMON PRESS

OXFORD « LONDON + EDINBURGH + NEW YORK
TORONTO . SYDNEY . PARIS . BRAUNSCHWEIG



Pergamon Press Ltd., Headington Hill Hall, Oxford
4 & 5 Fitzroy Square, London W.I
Pergamon Press (Scotland) Ltd., 2 & 3 Teviot Place, Edinburgh 1
Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford,
New York 10523
Pergamon of Canada Ltd., 207 Queen’s Quay West, Toronto 1
Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street, Rushcutters Bay,
N.S.W. 2011, Australia
Pergamon Press-S.A.R.L., 24 rue desEcoles, Paris ¢
Vieweg & Sohn GmbH, Burgplaiz 1, Braunschweig

Copyright € 1970
Pergamon Press Ltd.

All Rié;hts Reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in

any trm or by any means, electronic, mechanical, photo-

copymg, recording or otherwise, without the prior permission
of Pergamon Press Ltd.

First edition 1970

EVK

Y \\ .o
N/ R

s,

Library of Congress Catalog Card No. 75-84072

Printed in Hungary

08 0129757

Contents

Foreword vii
Preface
J NEUBUSER : Invedigdions of groups on computers !
J. LEECH: Coset enumeration 21
C. M. caweseLL: Some examples using cosgt enumeration 37
N. S. MENDELSOHN:  Defining relations for subgroups of finite index of

groups with a finite presentation 43
M. J. Dunwoopy: Nielsen transformations 45

H. JUrGENSEN: Calculation with the elements of a finite group given by
generators and defining relations 47

V. FELSCH and J. NeuBUseR: On a programme for the determination
of the automorphism group of a finite group 59

L. Gernarps and E. ALTMANN: A computational method for determin-
ing the automorphism group of a finite solvable group 61

W. Linoeneerc and L. GERHARDS : Combinatorial construction by
computer of the s8 of dl subgroups of a finte group by compos-
tion of partial sets of its subgroups 7

K. FERBER and H. JURGENSEN: A proganme  for the drawing of lattices 83

J. McKAY: The construction of the character table of a finite group

from generators and relations 89
C. BrotT and J. NEUBUSER: A programme for the calculation of char-

acters and representations of finite groups 101
J S Rave: The dhaadters of the Weyl goup Es 111
R. BisLow and J. NeuBUSER : On some applications of group-theoretical

programmes to the derivation of the crystal classes of Ry 131

M. HiLL ®. : A ssarch for Smple goups of order less then one million 137
C. C Sws : Computationd methods in the sudy of pamutdion groups 169

v



Vi Contents

E. Krause and K. WESTON: An agorithm related to the restricted

Burnside group of prime exponent 185
A. L. TrITTER: A module-theoretic computation related to the Burn-
side problem 189
J. J. CaNNov:  Some combinatorial and symbol manipulation pro-
grams in group theory 199
P. G. Ruup and R. Keown: The computation of irreducible representa-
tions of finite groups of order 2%, n < 6 205
N. S. MENDELSOHN: Some examples of man-machine interaction in
the solution of mathematical problems 217
R. J. PLEMMONS. Construction and analysis of non-equivalent finite
semigroups 223
T. TAMURA: Some contributions of computation to semigroups and
groupoids 229
D. E. KNUTH and P. B. BENDIX: Simple word problems in universa
algebras 263
L. J Paigr: The application of computers to research in non-associative
algebras 299
C. M. GLENNIE: ldentities in Jordan algebras 307
A. D. KEEDWELL: On property D neofields and some problems con-
cerning orthogonal latin squares 315
J. W. P. HIRSCHFELD: A projective configuration 321
W. D. MAURER: The uses of computers in Galois theory 325
J. H. ConwAY: An enumeration of knots and links, and some of their
algebraic properties 329
H. F. Trorter:  Computations in knot theory 359
S. LiN: Computer experiments on sequences which form integral
bases 365
H. CoHN: Application of computer to algebraic topology on some
bicomplex manifolds 371
H. ZASSENHAUS. A redl root calculus 383
R. E. KaLMAN : Some computational problems and methods related to
invariant factors and control theory 393

List of participants 399

Foreword

IF the dectronic digital computer has not aready virtualy taken over the

world’'s arithmetic it will have done so before long. This remarkable
success sory  in the field of applied mathematics-much of it very simple
mathematics, admittedly, such as cost calculations-contrasts strongly

with the machine's very moderate impact so far on pure mathematics.

Obvious economic considerations account for much of this difference:
no one can be surprised that the need to optimize the design of a nuclear

power reactor or to develop a stores holding and purchasing strategy for a
large factory provides more economic drive than, say, the properties of the
partition function. But this can hardly apply in a university environment,
where the pure mathematicians have as much right to the central comput-

ing service as anyone else. The explanation must be the great difficulty of
the problems; the machine offers great powers of logical processing, of
which arithmetic is only a small and not very interesting part, but it is far
from clear how these can be used in the service of anything that can be

caled genuine mathematics.

However, work has in fact been going on in various fields of pure
mathematics ever since computers became available. Professor Douglas
Munn, surveying the scene from the point of view of an algebraist, decided
in 1966 that enough had been done on the application of computers to
abstract algebra to warrant the holding of an international conference,
to assess what had been achieved and to identify promising lines of future
research. A frequent visitor to the Atlas Laboratory, he talked about this
with me and my colleague Dr. Robert Churchhouse, and after very little
discussion we found ourselves agreeing that the time was indeed right for
such a conference, that Oxford would be an admirable location and that
the Atlas Laboratory should organize it. We approached Professor Graham
Higman who immediately and enthusiastically agreed to give his support;
and with equal immediacy and enthusiasm had Professor Coulson’s
permission to hold the conference in Oxford’s beautiful new Mathematics
Ingtitute.

The success of the meeting must be judged from the quaity of the papers,
reproduced in this volume. | want to record my gratitude to the Science
Research Council, who allowed me to meet some of the expenses from
Atlas Laboratory funds, and to I.C.T. Limited for generous financia
support: jointly, they made it possible to hold the conference. The staff
of the Mathematics Institute were as helpful and welcoming as anyone

vii




viil Foreword

could ever be, Mr. C. L. Roberts and the staff of the Atlas Laboratory
Administration Group ensured that the mechanics went without a hitch
and the whole of the general organization was carried out with great
efficiency by Miss Synolda Butler. | am most grateful to them al, and to
Pergamon Press for undertaking the publication of the Proceedings. and
finaly, to Mr. John Leech for so willingly agreeing to be Editor.

J. HOWLETT

Preface

Dr. HowLeTT has described the genesis of the Conference; here | need
only describe the compilation of this volume of Proceedings. Speakers at
the Conference were invited to deliver manuscripts at or soon after the
Conference, and this volume is based on these manuscripts, substantially
as received. Most authors prepared their papers without reference to the
papers of other authors. This has the result that their notation is not uni-
form and there are overlaps, no attempt has been made to coordinate
papers in this respect. So each paper is a substantially independent account
of its topics, and is capable of being read without reference to other
papers. Readers may find it an advantage to have different authors
accounts where these overlap. A disadvantage, however, is that cross
references between papers in this volume are far from complete; the
reader of a paper may check which other papers in the volume are also
relevant.

The sequence of papers in this volume is based on that of the lectures
at the Conference, with minor changes; the large body of papers on group
theory are placed first, beginning with Dr. Neubiiser’s comprehensive
survey, and subsequent papers are placed in roughly the order of distance
of the subject from group theory. To complete the record of the Conference,
| add that Mr. M. J. T. Guy and Professors D. G. Higman, W. 0. J.
Moser, T. S. Motzkin and J. L. Selfridge also delivered lectures at the
Conference, but did not submit manuscripts for publication; this accounts
for afew allusions to topics absent from this volume. The correspondence
between the subject matter of the other lectures and the present papers is
not always close. Professor Mendelsohn's first paper is based on points
made in discussion and not on a lecture of his own, while the paper by
Professors Krause and Weston was not presented at the Conference.
A bibliography on applications of computers to problems on algebra was
prepared by Dr. Dénes and distributed at the Conference; this is not
reproduced here as al relevant items have been included by Dr. Neubiiser
in the bibliography to his survey paper.

The editoria policy has been that the subject matter and style of papers
are wholly the responsibility of the authors. Editing has been confined to
points of typography, uniformity of style of references, divisions ofpapers,
etc., and, at the request of certain authors whose native language is not
English, some minor changes of wording. (This is a refined way of saying
that | have done as little as | could get away with.)

IX



X Preface

I am indebted to the authors for their co-operation in producing this
volume, to Dr. Howlett for contributing the Foreword, to the S.R.C.
Atlas Computer Laboratory for a Research Fellowship during the tenure
of which much of the work of editing was done, and to the University of
Glasgow for leave of absence both to attend the Conference and to accept
the Research Fellowship. It is aso a pleasure to acknowledge the co-opera-
tion of the publishers, Pergamon Press, and it is through no fault of theirs
that events such as the devaluation of British currency (which necessitated
a change of printers) have conspired to delay the appearance of this volume.

JOHN  LEECH

I nvestigations of groups on computers

J. NEUBUSER

1. Introduction. In this paper a survey is given of methods used in and
results obtained by programmes for the investigation of groups. Although
the bibliographies [De 1] and [Sa 1,2,3] have been used, among other
sources, no claim for completeness can be made for two reasons, that
some publications may have been overlooked, and that the conference
itself has shown once more that there are many activities in this field which
are not (yet) covered by regular publications.

1.1. Papes and progranmes have not been included if their main objec-
tive is something different from the study of groups, even if groups play
some role in them. Four particular cases of this kind may be mentioned.

1.1.1.  Combinatorid problems deding with things like generation of
permutations, graphs, orthogona lain squares, projective planes, block
designs, difference sets, and Hadamard matrices. For most of these topics
surveys are available, e.g. [Ha 1, 4; Sw 1],

13. 2. Theorem-proving programmes. Most of these have been used to
construct proofs for very elementary group-theoretical theorems. There
seems to be only one [No 1] specifically made to handle group-theoretical
statements.

1.1.3. Programmes for the determination and study of homology and
homotopy groups, where the main interest isin the topologica relevance
of the results. Such papers are [Li 4, Mal, 2;Pil] and part of [Ca 23.

1.1.4. Applications of groups in fields like coding theory [Pe |] or the
use of a computation in residue class groups for the improvement of a
programme described in [Pa 1].

1.2. Although the didtinction is not aways quite clear cut, it is practica
for this survey to distinguish between specia purpose and general purpose
programmes. In spite of the fact that the first category is more likely to
produce significant contributions to group theory, more space will be
given in this report to the second kind, ssimply because this is the author’'s
own fiedd of work.

2. Special purpose programmes. By the first kind | mean programmes
specidly made for the investigation of a particular problem; when this
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is solved, the programme may be put out of use. There are a number of
problems tackled in this way, which we discussin turn.

2.1. The construction of all groups of a particular kind,

2.1.1. A programme of this kind was first suggested as early as 1951
by M. H. A. Newman [Ne 4] for the investigation of the groups of order
256. P. Hall [Ha 7] had introduced the concept of isoclinism for the classi-
fication and construction of p-groups. Newman pointed out that the num-
ber of cases to be investigated for the determination of all groups of order
256 in a ssimple-minded use of Hall's ideas would be far too big for com-
puters then (and would be even now). He gave an estimate to show that
by a probabilistic approach it would be feasible to obtain the great major-
ity of these groups in a reasonable time. It seems, however, that this
suggestion has never been followed.

2.1.2. In this conference C. C. Sims [Si 3] gave an outline of a different
procedure by which in principle each group of prime-power order would
be obtained just once. In this a group G of order p”is constructed as an
extension of the last term @,(G) = (1) of its lower @-series, defined by
D6 =G, D,.,(6) =[G, P(G)]( &g | g € D(G) ). The non-isomor-
phic groups G with fixed @,(G) = K and G/@,(G) =~ H are in |- corre-
spondence with those orbits of H(H, K) under the joint action of both
automorphism groups A(H) and A(K), for which the extensions are groups
with @,(G) = K. Sims has written a progranme along these lines which
determined the two-generator groups of order 32 in a very short time.
According to him extrapolation from this experience would indicate quite
bearable computation times (~ 10 hours) for the determination of most
of the groups of order 128. Special methods are probably necessary for
the case that His elementary abelian of order 32 and K elementary abelian
of order 4.

2.1.3. Also in this conference J. Cannon [Ca 3] reported that R. James
(Sydney) is determining the groups of order p8for arbitrary primes p using
isoclinism. The calculations necessary in this set-up to find all non-iso-
morphic groups in a given isoclinism class were done by a computer for the
fird few primes and then generdized.

2.1.4. A ligting of al primitive groups of low degrees is presently under-
taken by C. C. Sims [Si 2,4]. Earlier hand calculations went up to degree
20. These groups have been redetermined and the previous results found
correct. The calculations will be extended to higher degrees.

2.2. The Burnside problem. A recent survey of the problem is found in
[Ha 3], to which the reader is referred for definitions used and theoretical
results mentioned here. The finiteness of the Burnside groups B(n, r) of
exponent n on r generators is known for n = 2, 3, 4, 6 and al r, but the
order of B(n,r)isknownonly for n=2,3,6,dl r,andn=4,r=1, 2. In
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1962 M. Hall jr. [Ha I] outlined a programme by which in particular the
order of B(4,3) could be investigated. The idea was to use a Schreier
technique to find generators and relations for a suitable subgroup of B(4,3)
which could be handled. In 1964 M. Hall jr. and D. E. Knuth [Ha 2] an-
nounced that with a programme applicable to arbitrary nilpotent Burnside
groups some results on B(4, 3) had been obtained, e.g. that the identity
(x, y, 2, w, w, w) = 1 holds modulo the seventh term of the lower central
series of this group. J. Leech [Le 2] has used Todd-Coxeterprogrammes (see
§ 3.1) to obtain and to improve systems of defining relations for B(3, 3) and
B(4,2) and of groups of exponent 4 on three generators all or two of which
are of order 2. An investigation along different lines of the groups B(4, k) is
presently carried out by A. Tritter [Tr 1]. He tries to prove that there is a
bound for the classes of the derived groups of the groups B(4, k), which
would be a consequence of a conjecture of G. Higman [Hi 1}. For exponent
5 only the restricted Burnside problem has been solved. The biggest finite
group B*(5,2) of exponent 5 on two generators was found to be of class at
most 13 and order at most 5* Recently, E. F. Krause and K. Weston
[Kr 3], starting from Kostrikin's calculations, used a computer to establish
that these bounds are in fact attained.

Some of the programmes described in § 3.1 may also give some informa-
tion on the restricted Burnside problem.

2.3. The search for simple groups. So far systematic searches with com-
puters have established only the non-existence of simple groups of certain
kinds.

231 In 1957 E. T. Parker and P. J. Nikolai [Pa 2] tried to find analogues
of the Mathieu groups My, and M,,. Their computations showed that for
23<p=4079 the cyclic and the alternating group are the only transitive
permutation groups of degree p = 2¢+ 1, pand q primes.

2.3.2. In 1961, when the theorem that a group G of odd order is soluble
had been proved by W. Feit and J. G. Thompson only under the additional
assumption that al Sylow subgroups of G are abelian, a large-scale search
for non-abelian simple groups of odd order was carried out by K. I. Appel,
M. Hall jr. and J. G. Thompson [Ap 1]. A number of restrictions for the or-
ders of such groups were incorporated in a programme, which sorted about
400 “possible” orders out of all orders up to 108, These were eliminated by
individual hand calculation, so that the non-existence of insoluble groups
of odd order =< 10® was established.

2.3.3. More recently K. |. Appel and E. T. Parker [Ap 2] have made a
computer search for insoluble groups of degrees p = 49 + 1, p and g primes,
and have shown that there are no such groups of degrees 29, 53, 149, 173,
269,293 or 317 other than the alternating groups.

2.3.4. A systematic search is being currently made by M. Hall jr. [Ha 5]
for simple groups of orders = 10¢.
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2.3.5. Added in proof, July 1968. G. Higman and J. K. S. McKay [Hi 2]
have used Todd-Coxeter and character-table programmes (see §§ 3.1,3.4.5
and 3.4.9) to prove the existence of a certain simple group described by
Z. Janko [Ja 2].

2.4. Characters and representations of symmetric groups. A detailed de-
scription of the representation theory of the symmetric groups is given in
[Ro 1]. As the methods for the computation of characters of symmetric
groups are essentially combinatorial, they have been programmed rather
early. The character tables of the symmetric groups of degree 15 and 16
were determined by R. L. Bivins et al. [Bi 1]. S. Comét wrote a series of
papers on programmes for the determination of characters of the symme-
tric groups, in which in paticular he developed techniques speciadly adapted
to binary computers [Co 1,2,3,4]. He obtained lists of al absolutely
irreducible characters for the symmetric groups of degree = 20 [Co 5].
Other programmes have been developed by J. K. S. McKay [Mc I] and
R. E. Ingram, Dublin (unpublished).

Tables of irreducible unitary representations of symmetric groups (for
applications in physics) have been computed by S. Katsura [Ka 1,2].

2.5. The Hp-problem. Let the prime p divide the order of a group G and
let Hp(G) be the subgroup of G generated by all elements of G not of order
p. D. R. Hughes [Hu 1] has raised the question if Hp(G) is aways equal to
(1) equal to G, or of index p in G. The question has been answered in the
affirmative for p=2 and p = 3, and for arbitrary p if G isfinite and not a
p-group [Hu 2] or a finite p-group of class <p [Za 1]. G. E. Wl [Wa 2]
showed that for a p-group the question can be investigated by a computa-
tion in a Lie-algebra over GH(p). By alaborious hand calculation he showed
that the answer is negative forp-groups withp = 5. At present a programme
is being developed by J. Cannon [Ca 3] for checking these calculations and
extending them to greater p. Added in proof, July 1968 : The progranme is
now working and has confirmed the result for p = 5 and extended it to
p = 7 (private communication).

26. Miscdlaneous  problems.

2.6.1. H. Brown (unpublished) has written a programme, following a
method of H. Zassenhaus [Za 2], for the derivation of all space groups (in
R,) from given arithmetical (integral) crystal classes. The space groups are
classified up to isomorphism by this programme. By a similar programme
of G. Fast and T. W. Janssen [Fal] the space groups of R, are classified
only up to equivaence as extensions of their trandation subgroup by their
arithmetical crystal class.

by .
2.6.2. Let I'o(n) be the group of dl 2 X 2 integral matrices A = (3d) with
det A=1and ¢ = 0 (mod n) and I"*(n) the group generated by I'e(n) and
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(0 'l(), H. Fell, M. Newman and E. Ordman [Fe 1] have tabulated the
n

genera of the Riemann surfaces belonging to these groups for n =< 1000
using classical formulae in the programme.

2.6.3. S. L. Altmann and C. J. Bradley [Al 1,2] have tabulated data for
the irreducible representations of the rotation group of integral weight
(see Gel’fand and Sapiro [Ge 1]) up to weight 20.

2.6.4. Left normed commutators [a, nb] are defined recursively by
[a, Ob] =4, [a, (i+ Db] =[[a, ib], b]. For afinite group G let m(G) = 0
be the smallest integer such that for al pairs a, b € G thereis an integer »
for which [a, nb] = [a, (n+m(G))b]. J. M. Campbell and W. J. Lamberth
[Ca 2] describe a programme for the determination of m(G) for finite
groups G given as permutation groups. For the aternating group As of
degree 6, for example, they obtained m(4s) = 120.

2.6.5. Let Z, be the ring of integers mod » and let » and =’ be permuta-
tions of the elements of Z, with =(0) = n’(0) = 0. Let @« and =’ be caled
trandation equivaent if there exists an element d ¢ Z, such that =(i+ 1)
(i) = a'(i+ 1+ d) —a’(i+ d) for dl i€ Z,. A group of permutations of the
elements of Z, is called trandation invariant by E. S. Selmer [Se 2] if it
condsts of full equivdence clases under the defined trandation equivaence.
He has proved some permutation groups to be trandation invariant and is
presently also investigating others for this property with a computer.

2.6.6. M. E. White [Wh 1] announced a study of the possibility of present-
ing finite groups as groups of pars of integers for which a suitable multipli-
cation of a certain restricted kind is defined.

2.6.7. Programmes for the application of crystallographic groups to
computations in quantum mechanics have been developed by S. Flodmark
[F 1,2].

3. General purpose programmes. The' programmes to be mentioned here
are not primarily made to answer a particular question but rather as a tool
that can be used again and again. Some are based on agorithms previously
designed for hand calculation, some are built up by using combinations of
well-known theorems.

3.1. Todd-Coxeter and Schreier methods. The Todd-Coxeter algorithm
[To 1; Co 6] enumerates the cosets of a subgroup U of finite index in a
group G, when G is given by finitely many abstract generators and defining
relations and U by finitely many generators expressed as words in the gen-
erators of G. This algorithm seems to have been first programmed in 1953
by C. B. Haselgrove (unpublished). Since then many other programmes for
this algorithm have been developed which sometimes differ in their stra-
tegy for choosing the next coset to be dedt with. J. Leech [Le 2] gave a very
clear discussion of the different approaches, which is revised for these
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proceedings [Le 4]. So it is sufficient here to give references (partialy copied
from [Le 2]). A number of papers give details of programmes [Ba 1; El 1,
Fe 2,3,4; Gu 1, Ma 3; Tr 2,3]. Applications are found in [Ca 1; Le 1,3;
Me 3] and some of the papers mentioned before and hereafter.

The Todd-Coxeter procedure yields not only the number of cosets of
Uin G but also a permutation representation for the generators of G on the
cosets of U. The kernel of this representation of GisK = ﬂ g1 Ug. Hence

€G
one can obtain G/K by a programme which generates a Sermutation group

from given permutations or at least finds its order.

An interesting instance, where an observed periodicity of the output of a
Todd-Coxeter programme led to a proof of the infiniteness of the group in
question, is noted by C. C. Sims[Si 1].

More recently the Todd-Coxeter technique has been combined with the
Schreier technique, see e.g. [Ma 4], to obtain generators for a subgroup U
from generators of the whole group G and coset representatives of the cosets
of U in G. The agorithms obtained solve the following problem: Let a
group G be given by generators g, . . ., g and relalions ry(gy, . . ., gx) =
= ... =rMg1,..., &) = 1andlet asubgroup U of finite index in G be
generated by words uy, . . ., u, in the g, The Todd-Coxeter procedure
yields coset representatives ¢y, . . ., ¢ of the cosets of U in G. For an ee-
ment w, given as aword in the g, one has to find the expression w = w*;,
where ¢; is one of the coset representatives and w* isaword in the #;. Some
different methods for doing this have been discussed [Be 1; appendices to
Lel,3; Le4; Me 1,2,3; Mo 1,2].

It would be most useful if these techniques could be extended further.
Given generators and relations for a group G and coset representatives for
the cosets of a subgroup U in G, the Schreier procedure gives generators
and defining relations for U (see [Ma 4; Me 4]). However, their numbers
increase with the index of U/ in G. If one had a method to reduce these num-
bers effectively in cases where this is theoretically possible, the Todd-
Coxeter procedure could be applied again to the subgroup U and so on.
No programme of this kind seems to exist yet.

Another application of the Todd-Coxeter technique was outlined by
C. C. Sims|[Si 3]. By systematically enumerating the words that could gen-
erate a subgroup and performing Todd-Coxeter computations for them, he
finds all subgroups of index less than a prescribed bound in a finitely pres-
ented group.

3.2. Generation of groups, lattice of subgroups. A number of programmes
have been developed to compute structural details for a finite group given
by a set of generators. In all these programmes problems arise at three
levels.

3.2.1. Firgt, agorithms for the handling, i.e. comparison, multiplication,
inversion, etc., of the group elements must be defined. These are rather
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obvious if the elements (and hence in particular the generators given as
input to the programme) are permutations, matrices over some ring, affine
transformations, etc. If, however, generators and defining relations are
given, the insolubility of the word problem does not alow general hand-
ling of words in the generators unless the relations are of arestricted type.

If this is not the case, the only way out is to try to get a faithful permutation
representation of the group by the Todd-Coxeter procedure. If the genera-
tors are taken from the factors of a subnorma series of a soluble group, the

relations can be brought into a simple form [Ju 1]. Then by akind of com-

piler the computer itself constructs optimal programmes for the handling
of normal forms from these relations. Programmes of this kind are de-

scribed in [Li 1, 2; Jii 1; Ne 2].

3.2.2. Next, algorithms for the generation of al elements of a finite
group G from its generators g1, . . ., & ae needed. If the store of the
machine is big enough to hold all elements of G, the following simple
method [Ne 1; We 1] can be used. Beginning with Up = (I), form

Uiy1 = (U, g41) by the following procedure, given in dlightly smpli-
fied form here. Form U} =U; | Uyg;,,; beginning with 1 ¢ U, multiply al
elements in U} from the left by g;,; until an element g*¢ U} is obtained.
Then replace U1 by U? = U} U Uig* and repeat the procedure. When left-
multiplication of an U’ with g;,, yields only elements in U7, we have found
(U girg)- The condltlon to keep all elements in a (fast-access) store, is a
serious restriction. J. K. S. McKay [Mc 2] mentions a variation of the
method in which only the elements u of a subgroup U and coset represen-
tatives ¢ of U/ in G are stored and all elements are expressed (uniquely) as
products uc. This procedure saves store, but at the cost of computing time
for the regeneration of elements by multiplication. In general no essentialy
better method seems to be known.

For permutation groups, however, a more effective and store-saving
method exists [Si 3]. Let G be a group of permutations of the integers
1, ..., nand let G; be the stabilizer of 1,2, ..., i,Gy = G. Then coset
representatives are determined for al steps G;, G;.,.,. From the cycle-decom-
position of the generators of G all images of 1 under G and hence coset
representatives of G, in G are found. By the Schreier technique generators
of Gy can now be computed and the same process repeated for Gy. The prob-
lem is, to keep the number of generators small for al steps. This is done
by working at al steps simultaneously and reducing the number of genera-
tors, obtained by the Schreier process for a subgroup U, by using the coset
representatives of the subgroups of U which are aready known at the time.

This method has been programmed by C. C. Sims [Si 3], and in similar
form by P. Swinnerton-Dyer (unpublished) in helping with M. Hal’s
computation [Ha 5] of generating permutations for a simple group of Z
Janko [Ja 2]; another such programme is presently being worked out at

Kiel. Sims' programme determined a permutation group of order about
CPA 2
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5 X108 in avery smal time; he estimates that it can find the order of any
permutation group of degree = 200 with a “small” number of generators.

3.2.3. When all eements of a finite group have been found, the next
problem is to investigate its subgroups and their properties. A number of
programmes have been developed for the determination of the lattice of
subgroups together with conjugacy relations between the subgroups. W. D.
Maurer [He 1; Ma 5, 6,7, 8, 9], and apparently similarly G. P. Spielman
[Sp 1], have put their main interest in defining a simple language in which
the user can give orders or ask questions to be checked against a file of
examples. The programmes are mainly for demonstration, so the methods
used are rather straightforward and hardly powerful enough to handle
more complicated examples efficiently.

A more sophisticated combinatorial approach has been used by L. Ger-
hards and W. Lindenberg [Ge 3; Li 3]. Basicaly their programme works as
follows : A subgroup U of a finite group G is uniquely determined by the set
of cyclic subgroups of prime power order contained in {/, Hence [J can be
described by the characteristic function ¢, defined on the st § of dl cyclic
subgroups of prime power order in G, which is equd to 1 for the cyclic sub-
groups contained in U and equal to O for al others. Any characteristic
function on S defines a generating system for some subgroup, hence dl char-
acteristic functions are considered in lexicographical order. Once a sub-
group has been generated from a characteristic function, by a number of
combinatoria tricks based on simple group theoretic arguments many other
characteristic functions can be eliminated from being examined, as they
define generating systems of subgroups dready  known.

Another mainly combinatorial method has been outlined by C. C. Sims
[S 3]. The dlements of G are ordered inalist L: 1= gy, go, . . ., ga) - Then
for each subgroup U a canonica system of generators xi, . . . , x, iS defined
by the requirement that x; is the first element of U-(l) with respect to
the order in L, x,,, isthe first element of U—(x;, x5, . . . , x; with
respect to this order. The task of finding all subgroups is thus equivaent to
that of finding al canonical systems. If {xi, . .., x} is such a system, then
sois{xy, . . . , Xk—1}. Hence if al ordered systems of elements are ordered
first by their length then, lexicographically, a system {xy, . . ., x} can be
discarded in the search for canonica systems if either {xl, e, xk_l} is
not canonica or if in calculating the subgroup it generates an element not
in{x1,....x_,) is obtained that is earlier in L than x;. This method
has not been programmed yet, but it seems likely that it is rather efficient,
in particular if there is some natural order of the elements which can be
decided upon without searching in lists.

Added in proof, July 1968. Yet another combinatorial programme is at
present being developed by W. Niegel at the Technische Hochschule,
Miinchen.
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A method involving more group theory has been used by J. Neubiiser
and V. Fdsch [Fe 5,6; Ne 1,2] and in similar form by J. Cannon [Ca 3] and
by D. R. Hayes and L. C. Biedenharn (unpublished). Subgroups are again
represented by their characteristic functions on the set of al cyclic sub-
groups of prime power order (see above). Let the kth layer& of the lattice of
aubgroups consigt of dl subgroups whose order is the product of k primes.
A subgroup U ¢ Z; different from its derived group U’ is obtained as a
product of a group ¥€X;_y by a cyclic subgroup C & Ng( V) of prime power
order. If the subgroups are constructed layerwise, starting from& one can
ensure by simple calculation with characteristic functions (which can be
handled nicely in a binary computer) that each subgroup is constructed
only once. Perfect subgroups are taken care of by special subroutines for
each of the very few isomorphism types of simple groups of composite
order that can occur in the range of orders allowed by storage and speed
restrictions of the computer presently used. These subroutines can be
extended for bigger machines, as the list of al simple groups is known at
least up to order 20,000. This means that the programme would work at
least up to groups of order 40,000, which at present is definitely out of reach
for any programme of the kinds discussed here that determines the full
lattice of subgroups.

Although more combinatorial programmes have the advantage that
there is no theoretical restriction for their applicability, comparison has
sdown  the programmes described last to be more efficient than the existing
combinatorial ones. With the present implementation groups up to order
1092 and with up to 2400 subgroups have been handled. Its range will be
increased in a new implementation (in the final debugging state Oct. 1967)
which on a higger computer uses a 512 K backing store.

Added in proof, July 1968. This programme now works, and has pro-
duced the lattices of subgroups of groups including the alternating group
Ay (order 2520, with 3779 subgroups) and the largest of Dade's groups
[Da I (order 1152, with 519 1 subgroups).

A specia programme [Fe 9] for drawing a diagram of the lattice has
been connected with the system of programmesin Kiel [Fe 5,6].

3.2.4. For many problems, such as the determination of crystal classes
[Bii 1, 2], it is sufficient to determine only one representative from each
class of conjugate subgroups in G. A certain variation of the method de-
scribed in [Fe 5,6; Ne 1] is presently being programmed in Kid. It will
save a large amount of store at a (hopefully slight) cost of time. It seems
that the more combinatorial algorithms cannot very easily be adapted to
this purpose.

3.25. Together with the lattice of subgroups, some of these programmes
[Fe 5,6; Ge 3; Li 3] compute properties of subgroups, etc. It islisted, e..
by the Kid programme [Fe 5,6], whether a subgroup U is cyclic, abelian,
20
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nilpotent, supersoluble, soluble or perfect and whether it is normal, sub-
norma or self-normalizing in G. The order, normalizer, centralizer and
classes of conjugate elements of U are found. Also certain characteristic
subgroups such as the upper and lower central series, commutator series
Frattini and Fitting subgroups are determined.

3.2.6. Two sets of programmes developed by R. Yates [Ya 1] and R.
Segovia and H. V. Mclntosh [Se 1] determine the lattice of subgroups
and some of these structural details for groups of specia types.

3.2.7. Some more extensive applications of such programmes have been
made. R. Biilow and J. Neubtiser [Bii 1, 2] determined al integral classes of
4% 4 integral matrix groups by analysing the 9 classes of maximal 4 X 4
integral groups, found by E. C. Dade [Da 1]. A catalogue of the lattices of
subgroups, etc., of the groups of order = 100, omitting orders 64 and 96,
has been compiled by J. Neubtiser [Ne 3] using the Kiel programmes.

3.3. Automorphism groups. W. D. Maurer's system of programmes
[Ma 8] aso contains a programme which checks for the existence of an
isomorphism between two given groups by constructing partial isomor-
phisms in a tree-of-trial-and-error procedure. Programmes for detecting
isomorphisms of graphs [Be 2, Su ] may dso be used in such a way.

The only programme known to me [Fe 5,7, 8] for the determination of
the automorphism group A(G) of a finite group G uses the structural data
obtained by the subgroup lattice programme [Fe 5,6]. The basic idea is that
an automorphism induces a lattice automorphism on the lattice of sub-
groups which preserves order, conjugacy, centralizers, ec. If a subgroup U
is chosen it is usualy rather easy by visual inspection of a diagram repre-
senting the lattice of subgroups to find all candidates for images of {J under
automorphisms of G. This vague idea has been made precise by introducing
and studying certain equivalence relations on the set of all subgroups which
are then used in the construction of A(G).

For a soluble group which is not of prime power order L. Gerhards
[Ge 2] gives an outline of a programme based on P. Hall's results [Ha 8]
about Sylow systems. In this programme (which is not yet implemented)
the automorphism group of G will be constructed from “extensible” auto-
morphisms of the Sylow subgroups in a Sylow system and inner automor-
phisms.

34. Characters and representations.

3.4.1. There are a number of programmes for the determination of the
absolutely irreducible characters of a finite group G. Most of these start
from the class multiplication coefficients and lead to some kind of numer-
ical computation. For the theoretical background to this procedure see e.g.
[Cu 1

Let Cl, . ... C, be the classes of conjugate elements in G, C; = {1}, h;
the number of elementsinC, 41, . . ., y the absolutely irreducible charac-
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ters, d; the dimension of ¥/, and 4/ the value of y/for an eement of Ci. The
class multiplication coefficients are defined by

CiCj = Z’ C,-jkC;(.

Defining wi = =% xs one has wiw = 2 ¢ wi. Henceforeachs, 1=s=r,

the r vaues wj, 1 = /=, belonging to the sth character satisfy the r2 equa
tions
Y, (cije— Oux)xx = O for 1< j=<r. *

Considering for each jo, 1 = jo < r, in turn the r equations obtained by fix-
ing j = Jjo, One sees that the vector w*= (W}, . . . , wj) is an eigenvector of
the matrix (czx) belonging to the eigenvalue W}, and further that these
vectors w', 1 = § = r, are (up to factors) the only common eigenvectors of all
these matrices (cx), 1 < jo .

3.4.2. [Cu 1]: If for a certain jo the matrix (cy) has r different eigen-
vaues, the eigenvector spaces are one-dimensond and hence yield uniquely
(up to scalar multiples) the vectors w*, 1 < § = r. These factors are deter-

mined from w§ =-}2Zi = 1. From the orthogonality relations of the charac-

d
ters one has i
r Jwd
@y 2= 6l
i=1 i
From this dy, . . . , d, are found and then the characters. As there are smple

examples in which none of the matrices (c;) has r distinct eigenvalues,
this method is not always applicable.
Essentialy this method is applied for al matrices (¢;,) in a programme
by S. Fodmark and E. Blokker [F13] to obtain irreducible characters. These
are then used to reduce the regular representation into representations
E, ...,E, ofdegreed}, ... . d} respectively. E; contains the d; copies of the
jth absolutely irreducible representation that are contained in the regular
representation. For further reduction of the E; into irreducible representa-
tions, according to a private communication of S. Flodmark, a “numerical
iteration procedure” is used. The author regrets that he cannot supply
details about this, as he heard about the programme only when this article
had dready gone to press.
3.4.3. For hand computation W. Burnside [Bu 1] gives the following
method: Multiplying the equations (*) with a fixed j by an indeterminate y;
and summing over dl j yieds

r r r
y (E ciyi— Ok Y, xjyj) x; = 0.
j=1 =1

k=1
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For 1 =s=r, w'is an eigenvector of (/Z c,-jky,) belonging to the eigen-
j=1

value ii.” :_; wiy,. These eigenvalues ' are r different solutions, and
hence are al’ | the sol utions, of the characteristic equation

det (Zl Cijkyj'—(sik}.) =0.

If one can factor this as a polynomia in 4 with coefficients from the ring of

polynomials in the indeterminates y;, . . ., y,, one has found the W) and
hence the characters.

3.4.4.J. K. S. McKay [Mc 2, 3] in his programme replaces the indeter-
minates y; by random numbers g; of uniform distribution in [0, 1 and pro-

A

ceeds for the matrix (c}) = ( Y c,-jkajgas described in § 3.4.2 for a single
=1

(cyx)- The set of r-tuples (ay, - - . , a,) for which (c}) has multiple eigen-
values is of measure zero in the hypercube of all r-tuples, but numerical
difficulties can occur if two eigenvalues are close together. Restrictions on
the programme are given by the number of classes in G rather than by the
order of G, as long as the ¢y, can be calculated. McKay has been able
[Mc 3] to recalculate the character-table of Z. Janko's first simple group
[Ja 11 from a matrix representation of it.

3.4.5. One can also use the property that the w’s are the only common
eigenvectors of the matrices (cyw), 1 =<j, = k, in the following way. Firgt the
eigenvector spaces of (c;;) are determined. After n- 1 stepslet ¥4, .. ., ¥V,
be the subspaces of common eigenvectors of the Marices (cuy), - - -+ (Cim)
Then each ¥; of dimension = 2 is mapped by (¢; 15— SiAf™Y), Where
A% runs through al eigenvalues of (¢, +11), and thus split into a direct
sum of subspaces of common eigenvectors of (ciy), - - - » (Crnyppx)-

In the programme of J. D. Dixon [Di 7] this procedure is further simpli-
fied and the caculation of egenvaues is avoided in the following way. Let e
be the exponent of G, & a fixed primitive eth root of unity, and p a prime such
that e[p— 1. Then there is an integer z such that z has order e modulo p.
The mapping @ : f(e) ~f(2, where fis any polynomia with integral coef-
ficients, is a ring homomorphism of Z(e) onto the prime field Z,, which
can be used to trandate the whole problem of finding common eigenvectors
into the corresponding one over Z,. This can be solved much more easily.
By choosing p appropriately one can ensure that the characters in the com-
plex field can be determined from the solutions found in Z,.

3.4.6. D. R. Hayes [Ha 9] has proposed to solve (*) by constructing
successively partial solutions in a kind of tree-of-trial-and-error procedure.
The method described by him has not yet been programmed.
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3.4.7. A rather different approach has been used by C. Brott and J.
Neubiiser [Br 1,2]. In their programme al monomial absolutely irreducible
representations are found as induced representations of one-dimensional
representations of certain subgroups and the corresponding characters as
induced characters. For a big class of finite groups, including all p-groups,
al absolutely irreducible representations are monomial; if this is not the
case for a group G the remaining characters are found by one of the methods
described above, taking advantage however of the characters aready
known.

For groups of order 27, another programme to find the absolutely
irreducible representations by the process of induction has been written by
P. G. Ruud and E. R. Keown [Ke 1; Ru 1,2].

Added in proof, July 1968, According to the summary printed in Mathe-
matical Reviews, N. N. Aizenberg and A. A. Letievskil [Ai 1 “have
developed algorithms for computing matrix representations and characters
of an interesting class of finite groups”.

3.4.8. All these programmes require that the group is completely known
in some detail. However in many hand computations, e.g. [Fr 1; Ja 1, 2],
character tables are found from rather poor information about the group,
in fact the character table is used as a step in establishing the existence of
a group with certain properties. It seems to be very worth while to build up
a programme, possibly for on-line use and man-machine interaction from a
remote console, which would incorporate the routine computations used in
such work.

3.4.9. Addedinproof,  July 1968. In their proof of the existence of Janko's
group of order 50 232 960, G. Higman and J. K. S. McKay [Hi 2] use some
programmes which find rational and permutation characters from a given
character table.

35. Miscdlaneous  programmes.

3.5.1. In [Ha 6] P. Hal introduced the so-called “commutator collect-
ing process’ for the study of an expansion

(gh)" = g"h"[g, h}»®. . .

of the nth power of a product of two group elements into a product of cer-
tain commutators. He showed in particular that the functions ¢(n) are
polynomids in n of degree not exceeding the weight of the commutator
whose exponent they are. Hall’s formula has been the object of a few pro-

grammes. A very straightforward simulation of the collection process was
used by H. Felsch [Fe 2] to obtain the g(n) for the first few i. J. M. Camp-
bell and W. J. Lamberth [Ca 2] have more recently written a more elabo-
rate programme for the same purpose as a tool for the investigation of free
nilpotent groups of finite exponent. E. F. Krause [Kr 1,2] has used some
theoretical improvement of the collecting process to study groups of expo-
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nent 8. Together with K. Weston [Kr. 3,4] he studied a similar process in

Lie rings and applied a programme for it in the study of Burnside groups of
exponent 5. D. W. Walkup [Wa J] announces that he has used a computer

(in a way not further described) to show that a certain commutator iden-
tity is best possible.

35.2. H. J Bernstein, 0. Moller and E. Strasser Rapaport [Be 3]
describe a programme for finding factorizations of finite groups.

3.5.3. D. A. Smith [Sm 1] gives an agorithm for the determination of a
basis of a finitely generated abelian group.

4. Acknowledgements. The author wishes to express his indebtedness to
Mr. C. Brott, Mr. V. Biilow, Mr. V. Felsch and Mr. J. K. S. McKay for
help in compiling and preparing the materia for this article and to the
editor of these proceedings who patiently waited for its completion.
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Coset enumeration

JouN LEecH

1. Introduction. In 1936 Todd and Coxeter gave a method ([7], also
described in [1], ch. 2) for establishing the order of a finite group defined
by a set of relations satisfied by its generators. They enumerate systematic-
ally the cosets of a suitable subgroup whose order is evident from the defin-
ing relations for the whole group. (To be precise, what the method does
is to establish the index, when finite, of a subgroup of a finitely presented
group. The finiteness of the whole group is not necessary for the success of
the method.) They describe the method as being “purely mechanical”, and
since that date the advent of electronic computers has led a number of
people to programme the method for automatic execution. I have given an
account [2] of such of this work as was known to me in 1962.

The present account is based in part on my former paper [2], but does
not include the historical details there given. It includes also a discussion of
the necessity for the termination of the process, and an application of it to
the following word problem. If a coset enumeration shows that certain
elements generate a subgroup of finite index in a finitely presented group,
and that an element, given as a word in the generators of the group, is an
element of the subgroup, it is required to express it as a word in the genera-
tors of the subgroup.

2. Hand calculation. The basic procedure when enumerating cosets by
hand is to set out each relation in extenso at the head of a table. The lines of
the table are filled with coset numbers so that the numbers fall in columns
between the letters of the defining relation, the cosets in adjacent columns
being related by the generator at the head of the space between the columns.
If (as I assume hereafter) each relation equates a word in the generators of
the group to the identity, then the first and last columns of the table for
each relation will be identical. It is convenient to keep also a multiplication
table showing the effect on each coset of each generator, and also of the
inverse of each generator which is not involutory, as these are determined.

Initially entries are made so as to define the subgroup which is chosen as
coset 1. As the work progresses, more cosets are defined and entered in the
tables, and whenever a line of a relation table is completed, further entries
are made in the multiplication and other tables. The enumeration is com-
plete when the tables are full, leaving no space for the definition of further
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cosets, and exhibiting every coset in every significantly different position
in each relation table. A worked example is given is § 11 below.

3. Coincidences. It may be found in the course of the work that two
differently numbered cosets are in fact the same; this is commonly called a
coincidence of the cosets. In such an event the greater of the numbers is
replaced throughout by the smaller, and any consequent coincidences
between other cosets are then dealt with similarly. If the tables are still
incomplete after this, the enumeration continues as before. In hand work
this replacement is inconvenient, and, with practice, skill is gained at defin-
ing cosets in such an order that coincidences are infrequent, and many enu-
merations can be carried out without the occurrence of coincidences. But
there are many examples where coincidences are unavoidable. Thus if the
defining relations are inconsistent, then the group consists of the identity
element only, and any coset enumeration will reduce to only one coset.
Usually it will have been necessary to define several cosets before the work-
ing shows that these are not distinct. The following two examples are of a
non-trivial group (the simple group LF (2, 7), Klein’s group of order 168).
Attempts to enumerate the 24 cosets of the subgroup generated by B in this
group as defined by the relations

B" = (AB): = (4 1B = (4Bt = E
or B? = (AB? = (A ~1B)* = (4°BY = E

will result in the definition of many more than 24 cosets before the working
shows that these are not all distinct.

4. Computer implementation. It is extremely inconvenient on a computer
to store the incomplete lines of working in the relation tables and to locate
places for insertion of new entries. It is much simpler to recompute the
whole of a line in which a new entry is to be placed. In practice, therefore,
the main working table stored in the machine is the coset multiplication
table. Each line of the relation tables is then constructed as required from
the entries in the multiplication table. It is in the nature of the working that
access to this table israndom and unpredictable, and it should be held in the
immediately accessible part of the store. The number of cosets definable is
then limited by the amount of such storage available, and if this limit is
likely to be approached, the following steps should be taken to economize
in its use.

First, as in hand working, no column should be used for the inverse of an
involutory generator. A convenient implementation of this is to number the
columns and to include with the data a short list showing which column is
inverse to which; this will list the column for an involutory generator as
being the column for its inverse. Whenever reference to the inverse of a
generator is made, it is made through this list. No other part of the pro-
gramme has then to take account of whether a generator is involutory, and
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problems in which none, some or all of the generators are involutory are
handled uniformly.

Next, in computers with a fixed word length, it may be desirable to pack
the multiplication table entries with several in each word, so that the whole
of a line of the multiplication table may occupy only one or two words. If
the word length is variable, a suitably short length can probably be chosen
which will obviate further packing. In the author’s experience, packing and
unpacking do not add seriously to running times, and he has found that
limitation on immediately accessible storage space has always been more
important than running time.

The relations defining the group are conveniently stored as lists of inte-
gers, each of which denotes the column of the multiplication table corre-
sponding to the generator or its inverse appearing at the corresponding
point in the relation, suitably terminated (by a zero, perhaps) to indicate
the end of the relation, with a count or other indication of whether it is the
last relation. If storage space is extremely limited, it may be desirable to
pack the relations with several letters in each computer word, but this is
less likely to be important than packing the multiplication table.

Programmes for computer implementation of coset enumeration differ
mainly in the choice of algorithm for determining the sequence in which new
cosets are defined. It is not possible to implement the human judgement
that can be applied to conduct enumerations without coincidences, as this
often depends on examining the state of the relation tables, which the
computer does not store. Most programmes follow, more or less closely,
one of the two algorithms described in the following sections. The natural
order for describing these is the reverse of the historical order adopted in
[2], so the present “first and second algorithms” are the “second and first
methods™ of [2] respectively.

5. First algorithm. This follows rather closely the hand method as
described in § 2. We examine each entry in the multiplication table, in the
order in which they are made, in the following way. Suppose it has been
found, by definition or deduction, that aS; = b, where a and b are coset
numbers and S; is a generator. We have to examine each relation involving
S; or its inverse, for each significantly different occurrence of either, to find
out whether insertion of aS; = b or bS;! = a at that point would com-
plete a line of the relation table.

Suppose the relation is Ry R»...R, = E, with R; = S;. Working in the
backward direction, we extract the entries aR;, aRL R, ..., con-
tinuing until either an undefined coset is sought (i.e. a blank entry is found
in the multiplication table) or the beginning of the relation is reached. In the
latter event we continue by extracting aR;Z4 R7L,.. . R{*R;Y, aR7ZARZYL ...

RR;IR;1,, ..., continuing until either an undefined coset is sought or
the entry aR;LR7L...R™'R;IR;L...R7Y is reached. This should
be b; if it is not, a coincidence has been found. If an undefined coset has
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been reached, we make a similar examination in the forward direction,
extracting the entries bR;.;, bR, 1R, ..., bR 1R s...RR,, ...
until either an undefined coset is sought or the backward working is met.
There are three possibilities. The forward and backward working may fail
to meet, and no information can be deduced at this stage. Or they may just
meet, so that the final cosets reached in the forward and backward working
are related by a generator, and a new entry is made in the multiplication
table. Or they may overlap, in which case different entries have been found
for the same place in the relation table, and a coincidence has been found.
(In this last case the coset numbers cannot have been the same in the two
directions, otherwise the backward working would have completed a full
cycle and no forward working would have been done.)

As new entries are made in the multiplication table, they are also placed
in a list of unworked table entries. When the current entry has been exam-
ined in all significantly different positions in all relation tables as above, it is
removed from the list and the next entry is examined similarly. When the
list is empty, the multiplication table is examined. If this is complete, then
the enumeration is finished, and the result is available. If not, then there are
some blank entries in the multiplication table, and a new coset is defined
by making an entry in one of these blanks and creating a new line of the
table with anentry in the column inverse to thatin which the blank was filled.

In hand calculation the choice of which blank to fill at each stage is a
matter for human judgement; usually we fill a blank which leads to comple-
tion of one or more lines of relation tables if possible. On a computer, for a
general-purpose programme, we have to adopt a simpler rule, such as
always defining a new coset to fill the earliest blank in the multiplication
table. For this reason we except to encounter coincidences more frequently
than in hand work. Since coincidences are sometimes unavoidable, any
programme should be able to deal with them, and it is no great disadvan-
tage that it has to do so more often than in hand work.

6. Second algorithm. This is less similar to hand calculation than the
first algorithm, and was devised to simplify the programme as much as
possible. It was the first to be programmed, and this was for machines with
very limited storage space, so that it was of importance to make the pro-
grammes as short as possible in order to maximize the space available for the
multiplication table.

We construct the lines of the relation tables in a systematic order by tak-
ing each coset in turn and beginning a line of each relation table with it. We
extract the entries aRy, aRiR,, . .. successively, and if any of these is unde-
fined, we define new cosets to complete the whole line of the table. The last
entry in the line should be the same as the first; if it is not, as will always be
the case when new cosets have been defined, then there is a coincidence
between these cosets, and the programme deals with this and any conse-
quent coincidences before continuing.
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The programme for this aigorithm is simpler than for the first algo-
rithm as it has only to work through the relations in the forward direction,
and there is no division into cases corresponding to that in the first algo-
rithm where the workings may fail to meet, just meet or overlap. The co-
incidence procedure handles these cases uniformly. However, coincidences
are much more frequent with this algorithm, occurring whenever new
cosets are defined, which results in uneconomic use of space for the mul-
tiplication table. This is not only the space used for cosets defined to com-
plete a line and eliminated at once by coincidence. Those surviving are defin-
ed in an inefficient order, which may result in the definition of many more
of them. For example, in enumerations of the 448 cosets of the octahedral
subgroup {42, 4~1B} in the group of order 10752 defined by the relations

A8 = B? = (4B): = (4-1B)® = E,

a programme using the first algorithm had a maximum of about 1300 cosets
defined at one time, while one using the second algorithm had 2176 cosets
defined at one time. The presentations of Klein’s group given in § 3 would
probably give more disparate figures, but these are not available. However,
there is some reason to believe that examples of this kind are of infrequent
occurrence in practice. (They may be recommended for use in programme
checking.)

7. Computer handling of coincidences. This is the logically most compli-
cated part of any coset enumeration programme. When it has been found
that two cosets, numbered a, b say, with b>a, are the same, we have to
replace occurrences of b in the multiplication table by a, and deal with any
consequent coincidences similarly. We examine each entry in line b of the
multiplication table. If any such entry is blank, we take no action and pass
on to the next entry. If we find an entry bR; = b, then we replace this by a.
But if we find an entry bR; = ¢ s b, then we know that line ¢ contains an
entry cR;! = b. In the first instance we delete this, rather than replacing it
by a, to avoid having two occurrences of @ in the same column. Then,
whether bR; = b or not, we examine aR,;. If this was not defined, then we
copy bR, there. But if it was defined, then if aR; = b we replace it by a, and
in any case we set up a new coincidence between bR, and aR;, and place
it in a list of coincidences to be dealt with. In either case, if (@R)R; ! is
undefined, then we set it equal to a. In the first algorithm, if aR; was unde-
fined, the transferred entry bR; = ¢,now aR; = ¢, is placed in the list of
unworked table entries.

When all the entries in line b have been dealt with, the line is deleted and
becomes available for the definition of a new coset. In the first algorithm,
any entry in the list of unworked table entries which involves » may be
deleted. If aR; had been undefined, the transferred entry aR; = ¢ will pro-
duce all the corresponding working, while if it had been defined, this entry
3



26 John Leech

will have been dealt with in its own right or will be in the list awaiting
working.

It is also necessary to ensure that there remains no occurrence of b in the
list of coincidences to be dealt with, any such being replaced by a. A con-
venient way of avoiding such occurrences, and also avoiding storage of
redundant information in this list, is the following. The list is kept as a list
of pairs of numbers, the greater on the left, stored in decreasing order of
left-hand number. At each stage we deal with the first entry in the list,
which has the greatest left-hand number, so this number b cannot occur
elsewhere in the list. When a new coincidence is to be placed in the list, a
search is made for the place appropriate to its left-hand number. If a pair in
the list has the same left-hand number, then the right-hand numbers of the
old and new pair are paired, the greater on the left, and this pair replaces
the original pair in the search for the place in the list. Eventually either a
pair is found whose left-hand number is not equal to that of any pair in the
list, which we then place in the list, or a pair is formed of two equal num-
bers, indicating that this coincidence did not give any new information,
and no entry is made. In this way the list never contains redundant informa-
tion.

When the coincidence between b and ¢ has been fully dealt with as
above, the next coincidence in the list is treated similarly, and we continue
until this list is empty. We then return to normal working, beginning with
the first algorithm, with the list of unworked multiplication table entries,
and continue until the tables are complete or another coincidence occurs.
An example which illustrates the handling of coincidences is given in § 12.

After a coincidence and its consequences have been dealt with, there will
be a number of blank lines in the multiplication table, which are available
for the definition of further cosets. It is not advisable to use these in their
original position, however, except for those following the last undeleted
coset, as the numerical sequence of cosets would depart from the logical
sequence, and a sequence of operations based on the numerical sequence
would become inefficient. The table can be closed up by transferring-and
renumbering the undeleted lines, retaining their original order. Experience
suggests that it is uneconomic in time to do this every time a coincidence
and its consequences have been dealt with, and that it is sufficient to do it
when the enumeration is complete or when the storage limit is reached.
(But with the second algorithm it is advisable to ensure that at each stage
the next coset to be defined follows next after the last undeleted coset, using
again any subsequent lines that have been used for cosets now deleted.)

8. Form of data. Essentially the data comprise only the relations defining
the group and the elements generating the subgroup. In practice it is con-
venient to supply also a list of inverses, as suggested in § 4, or some other
specification of the number of generators or the number of columns of the
multiplication table. If the list of inverses is supplied, then it is unnecessary
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to include relations specifiying that generators are involutory with the
defining relations, as these are implied by the list of inverses. It is convenient
to supply the list of elements generating the subgroup next, as these are
required for making the initial entries in the multiplication table and are
not used again after the use of the defining relations has begun. With the
second algorithm, these elements can be handled exactly like defining
relations, the equivalent of a line of a relation table, beginning and ending
with coset 1, being formed for each element. Then they are replaced by the
defining relations, and the main working continues as described. A similar
procedure can be used with the first algorithm.

9. Termination of the process. Proofs have been given by Mendelsohn
[5] and Trotter [8] that algorithms approximating respectively to the first
and second algorithms above terminate in any case of a subgroup of finite
index, but I shall not reproduce these here. It must be emphasized that these
proofs cannot give a bound for the number of cosets which it may be neces-~
sary to define, even in the case of an inconsistent set of relations leading to
the trivial group, as it is known that thereis no algorithm for deciding wheth-
er a given finitely presented group is trivial or finite or infinite [6]. If a
bound could be obtained, as a function of the order and the defining rela-
tions, for the number of cosets which have to be defined for any group
which is finite, this would provide such an algorithm. All that can be shown
in this case is that if the index of the subgroup is finite, then the enumeration
process cannot continue indefinitely.

10. A word problem. In addition to the basic purpose of exhibiting the
index of a subgroup in a group, there are a number of uses to which the
result of a coset enumeration can be put. For example, the columns of the
multiplication table give a permutation representation for a group which
will not infrequently be the whole group when this is finite. I shall not
describe here applications such as this which make use only of the resulting
tables. The problem which I discuss in the next two sections s the following.
) Suppose that a coset enumeration has shown that a subgroup is of finite
index in a given group, and that a certain word W in the generators of the
group satisfies 1 W = 1, so that it is an element of the subgroup. The prob-
lem is to express this as a word in the generators of the subgroup. The final
multiplication table does not enable us to find such an expression, but we
can do so by keeping and using an explicit record of the steps taken in per-
forming the enumeration. In its simplest form, the present algorithm is
applicable only when the coset enumeration has not involved the definition
of redundant cosets and their subsequent elimination by coincidences. An
€xample of this is worked in detail in § 11. A modification of this algorithm
1S proposed which allows an extension to cases where coincidences are met
;n ;h]ezcourse of the enumeration. An example of this is worked in detail
n
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Another problem which can be solved by this algorithm is that of express-
ing an arbitrary element of a group as the product of an element of the
subgroup by a coset representative. The subgroup element can be found by
multiplying the chosen element by the inverse of the coset representative
and applying the algorithm to this product. A set of Schreier coset repre-
sentatives can be obtained by using the definitions of the cosets which were
used in the enumeration. Each coset is defined as the product of an earlier
coset by a generator, and by repeated application of this we obtain a defini-
tion as a product of coset 1 by a word in the generators which is the required
representative. Clearly every leading subword of this word is itself a coset
representative.

11. A worked example. In this example I enumerate the six cosets of the
subgroup {4} in the octahedral group defined by the relations

At = (4B} = B* = E.

A systematic record is kept of the order in which the entries in the multipli-
cation table are made and of the relations used in deducing them. First we
insert the entry 14 = 1, which defines coset 1 to be the subgroup {4}. Next
we define 2 = 1B and 3 = 1B~1. On inserting these entries into the rela-
tion tables, we find that two lines are closed, allowing us to deduce
24 = 3 from (4B)? = E and 2B =3 from B®= E. Next we define
4 =241 and 5 = 34, and deduce 54 = 4 from 4* = Eand 5B = 4 from
(4B)? = E. Lastly we define 6 = 4B and deduce 6B = 5 from B3 = E and
then 64 = 6 from (4B)? = E. The enumeration is now complete, and we
have the multiplication and relation tables given below. The small figures
in the relation tables denote the deductions made by the closures of, these
lines, numbered in the order in which they were made, and the same figures
are affixed as subscripts to the entries in the multiplication table.

A A B B! A A A A A B A B
1 1 1 2 3 1 1 1 1 1 1 1 2453 1
2 3; 4 3 1 2 3 534 2 3 5.4 2 3
3 5 271 2 6 6 6 6 6 S5 4 6¢6 5
4 2 5 6 5
5 4 3 44 65 1325331
6 66 65 55 4 4 655 4

In this example, the cosets have been defined in the sequence of the first
algorithm above, the earliest blank in the multiplication table being filled
at each stage, so, except for retaining the relation tables and annotating the
deduced entries, we have done the work exactly according to the first
algorithm. In this simpls example no coincidences are encountered.

We are now in a position to deal with word problems such as the follow-
ing. The word (BA—1B)~1A(BA~'B) is an element of the subgroup {4},
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as we see by writing it in full with the coset numbers beneath, beginning with
coset 1, like a line of a relation table, thus:
Bl 4 B1 A B A7' B
1 3 5 5 6¢ 6 5 5 31

and noticing that it ends with coset 1. The small figures 5 and 6 indicate that
the relations 5B~! = 6 and 64 = 6 were obtained by deduction, the
others, 1B~1 = 3, etc., having been made by definition. We deal first with the
later numbered deduction 64 = 6, which was deduced from (4B)? = E.
We replace this 4 by B~14~1B~1, cancel an adjacent pair B~1B, and obtain
B! A4 B! Bl 471471 B
1 3 5536 435 3 1°

Again we have two entries made by deduction and we deal first with the
later numbered deduction, namely 5B-1 = 6, which was deduced from
B3 = E. We replace this B~! by B2, cancel an adjacent pair BB-1, and
obtain
B 4 B A A!' B
I 3 54435 3 1

Continuing in this way, always replacing the letter corresponding to the
!atest numbered deduction with the remainder of the relation from which
it was deduced, and cancelling any adjacent mutually inverse letters, we
obtain successively ’
B™1 B71 471 471 4~ B
1 352 45 5 3 1’

B Bl 4 B
1 3,2,3 1°

B A4 B
1 243 1’

A1
[

The work is now complete, as all the deduced entries have been replaced
and we have shown that (BA—1B)~1A(BA~'B) = A~1. The oroceduré
adopted has been that at each stage the replacement made is tilat which
corresponds to the latest deduced entry in the multiplication table. If this
entry occurs several times in the word, the replacement is made at all occur-
rences. After a finite number of stages (which cannot exceed the number of
dt‘:dl{ced entries in the multiplication table), all deduced entries have been
eliminated, and we have a word containing only entries made by definition,
thf!se entries being just those made in defining the subgroup. So although
this word is still in the generators of the original group, its expression in
terms of the generators of the subgroup is immediate.
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I have programmed this algorithm for use with a hand-calculated coset
enumeration, and have made substantial use of it [3]. However, it is capable
of improvement in the following two ways. .

First, any two or more deductions which could have been made inde-
pendently in any order, such as 24 = 3 and 2B = 3 in this example, can be
given the same number and dealt with at the same stage, since the result of
substituting for any one of them cannot be to leave a substitution for
another of them to be done. (This was done implicitly above when giving
the same number to both of a pair of inverse entries, such as 24 = 3 and
34-1 = 2 above.) This reduces the total number of stages to be carried out.

The second modification may be convenient if several words are to be
dealt with from the same enumeration. As the enumeration is being done,
we form a list of substitution words corresponding to the deduced entries
in the multiplication table, each embodying the results of previous substitu-
tion words, and we use these instead of making substitutions of the remain-
der of the relations as above. This avoids making the same, possibly long,
sequence of substitutions several times over, as may happen if several words
are to be dealt with. In the example above, we would have the following
substitution words. As no further substitutions are done on thesp wordq
the coset numbers do not have to be recorded.

A _ Bl4Bt

2 ;3

B B
2,37

A ATY A1 471 471BABA1
5345 3,2 4°%

B A1 B 1 471 _ AT1B24-1
54,4755 3,2 47

B B Bt _ B-14B~24
6 556 445

A B™* 41 B-' _ B~14B7'4-1BA"'B

6 66 6 4 35 56
With such a list available, we need only one stage of substitution for
each word being dealt with, simplifying this part of the work, which has to
be done for each word, at the expense of complicating the preliminary work
which has to be done once only. Thus with the example above we obtain
Bl A B1 A B A1 B
1 3 55366655 3 1
= B7L.A.A71B24A73B. B 'AB 1A *BA"'B.B"*AB 24.A"1.B
= A7
I have used the first modification above with my original programme, as
its use with a hand-calculated coset enumeration involves only preparing
the data, recording the hand work, slightly differently. The second modifi-
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cation would involve substantial fresh programming which I have not yet
done: T hope to do so and to incorporate the extension to enumerations
involving coincidences proposed in the next section. It could then be used
with a computer coset enumeration programme, as there would then be no
special need to avoid coincidences.

12. An example with coincidences. I have not found an example of a
coset enumeration which involves coincidences unavoidably, which reduces
to more than one coset, and which is sufficiently simple to allow full exhi-
bition of the working in a reasonable compass. The example I give is bor-
rowed from Mendelsohn [5], and is to enumerate the five cosets of {X} in
the group defined by the relations

Xt = X24XA % =

Mendelsohn thought originally that coincidences were unavoidable in this
example, but subsequently found that this was wrong. It would be difficult,
however, to devise a computer procedure to find the sequence of definition
which has to be adopted to avoid coincidences in cases such as this (in this
example we must avoid defining 14; the definitions 2 = 1471, 3 = 2X,
4 = 3X and 5 = 4X are suitable). I give the working as it would be done by
the first algorithm (§ 5), dealing with coincidences as in § 7. In addition to
the substitution words, obtained as in § 11, we obtain coincidence words,
which are used rather similarly in the working.

The first part of the working, up to the discovery of the first coincidence,
follows exactly the lines of the example of § 11, and need not be given in
detail. Defining new cosets so as always to fill the earliest blank in the mul-
tiplication table, we define 1X = 1,2 = 14,3 =14 1,4 =2X,5=2X"1,
6 =3X,7 =3X"1,8 =347, and deduce 24 = 4, 8X = 7 and 6X = 8.
At this stage we have the tables and substitution words given below, omit-
ting incomplete lines of relation tables.

X Xt A4 oA X X X X
11 1 2 3 11111
2 4 5 4 1 3 638 7 3
3.6 7 1 8
;‘ 2 2 x X X 4 X 47147
6 8 3 11 1 2 4.2 1
7 3 8 8,7 3 1 1 3 8
8 T 6 3 3 6 8 * 2 1 3
A = A71X24X
2 14
X = AXT47X
8 o7
X = X1X1X1 = X4X47?

6 58 6 3 728
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We now find that the space in the relation table marked by an asterisk
can be filled from either 84 = 3 or 2X—1 = 5, so we have a coincidence
between cosets 5 and 3. We record this, and deduce from it a coincidence
word in the same way as a substitution word, finding

E X A1 47 X X A

54375 2 1 3 638 3
= XA LATLX X 14XA 2.4
= XA™1XA™1
(This proves that the given relations imply (X4~1)2 = E.) Next we deal
with the coincidence as in § 7. In line 5 of the multiplication table we find
the entry 5X = 2, so we delete the entry 2X~1 = 5fromline 2. Then we ex-
amine 3X and find 3X = 6, so we have a coincidence between cosets 2 and 6.
We record this, and construct the coincidence word
E _ X1 E X _ ATIXATX.
256 2 543 67

This completes the working for line 5, as it has no other entry, so we delete
line 5 and deal next with the coincidence between cosets 2 and 6.

In line 6 we find first the entry 6X = 8, so we delete the entry 8X—1 = 6
from line 8. Then we examine 2X and find 2X = 4, so we have a coinci-
dence between cosets 8 and 4, from which we construct the coincidence
word

E _ X1 E X

864 83652 4
= A2X1ATIX.XTAX 14X
= A2X24X.

Continuing along line 6, we find the entry 6X-1 = 3, so we delete the entry
3X = 6 from line 3. Then we examine 2X-! and find this to be undefined
(the entry 2X—! = 5 was deleted when we dealt with line 5), so we insert
the entries 2X~1 = 3 and 3X = 2, and construct the substitution word
X _ X E = AX"4.
3,273 6352

This completes the working for line 6, so we delete it and deal next with the
coincidence between cosets 4 and 8.

In line 8 we find first the entry 8X = 7, so we delete the entry 7X~1 = 8
from line 7. Then we examine 4X and find this to be undefined, so we insert
the entries 4X = 7 and 7X-1 = 4, and obtain the substitution word

X _ E X
437 448,527
= X"1A71X24 2 A2X 141X 1
= X"14-1x471X1,
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Continuing along line 8, the entry 8X~! having been deleted, we find
84 = 3, so wedelete 34-1 = 8 from line 3. Then we examine 44 and find
this to be undefined, so we put 44 = 3 and 34~ = 4, and construct the
substitution word

A _ E 4
443448 3
= X"1A71X2472 4
= X1471X2471,

This completes the working for line 8, so we delete it. There are no further
coincidences to be dealt with, so we return to normal working.
At this stage we have the following multiplication table.

X X1 4 A1
1 1 2 3
4 3; 4 1
2; 17 i 4y
Te 2 39 2
3 44

N B W~

The list of unworked table entries contains the entries 3X = 2, 4X = 7 and
44 = 3. (It would be possible at this stage to renumber coset 7 as coset 5
and to delete the superseded entries from the list of substitution words,
including all the coincidence words, renumbering those remaining. To
avoid confusion, I have not done this here.) In the course of normal work-
ing, we construct the line
X X A X A1 471,
2 4 T 37 3 4 2

which gives 74 = 7, from which we obtain the substitution word
A X1TX1T A A X1

7107_784 21493 7
= XAX IAX X 1A IX2AX X 1A 1X247 L X1
= XAX3A1X~1,

The multiplication table is now complete, and completion of the ordinary
working shows that the relation tables can all be filled consistently without
further coincidences. We also have a complete set of substitution words for
the deduced entries in the multiplication table, so we can now put into
effect the modified algorithm of § 11 for expressing elements of the sub-
group as words in its generators. For example

A A4 A A =AA7XAXX1471X%471. 4
1 2,443 1
= X4,
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This example illustrates that the algorithm does not necessarily obtain the
shortest word in the subgroup generators, and it may be possible to simplify
it by use of the relations for the subgroup. In this example we have X* = E,
so we have proved the relation 4* = F for this group.

In this algorithm, coincidence words are obtained in three ways. When a
coincidence is met in normal working, the relation from which it was de-
duced gives the coincidence word, as with cosets 5 and 3 above. When a
coincidence is deduced from another, as when we found above that both
5X and 3X were defined, we construct the coincidence word

E X1 E X

2 62 5 3 6

by adjoining 5X and 3X to the previous coincidence word. The third way
did not occur in the example. Suppose we deduce a coincidence between
cosets b and a, with b>a, obtaining the corresponding coincidence word,
and find when placing this coincidence in the list of coincidences to be dealt
with that the list contains a coincidence between cosets b and ¢, with b>c,
whose coincidence word is available already. We replace our coincidence
between b and a by one between cand a in our search for the place in the list,
and construct the coincidence word

E E E

¢c a ¢ b a

This operation may be repeated as the search continues.

Substitution words are obtained from entries in normal working as pre-
viously. They are obtained from entries transferred by coincidences as the
product of the former substitution word and the coincidence word, as was
done above when we obtained the substitution word

X _ XE
3273 6 2°

A programme to implement this algorithm would need substantially
more storage space than a programme to implement only the coset enumer-
ation, because of the need to store the substitution words. These could be
packed with several letters to each computer word, but there would be
complications as the length of these substitution words seems to be practi-
cally unlimited. Some economy can be effected by deleting the words cor-
responding to superseded entries and coincidences. The coincidence words
could be listed separately, as it is known that they will all be superseded.

Such a programme could be used for proving relations in groups, either
by discovering them (as with (X4—1)2 = E above) or by proving suspected
relations (such as 4% = E above). In either case a formal proof could be
printed out from the substitutions made in the course of the working. It
would be of interest to apply such a programme to a problem such as the
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following. The relations
A% = B = (4B = (A™'Bp* = E

imply (42B%)° = E, but the only known proof is of surprising length.
A proof could be obtained from the enumeration of 448 cosets of the
octahedral subgroup {42, 4B}, which is believed to involve coincidences
unavoidably (cf. § 6), and this could be compared with the published
proof [4].

13. Acknowledgement. The early part of this account reproduces almost
exactly the corresponding part of my former paper [2]. I am indebted to the
Council of the Cambridge Philosophical Society for permission to repro-
duce this.
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Some examples using coset enumeration

C.M. cawpBeLL

Imtroduction. A modification of the Todd-Coxeter coset enumeration
process [1] has been described by Campbell [2], Moser [3], and Benson and
Mendelsohn [4]. In this note we give some examples that illustrate the way
in which this modification is used.

Let G be an abstract group with a finite number of generators and rela
tions, and let H be a subgroup of G. Assume further that the index [G : H]
of Hin Gisfinite. Let E denote the identity and let (—) denote the inverse
of an element.

TaeoreM. If from the relation R = E, where E is the identity and

R=ai...a,...0,... a5, 1=r=s=p,
we win the new information
XAryy ... Qg = B,

where each &; is a generator g; or its inverse and a, f§ are integers denoting
cosets, then
g, ... a = W/,

where W=W, W o... WilW,... Wera
is a word in the subgroup and a, 8 are now thought oOf as coset representatives.
Proof. Express the relation R = E in the form
av et al = ‘Tl'—ld;'ﬂz ot a_la-v oo a;+1.
Then
€@ ... = a9 . Q1 - - - sy

From previous information in the tables we find «.z,_; expressed in the

form W,_;+-y (aand y are now thought of as coset representatives and W,_,
is aword in the subgroup H):

Xby ... & = W p.Grg ... Q13 - - - sy

Now, again from the tables, y-@,_y = W,_,- .
Therefore
«dy...a, =W, _1We 9d0.@_3... [ﬁﬁp . dS+1-
¥
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Repeating the process,
€y ... Q= Wi iWe s . .. lVll’Vp . W;Hﬁsﬂ-

Finally, from the tables,
xu'-ds«l-l = WS+1'18'
Therefore
at ... =W W a.. WilW, ... Wi,
and hence
wd,. ..U = WG
The Todd-Coxeter process leads to an enumeration table and from the
modification and our theorem (withp = 1) we obtain a table carrying addi-
tional information (see Example 1).
Examples. In {2} an algorithmic proof is given to show that the two
relations
RS2 = SR, SR®= RS
imply that R = § = E, where Eis the identity. This has been generalized by
Benson and Mendelsohn [4] who show that the two relations
RS*™' = §"R, SR*-1 = R"S
again imply that R= § = E.
We consider two examples that arise from the previous two.
Exampie 1. Let G = {R, S, T, U} be subject to the relations RS = §27,
ST = T2U, TU = U2R,UR = R2S. Then G is cyclic of order 5.

Proof. RS = S2T (M
ST = T?U (2)
TU = UR 3)
UR = RS (@)
STtU = RS (5) from (1), (2)
STU = R (6) from (3), (4), (5)
where, as before, (-) denotes the inverse
SU = RST (7) from (3), (6)
ST = E (8) from (1), (2), (6)
SRS = E (9) from (1), (8)
U2=R (10) from (4), (9)
ST = RU (11) from (6), (10)
S =R (12) from (7), (11)
U=Re (13) from (4), (12)
T=R (14) from (1 1), (12), (13)
RS=E (15) from (10)
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This agebraic proof follows agorithmicaly from the modified Todd-
Coxeter process with the following enumeration and information tables.
New information is found from the underlined positions in the tables in the
order numbered.

R §TS S S TUTT | T URTUTU URJSREKR
L1 23 2 1|1 2 5 L1 4 1|1 412 1 1 1
2 (! 3 212 3 2 @35 225 1t L 5502|265 2
3 3(3 (6) 1 52 3|3 2 3|3 3
42 3 4 4 4 |4 41481 1 2 4
5 55 55 2 4 1@5|5 11 5
Coset Representative R S T U

1 ={R} 1=E IR=R.I 18=E2 IlU=E4
2=18 2=5 2S =E3 2T=E5 2u=R5
3=2s 3=§ 3T =R2

4=1lu 4=U 4R = R:.2 4U = Rl
5=2T 5 =ST 5u = al

From the positions numbered 3, 6, 7 we have, using our theorem, the
additional information

5.TU = R2,
38T = E,
2.RS = El.

In the above tables 4. U = Rl and 5. U = R. 1, which implies that 4 and 5
are the same coset, and in terms of coset representatives 5 = R2.4. Replac-
ing 5 by R2.4 in the information tables gives

R N T U
LR = RI I.S=E.2 lu = E4
2S = E3 2T =R*4 2.u=Re4
3T=R2
4R = R22 4U =R.l

From these tables 1. U = E.4 and 2. U = R*4, and it now follows that
1 and 2 are the same coset. Repeating the process as before leads finaly to
complete collapse.

CPA 4
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The new information 4.R = 2 and 3.T = 2 reduce to equations (1) and
(4) but from the new information 5.7U = 2 equation (5) is obtained. In the
firss of the two calculations below we work with the coset representative as
an integer and in the second we think of the coset representatives as a word
in the group.

5TU = 5TST ST.TU = ST.TST from (2)
= E2.8T = ES.ST
= EE3T = EES®T
= EER.2 = EERS

5TU = R2 = R.S from (1)

This is equation (5). In a similar manner we obtain equations (6)-(10).
Equation (11) comes from the first coincidence when cosets 4 and 5 are
identified.

5= R1.U from 5u= Rl
= RR4.UT from 4U = RI
= R24,
or, in terms of coset representatives,
ST = REU from (6)
= RRUUU from (10)
= R2U,

and thisis equation (11). From the other coincidences we obtain equations
(12)-(14).

ExampLe 2. The relations SR = RSRS and RS? = SRSR imply that
R=S=E.

Proof. The proof is again obtained agorithmically as in Example 1.

SR? = RSRS ¢)]
RS? = SRSR )
SR3 = RS2 (3) from (1), (2)
S2RSR = RSR®S (4) from (1), (2)
S% = RS*R? (5) from (1), (3)
SR*SRS = RS?R (6) from (1), (3)
S2R2S = S2?R? (7) from (2), (3), (5), (6)
whence S=EandR=E.

The following question now arises. Given SR* = R*1SRS and RS" =
= S"1RSR, do these relations imply R = S= E? (Truefor n = 1, 2))
Ore futher exanple is the fdlowing dow tha the group generated by five
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generators a, b, c, 4, e subject only to the relations ab = ¢,bc = d, cd = e,
de = a,ea = b, is cyclic of order 11. This problem was discussed in the
American Mathematical Monthly [5].
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Defining relations for subgroups of finite index
of groups with a finite presentation

N. S. MENDELSOHN

THis note solves the following problem. Let G be a group with a finite pres
entation. Let H be a subgroup of G which is generated by a finite set of
words in the generators of G and which is known to be of finite index. Find
a set of defining relations for H.

To solve this problem we need the following lemma.

LEMMA. Let G be a group with presentation
G={xy, X3 - % Ri(xy,-.. %) =...= Rfxy,. .. x) =1}

Suppose glso that G isgenerated by 14, 2s, . . ., t» and that each t is expressed
as a word in the x’s and that each x is expressed as a word in the t's Then a s
of defining relations expressed entirdy in terms of the t's can be found.

Proof. Let x; = Wity t2, . . ) i=12, ..., randlet ; = wixy,
Xos ooy %) j = 1,2,. ..) m. We abbreviate these as x; = W{r) and t; =
= wy(x). We now carry out Tietze transformations as follows. To the pres-
entation G = {x; : R, = 1} adjoin the generators £ and the relations
t{ w (x)}~1 =1, obtaining

G= {x,-, 4! Rn(xla SR xr) = ti{wj(xla S xr)}_l =1 }

Now replace each x; by W (1) and delete the generators x;. We then obtain
the required presentation with generating relations

R Wl(t)9 W2(’)’ e Wr(t)) = tj{wj( Wl(t)’ Py Wr(t))}~1 =1

We note, in passing, that it is not generally true that the “inherited” rela
tions R,( Wi(t), Wy(t), . . . , W,(¢)) = 1 are an adequate set of defining rela-
tions. We give later an example where the “extra’ relations t{w{ W(s), . - -,
W,(t))}~* = 1 cannot be deleted.

We now return to the solution of the main problem. Since the subgroup
His defined by a finite set of words and is of finite index, the Todd-Coxeter
coset enumeration process must close (see Mendelsohn [37). Also by Men-
delsohn [3], a set of Schreier-Reidemeister generators for H can be obtained
and a rule for determining in which coset of Ha word in G lies. With this
information we can write down a set of defining relations for H (as given,

43
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for example, in [2] pp. 86-95). Also by Benson and Mendelsohn [1] the
Schreier-Reidemeister  generators can be expressed as words in the originaly
given generators of H. We now start a second coset enumeration using the
Schreier-Reidemeister generators as the defining generators for H. This
enables us to write the originaly given generators of H as words in the
Schreier-Reidemeister generators. Now, by the use of the lemma, we are
in a position to write defining relations for H in terms of its originally given
generators.

Remark. It appears that we have given an extremely roundabout proce-
dure for obtaining defining relations for H in terms of its given generators.
Why introduce the Schreier-Reidemeister generators at all?

The following appears to be a plausible direct procedure. Every relation
in G can be written as a product of conjugates of the given relations R; = 1.
Hence, the group H inherits as relators the conjugates of R; when expressed
as words in the generators of H.

It would appear that it is sufficient to take as conjugating elements one
from each coset of H. Hence H inherits the relators ¢;! R,5; where R;
ranges over the defining relators of G, g; ranges over a set of coset repre-
sentatives and o; ' R,0; is expressed as aword in H.

The following counter example shows that these inherited relators are
not necessarily a set of defining relators for H. The group was studied by
Baumdlag and Solitar.

Let G={A, X: X7142X = A3}. Let H be the subgroup generated by X
and A8. By Benson-Mendelsohn [1], H = G and in fact

A= ABX 14 "8XABX 24 ~8X T1A3XA “8XASX 1A T8 XAX.

Calling the right side of this equation Wit is seen that in terms of Xand 43,
the group G inherits the relation X "22X = W3. Also, since G has only
one coset and one defining relation no more than one relation can be obtained
from coset enumeration. However, G. Higman has shown that in terms
of X and A% the group G requires two defining relations. Hence the extra
relation (in this case 43 w —8 = 1) cannot be deleted.
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Nielsen transformations

M. J. DuNwooDY

Ler G be a group with n generators. Let X' be the set of ordered sets of »
ggados o G

If @ isapermutation of theset { 1, 2, . . ., n} then a, will denote the per-
mutation of 2 such that

(81, ..., 8n0n= (81n &2 . . ., Bnm)-
Ifi,j€{1,2,...,n}, i #], then «_;, a;.; will denote the permutations of Z
that

(gb trey gn)“—i = (gla g2,. ., 8i_1, gi_17 i+l .. - gn)y
(81 . . g =81 vy i1, 818> Ej41s . .y &)

Let A be the group of permutations of 2 generated by all the above.

It is sometimes useful in group theory to know the transitivity classes of
Z under A. Let F be the free group on generators xj, xs, . . ., X,. If
(g1, g2 ..., &) (h, b2, . .., h) belong to X and R, S are the kernels of the
respective homomorphisms 6, ¢ of ,F onto G such that x,6 = g;, x;¢ = h;,
i=1,.... n, then there is an automorphism y of F such that Ry = S if
(g1, g2 . . ., &), (h1, ha, . . ., h,) belong to the same transitivity class of X
under A. When such an automorphism of F exists there is for instance an
isomophiam induwed bewen FJ[R, R ad F/[S, S; thee goups nesd naot
be isomorphic if (g1, g2, . . ., &), (h1, k2, . .., h,) belong to different tran-
sitivity classes under A.

The problem | consider is the following:

If G has n- 1 generators, then in every transitivity class of 2 under A is
there a set of generators one of which is the unit element?

The aswe to this quetion is yes if G is finite and sduble in fact one hes
the fdlowing :

THeorem. If G is a finite soluble group with n- 1 generators, then A is
frangtive on X,

Proof. The proof is by induction on the length c of a chief series of G. If
¢ = 0, the theorem is trivia. Assume then that ¢=-0, and that the result is
true for c- 1.

Suppose now that

E=My<Mi<Ms<... <M, =G
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is a chief series for G. Let ks, . . ., h,_1 beaset of n- 1 generators for G.
Let (g1,.... g,) ¢ £, by the induction hypothesis on G/M; there exists
a ¢ A such that

g ..., g,,)oz: (m, myhy, mahs, | , My_1h,_1)

where m, mi, mo,. .., M, _4¢€ M. If m= (S then mihy, mohy, . .., My_1h,_q
generate G and by using a product of the a;.; ‘s and their inverses we obtain
a set of generators in which the first element belongs to M; and is not e.
Therefore it can be assumed that m = e.

Now, since M, is abelian, if

g=why, hs, ... . ha1)EG
then
g7img = wihy, ... hy_ 0 mwlhs, . by 1)
= w(mihy, , . . Mp_1he_1) " mw(myhy, . .. My _ 1k, ).

It follows that there is an element & in A such that
(gl;- L, gn)“’ =(mg’ mlhla- R mn_.lhn_ 1)-

Now using «;,;,; O itsinverse the (i+ 1)th term can be changed to m®m;h,
or m~&m;:h;. However, since M; is minima normal, each m; is a product of
conjugates of m or its inverse. Hence by repedting the above process enough
times it can be seen that there exists &’ in A such that

(gl, .. ':gﬂ)‘x” = (m, hla h2’ P hn_l)-

However Az, . . ., h,_, generate G and so by using a product of the a;,’s
and their inverses we see that (gy, . . ., g,) belongs to the same transitivity
classunder A as (e, A1, ks, . . ., hy), Which proves the theorem.

To find a counter-example for the non-soluble case a computer might be
employed. If G is the aternating group on five symbols and X' is the set of
sets of three elements which generate G, then X has 120X 1668 elements
[1]. These are partitioned into 1668 transitivity classes under the action of
automorphisms of G, and A can be regarded as acting on these classes
rather than on the elements of X, If Aisnot 19-ply transitive on these
classes, then the direct product of 19 copies of G, which can be generated
by two elements, would have a set of three elements which generate it but
which could not be reduced to two elements by Nielsen transformations.
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Calculation with the elements of a finite group
given by generators and defining relations

H. JURGENSEN

1. Preliminary remarks. The system of group theoretical programmes
working at Kiel [4] consists of programmes which are independent of, and
ahes which dgpad on, the spedd way in which the damanits of the graup
to be cdaladed ae rgresnted The later ae roughly spesking, concemed
with reading the input data and printing, multiplication of, and inverting
elements.

| shal give an outline of some difficulties which arise with multiplication
and inverting programmes, when the elements are represented by words of
ddradt gegaars and of some ways to overcome o avod them.

In 1961 Neubiiser [3] described a programme by which these problems
were, to a certain extent, solve8 for finite p-groups. In 1962 and 1963
Lindenberg published ideas [1] and a detailed description of a programme
[2] for solving them for finite soluble groups.

Thus in a catan sne no theordicd  difficulies were Ieft; but, as expeai-
ence proved, the practical problem of “minimizing” the time needed for
computing the produdt of two demetts when jus the necessry input dda
woud be gven, was not ye sdved aifidetly. Hence some futher refine
ments had to be introduced.

2. Input data. Let G be a finite group and e the identity element of
G. An AG-system of G is a system of n generators a,, a,_4, ..., 4, 0f G
and of n(n+1)/2 words g; (i = 1(1)j; j = 1(1)n), for which the following
conditions hold :

€U 1-gp(e,a, @ .. 4-)CG l=i<j=n R1)
ali = g;; l=<j=n R2)
la, a)] =gy; l=<i<j=<n (R3)
v > linteger; af 4U;_y; | <7 <y; l<j=<n (R4)

For a group G there exists an AG-system defining G, if and only if Gisa
finite soluble group.
Proof. L& an AGgdem ddinng G be gven Accodng to (R3) ad (R1)
8 (1=<j<n)is an element of the normaizer Ny,_, of Uy_y,i.e. U;_; 4 U,
47
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Because of (R1), (R2), and (R4) U;/U;_, is a finite cyclic group of order
greater than 1; hence G is a finite soluble group.

Now let G be a finite soluble group. If G is cyclic, it will be defined by the
generator a; with g1; = e and 9, = |G|. If G is not cyclic, there exists a
finite chain of subgroups Uy, Uy, . . . , U, of G with: U, = gp(€e); U, = G;
U;_ A U;; U/ U;_y is cyclic and finite of order Uj: U;_; > 1 (1 =j =< n). For
j =1(1)n g; is selected in such a way that gp( Uj-1, a;) = Uj; v; will be
defined as U; : U;_y ((R4) holds). Then the words g; can be found such
that (R1), (R2), and (R3) hold. For the proof that G is defined by an AG-
system chosen like this we define:

Aword gmg¥m-t . 8”1 €G(1l<v,=n; &, integer; i = I(I)n), for
which the followm;l; condltlons hold, is called a normed word:

Vi < Vig1; l<i<m (N1)

0 =g, l<i<sm (N2)

&, < Py, ; l=i=m (N3)

If only (N1) and (N2) hold, the word is called seminormed.
As g;¢U;_yand g;¢ Ny, _, (1 =j = n), U; can be decomposed into cosets :

U] = Uj_1+ajUj_1+aszj_1+ P +a})j.—1Uj_]_
Hence for every word in G there exists a normed word, which is equivalent
to it. Since |G| = Hw,, the set of words of G can be represented uniquely

by the set G* of normed words in G, and G is defined by the AG-system.
As a secondary result of this proof we have : Let an AG-system defining G
be given; the words g;; can be written as normed ones.

3. Multiplication algorithm. In the following text the symbol U will
denote the set of normed words in U;. According to the proof from above,
(R1) may and for practical purposes will now be replaced by the stronger

condition:
ot J) KCY)) Y] . i
g”_a,l qu - _1 €Ur,CG; l=isj=n (R1)

As far as finite groups defined by AG-systems are concerned, the word
problem is no obstacle.

There exists a well-defined finite agorithm by which the product bc € G* is
obtained for any two words b, ¢ € G, where b is seminormed, ¢ isnormed,
and G is afinite group defined by an AG-system.

Proof. Use induction on ¢ with b, ¢ ¢ U,. The agorithm itself will be de-
fined by the proof.

(1) 1 =1: b, c € Uy have the forms b = &% (seminormed), ¢ = a§ (nor-
med). The normed product be¢ ¢ Uy is defined by

be = as_11+61——¢1 entier ((e3+&)/vy)
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The proposition holds.
(2) Let the proposition be proved for | < t< k=n.
(3) t=k:b, ¢ cU, = U, have the forms

b=a}a%y - - - a3 (seminormed)

¢c=alrak3 ... akx  (normed).

bc € U¥ is obtained by norming the words wy, wg, . . ., w, of the sequence
aiic = aptwo = wy, agwi1 = We, . . ., GFW,_; = Wi = be.

To obtain a;iw,_, € UF (1 < i< K) ¢ times products of the form

aaprali— . .. ah
with
— *
apa—r. .. anc Uy
have to be normed.
(3.1) i =k: We define
a'lk+la7]k_1 ... gn U*'
a . angh— . .. gh = k— el ’l?k+1<1pk
K"k k—1 1 a'lk—1 a'h' +1 B
gkk B B 77k = Tpk.

For ;. + 1 = vy, the proposition follows from assumption (2).
(3.2) i<k : Proof by induction on 1.
(3.2.1) n, = 0: The proposition follows from assumption (2).
(3.2.2) Suppose the proposition has been proved for 0 < 7, <A<y,
(3.2.3) n, =7 : The word to be normed has the form

A
a@al—r ... ah
which is equivalent to
A— 1 ytp—.
4,08, 4" aF .. .(1;71.

According to assumption (3.2.2) the proposition holds for
§= gpaylap—. .. ap,
which will be normed to a word
apdp— ... ah
where ;= 21— 1, since § ¢ U} a2 U, = a1 U,
According to assumption (3.2.2) it hoIds for
aiai-laik_—ll -l

and hence the proposition is proved.
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4. Multiplication programme. A machine programme which strictly
follows this agorithm will be rather slow; the reasons are that it is recur-
sive, and that the input data, i.e. the words g; and the integers y; and n,
which are congtants throughout al calculations with the elements of a given
group, have to be looked up for every multiplication again and again.

We could naturaly save some computing machine time if a special mul-
tiplication programme was written for every AG-system. For a trained pro-
grammer this might take less time than doing al the group calculation by
hand.

As had been redized for groups whose orders are powers of 2 by Neubii-
ser, and with a different sort of defining systems for finite soluble groups by
Lindenberg, a compromise would be to write a programming programme
C, which will generate the multiplication programme M needed according
to the special AG-system given.

| shall give a rough sketch of C in terms of M. C has been running & Kiel
since  1965.

M is generated in two steps. First a multiplication programme M* and an
inverting programme INV are generated, for which just the input data, i.e.
the AG-system given, are used. Then M itself is generated as an improved
version of M* in such a way that parts of M* are replaced by new ones
according to further relations which will be computed by M*.

M and M* both consist of a main programme H, the structure of which
isthe same in M and M*, and a set of subroutines Pz, j, k).

4.1. The programme H (see flow chart). The normed elements airaZ-1

. ap € G* are uniquely represented by the integers

n i—-1
& + Z (gi. ]_[ 21+entier (Iogz(w,-—l)))
i=2 J=1

With 27 binary digits per machine word of the electronic computer used by
us (Electrologica XI) the group elements can normally be stored in one
word each, when this representation is used.!

In the beginning of H the exponents &; of b and §; of ¢ (i = 1(1)n) are
isolated and stored to separate machine words.

tThe number of binary digits needed for the elements of a group G is
n+ Y entier (log,(yi— 1)) < n+‘Z1 entier (log, y;) < n + entier (log, l'l[ )
i=1 = (=

= n+entier (log, |G]).
The representation which will need the fewest binary digits is

n i-1
&t Z (Si‘ II 'l’i);
i=2 Jj=1

for a binary machine; however, isolating the ¢; will generally take more time, because
divisionsinstead of shifting operations will be needed for the elements stored like this.
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3, yyentier LN 3
4

(Bn,Boety-nr 3) = be

Then for i =1(1)n the element w; = a,alal-1.. . alt isnormed g; timesin
such away that the machine words, where the exponents §; are stored, will
afterwards contain the exponents of the result.

For i=1(1)k and k = 1( 1)n we define the natural number 6(i, k) by:

8i o, k)+t =€ i f 6(1', k) -~ t+0(i, k) =<k (1)
gi ok * e ori = 63 k). @)
Since from g; = e (i<j) follows ga = a%a;, norming w; is equivalent to
norming w; = aagémagem-r . . . apt and1€aving &, 8p_s, - -+, Ogg 41
unchanged.

What H actually does for norming w; is to call the subroutine
B, 00, n), Vogi, m)-

Since gi; = e in any AG-system, the generator g; is treated in a specia
way throughout Af* and M: It is not necessary to reduce 4; modulo
whenever §; = y;; but this is done once at the end of H only. Furthermore
if a1 is an element of the centre of G, i.e. (1, n) = 1, cdling
1, 6(1, n), Yo, ) €1 times is replaced by adding &, to 6.

Before His returned from, the exponents é; will be “compressed” and
bstored to one machine word again as representation of the normed product

C.
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4.2. The subroutines P{i, j, ¥;) (1 <i<j=n). These subroutines just con-
sist of a “go-to-instruction”, which will lead to the subroutine P, j, é;)
for ;=0 and to P(i, 0(, j—1),py ;1) fOr & = 0, according to the
actual value of ¢; (see flow chart).

4.3. The subroutines P{i, j, k) (l=i<j=n; 1=<k<y,). The element
agkalis ... ap will be normed. (i, j, k) will (in most cases) call further
subroutines  according to g, (see flow charts).

Peijk> n M*
1sisjen, t<key;

St N &0,])¢]
ol 4o 05”)’” 1<8(t,1)<]
ol
o (B CALL CALL
ol s 858 P, (0, W3, ) Pet,j, k1> o
v v ot

H T
CALL CALL times
Pt 8] ¥y 13> Pet, j, k-1>
—

——
H2,j)<)
#2.p=)
CALL CALL
P<2, 82,1\ ¥s12,1)> Pe2,jk-1>
1 : o1l s
CALL CALL )
P<2,8(2,i) ¥ 11> Pe2,j k-1> :
H
oy ¥ " H
S(j-1,j)<j 3 $-1.))=§ ‘
'
CALL CALL :
P<j-, M-k by > Poj=t, ), k=t H
Sl H
T ilyimes
4 H ki times
CALL
. f CALL
Pq_'.s“_l']).wm“'ﬂ)

4.4. The subroutines P (j, j, ;) (1 =<| = n). The element aafiafi-; . . .
a* will be normed. P(j, j, ;) will cal further subroutines according to
gy If 6+ 1 = y; (see flow chart).?

4.5. The inverting programme (see flow chart). When a* is finished an
inverting programme INV will be generated.

The word w = g»ai.. . ai € G* is inverted by successvely norming the
following  words

a,’,””l"'"e =W

alaltl =ty = wy

aal_y ... e, =, = W
t All those subroutines P, j, k) will be generated for M*, for which

(@) 1<i=j=<nand k=y, or (b) l<i<j=<nand l=<k=y; and g;+e¢, OF

©i=j=1land f(,n) £ 1iand k = y,,
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It is important here that the multiplication agorithm is defined for
seminormed words as left factors. For computing |a;| (i = I(Dm) M* is used.

4.6. M developedfrom M*. What proved to be most time-consumingyis
that with an AG-system given the number of steps to be taken for norming
the word a.vaf":‘aff_—:ln .a® will in general increase rather fast, when §; is
increased.

As aremedy further normed words hy = [a; af] (1 <i <j = n;
2 = k< ;) are introduced, if there exist | and j (1 =< i<j=n) such that
y; £ 2 and g; + e For computing these normed words M* is used.

In M* norming a,a¥al4. . .af for j<j and §;>1 is based on the egua-
tion

6—1 6 1

& 8 [} [
agfasy 4 = aagya’ald L arl

The subroutines P (i, j, k) of M* for i<j and 1 <k<u;, which norm the
words aafad~. . .af can be replaced by others, which use the equation

& 6;_ & [ B 4,
aiaj’ajif. .= ajfa,-hij ,sjajj_i PP al‘,

when the words f,,; have been computed; in this way M is generated+

N When Neubiiser and Lindenberg wrote their programming programmes,
the problem of introducing further relations, which are not part of the input
data, did not occur. The programme of Neubiiser worked only for groups
whose order is a power of 2, and g, = 2 for j = 1(1)n; hence no words A;;
exised. Lindenberg, on the other hand, uses defining systems as input data,
which contain not only those words which correspond to the words g;; in
an AG-sysem, but aso those which correspond to the words #; and hence
can for soluble groups be deduced from the rest.

5. Some extensions planned.

(@) For C it has been assumed that in an AG-system the words g; are
normed ones. It is easy to prove that there exists a well-defined finite
agorithm, by which the normed equivaents of the words g; in any AG-
system will be obtained, if they are of finite “length”. Programming this
will make the preparation of input data less troublesome.

(b) In defining systems conjugates of the generators instead of commu-
tators may be used (K-system).

(c) Although there does not exist an AG-system defining the aternating
group of order 60, for example, there exists a sysem with products instead

T Al those subroutines P {j, j, k) will be generated for M, for which
(8) 1<i=j=<nand k=g, or (b) Isi<jsnand k=1,y and g;+e or
() 1ssi<j=nand l<k<y; and hy +eor (d)i=j=1and 6(,n <+ 1 and
k =y
CPA 5
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Defining systems:
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of commutators by which it may be defined.? Such systems (P-systems)
exis as defining ones for every finite soluble group and even for some finite
groups which are not soluble. If of>? = 1 (i =1(1)j— 1, j = 2(1)n), i.e. the
group is soluble, there exists a well-defined finite multiplication algorithm.

() Some non-soluble finite groups may be caculated, when an “extended
P-system” is given. As far as P-systems are concerned, the extended ones
seem to be the “weakest” with a well-defined finite multiplication algo-
rithm existing.

A new version of the programming programme, which is just being writ-
ten, will alow the input data, i.e. the defining system, to be a mixture of
AG-, K-, P-, and extended P-systems, and the words to be not necessarily

normed Ones.
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On a programme for the determination of the
automorphism group of a finite group

V. FELscH and J. NEUBUSER

THe programme A for the determination of the automorphism group A(G)
of afinite group G is part of a system of programmes for the investigation
of finite groups implemented on an Electrologica XI at the “Rechenzen-
trum der Universitit Kid”. A detalled description [3] of A has been published
in Numerische Mathematik. Therefore here we give only a short summary.
Notations are as in [1].

The programme A makes use of information about the lattice of sub-
groups of the group G, provided by a programme ® described in [2]. The
programme A works as follows.

1. A system of generators and defining relations of G is determined. It is
used later to decide whether a mapping from G onto G is a homomorphism.
There are three cases:

1.1. If Gis soluble, a system of generators a¢ = 1, @1, . . ., a, is chosen
such that the subgroups U; = ( ag, . . . , a;) form a subnormal series.
For i =1( 1r, let «; be the least positive integer with & € U;_;. Then

ap =1, adi=a . gt i =21,
and

ara; = P AD ik ax, l=i<k=r,
are defining relations of G.

1.2. If G is nonsoluble, A searches for generators as= 1, ay,.. ., a, of
G with the property: For i = 1(1)r there exist integers «;=1 such that each
gcU;=(a,....q ) isobtained exactly once as g = ajt. . . 4 with
0 < ¢;<a; forj = I(1)i. Defining relations of the form

. . (73 [
Q=1 de=aed,i= 20,
and
dfa; = dBBAL . . kB l=<i<k=r, l=sf<a,

are then determined.

1.3. If G does not possess such generators, then generators and defining
relations must be provided as input by the user of the programme.
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2. The coarsest equivalence relation, ~ say, on the set of all subgroups
of G, with the following properties is constructed:

(1) Each group of the lower and upper central series and of the commu-
tator series of G forms a complete --class.

(2) U~V implies: |U| = |V]; No(U)~Ng(V); Co(U)~Cg(V); Uand V
are both or are both not cyclic, abelian, nilpotent, supersoluble, soluble,
perfect, normal in G, subnormal in G, or selfnormalizing ; for each ~ -class
®, U and V contain, are contained by, and normalize the same number of
subgroups belonging to § respectively.

3. For each element g ¢ G the set H(g) of all h ¢ G with (h)-(g) is deter-
mined. H(g) contains the set J(g) of all images of g under A(G) and can be
shown to be a “good approximation” of J(g).

4. Generators by, . .., by, of Gwithminima d= ﬁlH(b,.)| are selected.

Then aligt L of d bitsisset upin1 -1 correspondéncl;e to the d different
systems by, . . ., by with &} ¢ H(b,). Systems &y, . . ., b} not generating G are
marked in L.

5. Generators ¢y, . . ., g,, of the subgroup I(G) < A(G) of inner auto-
morphisms are determined from G/Z(G). For each ¢ ¢ 1(G) the system
bip,.... bgpismakedinL.

6. Let A, = 1(G), 4; = A,,, the subgroup of A(G) aready caculated, and
b1, ..., b, the first system not marked in L. Using the relations determined
in§ 1, it is checked if b;—b; defines an endomorphism of G. If so thisis an
automorphism ¢;,; ¢ 4;. Hence 4,,; = (4;, @;,1) IS constructed, and all
systems by, . . ., by With g € 4;,;— 4; are marked in L. Otherwise no
automorphism of G maps, for any ¢ ¢ 4;, dl b; onto b, and hence all sys-
tems byg, . .., byp with ¢ € 4; are marked in L. All elements of A(G) are
obtained as soon as the number of unmarked bitsin L is less than the order
of the greatest known subgroup 4; < A(G).

7. The order of and generators for A(G) are printed. A typical running
time for the combined programmes ® and A is 8.5 minutes for a group of
order 72 with automorphism group of order 3456.

REFERENCES

1. C. BrotT and J. NEuBUsER: A programme for the calculation of characters and repre-
sentations of finite groups. These Proceedings, pp. 101-1 10.

2. V. Fersca and J. NeusUser: Ein Programm zur Berechnung des Untergruppenver-
bandes einer endlichen Gruppe. Mitt. Rh.-W. Inst. £, Znstr. Math., Bonn 2 (1963),
39-74.

3. V. Feisca and J. Neusiiser: Uber ein Programm zur Berechnung der Automorphis-
mengruppe einer endlichen Gruppe. Numer. Math. 11 (1968), 277-292.

A computational method for determining
the automorphism group of a finite solvable group

L. GerHarDs and E. Aactvann

Many problems in the theory of finite groups (especially of the extension
theory) depend on the knowledge of the structure of the automorphism
group A(G) of afinite group G. In[2] a computer program for determining
A(G) of afinite group G has been given. With a view to the computational
construction of A(G) it seems to be profitable to develop systematically
methods for determining A(G) by “composition” of “allowable automor-
phisms’ of specia subgroups of G.

The main result of the present paper is a method for constructing the
group A(G) of afinite solvable group G of order |G| = 3. . . g% by compo-
sition of special inner automorphisms of G and alowable automorphisms
a P(i=1,...,T1), wherethe P; are the Sylow subgroups of a complete
Sjov bes o G

The paper consists of three parts. In the first part (A, § 1), using the
invedigations of {1], ch. II, § 1, bessd on reslts of the theory of Sylow s/s
tems ([4], [5]) and general products ([1], [8], [9]), we explain a theoretical
agorithm for constructing A(G) by composition of A(P) (i=1,...,r)
(A, §2).

In the second part (B, § 5), using results obtained by the determination of
the lattice V(G) of all subgroups of G ([3], [6]), a computational method for
constructing A(G) will be developed by redization of the theoretical inves-
tigations of part A. In B, § 4, questions about computational representation
o atomophsms ae do dsoussd

Finally in the third part (C, § 6, 7) possibilities for rationalization and
extension of the program system to not necessarily solvable groups will be
explained.

A. BASIC RESULTS FOR THE DETERMINATION
OF A(G) FROM THE AUTOMORPHISM GROUPS A(P)
OF A SYLOW BASIS P,, . . .,P, OF G

1. Some results of the theory of Sylow systems and general products.

(@) Sylow systems and Sylow system normalizers (4], [9]). Let G be a
solvable group of order |G| = g3+ . . . +¢;" (¢: primes). Then G contains for
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every ¢; ag;-Sylow-complement K; (i=1,...,r) of order Kj|=]] ¢y, and
158
J#i

every complete system & = Ki, ..., K, of g-Sylow-complements gener-

ates a complete Sylow system & consstmg of 2’ subgroups X, = ﬂ K,,

K, = G, defined by all subsets ¢ of the set of mtegers {1, . If '

denotes the complemented set of ¢ relative (1, . . ., r}, then ]K i— ’q“l and
fee

for g, €{1,. . ., r} we obtain the relations !

(@ Ky, = K,NK, (1.1)

(B) Koo = KeKo = KK,

Every two Sylow sysems @, &* of G defined by &, &* are conjugate in G,
and every Sylow sysem & of G contains a complete Sylow basis, ie a sys

tem Py, ..., P, of Sylow subgroups of G such that G = P, .. ... P,
PP, = PkP (z, =1,....ri % k). Additiondly we obtain X,= [] P
(QE{I,...,r})fordlKe@ i€e

The system normalizer (&) defined by (@) = {X ¢ G/x"Kx = K,,
for al K, € &} can be represented as the intersection of the normalizers
N(K; € G) or N(P; € G):

NE©) = ﬂ NS G) = n N(P; € G). 1.2)
i=1

N(S)is the direct product of its Sylow subgroups P;N NM(K;,& @) (i=1,..., 1)
N®) = PINNKISG) x . .. XP,\N(K,EG). (1.3)
An automorphism a € A(G) of G maps the Sylow basis Py,..., P,of Gona
conjugate one P§, . . ., P}, that means there exists an element g ¢ G such that
aP;=PF=1gP; (=1 ..., "gelG)! 1.4
The automorphism g = 7(g"Y) o a € A(G) maps P;onto P; (i=1, ..., 1),

and the restriction of g on P; yields an automorphism n; € A(P;) of P..

(b) General products ([81, [91, [1], ch. I). A group G is called a general
product of the given abstract groups H; (i = 1, 2) (or factored by Hi) if and
only if Gcontains two subgroups Hf such that Hf ~ H;and G = H}H} =
= HEHf, HE( Hf = {eq).

Let G be factored by H; (i =1, 2), then to each &; ¢ H; there corresponds
a mapping &;  from H; into H; defined by:

hi2 hy = Hihshi N Ho for al he € Hy, (15)
hz 1 hl = hoh HaN H1 for al hl EHI (1.6)

T We denote by z(g) the automorphism of the inner automorphism group Z(G) of G
induced by trandformation by g € G
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The mappings A;k (i, k = 1, 2; i + k) together with the defining relations
of H; (i =1,2) determine the structure of G; for multiplying the relation
(hy*h2H1 N Hs)' hy 2 he = eg With hyh; from the left we obtain the following
lav for changng the componats of an demat of the gened produdt G

h2h1 = h2 1 h1’h12 hz. (17)

By (1.7) multiplication in G is completely determined.

Conversely, if Hy, Hs are given groups and if according to (1.5), (1.6)
each k€ H; (i = 1, 2) is associated with a mapping &; k (i, k= 1, 2; i £ k)
from Hy into H, then the set G = {(h, ha)/h; € H,, (i = 1, 2)) of all
pairs {hy, hsy Of elements p, ¢ H; with the multiplication law

(ha, he)-(hy, hyy = (hihythy, hy2he-hy) (1.8)
forms a group if and only if the following relations are valid :
(@) ex2hy = hy ez thy = hy
B) hizes = ez hyter= e
O) () 2hy= K2(uzh) | (hoob) b= hor(hyihy (9

(6) hi2(ha-hl) = (hythy)2ha-ha2h) | hat(hy k) = hathy(hy2h) 1 b,

The correspondence hy « (i, es), hy < {ey, hyy determines the isomor-
phleT] Hl"' H* = {<h1, €2>/h1 EHI} Hg— g = {<61, 2>/h2 € Hz} re-
spectively. Because of G = HfHy, Hf N\ Hf = {{e1, ea)} = {ec}, ¥ kb=
= (h*h)* Gsagead podut ad oorwersdy ey gagd produdt can
be regresnted in this way.

From (1 9 a, p) it follows that the mappings 4;x form a permutation sub-
group II; . € Sy, of the symmetric group S;z,| of degree |Hy|. The maximal
invariant subgroup N; = {h;¢ H;/hkh; = Iy, for Al h ¢ He} of G con-
tained in H; determines the homomorphism 7, . H; ~II; x from H; onto
II; . Hence:

HN; = 1I; ,, (110

and the mappings (k;#;) * with »; ¢ N; define the same permutation on Hk.
Another important subgroup of the genera product G is the “fix group”
F, of Il ; defined by F;={h;€ H;/hi b, = h,, for dl ¢ Hy}, containing
all dements h; of the component H,, WhICh are invariant againgt al map-
pings /i related to all elements #, € H,. For F; we obtain:

Fi=NH, S G)NHi. NH CG) = FH, = HF,. (L11)

If G isasolvable group with Sylow basis P,, . . ., P,, the theory of gen-
eral products is applicable to the subgroups G; = PP; = PP, of G.
Important for the construction of the automorphism group A(G) are the
maximal invariant subgroups N of Gy, ; contained in P, and the fix groups
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F® of I, ;. From (1.11) we obtain:

Fk = n FD = NPy ... PoiPryys.. PGNP,
ik
and according to (1.3) F= F;X ... XF, is the Sylow system normalizer
related to the Sylow basis Py, .. ., P, of G.
2. Determination of A(G) by composition of allowable automorphisms.
Let the composed mapping a= @;.... ® Z with m; € 4(P)Gi=1,...,r)he
defined by

“(pl'---'pr) = P10 Dy Q’zEPx)
Then (cf. {11, ch. II, § 1)
Treorem 2.1. @ € A(G) if and only if

mopikomt=(p)k A . @0
i k=1, ....r
itk
Proof Since P,P, = P,P; we obtain a¢ A(G) if and only if for i< k:

(¢ %))
a(pepi) = a(pripi Pi kpry = @(px 1 P o(pi * pi) = (epi)- (apy)

(;7)(apk) Hapy) ' (@p) « (o0pi),
hence :  a(p p) = (api) ap)) and  alp; kpi) = () * (apy).

Because of the definition of a these relations however are equivaent to (2.1).

From the point of view of computation it seems to be profitable to reduce
the number of the relations (2.1), for which we have to decide the equality.
The following theorem is fundamental for this reduction, and therefore for
the construction of A(G):

THeorem 22. The sign of equality is valid for all relations (21) if and only
if for all generators p{” of a generating system {p{} Of P; the images of the
mappings @ © p; k o @t applied on the elements pg‘) and m,pif () of a generating
system {p¥%} of P, are the same as for the mappings (m;p;) & (i, k =1, ,
i + k).

Proof. It is sufficient to prove the relations :

e 0 pik o nkl (pi" pS?’) -—(mpx) k (p%” »¥) (p(l’ p??’ € {pf ’}) (2.3)

Then it is easy to give a complete proof of Theorem (2.2) by induction on
the powers of the generators p{? and p§? of {p{} and {p}?} respectively, and
by induction on the length of the words in those generators representing the
elements of P; and P, respectively. By the redlization of this proof the same
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calculation as below will show that (2.1) is valid on m,(p®- p®). We obtain
for k <i:t
%5 (o0:p) ot 02 opfP i opk o
= mopDk omlom, o p@k omyt

since piV, p® ¢{p{"}
= (@) k o (wpf?) k

022 ((upf?) pt)) ¢

= (P p@)) k ,
proving (2.2), and because of
agopik o e (pf pP) = mpopiko [ (p - pP)]
= Tpopik 0O [(ﬂ ¥P%) (i tp 2))]
C2 a0 [pik o (e P D) {r P P) 1o}k (P R)]
= mgop;ik omzlpP- mf (wiclp ®) ipi]« (i p®)
“2 50 pik ontpP-[mo (g pP) i pi] kPP
= ayop;k o pP - [0 (g pP) i oy o (mipy)] k pR
= () k pR - (pR i (p)) k pP
2 p) + (0P D),
proving the relations (2.3).

LetI’ = {a€c A(G)fo. = 71 ... 7, M €A(P), (i = 1,. . ., r)} be the set of
al automorphisms of G composed by automorphisms of the Sylow sub-
groups P;. Then according to the relation (cf. A, § 1) g € F—1(g)P; = P;
(i=1,...,1r -c(g ¢ I(G) there corresponds to every coset decomposition
G =g F+...+gF of G by Facoset decomposition AG) =g+ ...+
+2(g)I" of A(G) by I’

DerFiniTion 2.1. An automorphism m; ¢ A(P) (i= 1, ..., r)is called
allowable jf and only if there exists for every k # i an automorphism

. € A(Py) such that a = zq- . . . -+ ... 71, € A(G).
If n; ¢ A(P) is dlowable, then

nF® = F® (2.4)

N(k) N(k) (25)
7 € NAL « S8/ ;) (2.6)
a{N*(\P) = N*(P;, N* char G. 2.7)

By every allowable automorphism z; an automorphism of the factor group
P,/N® =11, , will be induced, and fixing the index i and assuming ; =
= e4p, We Obtain by (2.1) for an allowable automorphism 7 € 4(P¢) (k* i)
therelations :

M opik oMt =pik;  (mpr) ip; =k ipi, (2.8)

1 In consequence of (1.9), similar results are valid for k > i.
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equivalent to :

e Z) = ZIL xS S p, )5t TePr€ PN (2.8)
If we denote by 77§ the set of al =, ¢ A(P;) inducing the identical aut o-
morphism on P,/N§), then

. J (i @) .
I =N@NI) (=2,...,7) (2.9)
iz}

defines a sysem of groups of dlowable automorphisms. This sysem is fun-
damental for the method of constructing A(G) from A(P;) described in B,

§ 5, because from a = @ . .. ., € AG) and 7€ ZO NP (k + i) we
obtan me ZOPNIY, and from #;- . . . 7, € AG), €I (i=1,...,7)
we obtain cC’ = (my0£9)- . . . +(m, 0 £,) € A(G).

B. COMPUTATIONAL METHOD FOR THE
CONSTRUCTION OF A(G)

3. Preliminaries for the construction of A(G).

(@ Basic programs. The condruction of A(G) is bessd on :

(&) the program for determination of the complete lattice V(G) of dl
sbgoys o G deyibed in [3], §§ 2 3 and extended by the “compo
sition method” of [6],

(p) the program for the determination of A(P;) (i =1, . . ., r) executed
by the program system [2].

The progam sydem (B) & wdl & (x) usss the mehod of represating the
subgroups US G of G by a one-to-one correspondence to “characteristic
numbers’ K[ U]+ U described briefly in the following section.

(b) Special generating systems and characteristic numbers. In G a one-to-
oe corepondance edds bawean the sbgaus US G o G ad the sydars
qU) o dl cydic sbgoys of G cotaned in U. A sydan of gagdos o
all elements of S(U) forms a “specia generating system” E(U) of U. The

elements of E(G) shall be listed. Assuming {#;,. . ., i} is a complete
generating system E(U) of U with {iy, . . . , i,}&{L,. . . , |[E(G)}}, the charac-
teristic number K[ U] of US G is represented by
K[U] = _212‘3"1- (3.1)
=

(c) Boolean operations for characteristic numbers. The Boolean opera
tions of intersection “A ” and digunction “ Y ” are useful for a time-saving

t Z(US G is the catrdizer  UCGinG
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calculation with characteristic numbers :

KIUIAK[V] = K[UN V] (3.2)
UC V—K[UIAKIY] = KLU (U, V, WEG) 9
{U, V} S W(K[UIVKIVDAK(W) = KIUIVK[V]. G4t

(d) Lists. For the determination of A(G) the following lists obtained by
the construction of V(G) are used:

(&) CL-list, containing the characteristic numbers K[ U] of all subgroups

U=Gof G
(B) OL-ligt, containing the orders U| of US G corresponding to K[ U].
(The OL-ligt is a paralel list to the CL-list.)
(») NL-list, containing information, which enables us to find out
K[N(RS Q)] for a represatdive R of a conjugde dass of G
Sne N(z(g)RE G = 7(g)N(RE G) (o) ¢ Z(Q)) it is ey tO
caculate (U< G) for all US G.
(6) RL-list, containing 1 orO at specia hits, if U<K[U] has oneof the
following properties or not:
(P) Uiscyclic.
(P2) U is abdian.
(P3) U is sdfnormdizing in G.
(P4) U isnormad in G.
(P5) U is a characteristic subgroup of G computed by the program
for determination of V(G).

4. Representation of automorphisms in a computer. Let x;, . .., x, be a
system of generators of the group G and Ri(x;) =eg(j =1, ..., m)asys
tem of defining relations for G. A mapping a of G into itself is an auto-
morphism of G if and only if

G ={axy, - - - axa} (4.1)
Riax)) = e (j=1,...,m). (4.2)
The mappings a ¢ A(G) will be stored in the computer by the images of a

suitable system of generators. For the multiplication of al, s € A(G) we
obtain the rule :

(xz00)x; = aso(oX;) = aeX; = aa(Wi(xe)) = Wi (e2xz), (4.3)

where xf = wj(x,) is the representation of x; as a word of the generators
x; of G. The knowledge of the word function w; is therefore important for

the multiplication of automorphisms. The time for testing a to be an auto-
morphism and aso for the multiplication of automorphisms depends on the
structure of the system (4.2). Therefore it is profitable for computation to

use a “specia generating system” for G (cf. [3], [7]):

t {U, v} means the subgroup generated by U, V< G.
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A system x3, . .., X, IS cdled a special generating system of G if and only
if for every g ¢ G we obtain a representation g = w(x;) = x- . . . -xj» with
O=<g =<y, (k=1,...,n), wherey,is theleast power of x; such that

xzk :xglc,l' L xik_,llc—l.
If G is solvable, we can obtain a specid generating system x4, . . ., x, of G
using a subinvariant series
G=GnDGn_1D...DG1DG0={eG} (4.4)
such that {x1, ..., x}=G;and x; € N{x1, . . . , x;_4} < G). The defining
relations of this system of generators are:
XV = x@reL L X (i=1,...,n
e oED . (4.5)
xx, = x oexttly, (Q=sisks=n)

Sometimes it is necessary to compute the automorphism « ¢ A(G)--stored
by the images «x1, . . ., x, of the generators xy, . . . , x, of G-as images
of another system y1, ., ., y, Of generators of G. Assuming the relations
Y; = wy,(x;) we obtain &y, = Wy (ex;).

5. The computational method for the composition of A(G).

(a)t Determination of a complete Sylow basis Py, ..., P, of G. For dll

KeQGi=1,...,n (A §1,(a) weobtan |K;|= h gy. In the OL-ligt we
j=1

j*i
search for the order |K;| (cf. B, § 3, (d), (8)), and wia find in the corresponding
place in the CL-list (cf. B, § 3 (d), () the characteristic number K[K;]« K;

(i= 1, ....r).Since P;= QK] i=1,....r)wegetby(3.2):
i
P; < K[P]] = A KIK; ] (i=1,...0) (5.1)
fA
i
(b) Determination of the system normalizer F, Using (1.2) and (3.2) we
obtain K[F]= /\ KINK; € G)]. KINK;,CG)] (i=1, ..., r)isknown

i=1
from the NL-list (cf. B, § 3 (d), (y)).

(€) The coset decomposition of G by UC G and the determination of a sys-
tem of representatives § = {ry, .. ., r} Of the decomposition are basic
programs of the program system mentioned in B, § 3 (), («).

(d) Some remarks about determination of ¥(P;)and A(P) (i=1,...,71).
There is GD Ue V(P)K[U] A K[P;] = K[U]. For the determination of the

Y The notations (a), (), . . ., of § 5 correspond to the marks on the flow chart (cf.
p. 71).
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classes of conjugate subgroups of P;we mention : If U < G, UC Py(cf. B,§3 (d),
(6)), then U < P;. If P; contains a complete class S of subgroups of G, which
are conjugate in G, and if |S| = [P;:N(RS P))] for some representative R of
the class S, then dl U ¢ S are dso conjugate in P;. If [S] # [P; :N(RE Pi)] = 1,
then R < P. If |S| # [Pi : N(RS P)] + 1 we decompose P; in cosets by
NR < Pi) and transform R by the elements of a system of representatives of
this coset decomposition, using the relation

KIN(REPi)] = K[N(RSG)N P} = KIN(RSG)| AK[P].

The determination of A(P;) can be executed by the method developed in
the program system [2].

(e) Determination of the permutation groups I, , (i, k=1, . .., r; i +K).
The elements of P, (i =1, ....r) are numbered in the same sequence as
they are generated by the generating program of P;. Generating the sub-
groups G, = PP, = PP, Of G (i, k=1, ..., r, i<k) on the one hand
as a product of P, P, and on the other hand as a product of P, P; we
obtain by comparing the products:

pt(e)pg) :pgf)pgee):: pge)kpg)'pg) ip,(e) s=1 ..., ’Pk‘; 1 686]1’,]) (5.2)

Fom theee rdations we obtan the permutation p® ¥ of P, rdaed to the de
ment p@¢ P,: p~p©k = (§). If e runs from 1 to |P;|, we get IT, . Fixing s
(1= s = |P,]) we can similarly determine for varigblee (e=1, .. ., |P;))
the permutation pf? i = (¢,) related to the dement pf ¢ P,, and if 5 runs
from 1 to |P| we get II;, ;. In view of Theorem 22 we have only to dore the
permutations p{x, p® i of II; ;, II; ;, which are related to the generators of
P, P, respectively. The order of |II; ;| and [II,, ;| are also stored in the com-
puter.

(f) Determination of F®¥ and N® (i, k=1,. .., r;i+k).

(a) Since N(P, S G; ;) = N(P, € G) NG, . it follows from (1.11) and
(3.2):

K[FM] = K[N(Py, & Gig) N Pl = KIN(P:. & G) NP
= K[N(P, € GO)AK[P) (Lk=1....1 i%K.

(B) N® is uniquely determined by NP P;, N® < PPy, [N = |P,J/|IT;, |
(ik=1,...,r;i# k).If P} S P, |P¥| = |P|/|IL |, PT < G, then N = P},
If we cannot find such a subgroup P, which isinvariant in G, we look for
asubgroup P;C P; such that |B;|=|P,|/|IT; | and [N(P:S G, )| = IN(P,S G)
N G, 4] = |Gy = g2 g+ Since N® is uniquely determined, we have
N® = P,

(0) Determination of A*P)( =1,..., r (d. flow chat). There ae two
possihilities for the determination of A*(P) (l<i=r):
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(@) Let F} (A =1, ..) &) be the different fix groups of I « (i, k=
L...,zi+k)andlet NONP;(» = 1,..., ). be the different characteristic
subgroups of P;induced by the N® char G and aso different from all char-
acteristic subgroups of P; used by the determination of A(P;). Each group

F®, N® ( P, determines a partitiont 3(» = [F®, P,— F®), 8® = [N®NP,
A; v,

P,—(N® N Pi)] of P, respectively. To the partition ( A 3@) )\( j( gt(V))
A=1 y=1

there corresponds a well-defined partition of the set {1, ..., | P |}:
(jlr oo Je)s (je1+1, .. ~9jel+e=): vy (jel+ ceedep_ytlse - -,je1+...+¢h)
h
( 121 e =|P; 1) (5.3)

Now we calculate the permutation g, of theset {1, .. .,| P;[} related to the
automorphism z; ¢ A(P,) given by the images m;p® of a generating system
{p,(’)} of P; (cf. B, § 4). Then m; ¢ 4*(P))if and only if 0., Maps the classes of
the partition (5.3) complexwise into themselves.

= A = A -
@) 1F 1= wh®), 18 = Wi, - (B, = w9,
I = wie), £ = we®), .., 0 = w(0P)

is a generating sysem of F®, N®N P; respectively -— represented as words
of the elements p{® of a generating system {p®} of P, — then =, ¢ A*(P) if
and only if both

ﬂif(l} :Wg}(ﬂ,ps‘p))EFlg)f or }, = 1, ey )‘i; j = 1, . -3hi

13

and m;f) = W) (up{®) ENO (P, for v=1,.,.,5; j=1,..., h
(h) Determination of I (i=1 ... rj=2 ...,r i% k) (cf. flow
chart).
(=) Determination of I (1 <i=<r;2 <j<1). Let 3® k=1,...,]; i k)
be the coset decomposition of P; by N(® then, similarly to (g) (5.3), the

greatest common refinement I{\ 18§k) = p,(l)(j NP4+ pga>h N® corre-
= =1 k=1
sponds to a well-defined partitigﬁi of the setk{t cL lPi[?’ Whi({,(h*i:m easly be
determined. Those ; € 4*(P,), the corresponding permutations o,,, of which
map the class of the partition of {1, . . . , | P|} related to h N® into jtsdf
it
T A non-empty system 8 of non-empty subsets NS m of asst M=+ 0 is caled a parti-

tion of mif and only if each element of m is contained in only one set N ¢ 8, The subsets

NE M are called the classes of the partition 3. The greatest common refinement of the
partitions 8;, 8, of M formed by &l non-empty intersections of the classes of §,, 8,
is denoted by 3; £ 3,.
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and a representative z of every other class into an element z of the same
class, belong to the group 7 if and only if for dl p$ € {p%’} of Py (cf.
Theorem 22) :

n,-opkion,-“lz Pt /\ - (54)
k=%€,¥i-'1

The teg of e qudity for the rdaions (54) however is equivdet to compar-

ing multiplication of permutations in an abbreviated form (cf. Theorem

2.2):

0Dk Ozt =i N\ (5.5)
k=1,00,j
ki
for the test of (5.4) is restricted on the generating systems {p{”} and {m;p{"}

of Pi'
(B) Determination of 7U+Pysing I19, By use of the cost decomposition Z¢+?

7
of P;by N9, the partition of {1, . . . , |P;]} related to the partition ’{\ 3%,
=1
‘ e+
which has been needed by the construction of I?, can be easily refined.

[sTART) .

Determination of V(G) ) m
W
Determination of. 0 Co,os‘tai ﬁmns(n{t)mn
(@] Syiow basis F-Pr 0 by 1§
l (k=10
ol ation of thi 1
etermination of the -
(bY] system normalizer Test for the representatives
Fof ) (=t M, ) of
the decomposition tobe
l allowable
Coset decomposition
of GbyF —
@ 6o+ kar

Determ. of VIP,) AMpy): = (A0 AR /4L llovecble for }‘I,PJ
S AR) =

()

(=41} (k=1,.,0) (=10

Determination of

@ Tyliket,.iitk)

3
Determingtion of Ni)
“ .

i

flkzl o ibk)

()
ey AMPO

gl

Faiculation of -
h¥(P2y meh (PL/mFI=F (and m(N' s N Py
N chorG, L k=4, r Lt k]

Calculation of H
Determination of I

il 1= 900 ARy
Composition of A(G) by I’

1
Apy:= AP

O

(=1t 3§ 220 i)
AG) = g) T+...y+rlg)T

CPA 6
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m ¢ I bdongs to 1U+Y if and onIy |f 0n, <> 7, Maps the class of the above par-
tition of {1,. .., |P;} related to n N"‘)mto itself and an element z of every

other class into an element z of the same class, and in addition for al
Py € {p¥y) of P;,, the appropriate relations (5.5) are satisfied.

(i) Determination of the group [, It is sufficient to describe the iterative t
process for determining I" in the first two steps:

The groups 4®(P;) (i = 1, 2) (cf. flow chart) are decomposed by 12 :

AD(P)) = aPIP+ . . . +aIP

5.6
AD(Py) = n(zl)I(zz) + ... +71§,f2)1§2). (5.6)

Then a{fD.afe) € A(P1P2) (1 = ey=<s1; 1 =ep <sy) if and only if for all
wPe {p(”'f)} of Py the mappings 7 op@» o (2{*)= and (n{ep{?) 1 applied
to {p{*?} and {m;p{*?} of P; produce the same image:

P opiP o) = @Pp)! (k=12 i+k). ()

The test of (5.7) will be executed similarly as in (h). For the further investi-
gation there remain the following groups:

AD(P) = aD[® 4 ... fakor@ (i=1,2).

Decomposing I{? by I® (i = 1, 2) we obtain a decomposition of 4®(P)
by 1. Now we decompose A(2)(P3) A*(P3) by I®). The test of the repre-
sentatives of these decompositions to be alowable automorphisms is now
the same for the pairs of groups 4®(P,), A?(P3) and 4A®(P,), A?(P;) as
described for the groups AW(P;), AV(P,) in the first step. Continuing this
method for r steps we construct the group I'.

Since G =Py-... +P,, each dement of G can be represented as a word in
the specia generators needed for the determination of 4(P) (i=1,...,r).
With respect to these generatorsit is easy to construct the inner automor-
phisms (g,) € I(G) generated by the representatives of the coset decompos-

tion of G by the system normalizer of G; and therefore the composition of
A(G) by I' according to A(G) = ©(g)["+ . . . +1(g:)]" is obvious.

C. OPTIMIZATION AND EXTENSION OF THE é
PROGRAM SYSTEM

6. Some aspects of optimization of the program system. Let G be a
solvable group and P, ....P,a Sylow basis of G. If G = Q1X...X0Q, is
a direct product of direct indecomposable factors Q; = Piy- ... .P,

Lry

(i=1 .8} Zr, =r), where the P;; belong to the Sylow basis of G, it
can easrly be proved that the direct product is uniquely determined.
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The relations K[P;, + ... P =K[PJV ... VK[P]({i,...,i} €

c(,..., ) ad the knowledge that both K, = P,.. . . . P, with

|Kel = f] g* and the complemented group Ky = P;- . . . -P; with
e=1 te

| Ky = f‘[ ¢ (| K,|*|Ky| = |G|) are invariant in G and characterized in B,
e=1 ¢

§ 3 (d), (), enable us to develop a time-saving method for the determina-
tion of the direct product G = @1X . . . XQ, of G. Since the automorphism
group A(G) is the composition of al automorphismsof Q; (i = 1, . . ., s),
we have only to apply the method described in § 5 to the components
Qi(izl, “ . .,S)-

From A, § 2 it seems to be profitable to alter the sequence of the groups P;,
(=1,....r)of the Sylowbasisof @; (i=1, , S), such that the index
[H#p: 9&(695)] of the system normalizer of Q, |n H(° =P Py, CQ,
(!=2,...,r)ismaximal, where the P, (v = D are groups of the
Sylow basis of @;. Then the order IFH;"I of the group I‘H«)C A(Q;) generated
by composition of allowable automorphisms Of P;;, (k=1, . . ., D) will be
minimal, and therefore in general the iterative process for the determination
of I'g, will be optimized.

7. Some aspects for the extension of the program system to groups with
a normal chain of Hall groups. For the determination of A(G) of a finite
solvable group G we used only the following assumptions for the Sylow
basis of G: (@ G=Py-... P, PP = PP, (P, |P)=1G k=1,...r
i + k), (b) each Sylow system of G is conjugate in G. Therefore the
methods of B, § 5 for constructing A(G) can be extended to dl groups G con-
taining a system of subgroups H; (k=1, ..., s) suchthat G = H;....-H,,
HH, = HH, (|H,|H))=1 (G, k=1,...,s i# k) and such that all
systems of that kind are conjugate in G.

In the case that G contains a normal chain of Hall groups:

G=N,2...2N2... 2N, > {es}

there exists a system of subgroups H; (i = 1, ..., 9 in G such tha H; < H;H,
for i<k, N;= Hy+. .. H,, HH, = H.H; and such that al systems of
that kind are conjugate in G (cf. [1], ch. Il, § 2). The program developed in B,
§ 5 therefore can be extended to al not necessarily solvable groups containing
anormal chain of Hall groups. If s = 2 we obtain the case that G is a group
extension of N by T with (|N], |T]) = 1:

G=NT,Na G T=2G/IN NNT ={ec) (N, |Th= 1.

The automorphism group A(G) can be condructed in this case by compos-
tion of allowable automorphisms of N and T.

6*
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Combinatorial ~ construction by computer of
the set of all subgroups of a finite group by
composition of partial sets of its subgroups

W. LinDENBERG and L. GERHARDS

THe following paper contains a description of the man parts of a program
for computationd determination of the latice of dl subgroups of a finite
group . The progran has been developed by the authors and has been
redized for the computer IBM 7090, It is of combinatorid type and does not
require further assumptions for .

1. Preliminaries. Let® = {x,,..., x,} be a finite group generated by an
ordered system (xi, . . ., X,) Of independent? elements (eg. permutations,
matrices or abstract elements together with the connecting relations of
multiplication [1], [3]). Generating ® successively by xi, Xg, . . ., X, we ob-
tan achain (e)c®c ... c &, = Of subgroups Of S (®; = {x1, ..., x;},
i=1..)n). The oder of ® will be denoted by |&;|. If I; is the st
of al cydic subgroups of &; of prime-power order, Z; shdl be some st of
generators of ail elements of IM; such that Z;\ Z, = Z; for all k =i
(,k=1,...,n). Let |Z| be the number of dements of Z;. We sl list
dl thedementsof Z; (i =1, ..., n) in such a way that the sequence of the
dements in the lig of Z; is the same as in the lig of dl dements of Z;
(k= i), i.e. the part of the first |Z;| elements of the list of al dements of Z
is identicd with the lig of Z,.

For characterizing  any subgroups U of ®; [4] we note that Z = AN Z,
is uniquely determined by 9. Now, if the oth dement of Z; (1= ¢ < |Z;]) is
associated with the binary number 2271, and any subsst @ of Z; with the
sum B(®) of those binary numbers associated with dl the dements of @,
we have that 9[ corresponds uniquely with B(Z{). For standardization,
however, we complete this number by appostion of }Z,,]— |Z;| zeros to the
higher digits of a number B(Y) of |Z, digits. B(Y) shall be used for represent-

12 AN
ing the subgroup 9 ¢ .1 If BQ) = $ a;-251 and B(B) = i'b,--zl-l
E Jj=1

T Thisis no loss of generality.
I For the following discussions it will be useful to remember that, for any subgroup
Ac @, U ®;, ,), BA) may contain ones only in its|Z;| lower digits.

15
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&, B C &), we define o
BE)V B(B) = jz (a,Vby)- 2,
\Zal (1.1)
BEDAB(B) = 3 (@i b)-2,

where aV b resp. gA b are the usual boolean operators. In particular we
have [4]:

BRINB) = B A B(B) (1.2)
B({3 y 8B}) = B v BEB)' (1.3)
ASB < BA) A B(B) = BW. (1.4)

2. The generation of the partial set of subgroups. In§ 1, the st of the wanted
subgroups of § was represented by a set of certain numbers of |Z,| digits.
Let S be the normal sequence of the first 2!Zsl binary numbers. To each
dement of S belongs-as discussed above-a well-defined partial set &
of Z,. By @ there is aso defined a subgroup % = {&} of &;, which is gener-
ated by al elements of @; it is&< Y N Z,. Thus theoretically we can obtain
the wanted set of all subgroups of & by taking al elements of S, construct-
ing the corresponding subsets of Z,, generating the groups defined by these
subsets and finally storing their characteristic numbers, if they have not yet
been determined. But a method of this kind cannot be used because of the
large number 2!Zs! of operations to be done.

Therefore in [2] a method has been described for systematically reducing
the above set S of binary numbers used for the determination of the desired
set of al subgroups of @&. Beyond this, however, it is practicable to divide
the listed elements of Z, into 5 sectionsC; (i = 1, . . ., s) of length [ <|Z,|
and one further section C,y, of length r (with |Z,] = s:I+r(r< D;
Csp1 = @, if r = O)with outpermuting the sequence of elements of Z,, i.e.

Zy, =z, . 5 2)2,]
= [215 tay Zly s Zi s e '7Z(H~1)I7'")Z(s_l)l+1,ll|,
Zsly Zsl+1y v o9 Zstr)t

If now the method of [2] isused for eech of hesessdions C; (i= 1, ..., s+ 1)
we dian for eech €, ast G; of bgous of 8 Gaedly ay wo o thee
s will not necessaily be digont, ie the charadeidic number may ooor
more than once, but by eiminating those multiple elements, we obtain the
disoint sets G;. Naturaly in general U; G; is not yet the wanted set of all
abgoys o @. In § 3 we gve a ddaled desyiption of the method of com
bining the characteristic numbers.

T The equality does not hold, because generally % U %c{QI U %}.
1 Empirically it seems useful to choose 6 = [ =< 9.
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3. The method of constructing the set of all subgroups of ®&. Firs we give
some definitions and notations :

perinimion 1. The determination of the characteristic numbers of the
group € = {A, B} by the characteristic numbers B(¥) and B(®) is called
composition; the characteristic number of § is denoted by ¢(B(), B(B)),
the order of § by |c(B(%0), B(B))|.t

Dernmion 2. Let Sbhe a st of characteristic numbers, Sis sad to be closed
(relative to composition) if ¢(By, Bs) € S for arbitrary elements B, Bs€ S.

Dernvimion 3. Let S be a (not necessarily closed) set of characteristic num-
bers. The closed st C(S) 2 S is cdled the closure of S

We shall denote by

E; the st of characteristic numbers of al subgroups of G; (i= 1, ..., s+ 1)
(see §2),

|E;| the number of elements of E;,

Kis,...,i = CEU ... UE)—(EU .. . UE)

Eio,....,=CELU . . . UE)

|Es0,. . 4 isthe number of elementsof E;, . .,

Ki ={c(B,B)§ E;U Ei a,...,i_1| B€E;, B'€Es,. i arbitrary
(i=2 ..., st)}.

Clearly we have:
C(C(Bl, BZ): C(Bi, Bé)) = C(C(BIVB]'.)’ C(Bszé)), (3'1)

E{ = CE)(=1,....5+1), btinawey we mey d0 amme E; = C(E).
(3.2)
Now we prove

3.1. If B¢ K, (A=1,2;2 =i = s+ 1), then there always exist B} ¢ E; and
BY€E,,,, ..., i1 such that ¢(By, Bs) = (B, BY).

Proof. B¢ K; impliesby ddinition B, = ¢(B;, BY'), Bi€ E;, By € Ey 5, . . ., i1
(A=1,2). Hence using (3.1): ¢(B1, Bs) =c(c(B1, By'), ¢(B,, By'))= c(c(B1V By),
oB;'V B,")). According to (3.2) we obtain: ¢(B;V By) = B} ¢ E;, according
to the definition of Eyg,..., ;1. «BU'VB))=Bf€E, .., ;-. Thus
o(B,, B3) = ¢(BF, B¥), as required.

Using 3.1 we immediately obtain:

32. KKUE,UE, ,,,, i-1istheclosureof E1UJ.. UE(=2...,5+1).

Now we ae aile to desxibe the method of cordruding the st of dl sb-
groups of &, From (3.2) we have C(E1) = E;. Suppose C(E;U . . . UE) =
Kl,z,.--! ,'UE1U. --UEi=E1,2,.- ,,I’mdr@jym(ﬂﬂn’lrm

1 For abbreviation we shal often write B,, B,, . . ., B’, B”, , .., €c., instead of
B®), B(b), . . ..
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By successive composition of all elements BEE; ; (B¢ K, . . . )f with
dl dements B'¢ E; . .. ; we obtain from 3.2 the closure C(Ey U . . . U Eiyy) =
Kiiq UE 1 UEg .. of ExU. .. UE;, This method is repeated until
finaly we obtain C(E; | . . . UE;44). This, however, is the complete set of
the characteristic numbers of all subgroups of &,

The composition is mainly a method of generating a group by a set of
generators (defined by the characteristic numbers of the two components).
A large number of the executed compositions, however, will yield charac-
teristic numbers which have already been computed. As the computation of
a group by a set of generating elements is a time-consuming process, al
efforts have to be made for reducing the number of such computations. We
now explan how this can be redized, discussng the most important points.

Obvioudly it is sufficient to discuss the method cf composition of only
two charecteristic numbers. We assume the set Ej 2, to have been com-
puted already and listed (list L;). Another corresponding list L, contains
the orders of those groups which are associated with the elements of L,.*
Furthermore let L¥ be the list of all characteristic numbers B*(3) of al the
other subgroups of &,, already determined by the methods of §2. L5 is the
corresponding list of orders.

Zy
Let BEE,1 (BEKy, . ... ), B'€Ers,. BVB’=I.Y1|G,~'2"‘1 (@ =13

ay = 0 forall 2>2); B, B’ (Bd-B', B’ ¢ B) ae the corresponding groups to
B, B.

33. As explained in§ 1 there exists an integer » < n such that |Z,_,| <x =
|Z,|. If p, is the least prime number dividing ), I%‘é{/ be regarded
& a bouday far {BV B}, ie a soon asmetfmx%"’l- + 1 damats have

been computed, the process of generdting the goup {BY B’} mey be stopped
at once, since the result would be &,,, which has the characteristic number

|Zo] &
212’-1. The boundary 2, = J;)—’"I is vaid for al binary numbers 21%e-1l <
BVB <2%l(w=1,...,n). Wenote't

t This condition is necessary, if, before storing a new composed number B, we have

verified gnly B¢K; UE ,\UE; ... ,i but not B¢K;  UE; {UE, vy tUEL UL L
UE, ;. (K;, 1 subset of K;,; already computed).

I (B} |resp. | {B'}| may be presumed to be known; for they appear as a by-product of
the determination of B resp. B’ (by the process of generating the associated groups). The
number |L;] of elements of L, is equal to the number |L, of elements L, and the order of
thejth element of L, isidentical with that of the jth element of L,.

t Note [Z,] = 4 0; B, B’ c@,. In the following we assume the characteristic num-
ber @, has been determined aready.
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3.3.0. Every process of generating {B(B)V B'(3")} (B, B'c®,) may be
bounded by 'f‘"'
3.4. Suppose al elements of {By B’} have been listed. The characteristic
number ¢(B, B’) of {BY B’} is generaly defined by Z, n {BV B'}; by the
assumption, however, we have Z,N {BvV B'} = Z,  {BVB’}. Thus we

have

3.4.0. Z, (1 =w=n) (instead of Z,) may be used for computing c¢(B, B’).

3.5. Furthermore the computation of By B’, BA B’ or the test of equality
B = B’ of the above mentioned /Z& digital numbers may be bounded by the
lowest | Z,,| digits of B and B’ (for the other digits are equal to zero). Hence

3.5.0. Operations amongst the (|Z,|-digital) numbers B, B’ may be
bom\mded to operations amongst B, B’ by considering only Z,| digits (|Z,,| <
Z,).
I 3.6. The vdidity of B(8)¢ L; can be tested first by looking for those ele-
ments b;€ Ls (1 <i<|Ly]) with the property 5, = |B| and afterwards by
testing B = B; (B;c L, corresponding to 4,). This method will save time
and may be combined with the method of 3.5.0. Analogous statements
are valid for L respectively L:

36.0. For testing B ¢ I resp. L¥ the dements of L, resp. LF may be used.

3.7. If Bc B’ resp. B’ = B—this can be decided directly by (1.4)—we
obtain ¢(B, B') = B resp. B, i.e

3.7.0. The composition ¢(B, B) may be omitted if BA B’ = B or B.

1 <=w=n).

w

&,

38.If ‘ B B
subgroups of @,), a composition would be unnecessary, since the result
would be @,

3.8.0. The composition may be omitted, if B(<®,,) resp. B'(c @,) are
maximal subgroups of 8,.

3.9. As soon as for any two binary numbers ﬁ, B’ we have found (by
computing or by using 3.8.0. for instance) that {]}\/ ﬁ’} isequal to (§, or to
any maximal subgroup of ®,, BV B’ is called a jilter and is listed. If there
exists a filter F having the property (BY B’) A F = F, the result of the com-
position ¢(B, B’) is already known and therefore the composition may be
omitted.

3.9.0. The composition ¢(B, B') may be omitted if (BY B)AF = F for
any element F of the ligt of filters.

3.10. Remembering the well-known formula {c(B(B), B'(B"))} =
B8]
IBNB'|

resp. are prime numbers (i.e. B resp. B’ are maximal

we can estimate the order of the group being obtained by com
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Comiron preliminaries for computation;
Keep ready: BI2), 618, 1L, 181, k||

w

Foeg;

MINORD: =181 1'h; e 0 moddo 1%
Lem:= l:&s!p?om?\on resp.
tiple of - %17 @
Wi, 12 £1=0 modulo 1217
§NO
Lcrm: = least common muitiple!
of 181, 1571,
MINORD : = Lem
]

MINORD> 2,7 J=ri
RO

VEs/ ig,=0
module MINORD ?

NO.

! MINORD + Lcm—)MlNORDI

Does there exist B (el
having the properties:
1B%@ )= MINORD and
B%(a)+!BvB'1=BVB?

¥
Generation of {Bv ')
bounded by & +1

!i i)
S NGRS
equal toc
prime number ?

s

R (8,8 — L

& =ieast number of
the prime
factorization of
MINORD)

position. The order |8 N B'| is equal to or less than the greatest common
divisor of the orders of 8 and B'. Thus assuming BA B’ =+ B resp. B’ the
order {c¢(B, B')}| of the compound {BV B’} will be bounded in the follow-
ing way by a number called MINORD:
[ 18] 9], if BAB' =0

2-max (| B, |B')), if |B|=O0mod |¥|

resp. ®|=0mod | % |
least common multiple of B |, | |
for all other cases (3.10.0)

{8 U %'} = MINORD =’

If MINORD, computed by (3.10.0), is not yet a divisor of |§,], MINORD
is repeatedly increased by the least common multiple until |®,| is divisible
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by MINORD. Ifthereexistsacharacteristicnumber B(8"") e Ly UL} (|B"|=
MINORD)-this may be tested by using 3.6.0—satisfying (B v B’) A B =

BV B’ the composition may be omitted, for ¢(B, B’) would be equa to
B”; otherwise we are looking for an element B"(B"") ¢ Ly J L¥ satisfying
(BVB)AB” = BVB’ and |B”’|>MINORD. Similarly to 3.3.0, |8"”| may
be used for bounding the generation {BV B’}. Summarizing, we note

3.10.0. By computing the boundary MINORD of {8 U 8B}, the process
of generating may be either omitted or bounded.

The method by which the remarks 3.3.0. to 3.10.0. are used for composi-
tion is given in the flow-chart for computing ¢(B(%), B'(8’)) by B(B) and
B'(%’).

4. Conclusion. By means of the computed set L; we are able to compute
the full lattice ¥(®) of all subgroups of . The method of computing V(®)
is above all a method of iterative reduction of the set of all characteristic
numbers by selecting-mainly by using (1.4)-those characteristic numbers
corresponding to maximal  subgroups.  Since this method has been  described
in [2], it need not be further discussed here.

Finaly the following table contains some examples of computed groups
together with some further information. The computing time includes not
only the time for computation of the lattice but also for computation of
conjugate subgroups, the normalizers and centralizers of the representa
tives of these classes, and specid characteristic subgroups, such as ascending
and descending central-chains, Fitting and Frattini groups and others.

Number
of all Number
cydic | NUPT | of " gses
Group | Ot | Mode of generation grSngs prs(d%(?r fjgégﬂ' Computing time
of prime. proper
power groups subgroup:
order h
%s 60 | Pamutations of 31 57 7 — 144 sec
degree 5
&, 120 | Pamutetions  of 56 154 17 1min 126 sec
degree 5
LF@2,7) | 168 | Pamutaions of 78 177 13 3min 153 sec
degree 7
®5 192 | Permutations of 61 349 56 4 min 40°0 sec
degree 8
GE), 192 | Permutations of 89 467 76 20 min 02 sec
degree 8
S 216 | Permutations of 76 180 18 5min 285 sec
degree 9
G900 | 900 | 2 abstract dements| 41 382 | 110 18 min 27°0 sec
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A programme for the drawing of lattices

K. Fereer and H. JURGENSEN

THe programme A described here was developed by the second author in
1965/66. It was established when a number of lattices of subgroups had to
be drawn for [2], but it was organized in such away that it is equally effi-
det for draning a dagam rgyesnting ay finte sami-oder for which the
relations of reflexiveness, transitivity, and antisymmetry hold. However,
for this repot we ddl use the tams ooccuring with a latice of  subgroups
such as “subgroup”, “order”, “conjugate”, “class of conjugate subgroups’,
ec.

For the programme A all subgroups of a group G are numbered in alist
Le: () =Uy Uy, . .., U, = G in afixed way. We shdl refer to i as the
list-number of U;. In the diagram to be drawn, the subgroups are represent-
ed by circles or squares containing the list-number of the subgroup in the
numbaing mationed aove If drdes (uaes ae ocomeded horizontdly,
the comeponding sbgoups ae conjugele, if they ae connedted  vaticdly,
the love ore is a maimd sbgoup of the higher one (e Fg 1)
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The input for the programme A is a paper tape with the following infor-
mation about the lattice L(G) of subgroups of G:

(1) the number k of classes of subgroups conjugate in G,
(2) the number n of subgroups of G,
(3) for each class K; of conjugate subgroups U;,, . .
(@) the order of these subgroups,
(b) the list-numbers iy, . . ., ins
(c) for each U, € K; the list-numbers of its maximal subgroups in the
numbering mentioned above.

U

iy of G:
]

A paper tape with this information is provided, for example [1}, by a pro-
gramme @ implemented on an Electrologica XI, which determines the lattice
of subgroups of a group G from generators of G. The programme A which
has been implemented on a Zuse 722 reads this tape and punches a data
tape for the plotter Zuse 264. For this the programme A needs some addi-
tional information about the size and shape of the diagram wanted.

The following data for the drawing may be prescribed :

(1) the radius r of the circles representing subgroups (or half the side of
the squares),

(2) a (common) ordinate for the centres of circles representing a class X;
of conjugate subgroups,

(3) an abscissa of these centres for each subgroup.

If these data are not prescribed, the programme 4 puts r = 3 mm and
tries to find suitable ordinates and abscissas. This is done in the following
way.

An ordinate is calculated as a function which depends linearly on the
radius r and logarithmically on the order of the subgroupsin K;. The abscis-
sas ae cdculated by the programme only under specid conditions @ G must
be a p-group or a group of order p™g, where p and g are primes and p<q;
moreover, when U, V' are subgroups of G, / maximd inV, | U|=pq,|V|=
P'q, it is not alowed that there exists a subgroup W of G with | W= p'q
and r<t< 5. Geometrically this means that the diagram of the lattice of G
must consist of at most two “branches’.

For groups satisfying these requirements the set of al subgroups of order
P, 0=j=m,is called the first branch B, the set of all subgroups of order
p’q is called the second branch B2 of L(G); the set of all subgroups whose
order is the product of i primesis called the ith layer L; of L(G). L, B/ is
caled the row R!.

In order to calculate the abscissas for B, the row RL, containing the
greatest number of subgroups is determined, and the abscissas for these
subgroups are defined from left to right according to the sequence in which
they occur on the data tape. All other rows are arranged in such a way that
their geometrical centre has the same abscissa as the one of R2.
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U e R,
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The abscissas for the subgroups in B2 are determined in two main steps.

First, consecutive rows of the first branch are considered. Let [J be the
first subgroup in the row R}_,, ¥ be the last subgroup in R}, W be the first
subgroup in R? . Then the abscissa x,, for W is determined in such a way
that ¥ is left of the line connecting U/ and W and has a certain distance
from it (see Fig. 2). From x,, the abscissa x,; of the centre of R? is found.
This calculation is done for all i, 1 = i=m, and the maximum x of the x,
found. Then al rows R? are moved to the right until the abscissas of their
centres coincide with x.

Second, a similar procedure is performed for consecutive rows of the
second branch. Let U be the last subgroup of R}_, ¥ be the first subgroup
of R? ,and W be the last subgroup of R? (see Fig. 3). It is tested if Vis to
the right of the line connecting 7 and Wand has a proper distance from it.
If not, the second branch is again moved to the right until this is the case.
This procedure is performed for al i, 1 <i=m+ 1.

From the maximal abscissas and ordinates the size of the diagram to be
drawn is obtained. If thisistoo large, the radius r chosen for the circles is

" We R?

1
UeR!,

F1G. 3
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reduced by 1 mm and the coordinates are calculated again, until either the
size is small enough for the plotter or the radius is reduced to 1 mm. The

size of the diagram is then printed or the calculation is interrupted with a
note on the printer.

The programme A next forms alist L, which contains for every class X;
and every subgroup U;, € K;:

(1) the list-number i; of U,

(2) the number m(U;) of maximal subgroups of U,

(3) the list-numbers of these maximal subgroupsin the list Lo.

As we shal describe later, in the course of the programme al these numbers
are inverted when the information they carry has been used for the con-

struction of the data tape for the plotter. Hence in the following descrip-

tion some of these numbers may be negative. In this description we
shall say that A draws the lattice instead of saying more correctly that 4

punches the tape for the plotter which draws the diagram representing
the lattice.

The programme A contains the following two main subroutines working
on the list L,. Given a class K the subroutine “maxclass’ searches for the
aubgroup U € K whose list-number has grestest absolute value among those
subgroups which have positive list-number or have a maximal subgroup
with positive list-number.

Given a subgroup Ue¢ K the subroutine “classconj” has the following
effect :

(2) if the list-number of [J is till positive, “classcon]” draws [ and al
its conjugates with greater abscissas and positive list-numbers and
then inverts all these list-numbers; the conjugate subgroups just
drawn are connected by horizontal lines;

(2) let the subgroup drawn last be ¥, Then a subgroup We K is deter-
mined: If ¥ is the last subgroup of K then 7 = ¥, otherwise W
is the next subgroup of Kjright to V. If ‘no subgroup, is drawn by
“classcon]” W = U.

Using these two subroutines the programme 4 works through the list of
all classes beginning with the last one, i.e. the group G itself. For a class K
first the subroutine “maxclass’ is called and searches for a subgroup U € K
with the properties described above. If there is none, “maxclass’ is called
again for the next class until the list of al classes is finished.

(*) Otherwise for this subgroup U “classconj” is caled which findly deter-
mines a subgroup We K. Then A searches for a maximal subgroup U’ of
W with maximal positive list-number. If no such subgroup exists, 4
starts “maxclass’ again for the same class K. Otherwise a line is drawn
from W to U’ and the list-number of U’ is inverted among the entries for
the maximal subgroups of W. If none of the entries for the maximal sub-
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groups of Wis postive, also m(W) is inverted and “classcon)” is started with
the class K’ to which U’ belongs, and determines a subgroup W’ ¢ K'. Then
A searches for the subgroup U”" with maximal list-number among those
containing W’ and having a positive entry for W’. If there is none, “max-
class’ is started again with still the same class K. Otherwise W’ and U"' are
connected by a line and the entry for W’ as a maximal subgroup of U” is
inverted. If U has no further positive entry in the list of its maximal sub-
groups, m(U") is inverted. In any case A then starts again at (*) with U”’
ingead of U. The programme stops when the class Kpis reached and dl lines
are drawn.

It may be mentioned that there is also a subroutine which inverts all 1ist-
numbers of non-normal subgroups in Lj, s6 that, if required, only the lattice
of normal subgroups is drawn.

The following improvement is planned for the programme. Whenever
there is no subgroup U’ which contains W’ as a maximal one, the pro-
gramme darts “maxclass’ agan with the previous class K. For the drawing
of the lattice it would save time to continue instead with a “neighbouring”
subgroup W* of W', which is still denoted as being maximal in some sub-

group.
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The construction of the character table of a finite
group from generators and relations

JoHN McKAY

Introduction. There are six problems in determining the character table
from the generators and defining relations for a finite group. They are

(a) derivation of a faithful representation,

(b) generation of the group elements,

(c) determination of the mapping of an element into its conjugacy class,

(d) derivation of the structure constants of the class algebra,

(e) determination of the numerical values of the characters from the
structure constants, and

(f) derivation of the algebraic from the numerical values.

Use of the methods is illustrated by the construction of the character
table of the simple group /i1, of order 175,560, which is given in the
Appendix in the form output by the computer.

G denotes a finite group of order g having r conjugacy classes C; of
order b, i=1,....r Cpistheclassinverse to C;. 4(G, C) denotes the
group algebra of G over the complex field C.

Derivation of a faithful representation. Enumeration of the cosets of a
subgroup H of G gives rise to a permutation representation on the genera-
tors and their inverses. The representation so formed is a faithful represen-
tation of the factor group G/N, whee N = N x~1Hx, known as the “core’ of

G
H in G. The representation will be afaitﬁfeul representation of G whenever
H contains no non-trivial normal subgroup of G. There are three require-
ments in particular for representations to be useful for computing pur-
poses. Firstly, the representation of an element should be unique; secondly,
it should be representable within the computer sufficiently economically to
cause no storage problem; and thirdly, it should be such that the product
of two elements can be derived quickly. For the smaller groups these require-
ments may be relaxed, but for large groups they are essential.

Both permutation representations and faithful irreducible representa-
tions of minimal degree are suitable for computer work. Multiplication of
permutations is fast but it is often easier to find a matrix representation

7* 89
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more economical in space. Frame's work [1] on extracting the common
irreducible constituents of two permutation representations appears to be
promising as a basis of a method for doing this.

Generation of the group elements. One method for generating al elements
of agroup G is to compute the Cayley table. This method is quite satisfac-
tory for groups of very small order but it is clearly of little use when work-
ing with large groups because the computation increases, at best, with g2
A method with computation time linear in g is caled for.

Let

G(= Hy)oH,DH,>...D H,be achain of subgroups,
and let
H; = HipaxwHiaxeu v uH 1%,

be a coset decomposition of H;,

H; can be generated systematically from H,_, provided a faithful repre-
sentation on the coset representatives and the generators of H;is known
and H,,, itself can be generated systematically using this representation.
Repeated coset enumeration will give G from the subgroup H,. A solution
to the following problem is required, see [2]:

giVen Hi:rk(glag2,°--, gs)= 1, k= 1a25 N (D
and Hi+1: {wj(gl, 82 .. . gs)}, .] = 1’ 2, ooy By
derive a presentation of H;,,: 781, s -, 8)=1, K=1,2,. .., my,.

There are two specia cases of this technique which prove very useful. By
taking just the identity subgroup of G, we may enumerate the cosets of the
identity which are just the elements of G. This is a satisfactory method for
generating all the elements of a group of moderate order. The other special
caee is when G D H and the elements of H can be generated directly as matri-
ces compatible with the representing matrices of G. This last case isillus-
trated by the generation of J; by taking H = PSL (2, 11) (see Appendix).
To find the coset representatives, we use

LEMMA. There exists for each index i (4 1) a coset Hx; with k< i such that
either (i) Hx; = Hx,g;* or (i) Hx; = Hx,g; for some generator g; of G.

All new cosets, except the first, are introduced in the middle of a relation.
There is therefore a coset of lower index adjacent to the new one. Coset col-
lapse will affect these adjacent cosets by possibly reducing their index.
A coset of lower index to the right gives rise to situation (i) and to the left
yields (ii).

We can generate the representing matrices on the coset representatives
from those on the generators of G by seeking the coset Hx; for increasing
i =2 3,...,nandforming ¢, = ¢,g7 or ¢; = ¢ g, Where ¢, is a coset
representative of Hxy.
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The mapping of an element into its conjugacy class. A function f on G is a

class function if
J&x) = fO™ %), % veG.

f induces an equivalence relation on the dements of G. We seek a function f
such that the equivalence classes induced by T ae the conjugacy dasses of G.
In order to avoid searching, we seek a local property of x such as the trace,
determinant, or period. There are severa groups with representations for
which this local property is easily obtained. By taking the natural permuta-
tion representation of degree m of the symmetric group of » Symbols we see
that two elements are conjugate if and only if the partitions of their digoint
cycle lengths coincide. The genera linear group of al invertible nXn ma
trices with entries over a field Kpresents no difficulties since two elements are
conjugate if and only if their representing matrices are similar. We know
that ths transforming matrix belongs to the group since it is the group of all
invertible » X »# matrices.

From a practical view point, a good set of local invariants that may be
computed easily is the set of coefficients of the characteristic (or minimal)
polynomial. The computation time is O(#?) for a matrix of order n.

If the number of conjugacy classes of G is known, it may be adequate to
examine the characteristic polynomials of a random sample of the group to
attempt to find a representative element of each class and to see which
classes can be separated by their traces alone. The likelihood of success
of the search is dependent on the size of the smallest non-trivial conjugacy
classes. The characteristic polynomial of an element x aso gives (by
reversing the coefficients) the characteristic polynomial of x—1.

It is a necessary condition that a representative element of period p shal
have been found for each prime factor p of g. For sufficiency, let Z(x) be the
centralizer of X in G, then a representative of every class has been found if

g= :,jg/lZ(x)l, x€ Ci,

where the summation is over the representatives of all putative conjugacy
dasses €/ o G.

If so, we shall have obtained a representative for each conjugacy class.
For groups of small order, when it is feasible to store all the elements, one
may aternatively compute the conjugacy class of x directly, forming al
elements y-1xy, y ¢ G. Proceeding in this fashion, the elements may be
arranged so that conjugacy classes are stored as sets of adjacent elements.
The function f then consists of a subroutine which searches for the element
whose class is determined by its position.

Derivation of the centre of the group algebra. Throughout the rest of
this paper, c denotes summation from 1 to r unless stated to the contrary.
The relations

cc; = Z: i, lssij=r, 1
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defining multiplication of the class sums, ¢; = Z x, summed over al x € C;,
are sufficient to determine the centre of the group algebra since the class
sums form a basis for the centre.

The structure constants «;; may be interpreted in two ways: first, in the
manner in which they occur in (1), and second, a3 may be regarded as the
number of ways z may be formed as a product such that

xy =2, x€C, yeGC;

with z afixed dement o Cq.
The latter interpretation is the one used for the computation of the «x.
For each element y representative of C;, and for al x € C;, the number k
such that xy € Cy is found. Let the number of products xy in Cy, be B;

h;
then Lk = 'h—l" ﬂijk'
by

The r3 a;, satisfy symmetry relations most succinctly expressed by the
relations satisfied by yux = (Ah) "o . The 7y are invariant under any per-
mutation of the suffixes and also under the simultaneous inversion of al
three auffixes

Construction of the normal subgroup lattice. We define, for each conjugacy
class, a basic normal subgroup B; of G to be the normal closure of an ele-
ment belonging to C;. Such a basic normal subgroup is obtainable from the
class algebra by forming the union of successive powers of C; until no new
classis introduced.

The minimal normal subgroups of G are included among the basic nor-
ma subgroups. We use the fact that the lattice of norma subgroups is mod-
ular and therefore satisfies the Jordan-Dedekind chain condition which
enables us to build the lattice level by level. The first (and bottom) level is
the identity subgroup and the last is the whole group. The number of levels
is the length of a principal series for G. We shall denote the ith level of nor-
mal subgroups by L;. The identity subgroup is taken as Ly.

Let n; denote a normal subgroup. The computation follows the inductive

scheme :
M;={na, ..., "}
nij € E;pq +» nyy D ny for some k,  otherwise mi;€ L;;
My = {nyng| nijyn € Li} U Ejy 13
and proceeds until M; = {G}. To start we take My ={Bs, ..., B.}.

The numerical characters from the structure constants. Let R* be an irre-
ducible matrix representation of the group agebra A(G, C). From (1) we
find

Ré(cie)) = R(e)R(c;) = ¥, aipeR(cr), Ll<ij=<r. 2
k
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Now R°(c;) commutes with every R*(x), x ¢ 4(G, C), and since R’ isirre-
ducible we may use Schur's lemma hence

R(ep) = mjl,, ©)
where d (= d,) is the dimension of R, and mj is a scdar.
Substituting (3) in (2) and comparing the coefficients of both sides, we
obtain
mfm; = %aijkmiy 1$|’J =7, (4)
which may be written
Am* = min?, [A'lp = iy, 1=<ijjk=r. )

This collection of r sets of matrix equations is fundamental to the computa-
tion of the characters. We shal show that the matrices A', 1= i = r, have a
unique common set of r eigenvectors.

First we find the eigenvalues of A’. Recal that R* is a homomorphism of
G into a group of dXd matrices. The identity of G maps into the identity
matrix I;. From (3) we deduce m{ = 1. But m is the first component of the
vector m* and so (5) has a non-trivial solution. Therefore

det (4A'=mil) =0, l=i=r. (6)

Thisistrueforal s=1,2,. .., r, hence the eigenvalues of 4* are ms,
I=s=r.

We use the row orthogonality properties of the characters to prove the
m’, 1 <5 =<, tobealinearly independent set of vectors. First, we need the
relation between the components of these vectors and the characters.

Take traces of both sides of (3) to derive

hi%f = ml!dﬂ’
hence
o higi
mi == ds . (7)
The row orthogonality relations are :
Z hyrt =80, l=<s,t=<r. ®)
Defining the r X r matrices M and X by
M, = m, X, = ¥}, then MX* = diag {‘% —dg;,. . .,7%}

where * denotes complex conjugate transpose. The diagond entries g/d;are
all non-zero, hence therank of M isr.

Let x be a vector such that A'x = m{x foral i =1,2,.. ., r, then
x=Y agm'. Suppose a, # 0. Then

S amm =Y amim’, i=1,2,...,r,
t t
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hence

Y am' = }; am’,
1
and so X = am;g.

We have the following situation.

The entries in the ith column of M are the eigenvalues of 4 and the
rows of M correspond to the common eigenvectors normalized so that
mj = 1. If the entries in the column of M corresponding to the eigenvalues
of A’ are dl distinct then the whole matrix 3 can be determined from the
matrix A’ alone. This, however, is not usually the case. An extreme case
occurs when G = ZaXZ3X ... XZs, the direct product of » copies. of the
cyclic group Z,. Here each column of M (except the first) has entries 4+ 1
each sign occurring 2%~ times.

A method is described to overcome the difficulty inherent in multiple
eigenvalues.

The idea of the method is that if a matrix has distinct eigenvalues, then
the elgenvectors are determinate (each to within a scalar multiple).

Let w,i=1,2,...,r, be indeterminates and consider the matrix

® = ) w4 which has eigenvalues ) umj, l<g=<r.
I I
By choosing suitable values for the indeterminates we can arrange that the
eigenvalues are distinct; if so, the eigenvectors of ® arejust m’, L <5 <.

For computational purposes we replace the indeterminates by random
numbers. We may then associate a probability to the numerical separabil-
ity of the eigenvalues.

We require that for each p+¢ (=1, 2, . . ., r) the eigenvalues corre-
sponding to m? and m? should be separable, i.e.
'y Oimf—z Omi >¢(t) forallpfg=1,2,...,71

where the 6; are chosen from some suitable normalized distribution and
&(¢) is asmall number dependent on the accuracy of the computer.

The largest eigenvalue of A’ is 1. We introduce a normalizing factor of
r~1 and choose 6, to be the coordinates of a point on an n-dimensional
hyperellipsoid of semi-axes h;7V2 so that 6; A2 are points distributed on
the hypersurface of an n-dimensional sphere.

A detailed error analysis is hindered because of lack of adequate prior
knowledge of the m?.

The numerical method for solving the eigenvalue problem is the acceler-
ated QR method [3]. The eigenvectors are found by inverse iteration.

Derivation of the algebraic form from the numerical. By normalizing
the solution vectors of ¢ so that the first component is unity, we have the
numerical values of m$. To find the dimension of the representation we
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{use therelation, derivable from the row orthogonality relations

1 1
Rl

By multiplying m{ by d, and dividing by k; we find the numerical charac-
ters. As decimal numbers, these are of little interest; we would prefer them
in an algebraic form.

For a representation of degree d over the complex field and an element
of period p,

d
21Wx) = z i, O<sf<p—1,
=1

where o is a primitive pth root of unity. Let xx(x) be a numerical approxi-

mation to 7(x). We may rearrange the terms so that 11 < ts < . . . =15,
Thereare ( d+5 ) such sequences. We could generate the sequence sys
tematicaly startingat 0,0,...,0andendingap -1, p 1, ..., p- 1 ad

examine the vaue of the cyclic sum each yields. We can improve on this.
The problem may be visualized geometrically in the complex plane as
follows :

Each root of unity may be represented by a unit vector which lies
at an angle which is a multiple of 2z/p to the horizontal. We form a sum of
these vectors by joining them up, end to end. We seek such a sum starting
from the origin and reaching to %(x). We generate the sequences described
above but check to see whether, after fixing the first § vectors, the dis-
tance from the sum of first s terms to yux(x) is less than d-s; if not, we
ater ¢,.

Even with the above improvement, the algebraic form of the character
of an element of period p in arepresentation of degree d such that p, d= 10
would be very timeconsuming to determing, and in cases such as presented
by the representations of Jj, this is out of the question. The following
fact may be used: among the terms of the sequences computed may be
some whose sum contribution to the total is nil. Each such subsequence
may be decomposed into disoint subsequences each containing a prime
number of terms. These correspond to regular p;-gons for prime p;. From a
computational viewpoint this implieﬁ that, provided u = 0, we can attempt

to fit guy(x) with only 4 = d- Z ¢;p; (¢; = 0) terms where p; are pime
divisors of p. We now compute the values that Z ¢;p; can take.

If p has only one prime factor, the vaues assumed are multiples of
that factor.

Let py, p2 be the smallest two distinct prime factors of p. All integers not
less than (p1—1) (p2— 1) are representable as c¢i1p1+c2pa (€1, €2 = 0). In
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cases when (p;— 1) (p2— 1) > d, values not greater than ¥ are computed
directly.

All integer valued characters are extracted before attempting to match
terms because certain values, e.g. — 1, are time-consuming to fit.

The above discussion has not taken into account that only an approxi-
mation to the numerical value of ¢(x) is the starting point. If two distinct
values of sums of roots of unity differ by less than e in modulus, where &
is the accuracy of computation of the value of yx(x), then the results of the
above algorithm will not necessarily be correct. A lower bound is required
for the non-zero values of

d d
P(w)=[2w"€—2w’"i] OSk,‘,miSP—l.
i=1 i=1

By forming the product of the conjugaies of P(o) we obtan a lower bound :
IP(w) = (2d)2~.

Results. Character tables have been computed for all non-abelian groups
of order less than 32 from definitions in Coxeter and Moser [4] and for
the non-abelian groups of order 2* (» =< 6) from definitions in Hall and
Senior [S]. The character table of J; has been computed as described in
the Appendix.

APPENDIX

A brief description of the determination of the character table of
Janko’s first new simple group Jy, of order 1 1(1 13—1)(11 + 1) = 175,560,
is given, see [6]. The work has been carried out on a KDF 9 computer
with 16K words of fast store, of which 4K were used to contain the pro-
gram.

Throughout, the capital letters A, B, C, D denote matrices representing
a, b, ¢, d respectively.

We take as a definition, due to G. Higman, of Jy:

a = (abp? = b® =1, b ichc® = (gc)® = M =1,

& = dbdb=1 = (cd) = (ad)® = (actd)’ = 1.

We note that {a, b, ¢} generate a subgroup H isomorphic to PSL (2, 11),
which is the group of 2 X2 matrices of unit determinant over GF(11)
with the centre factored out, i.e. each matrix is identified with its negative.
The 660 matrices of PSL(2, 11) are generated systematically.

This representation is extended to a tensor representation of dimension
7 by treating the transformations x « gx+ by and y « ¢x + dy as acting
in the space of homogeneous polynomials of degree 6 in x and y. In this
space x8='y" « (ax + by)*~"(cx + dy). This representation extends to a
faithful representation of J;.
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By choosing matrices of simple form for Aand C € PSL (2,11), we find
correspondingly simple forms for B (= C*4C34C*4) and D.
We-take A = [ 0 1], C= [1 1], deriving B = [4 0 . In the tensor
100 01 03
representation these extend to

0 00O0OO 1 4000000- [1649461
0 0O 0 0 010 O 0300000 0 1510 105 1
0 000100 0050000 00146 41
A=]0 0 o100 0 0, B= 0001000 C=]0 0 0 1 3 3 1
0010000 0000900 0000121
010 0 0 0 0 O 0000040 000O0OT11
100000 O] 0000003~ 1000 00O 1

We now need the representing matrix for d. d commutes with b, hence
d; = 0 except when i = jor b; = b; (i % j). This smplifies the possible
form of D to that of a diagonal matrix augmented by non-zero entries in
the (1, 6), (6, 1), (2, 7), (7, 2) positions. We compare CD and DC-1,C?
has entries (- 1)I~“c;. From the first row and entries (2, 2) and (3, 7) we
derive the form

x " 0 0 o0-6w ©
0-x 0 0 0 0
0O 0 x 0 0 0 O
D= 10 0 o-x O O O;
0O 0 0 0Ox 0O
0 0 0 O o-x 0O
0 0 0 0O O 0O «x

butd® = 1hencex = %l.

Comparing (4D)? and (DA)® = (4D)~3, we obtain from the (2, 1) entry
— wx?=2w% hence w=0or 2w = — 1 giving w =0, 4, or 7.

Finally checking (4C2D)5 = 1 gives the unique solution w = 7, X = — 1.
These matrices were manipulated using a matrix multiplication program
for use with an on-line console to a PDP 8 computer.

The cosets of H in J; are enumerated and the 266 coset representatives
found. By examining the characteristic polynomials of a random sample
of the group representation (elements of the form hx; where #; € Hand x;
iS a coset representative) we can distinguish 15 conjugacy classes. Of these,
7 may be distinguished by their traces and 6 by the first two coefficients.
The two remaining classes include the identity and so may be separated
by examination. The trace of the square of the matrix is computed instead
of the second coefficient.

The rest of the computation follows the method described in the paper.
Approximately 1,800,000 matrix multiplications are required, each matrix
being of degree 7 over GF (11). The computation of the class algebra took
eight hours and the construction of the final character table from the class
algebra took less than two minutes.

>
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In the table, ¢ indicates the cosine of a multiple of 2z/period. For example,
2+4c¢2, occurring in the second row of the table as the character of an
element of period 5 in the fourth conjugacy class, is an abbreviation for
2+4 cos (2X2x/5).
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A programme for the calculation of characters
and representations of finite groups

C. BROTTAND J. NEUBUSER

1. Intreduction. The progranme described in this paper is pat of a system
of programmes for the investigation of finite groups. Other parts of this
system are described in [3], [4].

The programme avoids numerical calculations as far as possible.
Instead properties of the given group which are available from other
programmes have been used to construct characters and representations
by the process of induction. Only when this process does not yield al the
required information does the programme use numerical methods.

The programme has been started as a “Diplomarbeit” [1]. We are grateful
to the Deutsche Forschungsgemeinschaft for financial support and to
Prof. K. H. Weise for opportunities given to us at the “Rechenzentrum
der Universitit Kid”. We would like to thank Mr. V. Felsch for valuable
-help in connecting this programme with the one described in [3].

1.1. Notations. All groups considered are finite, they are denoted by
G, H,. . .;{g....8g) isthe subgroup generated by the elements gi,
vy 8 €G G ={x"1y~Ixy| x,y € G) is the commutator subgroup of
G, Cy,.... C, are the classes of elements conjugate in G; C;, = {1}, A
is the number of elementsin C;. The structure constants ¢;; are defined by

CiCi =Y cipCr. (1.1.1)
k=1

Z isthe ring of integers, Z, the field of integers modulo a prime p, C the
complex field, My, . . . , M, the st of dl absolutely irreducible CG-modules
with dimensions d, . . . , d,. ¥ is the character belonging to M;, ¥
its value on C;. All representations considered are C-representations, so
irreducible aways means absolutely irreducible.

2. Available programmes for the investigation of finite groups. Our
programme X for the calculation of characters and representations of a
given finite group G makes use of the data determined by a programme ®
for the investigation of the lattice of subgroups and of certain other prop-
erties of G. The input for the system of programmes consisting of @ and X
is a set of generators of G given in one of the following ways:

101
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(2.1) (a) as permutations,

(b) as matrices over the rationa field R,

(c) as matrices over Z,,

(d) as matrices over R(5) where { is afixed root of unity,

(e) as three-dimensiona affine transformations considered modulo
certain trangdations,

(f) for soluble groups as abstract generators with a special kind of
defining relations [8].

From these generators the programme @ determines G. For all sub-
groups of G their characteristic numbers (as described in [3]) are stored:
al cyclic subgroups of prime-power order are numbered Z,, . . ., Z,.
Then each subgroup U < G is uniquely represented by the n-bit binary
number k(U) whose ith bit is 1 if and only if Z, < U.

Some of the lists obtained by @ are preserved for further calculations.
The programme Xmakes use of alist L; of al elements in the same form
as the given generators, a list L, of al subgroups, and a list Lz of al
classes of subgroups conjugate in G.

Ly contains :
(2.2) for each subgroup U = G:
(a) the characteristic number k(U),
(b) the number of an element in L, which transformes U into a
fixed representative U of the class of subgroups conjugate to
Uin G,
(2.3) for each cyclic subgroup U = G the number in L, of afixed generat-
ing element u € U.
L3 contains :
(24) for each subgroup T chosen as representative of its class of conjugate
subgroups :
(a) its order U],
(b) the number in L, of its normalizer Nu(D),
(c) the number in L, of its centralizer Co(T),
(d) one bit each to characterize if U is cyclic, abelian, nilpotent,
supersoluble, soluble, perfect, normal, subnormal or selfnormalizing.
Of the characteristic subgroups determined by @ only G’ is needed by X.
Only for the usein X two further lists are computed. They contain:
(25) foreachclassC;, 1 < i =,
(@) the number of a fixed representative g; in Ly,
(b) the number of elementsin C,
(c) the order of the lementsin C;;
(2.6) for each element g ¢ G the number of the class containing g.

The class of al elements conjugate to g ¢ G is obtained by transforming g
with representatives of the cosets of Cg{g) = Cs({g)) in G. Since x~1¢'x =
(x~1gx),, it isuficient to do this for the elements chosen in (2.3).
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3. One-dimensional representations.
3.1. For a one-dimensional representation ¢ of G we have G’ = ker 7.
Hence 7 induces a mapping ' : G/G’-C given by

7(G'g) = z(g) for al g € G. (311

Let H=G/G’' be of order H = pf... p%;then H is the direct product
of its Sylow subgroups §,,, » Sp, Of orders pivl=<i<t §, isadirect
product of cyclic groups of orders pf ., pisiwith ey 4 . +e,s =e.

Lt m=s;+... +sadlet x,..., x, be generators of the cyclic
direct factors of H thus obtained. For each z’ the values 7'(x;) form an
m-tuple (wy, . . ., w,) With w; ¢ C and wjsl = 1. Conversely dl the H |

such m-tuples are different one-dimensional representations of H in C.

3.2. Let G' bein the layer (cf. [3]) Z,, let S,;/G’ be the pi-Sylow subgroup
of G/G'. Then §; is found in Z, ., by searchlng for a subgroup which
contains G' and is of order peilG’I The programme finds a decomposition
of Sy/G’' into cyclic direct factors in the following way :

If S;:/G' is not cyclic, a normal subgroup U with G’ = U =< §,, and
U/G’ cyclic is searched for in 2, ; which has an Sj-complement V
modulo G in %, o1 If no such normal subgroup U |sfound in 2,4
the search for U is continued in Z,owithVinZ, . .

If U and V have been found, U is stored away as a direct factor of
Sy/G', Sy is replaced by V and the same process is continued. If G is
abelian, L3 yields the information whether U = U/G’ is cyclic, otherwise
we use that U/G’ is a cyclic p-group if and only if there is exactly one
maximal subgroup of U containing G'. All these decisions require only
calculations with characteristic numbers, so this part of X is very fast.

33. Let ¢ be a fixed primitive nth root of unity. Let the classes of a cyclic

group U = (x) of order n be C; = {x~1}; then the one-dimensiona
representations can be numbered in such a way that

7{(C) = V0D 1<ij=<n (3.3.1)
Let the elements of the direct product UX V of two abelian groups U and
V with elementsu; =1, ua, . . . , , and v, =1,2,, . . . , v, resp. be ordered
into the sequence w4, usvy, - - ., U,W,. Then atable for U X V corre-
sponding to (3.3.1) is obtained as the Kronecker product of the tables for
U and V. Such a “normed table” of one-dimensional representations is
first determined by the programme X from the direct decomposition of
G/G'. Then G is decomposed into cosets modulo G', and for each class C;
of elements conjugate in G the coset g.G’ containing C; is found. The
kth row of the “normed table” of G/G’ then is assigned to C..

4. Irreducible representations of higher dimensions.

41 Factor groups with faithful irreducible representations. A representa
tion T of G isfaithful on G/ker (T). Those factor groups of G with faithful

CPA 8
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ireducible representations can be found by applying a theorem of Gaschiitz
[5]. For this we give two definitions:

(411) The socle S(H) of a group His the product of ail minimal normal
subgroups of H;

(4.1.2) a norma subgroup of a group H is caled monogenic, if it is
generated by one class of elements conjugate in H.

(4.1.3) THeorem. A finite group H has a faithful irreducible representation
if and only if its socle S(H) is monogenic.

In the programme this theorem is used in the following way: If Ng is
transformed into Nh by Nx ¢ G/N, then x~1gxh~1 ¢ N, Hence to check if
S(G/N) is monogenic means checking if the subgroup S ¢ G with SIN =
S(G/N) is generated by N and one class of elements conjugate in G. In
preparation for this all monogenic normal subgroups M;, 1 s i<ss=r,
of G are determined. Thenfor all N <G, N ¢ %, 0= i=t-2, where 2, =
{G}, the minima normal subgroups K;/N of G/N are found by searching
for normal subgroups K;= N minima with respect to this property.
S(G/N) is then equal to S/N where Siis the product of al these K;. S(G/N)
is monogenic if for some M;we have S = NM,.

4.2. Induced representations. Let / = G and M be a C&right-module
of dimension s, T be the matrix representation afforded (uniquely up to
equivalence) by M and let y be its character. The tensor product

M6 = M@ cuCG (4.2.1)

is a CG-right-module called the module induced from M. Let T¢ be the
matrix representation afforded by A%, ¢€ its character, (y©), the restriction
of y%to U, T¢ can be described as follows. Let

G= Us1UUgU..UUg, t = G:U and g; = 1, (4.2.2)

be a decomposition of G into cosets of U. Then, for a suitable choice of
the basis of MY, T"(g) isa ¢ X ¢ matrix of sXs blocks for dl g € G. The block
(i, ]) isequal to T*(ggg; ") where

T(X) f
TN = { () Tor xe U (4.2.3)
0 otherwise.
If Tisonedimensional, T¢ is monomial and
TH(g) = T*(zggi ™). (4.2.4)
Then
t 7
vi(g) = Zi Ti(g) = Zl T*(giger™) (4.2.5)

As a character is a class function, it is sufficient to calculate (4.2.5) for
representatives g € G of the classes of elements conjugate in G.
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4.3. M-groups.

(4.31) A finite group is called an M-group if al its irreducible represen-
tations are monomial.

As each irreducible monomial representation is induced ([2] Cor. 50.4),

al irreducible representations of such groups are obtained as induced

representations. In order to find M-groups among the factor groups we

use a sufficient criterion of Huppert [6]:

(4.3.2) THEOREM. Let H have a soluble normal subgroup K with all Sylow
subgroups abelian such that H/K is supersoluble, then His an M-group.

We dso use the following remark from [6] :

(4.3.3) A finite group H has a uniquely determined normal subgroup U(H)
which is minimal with respect to the property that its factor-group is
supersoluble. For K ¢ G we have U(H/K) = U(H)K|/K.

The programme first determines U(G). If G is supersoluble then UG) = (1).
Otherwise we use another theorem of Huppert [7]:

(4.3.4) THEOREM. 4 finite group H is supersoluble if and only if all its max-
imal subgroups have prime index.

So U(G) is found by searching through all layers &, i = 0(1)t— 1, for the
first normal subgroup such that all maximal subgroups of G containing it
have prime index. For a factor group G/N, which has a faithful irreducible
representation, U(G)N is formed. In order to decide whether G/N is an
M-group U(G)N/N has to be checked for the following properties :

(1) Is U(G)N/N soluble?

As U(G)N/N= U(G)/U(G)N N this can be decided in the following way:

(a) If U(G) is soluble, the same holds for U(G)N/N. Solubility of a sub-
group of G ismarked in Ls.

(b) If U(G) isinsoluble, but N soluble, U(G)N/N is insoluble.

(c¢) Only if U(G) and N are both insoluble, the programme has to check
if the derived series of U(G)N terminates below N.

(2) Are ali Sylow subgroups of U(G)N/N abelian ?

If all Sylow subgroups of U(G) are marked as abelian in Ls, this is the
case. Otherwise the programme described in § 3.2 is used to find the Sylow
subgroups of U(G)N/N and it is checked if ther commutator subgroups are

contained in N.

As the property of being an M-group is inherited by factor groups, the
checking of (1) and (2) is stated with Zl.

44. Induced monomial representations. We now describe how a  subgroup
V can be found whose one-dimensional representations yield irreducible
representations of a fixed factor group G/N by the process of induction. The
choice of U is restricted by a theorem of It8 ([2] Cor. 53.18):

8.
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(4.4.1) THeorem. The dimension of an irreducible representation of a group
H is a divisor of the index of each abelian normal subgroup A of H.
We call the greatest common divisor of the indices of the maximal abelian
norma subgroups of H the It&index i(H). By (44.1) we have to find a sub-
group U= N such that G: U | i(G/N). In order to determine i(G/N) we search
for K;a GwithN a K, K;/N abelian, and maximal with respect to these
properties. Then i(G/N)is calculated from the orders of the K; listed in L,

We also use 2 d? = |G |. As there are |G/G’| one-dimensional represen-
i=1

tations, only r — |G/G’| representations of dimensions = 2 are missing. For
their dimensions we have:
dt=|G|-]6/G"|.
i=|G/G’|+1

Hence 2 <G : U< V|G|— |G/G'| —4(r—|G/G'| — 1) is a restriction for
the index of U.

Finally we can restrict the search for U to representatives of the classes
of subgroups conjugate under G, as conjugate subgroups yield equivalent
representations.

The kernel V a U of the one-dimensional representation T of U used for
the induction process must satisfy the requirements

U/V cyclic, (4.4.2)
N = ker 7¢= () V= (4.4.3)
8€G

The programme X deals with al factor groups G/N with faithful irredu-
cible representations in turn. If G/N cannot be recognized as an M-group
by (4.3.2), the user of the programme is informed that possibly not all
irreducible representations of G/N will be found. In spite of this, the pro-
gramme tries to find irreducible monomial representations of G/N.

First, the programme searches for subgroups U ¢ £, § =< ¢t— 1, such that
Na UadG: U is a dimenson dlowed by the redrictions. Then subgroups
Veldi,i=s 1, VaU are searched for, which satisfy (4.4.2) and (4.4.3).
This is done in the following way: if V a G then also V aU. Otherwise the
normalizer Ng(V) is determined from L, and L. If U= No(V) we have
V aU. U/Viscyclicif and only if for each prime p% U/V thereis exactly
one maximal subgroup of index p in U, containing V. If Va G we must
have V = N, otherwise the intersection of all conjugates of V in G is formed
and this must be equal to N. If V is found, meeting all requirements, N, U
and V are listed.

For the determination of faithful one-dimensional representations of
U/V we have to find an element x € U with (x, V) = U. Thisis found as a
generator of a cyclic subgroup Z of G meeting the following requirements :
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Z=<U,Z&V and ZV <k M; for dl maximal subgroups M; of [/ contain-
ing V.

The whole process described in § 4.4 needs only caculations with charac-
teristic numbers and hence is rather fast.

4.5. A test for irreducibility. We use the inner product of characters
1 _
, X)) = = 4.5.1
(, 2 I g;c P(2)x(8) @.5.1)

to check the irreducibility of 7° By a special case of Frobenius reciprocity
theorem ([2], 38.8), for any character y of a subgroup U< G we have:

(%o, v) = C, vO). (4.5.2)
Since a character 4 of a representation of G is irreducible if and only if
(r, 1) = 1, we have:

y@ is irreducible if and only if
1 _
(v, ) = ’—ﬁTu;]wG(u)«p(u) = 1. (4.5.3)

Let e be the exponent of G. Then the values of 3¢, and hence |U| -((%)y, ¥).
are sums of eth roots of unity, i.e. sums of powers of a fixed primitive
eth root of unity, e say.

For the calculation of the sum (4.5.2) we count in alist L the number p,
of times &/, 0 <j < e = 1, occurs as a summand of | U} (®)y, y). We then
use the fact that a sum of nth roots of unity is equal to zero if and only if it
can be decomposed into sums over cosets of nontrivial subgroups of the
group of a Inth roots of unity ([9], p. 240). Because of this theorem the pro-
gramme proceeds as follows : for each divisor d of eand each i,0 =i =<d- 1,
the smallest of the numbers n;, ng,; nagyy, - . . IS Subtracted from all
these numbers. ¢ is irreducible if and only if, after doing this, no = U]
and n; = Ofordli, 1=ise—1.

4.6. The calculation of induced representations. The programme dealsin
turn with the triplets N, U, V previously found. First G is decomposed into
cosets of U, then for each faithful one-dimensiona representation T of
U/V the calculation is performed in four steps:

(1) T; is calculated in the same way as described in § 3.3 for the one-

dimensional representations of G.

(2) The character-values x{” of the induced representations T are cal cu-
lated for representatives of the classes of elements conjugate in G.

(3) The irreducibility of T¢ is tested by the method described in § 4.5.

(4) If T passes the ted, the values of ¥ are brought into a norma form
by a method analogous to that described in § 4.5, and are compared
with the list of irreducible characters previously obtained in order to
decide if TF is a new irreducible representation.

If required the kernel of TjG, the matrices representing generators or al
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elements of G in T¢, are computed and printed. The programme stops as
soon as r irreduci bfe representations have been found. This often happens
long before al triplets N, U, ¥ have been investigated.

47. In debugging the progranme we have used the specid verson (2.1 d)
of the programme @ to generate a matrix group from the images of the
generators of G under an irreducible representation T. This must be iso-
morphic to G/ker T.

5. The numerical part of the programme.

51. The pat of the progranme described so far finds only the monomid
irreducible representations and characters. For low orders there are very
few groups having non-monomial irreducible representations. Up to order
96 there are one of order 24, four of order 48, one of order 60 and two of
order 72. No method is included yet in our programme for the determina-
tion of non-monomia irreducible representations, but at least an attempt is
made to complete the character table by a more numerical part of the pro-
gramme. For its description we define;

W = %xg.s), I<is=r. (5.11)

Then from [2], p. 235,

w(i‘)w(j‘) = XI caw®, l=ijs<r, (5.1.2)
we have
Y (Cije— BuWS W = 0, (5.1.3)
k=1

i.e for each sthe r vduesw{®, 1 < | = r, belonging to the sth character satisfy
the r? equations

T (cie—dux)xe =0, l<ij=r. (5.1.4)
k=1

To solve this system we choose a fixed j = jo and consider only the r equa-
tions

r
Z (ijok—(sikao)Xk = 0, l<is=sr (5-1-5)
k=1
Then for each 5, 1=<s = r, the vector (w{?, . . ., w¥9) is an eigenvector of the

matrix (c;,) belonging to the eigenvalue w§j’. If for some j, this matrix has
r different eilgenvalues, the eigenvectors are essentially uniquely determined
and hence must coincide up to a factor with the vectors (w(?, . . . , w¥),
1 < g =r. Thisfactor is calculated from

hy
we = @ =1,
i 4. 41
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From [2], 31.18,
r @ ()
2 w,~ H’I- -
d,‘}::l—a—hi |G|, (5.1.6)
we obtain the dimensions d,, . . . , d, and hence the values y{.

In our programme we use the characters already obtained by the process
of induction to reduce the task of finding the eigenvalues of the (¢;;) as
roots of the characteristic polynomials.

5.2. For the numerical programme we first compute the structure con-

stants €. Let x1,. .., x, be representatives of the r classes of elements con-
jugate in G. Then for al k = 1( 1)r and al b € C; the number of solutions of
bx = x,in C; is counted.

For each matrix (cy), 2 <j=r, its characteristic polynomial is computed
by the Hessenberg procedure [12]. Zeros of this polynomia belonging to
known characters are split off and the zeros of the remaining polynomia are
computed by the Bairstow procedure. For a simple root of this polynomial
acharacter is found as an eigenvector.

The numerical method described above does not work if there is a non-
monomia character 4 such that for each j there exists S # § with
29 = 47, This case has not yet been covered in our programme, but we
intend to replace the numerical part by a method proposed by John D.
Dixon' which makes use of the fact that the vectors w'®, 1= 5 < r, are essen
tidly uniquely determined as common eigenvectors of all matrices (c;;),
1 =j =< r. An outline of this method in included in the survey [10].

6. Experience with the programme. The programme has been run for
all groups contained in [11] and for several other examples, e.g. it has been
used in the investigation of finite groups of 4 X4 integral matrices. Typical
running times for the programmeX(which is implemented on an Electro-
logica XI with 20K core-store of 27 bits each and an addition-time of
64 usec) are the following:

For the symmetric group on 4 symbols 6 sec, for a certain group of order
72 with 24 classes 2 min 10 sec, for another group of order 72 with 6 classes
37 sec, for a group of order 88 with 55 classes 1 min 45 sec.
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The characters of the Weyl group £,

J. S. FramE

1. Introduction. The group F of order 192-10! = 21435527 = 696,729,600
whose 112 absolutely irreducible characters (al rational) are described in
this paper is isomorphic to the Weyl group Es. The group F itsef is de-
scribed by Coxeter [1] as the &dimensional group 3421 of symmetries of
Gosset’s semi-regular polytope 421, and it is the largest of the irreducible
finite groups generated by reflections. Its factor group A = F/C with re-
spect to its center C = {I, —1} is the orthogonal group of half the order
investigated by Hamill [7] as a collineation group and by Edge [2] as the
group A of automorphisms of the non-singular quadric consisting of 135
points of a finite projective space [7. The simple group denoted FH (8, 2)
by Dickson is a subgroup A+ of index 2in A = F/C.

The 8-dimensiona orthogonal representation of F, caled 8, below,
contains a monomia subgroup M of order 278 !, consisting of the products
of 8! permutation matrices by 27 involutory diagonal matrices of determi-
nant 1. There are 64 right cosets of M in the double coset MRM of M gen-
erated by the involution R:

1
R:[I"_E' IjEwhereEz% 1
- E I 1

Here I; isthe 4X4 identity matrix. Each matrix in MRM has 7 entries
+ 1/4, and one entry + 3/4 in each row and column, and the product of the
entries in any row or column is negative. The remaining 70 right cosets of
M in F lie in the double coset MQM where

I-E —-E)[I-E E 1-2E 0
SR | e R
—E I-E E I-E 0 I-2E
For each row or column of a matrix in MQM there are four entries 0 and
four enries + 1/2 and the product of the four Sgns hes a common veue for
the eégnt rons and a common vdue for the dght cdumns
If the signsin row 8 and then in column 8 of all the 8! permutation ma-
tices of Mae chenged, the resuting group isomarphic with S3 can be com+
bined with the matrix R of (1. 1), acting in the role of the trangpostion (8 9),

111

=E (L)

e

11
11
11
11
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to produce a subgroup S of F of index 1920 isomorphic to the symmetric
group Se.

We denote the 112 irreducible characters of F by their degrees marked
with a subscript x, Y, z, or w to indicate one of four types. The symbols 700,
and 700, denote two different characters of degree 700 and type x. The 67
characters of F that are irreducible characters of F/C include 27 associated
pairs classified as type x, and 13 self-associated characters classified as
type y. The remaining 45 faithful characters of F include 20 associated pairs
classfied as type z and 5 sdf-associated characters of type w, Pairs of associ-
ated characters are equal for elements of the even subgroups F+ of For A+
of A, and have opposite signs in the odd coset of F* of A+, while self-
associated characters vanish in these odd cosets.

We dso classify the classes into four types a, b, ¢, d as follows. Of the 40
classes of elements of Ain 4+, the 25 classes C, of type a split into pairs
of classes C, and — C, in Fin which an element of F+* is not conjugate to
its negative, whereas 15 clases C, of type b do not split in F. Of the remain-
ing 27 classes of Ain the odd coset of A +, 20 classes C, split into pairs C,
and = C, in F with elements not conjugate to their negatives, and 7 classes
C; of A do not split in F. This classification enables us to partition the
112 x 112 charecter table as follows.

Character Class

Character blocks of F (1.3)
blocksof A° No.  type No.

X, X, Y, |25 { Cl|25l2s X, X, Y. 2z Z, W,

C.l2%5 | X. X, Y, |l-z. -z, -W,
X, X, Y, | 15 G155 X Xs L, |0 0 0

X, |-Xx. 0 |20 {Cc 20(%x -Xx, o |z| -z o

C |200|x, -X.., 0 -z, zZ 0
X; | -x;, o 1 Cl 71x; | -x; 0 0o o0 0
27 + 274+ 13 =67 112 = 27+ 274+ 134+ 20+ 20+ 5

All the 112 x 112 entries of the character table may thus be displayed in
four sguare blocks totaling 402 + 272 4 252 + 202 = 3354 entries, of which
the first two blocks describe characters of type x or y of Ain its even and
odd classes, and the last two describe the faithful characters of F of types
z and w in its even and odd classes. To check orthogonality by rows in
these subtables al products involving x's or Z's must be doubled in
forming scalar products.

All the faithful irreducible characters of F of type z and w are found
among the irreducible constituents of the odd Kronecker powers of the
fundamental character 8,, whereas the characters of F/C of types x and
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y are constituents of even Kronecker powers. To each partition (4) of
m corresponds a Schur character {4} which is irreducible for the general
linear group GL (8, C) containing a Murnaghan character [A] which is
irreducible for the infinite g-dimensional real orthogona group G [9]. For
m =1, 2, 3, 4, al these characters except [4] are also irreducible for the
finite subgroup F of G, but for m> 4 many are reducible for F and must
be split by other means.

2. The classes. The class symbol 1226 37, .., where 8= o + 28+ 3y +. . .,
is commonly used to describe a class of permutations having a I-cycles,
p 2-cycles, y 3-cycles, etc. We extend it to other classes of the monomial
group M by denoting by k or k~%(2k) a k-cycle with an odd number of
minus signs, whose eigenvalues are those (2k)th roots of unity which are
not kth roots of unity. Similarly the symbol 1*2¢ 3, . ., where 8 = « + 25+
3y+ ..., in which one or more of the exponents is negative, denotes a
class of matrices in 8, whose eigenvalues consist of al’s, plus g pairs 1
and — 1, plusy complete sets of cube roots of unity, etc., and a symbol k
is equivalent to k~1(2k). Thus 10/2, or 2 4-1(10)~1(20), denotes a class
of elements of order 20 whose eigenvalues are the eight primitive 20th
roots of unity that are not 10th roots nor 4th roots of unity.

For a matrix in the representation 8, some power of which is an involu-
tion of trace 0 and type 24, these symbols do not specify the class uniquely.
One class, denoted 2%, contains diagonal monomial matrices of type 14 14
and also permutation matrices of M with four 2-cycles and no negative
signs. These each commute with 21333 elements of A, and correspond
to class 3 (caled 1-12%) in Hy. This class is not represented in the sym-
metric subgroup Ss. Another class, denoted 24 or 3 23, contains el ements
of type 12¢in §,, but these are represented in M by four 2-cycles one of
which has both its signs changed. Type 12 1222 of M aso contributes to
class 24 in A. Each element commutes with 2123 elements of A. The let-
ters v or y follow the class symbols for matrices some power of which is
in class 2% or 24y, We aso use » and u to distinguish the class 224» that
contains permutations in M from the class 224u which represents permuta-
tions of $y whose image in M has two minus signs in one 2-cycle. Thus the
classes containing the squares, cubes, or other powers of any element of
F can be read directly from the class symbol.

We obtain the 67 classes of A= F/C directly by using the classes of two
important subgroups of index 120 and 135 and then finding 8-dimensional
matrices that represent the missing nine classes, rather than by using the
geometrical arguments of Hamill [/] and Edge [2. Of the 67 classes
of A, 25 even classes (type a) and 20 odd classes (type c) split in F to pro-
duce two classes each, whereas 15 even classes (type b) and 7 odd classes
(type d) represent single classes of F.

(1) A subgroup H of index 120 in A is isomorphic to the Weyl group of
type £z, which is the direct product of its center C = {I, -Z} and the group
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H, of order 29345-7 whose 30 classes and characters were described by
Frame [4. The 60 classes of H arelabdled 1,1, 2, 2%,. . ., 30, 30’, so that
class k’ contains the product by -1 of an element of class k. There are
46 classes of A containing elements of H. For the 12 classes of A that split
in H the corresponding classes of Hand the values of the induced permu-

tation character 120, are:

| 2.1
A { H 120, A H 120, A H 120,
I
1422 2, 16 30+2 162 U, 16 | 1+63 12123 7,8 | I3
124 |[5,18,19) 6+1+1 1223 2,%, | 3+1+12 232 9, 22] 143
1

1223 [ 8,21 6+2 122272 | 4, 28 | |43 126 10/, 2371 143
122324,27 |[1+1 132 3 6,21 | 1+15 125 | 15,25 | 143

(2) Twelve additional classes of A that are not represented in H but are
represented in the monomial subgroup M’ = M/C of A = F/C are denoted
by the symbols

17323, 424,24, 482,113 30,260, 134,125,323 30, 224,11 6, 8u.
2.2
(3) Five of the remaining nine classes of A contain 8 X 8 rea orthogonal
symplectic matrices that commute with a skew matrix of type 24 and order
4 that we call “;”*. By appropriate choice of “i” the 8 X 8 orthogona ma-
trices are equivalent to 4 X4 unitary matrices A+ iB under the correspond-

ence
. 0 z ] A
- [-z 01’ A+iB —~ [—B i (2.3)

The 210325 matrices of this type form the normalizer N; of i, which has a
monomial subgroup M; of order 274! and index 15. In six cosets of M,
the matrices have exactly 2 zero entries per row or column. In the other
eight cosets there are no zero entries.

The classes of type 12/4, its square 62/22, and fourth power 3%/1¢ are
represented by the following unitary matrices of orders 24, 12, 6 in F, or
12, 6 and 3 in A. Roman numeras indicate Hamill’s class symbols [7]

1-i 0 0 1-i —i =i —i =i 1 -1 -1-1]
1]=14+i 0 0 1-if 1| i—-i—-i i 1|1 1-1 1
21 0 1—i—14i O 2| i i—i-i2{1 1 1-1
Lo 1~ 1—i of | i-i i—-i] [1-1 1 1]
Type 12/ Type 62/22 Type 34/1¢
(LXVID) LXV) (LVDh
(2.9
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Type 10/2 and its square 3%/1% belong to classes of elements of orders
20 and 10 in F, or 10 and 5 in A = F/C. Representative 4 x4 unitary
matrices A+ iB for these classes are

0 14i 0  I-i BRSNS
1 1—i 0 | +i 0 1 l-1 1 i-i
Zl-i4i 0 14i 0 0 2la o4 ioi &Y
| 0 1+ 0 —l+i] a0 -
Type 10/2 Type 32/12
(LXIV) (LX)

(4) The four remaining classes are Miss Hamill’s classes LVII, LVIII,
LIX, and LXV [7], here denoted 62/22, 9/1, 32 6/12 2, and 1 3-% 5-1 15
respectively, and represented by the orthogonal matrices

T l-1 3 1-1-1-1-1 [-1-3 1 1 11 1-1
l-1-1 1 3-1-1-1 1 13 1 1 1 -1
111 31111 -1 1 I3 1 1 I-1
L-3-01-01 1-1-01-01-1 Lj-1 1 1 113 1 1I-1
4113 14 1 1 1 1°4]1 1 1 1 I3 1-1]
l-1-1 1-1-1-1 3 111 11 -3-1
L-1-1 1-1 3-1-1 1111 11 13
l-1-1 1-1-1 3-1 311111 I-1
(2.6)

Type 62/2%v Type 9/1

(LVID) (Lvin
<3 1 1 1 1 1 1] [1-11 0 0 0 1 0
1 1.3 1 1 1 1 1 1 11 0 0 0 1 0
11 1 13 1 1 1 0 0 o111 0 1
11-1-1 -123 -2-1 -2-11 1} H1 O O o1 O
4] 3 -1-1 -1-1-1-1 -2y 2 0 0 Ol 1 o1
17 1 1 13 1 0 0 0 1 o1
11 1 1 1 1 12 0 0 ol I o1
1111 1311 | = 120 0 0 1 O

Type 32 6/12 2 Type13-15-115
(LIX) (LXV)

Type 9/11s the negative of a 9-cycle of Sy, represented in F by the nega-
tive of the product of Rin (1.1) by an 8-cycle permutation matrix of M
in which the signs are changed to negative in the last row and column.
The negative of a matrix of type 13-15-1 15 represents an element of order
30 in F whose 5th power is of type 34/1%
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3. The decomposition of Kronecker powers. If the cycle symbols k in a
class symbol are replaced by k=*(2k), then the first, second, third, fourth,
... powers of an element in class 1" 26 3” 4, . . have the character values

a, a+2p, u+3y, a+2p+40, . .. (3.0)
in the 8-dimensional orthogonal representation 8, of F. Using the formu-
las worked out by Murnaghan [9), the character 87 of the mth Kronecker
powers of 8, may be split into characters [A], one for each partition (%)
of m, which are irreducible for the full S-dimensional orthogonal group O,.
This is a substantial refinement of the Sthur  decomposition which yields
characters irreducible for the full linear group. Constituents of odd powers
of 8,, including the first power 8, itself, will be classified as type z (pairs
of associated characters) or type w (self-associated characters which  vanish
inthe odd cost of A *or F *).For m=0, 1, 2, 3, 4, al but one of these
Murnaghan characters are irreducible for the subgroup F of Og. We de-
note them by their degrees with subscripts, and express their values in
terms of &, 3, 9, 6,. . . a@8ollows

[01=1, =1 (32
{11=8, = a

o

[12] = 28, =02 -8

[2] = 35, = (@+2)(x—1)2+p

[13] = 56, - g—aﬁw

[2 11= 160, = («+2) «(x—2)/3~7y

3] = 112, = (x+4) a(a- D/6+af+y
[ =190, = (2)— (;)5+(§)+w—a

/

2 12]= 350, = (x+2) oc(a—l)(“—3)/8‘(“+2)(“—1)’9/2(5) o

[2] = 300, = (a+2)(@+1) ala—3)/12+5(E— D—ap+ap

[31] =567, = (a+4) o+ 1)a— 1)a—2)/8 + (;)ﬁ—(ﬁjl)—a

[4] = 210,+84, = (x+6)at 1) afa—1)/24+ (“;“1),3+(§)+ay+a

/

The first eleven of these characters are found to be irreducible for F
by summing their squares over the group. It is clear that [4] cannot be irre-
ducible for F, since its degree 294 = 2.3.72 does not divide the group order
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|F|. We shall see presently how to split this character by using permutation
characters induced from the subgroups H and A1,

It is probably simpler not to use al these formulas explicitly, but to cal-
culate 8,, 28, and 160, by these formulas, and then express the rest by Kro-
necker products as follows.

In [2}: 35, = 82-1,—28, (33)
In[13]: 56, = 8,(28,— 1,)— 160,

In[3]: 112, = 8,(35,— 1,)— 160,

In [2 1?]: 350, = 280128,

In [14): 70, =8,56,) 350, 28,

In [2%]: 300, = 8,(160,)—28,(35,)

In [3 1]: 567, = 35,(28,—1,)—28,—350,

In [4]: 210,+84, = 8,(112,)—35,—567,

Several irreducible components of the Kronecker 5th power of 8, can
be split off in like manner as follows. Here the irreducible character 56,
is the associate of 56,, with values of opposite sign in the odd classes of
types ¢ and d

In [15]: 56, is associate of 56, (3.4)
In [213] : 448, = 8,(70,)— 56,— 56,

In [221]: 840, = 56,(28.+ 1,)—8.(28,+70,)

In [3 12]: 1296, = 160.(28,)— 8.(35,+ 300, +70,) + 56,

In [3 2]: 1400, = 8,(300,)— 160,— 840,

In [4 1]: 1008, = 8,(210,— 84,)

In[5): 560, = 8,(84,) ~ 112,

Before the characters [4], [4 1], and [5] of Og can be split in F, it is neces-
sary to obtain the character 84,. Note first that the difference of the sym-
metrized Kronecker squares of the characters 56, and 28, splits into two
characters, one the associate 350; of the known character 350,, and the
other a new character of degree 840:

840, = 5612128121 —350L,. (35)

4. Induced permutation characters. Three permutation characters of
A, denoted 120,,135,, and 960, respectively, are induced by the subgroups
of A index 120, 135, and 960, caled H, M, and S above. Both H and M
have exactly three double cosets in A, containing 1 + 56+ 63 cosets of
H, or 1 + 64+ 70 cosets of M respectively. Hence by a theorem of Frame
[3] these permutation characters each split into the I-character 1, and a
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pair of characters of degrees f1, fz0r f3, fasuch that
120(56)(63)/f1f2 is a square, and fi+/fz = 119, (4.1)
135(64)(70)/f3f, is a square, and f3+f; = 134.
The unique positive integral solutions of these equations are
Ji, fa =35 and 84 in 120, 4.2)
f3, fs = 50 and 84 in 135,. (4.3)

It is easily verified that 120, contains the character 35, already computed,

SO
84, = 120,— 1,—35,, (4.4)

50, = 135,— 120,+ 35,. (4.5)

It can be checked that 84, is aso a constituent of the character 960,
induced by the symmelric subgroup S = S,. Hence the character 960,— 1,—
84, of degree 875 splits into two irreducible constituents whose degrees
divide 218 35 52 7, The splitting into 175, and 700, is verified when it is
found that this character has a constituent in common with the Murnaghan
character [6] of degree 1386 for the orthogonal group Qg, which splits as
follows into three known constituents and one new constituent 700,:

[6] = 700,+567,+84,+35,. (4.6)
The other constituent 175, of 960, is
175, = 960,— 1,—84,—700,. 4.7

To check this character 175,, we note that it splits in H into the sum of
the two characters 105,+70,. Thus its values for the 46 classes of A in H
can be computed directly from these subgroup characters without evaluat-
ing [6]. Both degrees 175 and 700 are divisible by 52 and 7, so the charac-
ters 175, and 700, both vanish for the 11 classes of elements whose orders
are divisible by 5 or 7. Thus it may be easier to determine 175, first for
most classes, and then find 700, from (4.7) rather than from (4.6).

Having the additional characters 84,, 50,, 175, and 700,, we can now
compute several more characters of types x and y quite simply as follows:

1400, = 28,(50,) (4.8)

1050, = 35,(50;) — 700,

1575, = 28,(84,) — 567, —210, = 8,(560.)— 35,(84,—1,)
1344, = 35(84.)—8,(112,)—700,

2100, = 28,(210,— 84,)—84,— 1344,

2268, = 35,(210,—84.)— 567,— 1575,
525, = 84118 — 567, — 1050, — 1344,
700,,, = 5001 — 525,

4200, = 28 175,) — 700,
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The symbol 700, denotes a second character of type x and degree 700,
distinct from 700,. Other new characters are defined by
972, = 50,(84,) = 50, — 84, = 1050, = 1344, —~ 700, (4.9)
4096, = (35.— 1,)(300,—28,)— 840, — 700, — 1344, —2268,.

The character 972, of degree 223% is of highest type modulo 3, so it must
vanish in al 3-singular classes.

By decomposing Kronecker products involving characters of relatively
small degree such as 70,, 50,, 84,, 28, and 35, we can now solve for ten
more of the 13 self-associated characters of typey as follows :

1134, = 70,(28,) - 70, - (28, + 28,) - (350, + 350,) (4.10)
1680, = 70,(35,)—70,—(350.+350})
70,(84,) — (2100, +2100})

168, = S01—50, 84,—972,

420, = 70,(70,+1,) —28,(28,+28,) — (840, +840;) — 1134, — 168,
3150, = 28,(168,)—1134,—420,
4200, = 35x( 168,) = (840,+ 840))
2688, = 28,(420, - 168) 168, 4200,
2100, = 50,(168, — 1,—1;)—(700,,+700;,) — (972, +972,) — 168, — 2688,
1400, = 50,(70,) — 2100,
4536, = 28,(525,)— 300,— 700, — 1400, — 2268..— 4096, — 1400,.

5. Kronecker products with the character 8,. Products of the character
8, with any constituent of an even (odd) Kronecker power will split into
congtituents of powers of the opposite parity. By splitting products of 8,
with the even-power constituents of types x and y aready found we can
complete the list of irreducible characters of types z and w as follows.

We start with a second character 1400, of type z and degree 1400, not to
be confused with 1400, aready obtained.

1400, = 8,(175,) (5.)
4200, = 8,(700,5— 175,)

400, = 8,(50,)

3240, = 8,(700, — 50,) — 1400, — 560,

4536, = 84972,) 3240,

2400, = 56,(84,) — 1296, — 1008,

3360, = 8,(1400,—525,—50,)— 3240,

2800, = 56,(50,)

4096, = 8,( 1575, — 56,(84,) = 560, — 3240,

5600, = 8,(2268,—525,)— 1008, —3240,—2800,
448, = 8,(1344,—1575,)+ 1296,— 1400,+ 2400,

CPA 9
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TasLe 1. Three permutation characters in

Type a classes

Class symbols Al G| 120, 135, 960,
1 18 21335527 120 135 960
1 1422 211325 32 31 96
X1 1224 23 8 7 8
XV 1422 21032 12 3 —
XXXVII 122 4 26 2 1 —
\V; 153 27385 36 27 72
X1V 141 3. 27338 12 3 .
1X 1223 2632 8 7 12
XXVII 1223 243 2 1 2
XXXII 1 223y 2532 — 3 —_
X 1232 2434 6 9 12
XXVI 1232 2432 2 1 _
XL 129/3 233 3 —_ —
LVIII 9/1 33 - — 3
XXXV 33 i 2435 3 — 24
XL1 1331t 2433 3 — —
XL 136/2 2832 3 — —
LV 314 26335 _— — -
LIX 326/122 2132 — —_ —
X1l 135 23352 10 5 5
XXX 1213 235 2 1 1
XXX 35 235 1 2 2
LX 32/12 2235¢ - - —
LXV 1-15/3.5 35 — — —_
XXXIV 17 27 1 2 1
Type d classes
XXII1 24w 2932 12 19 —_
XVIII 24y 28 4 3 8
LIII 224 283 7 —_—
XLVI 333v 2332 — 1 —
LIV 116 233 _— 1 _
Lv 8v 28 2 5 -
XLVIII Su 24 -_— 1 2
448, = 8,(70,) — 56,— 56: (5.2
1344, = 8,(840,)—840,—4536,
5600, = 8,(1134,)— 840,— 840, —448,— 1344,
2016, = 8,(420,) — 1344,
7168, = 8,(2688,)—3360,— 3360, — 5600, —2016,
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the 67 classes of A = F/C
Type b classes
Class symbols |4/ C 120, 135, 960,
X111 24y 21333 24 39 —
XXXVI 420 210 4 11 —
VI 2% 13 8 7 16
XXVIII 4% 27 —_ 3 4
XX XV 1124 26 2 1 -
“LXI 24 210325 — 15 —
LXII 42 263 — 3 —_
XXXI 1133 2333 — 3 —_
XXX1x 2 6v 24338 6 9 —
XXX 2 6u 243 2 1 4
LXIII 26 2332 — 3 —
LVII 6%/2%v 2633 — —_ -_
LXVI 62/22 2532 — —

LXVII (12)/4 233 - _ _—
LX1V 10)/2 275 — —
Type c¢ classes
1 162 2103457 64 63 288
\ 1228 21032 16 15 32
X X 1 122 32 283 4 3 —
Vil 144 293 5 20 11 16
XXV 131 4 283 6 1 —
Vi 1323 25335 16 15 30
XVI 12123 2532 4 3 2
XXV 1323 2632 6 1 —_—
XXIX 134 253 2 5 4
XLV 134 233 — 1 -_—
XVII 232 2333 4 3 6
XXI11 126 2332 4 3 2
LI 29/3 2 3¢ ! - -
XLIX 2 3313 2434 1 —— —
L 6 3/1 2432 1 — 8
LI 236/12 233 1 - -
X X 125 223 5 4 3 3
XLIV 125 225 -— ! 1
XLII1 235/12 23 5 1 _ —

XLV 271 27 ! — 1

6. Blocks of defect one. The Brauer theory of modular characters, used
to determine severa of the characters of the subgroup Hy of A[4], can be
applied in like manner to find some new characters and check some of
those already computed. In a block of defect one (mod p), where p* but
not p2+! divides the group order, the characters have degrees divisible
by p*~1but not by p® Since ail characters of A and F are rational, there

(1
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TaeLe 2. The X, ¥, block for even classes of A+
18 21835527 1, 28, 35, 84, 50, 350. 300, 567, 210, 840,

1422 u3zs g 4 11 20 10 -10 20 39 26 24
1424 973 1 0 3 4 2 -2 0 -1 2 0
1422 1032 1 8 7 4 -2 26 8 15 6 16
1224 26 1 2 1 0 0 0 -2 -1 0 0
153 27355 1 10 14 21 5 35 30 81 39 -24
12130 2733 1 2 6 5 -3 -5 6 9 7 8
1223 2632 ! -2 2 5 1 -1 2 -3 -1 0
1223 243 1 0 0 1 -1 1 -1-1 0
12232 2532 1 2 -2 1 1 -1 2 -3 3 4
1232 2434 1 1 2 3 5 -1 -6 0 3 3
123" 243% 1 1 2 -1 1 -1 2 0 -1 3
1%9/3 233 1 1 2 0 -1 -1 0 0 0 0
9/1 33 1 1 -1 0 -1 -1 0 0 0 0
331 2438 1 1 -1 3 -4 -1 3 0 -6 3
1332/12 2433 1 5 3 -1 0 7 3 0 -2 -1
136/2 2832 S| 1 1 -2 -1 -1 0 0 1
3418 28355 1 10 5 -6 5 35 30 0 ~-15 30
326/122 2432 1 2 1 -2 1 -1 2 0 -3 -2
135 28352 13 5 4 0 0 0 7 5-5
1215 235 ! -1 1 0 0 0 0 -1 1 -1
35 235 1 0 -1 1 0 0 0 1-1 1
52/12 22358 1 3 0 -1 0 0 0 -3 0 0
1-15/3.5 35 10 o-1 0 0 0 0 0
17 27 10 0 0 1 0-1 0 0
2% 21338 1 -4 3 20 18 -2 12 -9 .14 8
4%y 10 1 0 -1 4 6 2 0 -1 -2 0
2%y 2113 1 -4 3 4 2 -2 12 -9 2 8
4%y 27 1 0 -1 0 2 2 0 -1 2 0
1124 26 2 1 0 0 0 2 -1 0 0
b 0325 1 4 -5 4 10 -10 20 -9 10 -40
42 263 1 0 -1 0 2 -2 0 3 -2 0
1133» 2333 ! -1 0 -1 3 1 0 0 1 -1
26v 2433 | 0 5 3 1 0 0 -5 -1
26u 243 S} 0 1 -1 1 0 0 -1 -1
26 2332 1 1 -2 1 1 -1 2 0 1 -1
62/22p 2633 1 2 -3 2 -3 -5 6 0 1 -10
62/3: 2532 ro-2 1 -2 1 -1 2 0 1 2
(12)/3 233 1 0 -1 0 -1 1 0 0 1 0
(10)/2 225 ro-1 0 -1 0 0 0 1 0 0

The characters of the Weyl group Eg 123
TasLe 2 (continued)
700, 175, 1400, 1050, 1575, 1344, 2100, 2268, 525, 700, |
60 15 40 50 15 64  -60 12 5 20 1N
4 -1 0 2 -1 0 -4 -4 -3 0 Xl
-4 -1 -16  -10 11 0 12 -12 -7 0 XV
0 -1 0 0 1 0 0 0 -1 -2 XXXVII
55 -5 50 15 90 84 75 81 30 -20 1V
-1 5 6 17 -6 4 -5 9 6 -4 XIV
3 3 -2 -1 6 4 3 -3 2 -4 IX
11 0 -1 2 0 -1 1 0 d o XXVII
-1 -1 2 -1 2 0 3 -3 2 0 XXXII
4 4 5 6 0 -6 3 0 3 70X
0 0 1 2 0 -2 3 0 -1 -1  XXVI
2 1 -1 0 0 0 0 0 0 1 XL
1 1 -1 0 0 0 0 0 0 1 LVIII
7 13 -4 -3 9 -6 -6 0 12 -2 XXXVII
-1 1 0 1 -3 -2 -2 0 0 2 XL1
-1 -1 2 -1 1 0 0 0 2 0 XL11
10 -5 50 15 -45 -24 -60 0 30 -20 LVI
2 -1 2 -1 -1 0 0 0 2 0 LIX
0 0 0 0 0 -1 0 -2 0 0 XII
0 0 0 0 0 -1 0 2 0 0 XXIX
0 0 0 0 0 -1 0 1 0 0 xxx
0 0 0 0 0 4 0 3 0 0 LX
0 0 0 0 0 t 0 0 0 0 LXV
0 0 0 0 0 0 0 0 0 0 XXXIV
-4 217 -72 58 -57 64 52 -36 45 92 Xl
-4-1 0 -2 3 0 -4 4 1 8 XXXVI
12 -1 -8 -6 9 0 4 12 -19 -4 VI
0 3 0 2 -1 0 0 0 1 0  XXVIII
0 -1 0 0 1 0 0 0 -1 2 XXXV
-20 15 40  -30 15 0 20 -36 5 20 Lx1
0 -1 0 2 -1 0 0 0 -3 0 LXx11
2 2 -3 -2 0 -2 1 0 3 -1 xxx1
-4 -2 -3 4 0 4 1 0 3 -1 XX X1Xx
0 2 1 0 0 0 1 0 -1 ~1  XXXII
-3 0 1 0 0 0 -1 0 -1 =1 Lx111
2 5 -6 7 3 -8 4 0 6 -4 LVII
2 3 2 3 3 0 -4 0 2 -4 LXVI
0 -1 0 1 -1 0 0 0 0 0 LXVII
0 0 0 0 0 0 0 -1 0 0 LXIV

[continued on pp. 124, 125]
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TasLe 2 (continued)
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TasLe 2 (continued)

18 21338527 972, 4096, 4200, 2240, 2835, 6075, 3200, 70, 1134, 1680,
1422 21325 36 0 40 64 51 -10  -18
1224 273 0 0 0 0 5 2 6
1422 21032 0 0 -8 0 3 14 30
1224 28 2 0 0 0o -1 2 -2
153 27355 0 64 -30 -4 -81 10 0
14130 2733 0 0 -6 -4 -9 -6 0
1223 2632 0 0 -2 4 3 2 0
1225 243 0 0 0 0 1 2 0
1223p 2532 0 0o -2 0 3 2 0
1232 2434 0o -8 -3 2 0 4 0
1232 2132 0 0 1 2 0 -4 0
129/3 233 0 1 0 2 0 -2 0
91 33 0 1 0 0 1 0
3%/1 2435 0 5 -10 0 -2 0
1332/fz 2433 0 3 2 0 6 0
138/2 2332 0 1 0 0 2 0
3¢4/14 26355 0 -30 -40 0 19 81
326/122 2432 0 -2 0 0 -1 -3
135 23352 -3 0 5 5 0 -6
35 235 1 0 -1 1 0 2
5212 2235% 0 0 1o 0 0

-3 4 0 0 0 5 4
1.15/3.5 35 0 -1 0 0 0 -1 1
17 27 -1 1 0 0 0 0 0
2% 21333 108 0 -24 .64 -45 6 -18
4% 210 8 0 -8 0 3 -2 -2
24y 2113 12 0 8 0 3-21 6 -18
42y 27 0 0 0 0 -1 2 2
1124 26 -2 0 0 0o -1 2 -2
24 210325 3p 0 40 0 -45 6 30
1z 263 0 0 0 0 3 2 2
1133 2333 0 0 3 2 0 0 0
26v 2438 0 0 3 -4 0 0 0
26u 213 0 0 -1 0 0 0 0
26 233% 0 0 1 0 0 0 0
62/2%v 2633 0 0 -6 8 0 3 9
62/22 2532 0 0o -2 0 0 3 -3
124 23 o o 0o 0 o0 -
10)/2 225 1 0 0 0 0 1 0

420, 3150, 4200, 2688, 2100, 1400, 4536, 5670, 4480, |

.
N N
Pewmonm d2sRoowe8o

20 30 40 0 -60 -40 -72 -90 0
-4 2 0 0 -4 0 0 6 0 Xl
12 22 24 0 -20 -8 -24 6 0 xv,
0 2 0 0 0 0 0o -2 0 XXXVII
-30 -90 -120 -48 30 20 0 0 -80 IV
2 6 8 -16 14 4 0 0 16 XIV
2 6 -8 0 6 -4 0 0 0 IX
2 -2 0 0 2 0 0 0 0 XXVII
-6 -2 0 0 -2 4 0 0 0 xxx11
6 0 6 -12 12 8 0 0 4 x
2 0 -2 0 0 -4 0 0 0 XXVI
0 0 0 0 0 2 0 0 -2 XL
0 0 0 0 0 -1 0 0 1 LVII
-12 18 -12 -12 -6 14 0 0 =20 XXXVIII
-4 -6 -4 -4 2 -2 0 0 4 XL1
0 -2 0 0 -2 -2 0 0 0 XL11
24 45 15 60 30 65 81 -81 -44 LVI
0 1 3 0 -2 1 -3 3 0 LIX
0 0 0 8 0 0 6 0 0 Xl
0 0 0 0 0 0 2 0 0 XXIX
0 0 0 2 0 0 0 0 0 XXX
5 0 0 3 0 0 1 5 -5 LX
-1 0 0 0 0 0 1 -1 1 LXV
0 0 0 0 0 0 0 0 0 XXXIv
-28 -114 104 128 116 -8 -72 -90 128  XIII
-4 6 -8 0 -4 -8 8 6 0 XXXVI
4 -18 8 0 -12 24 24 6 0 Vi
4 -2 0 0 -4 0 0o -2 0 XXVIII
0 2 0 0 0 0 0 -2 0 XXXV
36 30 -40 64 20 40 -24 6 64 LX1
0 -2 -4 0 0 4 -4 -2 0 LXII
-4 0 2 2 2 -2 0 0 -2 xxx1
2 0 2 4 -4 4 0 0 4 XXXIX
-2 0 2 0 0 0 0 0 0 XXX111
0 0 2 -2 2 -2 0 0 -2 Lan
8 -3 -1 -4 -10 1 9 -9 4 LVII
0 -3 -1 4 2 1 -3 3 4 LXVI
0 1 -1 0 0 1 -1 1 0 LXxvI
1 0 0o -1 0 0 1 1 -1 LXIV
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< n©eooo & O oY ANATTONOMO will be exactly p characters in a block of defect one (mod p). In our case,
3 3 °g ¢ where: the associated graph is a simple chain, consecutive characters share
o o © I8 o YN L7 ocogo one common modular irreducible character, and combine to form a
S © ° o o - . .
8 N o oo - singular modular indecomposable character that vanishes in the so-called
o "% 7% o YO o mogw p-singular classes of elements whose orders are divisible by p. The sum
e o < © © = of the p characters, taken with alternate signs, vanishes in the p-regular
s | g% ¥Ye o Yo ®oCoogg classes. =
? 8 0° ® o 5 The group A has order |4| = 2% 35527 = L|F|, so the pertinent primes
e o S0 oo N o < oo o Oedg are 2, 3, 5, 7. For the prime 2, the pairs of associated characters 4096,
§ © S and 4096, form an indecomposable for A4, so the characters vanish for
) s 2 YwmOoocecoocoeoe,»"000 all elements of even order in the even subgroup. A similar observation ap-
9 E - plies to the characters 4096, and 4096.. For the prime 3 we can calculate
= S RROooNgpmAdoCOC00oNO = two new characters 2835, and 5670, whose degrees are divisible by 34 = 81,
s g @ - coooo . Since the two characters 567, and 2268, agree in 3-singular classes of the
S os T YT T o even subgroup A*, but have opposite signs in such classes of the odd
5 § © oo coset, the associated character 567, belongs in the block with 2268,. Their
o | o geeeyioermeone eaee - sum (in p-regular classes) defines a character 2835, such that 567+ 2835,
d%)’ S NOWBbmad o o cocoo and 2835,4 2268, vanish in the 3-singular classes. Similarly the characters
S| g| 3,08 ° 8@ 1134, and 4536, combine to produce 5670,. We write
g ¥ cdgganpeaaoogpnao00o 567.— 2835,+2268, (mod 3) , 6.1)
5 e o . 1134, —5670, 44536, (mod 3) (6.2)
Y= — o — 7 O
< | 5| 88<¥°8e°°° T 1296, —4536,+ 3240, (mod 3) (6.3)
2 o = L .
= ° NG FOOCOOOOCCO T O° to indicate the 3-blocks of defect one, using the last only as a check.
S 3 N Similarly for the prime 5, we find two new characters 2240, and 4480,
= S . -
| = BReQYP I YNN8V T°°°3 and check others from the chains
— o o
5—5 3 : Y o© oM o coO« o 35,—840;+2835,—2240,+210, (mod 5) - (6.4)
o ) - o ]
P © S - 70, — 1680, 4 5670, — 4480, + 420, (mod 5) (6.5)
N Q - =X o d
§ H NI Sy Vi T o : - 160, — 840, + 3360, — 3240, 560, (mod 5). (6.6)
o —
0 ) PO OT A AMA ANNTNNO O Two:-Kronecker products with the character 175, serve as checks:
W ~ g Fc b ' 0
§ S < o o o o oo . 35,(175,) = 1050,+2240,+ 2835, 6.7
© — = .
= g ®o Togo o ¥ < a3 50.(1755) = 210,+ 1400, 42240, 4 420, +4480,. (6.8)
— - N - ~ :
S S Y« ® ° © We calculate 6075, from a Kronecker product:
G| ClavAadloddoNom o dd o 6075, = 8,(2400,)— 1575, —2100,—2100; — 1680, — 5670,  (6.9)
" noting that its degree is 3552, so it must vanish in all the 3-singular and
o al TR w v 0 . . .. . g
“ a5, cohhhrobh T hhooL o~ S-singular classes. Finally we use it in a 7-chain to compute the last charac-
g SR ERR RO AR ter 3200,, and display a second 7-chain to check certain characters of
Lo =, type z.
. B oM Oearm Y. QS E 0 2-55 1, 300544096, — 6075, + 3200, —972,+ 50, (mod 7)  (6.10)
— 2 < et N Nt ™ Py
g IEsTel S iloar o 8. — 160, + 1296, — 2400, + 4096, — 3240,+ 400, (mod 7) (6.11)




130 J. S. Frame

Counting the associates of characters aready computed, the list of 112
characters of the largest of the five Weyl groups G,, Fy, Es, E,, and Egis
now complete. In Table 1 we list symbols for the 67 classes of A, together
with the orders of centralizers of an element, the class numeral used by
Hamill [7], and Edge [2], and the characters of this class for the permu-
tation representations induced by the subgroups H of index 120, A4 of
index 135, and S of index 960. In F the centralizer orders must be doubled
for classes of type a or ¢, and each odd cycle symbol k or k replaced by
k or k to obtain the additional 45 classes of F. As explained above in
(1.3) the information for the complete 112 x 112 character table is conveyed
by four square blocks of dimensions 40 for [X,, Y,3], 27 for [X.,] which
include the 67 characters of A, and 25 for [Z,, W,], 20 for {Z,] which
include the characters of faithful representations of F.

Reference should aso be made to Dye's papers (10, 11], which appeared
after this paper was submitted.
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On some applications of group-theoretical
programmes to the derivation of the crystal classes of R,

R. BUoLow anp J. NEUBUSER

1. In mathematical crystallography symmetry properties of crystals are
described by group-theoretical means [1, 7]. One considers groups of
motions fixing a (point-)lattice. These groups can therefore be represented
as groups of linear or affine transformations over the ring Z of integers.
For such groups certain equivalence relations are introduced.

In particular two subgroups & and & of GL,(Z) are caled geometrically
equivalent, if there exists an integra nonsingular matrix X, such that
X-1@x = $. If, moreover, such X can be found with det X = 4 1 (i.e.
with Y-1 integral, too), & and $ are cdled arithmeticaly equivalent.
The equivalence classes are caled geometrical and arithmetical crystal
deses  regpedtivdy.

The lists of both geometrical and arithmetical crystal classes for dimen-
sions n = 1, 2, 3 have been known for some time. In 1951 A. C. Hurley
[5] published a list of the geometrical crystal classes for n = 4, which has
since been dightly corrected [6].

2.In 1965 E. C. Dade [2] gave a complete list of representatives of the
“maximal” arithmetical crystal classes, a problem which had also been
considered by C. Hermann [4]. Dade’s list consists of 9 groups:

group order
Q, 1152
Cuy 384
SX, ®Cu, 96
SX3 ® Cul 9 6
Sx, 240
SxgM 288
Pys@ Cuy 96
Py, 240
Sx,®2 144

All crystal classes can be found by classifying the subgroups of these nine
gaps Obviody sbgous ocnuge in ae o thee gous ae aithme
tically and hence geometrically equivalent. Therefore it suffices to take
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one representative from each of the classes of conjugate subgroups of the
nine groups and classify the set of subgroups of GL,(Z) thus obtained.

This has been done using a programme @ [3] developed at the "Rechen-
zentrum der Universitit Kiel” for the investigation of given finite groups
by a computer.. This programme determines, for a finite subgroup @ of
GL.Z) given by a set of generating matrices, among other things the
following :

1. alist of al elements of @,

2. the classes of elements conjugate in @&,

3. the lattice of subgroups of &, where for a representative 11 of each
class of subgroups conjugate in & the following information is glven

(a) generating elements of 1,

(b) al maximal subgroups of 11,

(c) for each class  of elements conjugate in 1 the number of elements
in € and their order, trace, and determinant.

The lattice of subgroups of the group Qs exceeded the capacity of the
store of the machine at our disposal. For this group we first computed the
classes of conjugate elements with the programme @. From these it is
easily seen that the element -E (where E = unit element) is contained
in the intersection of the centre and the derived group and hence in the
Frattini subgroup of Qs Hence -E is contained in al maxima subgroups
of Q, and we found these by computing the lattice of subgroups of Qs/( = E)

which could be handled in our machine. There are three maximal sub-
groups of order 576 normal in Q4, two classes of three conjugate maximal

subgroups each, of order 384 and one class of sixteen conjugate maximal
subgroups of order 72. One representative of each of these six classes of
maximal subgroups of Q4 and the other eight Dade groups were then in-

vestigated with the programme @, giving a total of 1869 representatives
of classes of conjugate subgroups of these groups, which had to be classi-
fied into crystal classes. This has been done in the following way:

Let us call two subgroups &, $ of GL(Z) smilar, if there is a I-1
correspondence between the classes of conjugate elements in & and those
in §, such that corresponding classes contain the same number of elements
and these have the same order, trace, and determinant. Obviously this
similarity is an equivalence relation, implied by both geometrica and
arithmetical equivalence.

The 1869 groups mentioned above were first sorted into similarity
classes using the information provided by the programme. 227 such
classes were thus obtained, consisting of 1 up to 43 groups. Geometrical
and arithmetical equivalence then had to be decided only within these
classes.

3. To some extent geometrical and arithmetical equivaence were treated
simultaneously. We therefore speak just of equivalence, if a distinction
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is not relevant. By definition two subgroups & and $ of GL,(Z) are equi-
valent (geometrically or arithmeticaly), if there is an isomorphism ¢ of
& onto $ and an integral matrix X (with det X 4 O or det X = + 1 resp.)

such that
XG = (Gp)X for dl G ¢ . (3.1

The work involved in checking this for the groups in each similarity class
has been substantially reduced by the following arguments:

1. An equivalence established between groups & and £ implies equi-
valence between the corresponding subgroups of & and $. We therefore
started deciding the equivalence of big groups and used the information
gained for smaller groups.

2. On the other hand, if a group & contains a class of conjugate sub-
groups U, digtinguished from al other subgroups of & by their isomorphism-
type and the invariants of their elements, then a group * equivalent to ®
must have again a unique class of subgroups 11 with the same properties,
and the U;s must be equivalent to the 11#’s. This remark often allows us
to deduce nonequivalence of groups from noneguivalence of certain sub-
groups.

3. In order to prove nonequivalence of & and § it suffices to show that
for some set of elements G, . . ., G € & there is no set of elements H;,
..., Hy € $ such that XG; = HX holds for some X (with det X + 0 or
det X = £ 1 resp.). For this purpose preferably G, . . . , G were chosen
as a class § of conjugate elements, which is distinguished from al other
classes of & by the invariants determined by the programme @ (number of
elements in €, order, trace, determinant). A group &* similar to & then
contains just one class §* with the same properties. If €* is small enough,

a programme has been used to try all [€*| ! permutations of the elements
of §* as possible images of the elements of § in a fixed order. A similar
procedure was sometimes applied for two classes with either different or
equal properties.

4. In order to prove equivalence, one has to show that for some system
of generators Gy, . . . , G, of @ thereisasystem Hy, . . ., H, of generators
of such that XG; = HX(i=1, ..., for some matrix X. This was done
in the following way: A subgroup 1 of order as low as possible and an
element B of order as high as possible were chosen such that 11 and B
together generate ® and that both the classes of conjugates of 1 and of
B are unique in (& with respect to isomorphism-type and invariants. If ¢&*
is equivalent to @ there is a subgroup 11* and an element B* of &* having
the same properties as 11 and B in . It then suffices to fix 11* as image of
11 and to try all conjugates of B* asimages of B.

4. All the choices described so far lead to some sets of dements Gy, . . ., G
of &and Hy, . ... H, of  for which we have to decide if there is an integra
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matrix X = (x) such that
XG;=HX for i=1, .. . s (4.1

This is a homogeneous system of linear equations for the x; with coeffi-
cientsin Z. A programme has been written which reduces (4.1) by integral
row-operations to row-reduced echelon form. From this it determines the
x; asintegral linear combinations of some x;, . . . , x, of them, chosen as
parameters. Then it computes det X as apolynomid p(xy, . . ., x,) in these
parameters. Three cases can occur:

L If p(x1, - - ., X,) = 0the mapping G; - H; is not induced by transfor-
mation with any matrix from GL,(Q) (where Q is the rational field).

2.1f p(xy,. .., X,) % 0and the (integral) coefficients of all monomialsin
it have a greatest common divisor > 1, then no X with det X = + 1 can
exist as the parameters can only be substituted by integers. In this case,
however, G;— H; can be induced by transformation with some matrix X
with det X #+ 0 and hence & and § are geometrically equivalent.

3.If p(xy,. . .. x,) £ 0 and the greatest common divisor of the coeffi-
cients of al monomialsis], one hasto try to find values of the parameters
X1, ..., X, such that the matrix X obtained by substituting these values for
the parameters has det X = 1. If one does find such vaues for the x,..., x,
® and § are arithmetically equivalent; if one does not find such values,
only geometrical equivalence has been proved, but no conclusion about
arithmetical equivaence has been reached.

In al examples treated by us in which the third case occurred, it was aways
possible to find such values; so in fact the study of the greatest common
divisor of the coefficients of the monomias of p(xy, . . ., X,) was sufficient to
prove noneguivalence. However, we owe to W. Gaschiitz an example of
two groups (in GLa, (2)) for which the greatest common divisor of these
coefficients is 1, but which are not arithmetically equivalent.

5. By the procedures described, we were able to classfy the 1869 groups
into both geometrical and arithmetical crystal classes. It turned out that the
geometrical classes coincided with the similarity classes introduced here;
this incidentally is aso true for n = 1, 2, 3. Although it is unlikely that
this is aways the case, we do not know of an example of similar but not
geometrically equivalent groups for any n = 5.

710 arithmetical classes were obtained, but as some hand-work was in-
volved in the sorting, etc., this number has to be checked before it can be re-
garded as certain. Independent derivations of the arithmetical classes have
been undertaken by H. Zassenhaus and D. Falk [10] by dightly different
algebraic methods and by H. Wondratschek by more geometrical means. It
has been agreed that the results of all these calculations will be collated
before they are published jointly.

As a by-product of this investigation one gets a complete list of Bravais
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lattices in 4 dimensions which will correct an incomplete (and partialy in-
correct) list previously obtained [8] by heuristic considerations.

The list of arithmetical classes will also be used to determine the list of
all space-groups in 4 dimensions. A programme for this, following ideas of
H. Zassenhaus [9], has dready been written and used on partid lists of crys
tal classes by H. Brown.

We would like to thank Professor H. Wondratschek, who first aroused
our interest in the subject, for many valuable discussions and suggestions.
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A search for simple groups of order
less than one million'

MARSHALL HaLL Jr.

1. Introduction. In 1900 L. E Dickson [17] liged 53 known smple goups
of compaste ader less thean one million. Three more groups have been added
to this list since that time. A group of order 29,120 was discovered by M.
Suzuki [31] in 1960, the first of an infinite class, and one of order 175,560
was dsovaad by Z Jako [25) in 1965 which gyeas to be isdaed. Vay
recently Z. Janko announced that a simple group with certain properties
woud have ader 604800 ad hae a edfic cdaate teble The ocondruc
tion of a simple group of order 604,800 is given for the first time in this
paper.

The search for simple groups described here is not as yet complete.
Approximately 100 further orders, all of the form 293574, remain to be
examined.

A number of people have helped me with this search. Dr. Leonard
Baumert has helped with advice and computing. Dr. Leonard Scott sent me
the proof of a fomua on moduar charactes But my man sources of hdp
have come from Mr. Richard Lane and Professor Richard Brauer. For
more than a year Mr. Richard Lane has carried out a large number of
complicated computations on the IBM 7094 at the California Institute of
Technology’s computing center.  Professor Richard Brauer has been gener-
ous with help in references, correspondence, and conversations.

The condrudion of the dmple goup of order 604800 waes caried aut in
August 1967 at the University of Warwick and at Cambridge University.
Mr. Peer ShinnatonDyer wes edtrendy hdpfu in writing on shot natice
a program for the Titan computer at Cambridge which finally confirmed
the coredness of the condruction.

2. Notation. List of known simple groups in the range. The notation for
the classical simple groups used here will be essentially that used in Artin
[l]. Here let GF(q) be the finite field with g elements where q= p",p a
prime.

t This research was supported in part by NSF grant GP3909 and in part by ONR con-
tract N00014-67-A-0094-0010.
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PSL,(q) isthe projective specia linear group of dimension n over GF(g).
Here PSL,(g) is the group of n-dimensional matrices of determinant 1 over
GF(q) modulo its center. PSLa(g) is of order 3¢(¢42— 1) for ¢ odd and of
order g(q®— 1) for q = 2'. PSL3(q) is of order g*(g®*— 1)(¢2— 1)/z where z
is 1 unless there is an element of order 3 in GF(g) in which case z = 3.

Spa.(q) is the symplectic group of order ¢* ﬁ (g%~ 1).
n—1);2=1'l . .
1@ (=D), t=(ng+1).

i=2

g™
U.(g) is the unitary group of order 9

A, is the aternating group of n letters.

The simple Mathieu groups My;, M,e, and M,, come within the range
of this search. The Suzuki groups Su(g) with g = 22*+1 = 8 are of order
*(g*+ 1)(g- 1). Here Su(8) of order 29,120 is the only Suzuki group in the
range. The Janko group of order 175,560 is still an isolated group and will
be called merely the Janko group. No simple groups of the Chevalley types
[15] or Rimhak Ree's [27,28] occur in the range examined.

The known 56 simple groups of order less than one million are 28 groups

PSLs(p),p aprime, p=5,7,...,113. The other 28, listed by their order are:
Group type Order
PSLy(9) = A4, 360 = 8:9-5
PSLy(8) 504 = 8-9-7
Ay 2520 = 8-9-5-7
PSLy(16) 4080 = 16-3-5-17
PSLy(3) 5616 = 16-27-13
Us(3) 6048 = 32-27-7
PSLy(25) 7800 = 8-3-25-13
My 7920 = 16-9-5-11
PSLy(27) 9828 = 4-27-7-13
PSLy(2) = Ag 20 160 = 64-9-5-7
PSLy(4) 20 160 = 64:9-5-7
Spa(3) = Uy2) 25920 = 64-81-5
Su(8) 29120 = 64-5-7-13
PSL»(32) 32736 = 32-5-7-31
PSLy(49) 58 800 = 16-3:25-49
Us(4) 62 400 = 64-3-25-13
Mo 95 040 = 64:27-5-11

Us(5) 126000 = 16-9-125-7
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Group type Order

Janko group 175560 = 8-3-5-7-11-19
Ay 181 440 = 64-81-5-7
PSLs(64) 262 080 = 64-9-5-7-13
PSL,y(81) 265680 = 16-81-5-41
PSLs(5) 372000 = 32-3-125-31
My, 443 520 = 128-9-5-7-11
N ew group 604800 = 128-27-25-7
PSLy(121) 885 720 = 8-3-5-121-61
PSLy(125) 976 500 = 4-9-125-7-31
Spa(4) 979200 = 256-9-25-17

3. Known results used. The known results used will be numbered for
references later in the paper.

(1) A paper, as yet unpublished, by John Thompson [33] determines the
minimal simple groups. These are among

PSLyp), pprime p=5
PSLy(27) p prime
PSLy(3%) p prime
PSL3(3)

Su(27) p an odd prime.

Not al of these are minimal. In particular any one of these whose order is a
multiple of 60 contains PSLy(5) = As of order 60.

(2) Danid Gorenstein and John Walter [22] have shown that a simple
group with a dihedral Sylow 2-subgroup  is necessarily a group PSLx(g), ¢
odd, or the group 4;. In particular if the order of the group is not divisible
by 8 then it is divisble by 4 and is a group P.SLs(g) with g =3 or 5 (mod 8).

(3) Danid Gorenstein [21] has shown that if a Sylow 2-subgroup  of the
dmple group G is Abdian, and if the centraizer of every involution is solv-
able, then G is one of PSLy(q) whereg=3 or 5 (mod8),q =5 or g = 2",
ne 2

(4) Richard Brauer and Michio Suzuki [11] have shown that a Sylow
2-subgroup of a simple group cannot be a quaternion group or generalized
quaternion group.

(5) It has been shown by J. S. Brodkey [13] that if a Sylow subgroup P of
a group G is Abdian then there exist two Sylow subgroups whose intersec-
tion is the intersection of all of them. In particular if any two Sylow p-sub-
groups have a non-trivia intersection, then the intersection of al of them is
anon-trivial group, necessarily a normal subgroup of G. Hence if a simple
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group has an Abdian Sylow p-subgroup S(p) = P, there must be a con-
jugate Py with Pc,N Py1=1.

The Brauer theory of modular characters has played a major role in this
search, in particular the theory for groups whose order is divisible by
exactly the first power of a prime. Let p be a prime and suppose that g, the
order of the group G, is divishle by exactly the first power of p. We write

g = pgw(l+rp), pl = qt. (3.1)

Here G has 1 +rp Sylow p-subgroups S(p) and the order of the normalizer
N(p) of a Sylow p-subgroup is|N(p)| = paw. The centralizer C(p) of S(p) is
of order pw and C(p) = S(p) XV where V = ¥(p) is of order w. N(p)/C(p)
is cyclic of order ¢ where g|p = 1 is the order of the group of automorphisms
of S(p) induced by N(p). By aclassical theorem of Burnside's ([14], p. 203)
if we had ¢ = 1, G would have a normal p-complement and so we have
g > 1 for a simple group.

(6) Brauer [3]. The principal block of characters Bo(p) contains ¢ ordinary
characters xs, z2, . . ., y, Where 1 isthetrivial character of degree f1 =1
and (1) =f,i=2, ..., g andafamily of t = (p — 1)/q exceptional char-
acters yi which are p-conjugate and are all of the same degree xJ(1) = fo,
j= 1, ..., t. For the ordinary characters thereisasign §; = + 1 such that
&f; = 1 (mod p) and for the exceptional character thereisasignde =4 1
such that éofy = - ¢ (mod p). If g = p — 1 the single exceptional character
is not distinguishable from the ordinary character. Also the degrees satisfy
the relations

1+0sfa+ ... +0,f,+00fo = 0, (3.2a)

filgl+m). u=0,1,...,4q
If uisagenerator of S(p) then

x,-(u) =0,i= 1, ...,q (32b)
Yi0) = = e+ e b+ ), v = o)),

where ¢ is a primitive ith root of unity, s is a primitive solution of s? = 1
(mod p) and v = v(j) ranges over ¢ values such that vs’ gives a full set of a
non-zero residues modulo p. These values of the exceptional characters are
the Gauss periods of cyclotomy. If w = 1 then By(p) is the only block con-
taining characters of degrees not divisible by p. If w > 1 there are further
non-principal blocks of characters of degrees not divisible by p and Brauer
gives relations similar to (3.2a, b) for these blocks. A character 3 of degree
divisble by p is a block by itself and vanishes for everyp-singular element
(an element of order divisible by p). No simple group of order divisible by p
has an (irreducible) character (except the trivial one) of degree less than
1(p—1) and if it does have an irreducible character of degree +(p— 1) then
it is isomorphic to PSLa(p). This has been shown to be true by Feit and
Thompson [20] even if a higher power of p than the first divides the order of
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the group. More recently Feit [18] has extended this to show the same con-
clusion if G has a character of degree lessthan p - 1. Everett Dade [16] has
extended Brauer’'s work to cover the case in which a Sylow subgroup is
cyclic.

(7) It was shown by Brauer [3] that, for groups divisible by only the first
power of a primep, the characters of a block may be associated with a
tree. Each ordinary character is a vertex and each modular character is an
arc. An ordinary character (treating a family of p-conjugate exceptional
characters as a single character) decomposes as the sum of the modular char-
acters which are arcs with an end at the vertex for the ordinary character.
A modular character appears as a constituent of exactly two ordinary char-
acters and in each of these with multiplicity one. If %; and xx are the two
ends of an arc then y;+ 4, is @ modular indecomposable and vanishes for
everyp-singular element, and so in particular if §; and &, are the correspond-
ing signs 6;+ &, = 0. H. F. Tuan [34] has refined this for the principal block
and has shown that the real characters (characters real for every element)
in the tree form a stem which may be drawn in a draight line, and the tree is
symmetric with respect to this stem with complex conjugacy interchanging
the remaning vertices and arcs.

(8) Brauer and Tuan ([12], Lemma 1) showed that for 7z a character in the
principa p block Be(p), in the notation of (5), then the restriction of y to ¥,
y| v, has the form

7 V = moo+pb (3.3

where gy is the identity character of ¥ and 8 is some character of ¥ possibly
reducible. In private communication to me, Leonard Scott has generalized
this to characters y, of a non-principal block B;(p). In this case the formula
becomes

2|V = mY Ni4pb (34)
i=1
wheret™,i=1, ..., s are the irreducible characters of ¥ conjugate in

N(p) asociated with the block By(p). In case the character y has degree divis
ible by p, a simple consequence of the fact that y vanishes for p-singular
elements yields

1|V = pb. (35)

The formula (3.4) gives for an x € ¥V the determinantal relation
det (7(x)) = det (6(x))?, so that if @ is of degree 1 and G is simple then
det (x) = 1, whence 6(x) = 1 and %(x) = x(1) is the identity matrix, a situa-
tion impossible for a simple group. In particular with g = pgw( 1 + rp) for a
simple group G, if Be(p) contains a character of degree less than 2p, then
w = 1. Thisis aso proved and used by Stanton [30] in his study of the
Mathieu groups. To avoid confusion with other references to Brauer and
Tuan we shall cal this the Stanton condition.
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(9) Burnside has shown that groups of orders p%g®, p and g primes, are
solvable. A proof of this may be found on page 291 of the writer's book [23].

(10) It was shown by Burnside that if a Sylow p-subgroup 5'(p) of a group
G is in the center of its normaizer N(p), then G has a normal p-complement
([23], p. 203). Here the normal p-complement X is a normal subgroup of G
such that G/K = S(p). An easy consequence of the Burnside result ([23],
p. 204)is that the order of a simple group is divisible by 12 or by the cube of
the smallest prime dividing its order. Further results depending on the
theory of the transfer ([23], ch. 14) assure the existence of normal subgroups
with p-factor groups. A recent theorem of John Thompson’s [32] gives an
elegant condition for the existence of normal p-complements.

(11) Brauer and Reynolds [10] have shown that a simple group G whose
order g is divisible by aprime p>g'/3 is isomorphic to PSLs(p) where p >3
or to PSLy(2")where p = 274 1 is a Fermat prime. Thus these groups are
the unique simple groups of their orders.

In a more refined form they show that if p% {g and we write g =
paw(l +rp) asin (3.1), if it should happen that

(p— D1 +rp) = (vp—1)(up+ 1) (3.6)

has only yp—1=p-1and up+ 1 =1 4rp as a solution in integers, then
with § the largest normal subgroup of G of order prime top we have one of

(8 GIS = PSLy(p)and r = 1,
(b) G/S =« PSLy(2") where p = 2°+ 1, r = {p-13), 3.7)
(c) G/Sis the metacyclic group of order pg.

This argument depends on the fact that the degrees £, i=1, . .., g,and f,
in the principal block Bo(p) divide (p— 1)( 1 + rp) and if there is no second
representation in (3.6) then f; and ¢f, can only take the values 1, p-l,
1 +rp, and (p— 1)(1 4 rp). These restrictions together with the relation
(3.2) restrict the degrees so heavily that they are able to reach the strong
conclusions listed in (3.7).

(12) Suppose there is a factorization in (3.6) above so that (p — D(rp + 1) =
= (vp- I)(up+ 1). Here vp~ 1 >p— 1 so that v > 1 and consequently
up+ 1 < rp+ 1 and so u<r. Multiply out the equation, add 1 to both sides
and divide by p. This gives

rp-r+l = wptov—u. (3.8)
This leads to the identity
(r—w)u+ 1) = (up+ 1)(r—uv) (3.9)

which we may obtain by multiplying out the right-hand side and replacing
u*vp by u times the value of uvp from (3.8). Since r > y the left-hand side
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is positive and so we may put r—uv = h where h is a positive integer.
Writing

(r—u)(u+ 1) = h(up+1) (3.10)
and solving for r, we have
r= (hup+h+u2+uwy/(u+1) = F(p, u, h). (3.12)

Thus the existence of further factorizations (3.6) is equivalent to expressing
r in the form (3.11) with positive h and u. We see that r > Apu/(u + 1) > L hp,
so that for a given r,h < 2r/p. For agiven h, sinceu + 1| k(p — 1) there are
only a finite number of trias to be made. As g = pgw(l +rp) and g = 2
it follows that 2rp? < g, 2r < g/p® whence h < g/p3.

(13) The general theory of modular characters of G, when g is divisible
by a power p* of aprime p higher than the first, has been used only in a
limited way. For reference see Brauer [6]. Suppose g = p‘g’ where g’ % 0
(mod p). Any element x of the finite group G has a unique expression
x = yz = zy where the order of y is a power ofp and the order z is relatively
prime to p. We call y the p-part of x. Here if the order of x is prime to p,
theny = 1. If the p-part of x isnot 1 we call x p-singular, and if the p-part
of x is 1 we call x p-regular. An irreducible character y of G of degree
divisble by p*is said to be of highest type and is a p-block by itself and
vanishes for every p-singular element. An irreducible character of degree
divisbhle by p—tis of defect 1 and all characters of its block have degrees
exactly divisible by p*~1,

The orthogonality relation holds :

Y x2G)x(»» = 0, p-parts of x and y not conjugate. (312
2€ B(p)

A refinement of this, which also appears in both the Brauer-Tuan paper
[12] and the Stanton paper [30], is the following: Let p and ¢ be different
primes and suppose that G contains no element of order pg. We quote
Lemma 2 of Stanton [30]. If G contains no elements of order pg, where

9= p°gg, (@’ pa) = 1, and if
k
Yatx) =0

for al p-regular elements x, then

T al{x)=0, C&eB(q) a g block,
for al g-singular elements x. Furthermore

= af{1) = 0 (mod ¢), L:€ B(g).

We refer to this as the principle of “block separation”. An application
isgiven in Example 2 of § 5.

In Brauer-Tuan [12] it has been shown that a character of degree p*,
s =1, isnot in the principa block By(p) for a simple group G.
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A useful fact is that an algebraic conjugate of a character in the principal
block By(p) is aso in the principal block. Thus if in Be(p) there is only a
single character of a particular degree, then it is necessarily rationa. For a
rational character of degree » representing a group G of order g faithfully
it has been shown by Schur  [29] that the highest power of a prime p that
can divide g is p* where

s= [pf1]+[p(p"_l)]+ . +[p—(p"_—1)—] (3.13)

Here the square bracket [x] denotes the integral part of x.

(14) The writer [24] has shown that if a group G has a Sylow p-sub-
group P and a normal subgroup K, then the number n, of Sylow p-sub-
groups in G is of the form n, = a,b,c, where a4, is the number of Sylow
p-subgroups in G/K, b, is the numlger of Sylow p-subgroups in K, and ¢,
is the number of Sylow p-subgroups in Npx(P N K)/P (| K. From this it
is shown that 7, is the product of factors of the following two kinds:
(1) the number s, of Sylow p-subgroups in a simple group X; and (2) a
prime power ¢ where ¢ = 1 (mod p).

The Brauer-Reynolds results (3.7) combined with these results show
that certain numbers of the form 1 + kp cannot be the n, of any finite
group: For example 15 cannot be 7, in any group nor can 21 be n; in any
group.

(15) A method attributed to Richard Brauer is quoted in the thesis of
E. L. Michads [26]. This applies to cases in which a Sylow p-subgroup
is of order p’, r> 1. Let K be of order p'~! and the intersection of two
Sylow p-subgroups P, and Py. Then Py |J P, € No(K) = H and so H
contains more than one Sylow p-subgroup, sy 1 + bgp Sylow p-subgroups
and of course every Sylow p-subgroup P, intersecting Py in K normalizes
K. Let G contain [G : N(P)] = 1 +mp S(p)’s and suppose that Py contains
rx conjugates of K. Counting incidences of conjugates of Kin Sylow p-sub-
groups we obtain

[G : N(P)Irx = (1 +bgp)[G : H]. (3.14)

Here the left-hand side says that each of 1 + mp =[G : N(P)] S(p)’s
contains rx conjugates of K, while the right-hand side says that each of
[G : H] conjugates of Kis contained in 1 +bgp S(p)’s. Also

mp = p ; rebe+ ap?, (3.15)

where under conjugation by P, the remaining S(p)’s are counted, first those
whose intersection with Py is of index p, and the rest gp? those whose inter-
section with Py is of index p? or higher. This method is particularly useful
if the order of an S(p) is exactly p2, as the two relations (3.14) and (3.15)
are then highly restrictive.
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(16) If in G there are r classes of conjugates, Ky, K, . . ., K., thenin
the group ring R(G) over the complex field the class sums C; = Z x,
x € K;, play a specia role in character theory. Here

CC; = CiG; =kz ik Cr, (3.16)
=1

where the ¢;; are non-negative integers. The coefficients ¢, can be
expressed in terms of the characters ([14], p 316). We have

g L Aia vk

Cije = c(x,-)c(xj) azl( Rq ) (317)
Here ¥ is the value of the irreducible character 4* for an element x; of the
ith class K; and n, = %*(1) is the degree of this character. ¢(x;), c(x;) are
respectively the orders of the centraizers Co(x;), Co(x;).

A particular case of (3.17) is that in which x; = x; = 7 is an involution.
If x, is of order p then, as shown in Brauer-Fowler ([8], Lemma 2A), ¢
is the number of involutions conjugate to 7 transforming x; into xg*.
In case x; is of order p and (x) is its own centralizer and g|p—1is even
this number is exactly p. As y(x) vanishes for characters not in By(p) the
equation (3.17) determines ¢(7) in terms of the values of x(z) and x(x)
for y in Be(p). In case ¢ is odd there is no involution in N(p) and so this
number ¢;; must be zero. We aso have ¢ = 0 if giseven but 7 is not
conjugate to the involution in N(p).

4. Genera outline of the search. The major result of Feit and Thompson
[19] is that simple groups are of even order. Starting from the earlier results
in (9) of § 3itis not too difficult to show directly that there is no smple
group of odd order less than one million, and in fact a search of odd orders
less than one hundred million was completed at amost the same time
that the Feit-Thompson result was announced.

The results (2) of Gorenstein and Walter show that if g, the order of
the smple group G, is divishle by 4 but not by 8, then G is a group PSLx(q).
Next suppose that g is divisible by 8 but not by 16. A Sylow 2-subgroup
S(2) is one of the five non-isomorphic groups of order 8. If S(2) is cyclic
or is the Abdian group with a basis [4,2] then S(2) is necessarily in the
center of N(2) and G has a normal 2-complement by (9). If S(2) is the
quaternion group then by the result (4) of Brauer and Suzuki G is not
simple. If S(2) is the dihedral group of order 8, then from Gorenstein and
Water (2) G is a known group, namely PSLx(g) or 4;. There remains
the possibility that S(2) is the elementary Abeian group of order 8. As
S(2) is Abdian G is trividly 2-normal and the theorem of Griin ([23],
p. 215) applies, so that G has a 2-factor group isomorphic to the 2-factor
group of N(2). The automorphism group of S(2) is of order (2°3-1)(23- 2) x
(28—2%) = 168 and as N(2)/C(2) isof odd order, its order must divide 21.
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It is easy to find that if N(2)/C(2) is of order 3 then N(2) has a factor group
of order 2, and so by Griin’s theorem G has a normal subgroup of index 2.
Hence if g is divisible by 8 but not by 16, we may restrict our search to
orders which are also multiples of 7. We have incidentally proved the
uniqueness of the groups PSLx(g) as the only simple groups of their order
when g is divisible by 8 but not 16 or 7. In our list then there is a unique
simple group of each of the orders 360, 7800, 885 720, as well as orders
multiples of 4 but not 8, namely 9828 and 976 500, in each case the appro-
priate PSLy(q).

A simple group G which is not minimal will contain some proper sub-
group which is not solvable and so has a simple group as a composition
factor. Hence G has a subgroup H and H has a normal subgroup K (pos-
sibly K = 1) such that H/K is a simple group. We call a factor group of a
subgroup a section. Hence by John Thompson (1) we may confine our
search to groups which have one of the simple groups listed as a section.
Here if [G: Hl =t and [K: 1] =k, and H/K = s we have g = sk. If
the simple group H/K is PSLx{p) for p = 41 then as g = 1,000,000,
§ = |PSLy(41)| = 34 440 it follows that tk < 30. Then [G: H] =t < 30
and so G has a permutation representation on £ letters. But as p = 41 G
cannot represent an element of order p faithfully on less than 30 letters.
Thus we may exclude as a section PSLy(p) with p = 41. If PSLs(37) of
order 25,308 is a section, then tk = 39, and since G is represented as a
permutation group on ¢ letters and contains an element of order 37, then
k =1, t < 39. Here H = G, is the subgroup of G fixing a letter and, as
PSL4(37) does not (from its character table) have a permutation represen-
tation on less than 38 letters, it follows that ¢ = 39. Then the order of
G is 25 308-39 = 987012 and by Gorenstein and Walter must be PSLx(q)
with g = 3, 5 (mod 8) which it is not. If the Suzuki group Su(8) of order
29 120 is a section of G, then tk = 34. Now Su(8) has as rational characters
the identical character, one of degree 64 and another of degree 91. It has
two algebraically conjugate characters of degree 14 both of which take
the value - 1 on elements of order 5, three algebraic conjugates of degree
35, and three algebraic conjugates of degree 65. From this it easily follows
that Su(8) has no subgroup of index less than 65, and this of course corre-
sponds to its representation as a doubly transitive group on 65 letters.
Snce Su(8) has an dement of order 13 we must have ¢ = 14, and as tk < 34
then k = 1 or 2. With tk = 34 and either k = 1 or k = 2, the represen-
tation of G on 34 or fewer letters with G either Su(8) or the extension of
Su(8) by a center of order 2 corresponds to a subgroup of Su(8) of index
less than 65, which is a conflict. Hence no simple G has Su(8) as a section.
PSLy(32) is of order 32 736 = 32.3 ' 11-31. If PSLy(32)is a section of G
then tk = 30, clearly a conflict as we cannot represent an element of order
31 on 30 or fewer letters.

Having eliminated the groups above as sections of G, and having shown
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easily that a section of a section is again a section, we have from John
Thompson's results in (1) that one of the following minimal simple
groups is a section of G.

Group Order

PSLy(5) 60 = 4-3-5
PSL7) 168 = 8-3:7
PSLy(8) 504 = 8-9-7
PSLy(12) 1092 = 4:3-7-13
PSLy(17) 2448 = 16-9-17
PSLy(3) 5616 = 16-27-13
PSLy(23) 6072 = 8-3-11-23
PSLy(27) 9828 = 4-27-7-13

From Gorenstein’'s result (3) it follows that if the order of G is a multiple
of 8 but not 16, then the centralizer of an involution 7 is not solvable and
so H = C4(7)/(r)is a non-solvable group of order a multiple of 4 but
not 8. Hence H contains as a section one of the groups PSLy(5), PSLy(13)
or PSLy(27) and so the order of G is a multiple of 8 + 3«57 = 840 or of
8-3-7-13 = 2184.

On the basis of the above information we may divide the orders to
be examined into seven lists, the orders being multiples of particular
numbers.

Form of g Number of orders

A 16-3-5m = 240m 4166
B 16:3-7m = 336m, m 2 O(5) 2381
C 8:3:5:7m = 840m, m odd 595
D 8:3-7-13m = 2184m, m odd,  O(5) 183
E 16:9-17m = 2448m, m # 0(5), # O(7) 280
F 16:27-13m = 5616m, m £ 0(5), 2 O(7) 124
G 16:3-11:23m = 12144m, m £ 0(5), Z O(7) 57

Total number of orders 7786

As we have dready remarked, if g is divisible by 8 but not 16 then g
is aso divishle by 7 and from the Gorenstein result (3) G contains PSL(5),
PSLy(13) or PSLy(27) as a section and so g is divisible by 5 or 13, giving
lists C and D. For multiples of 16, g is certainly a multiple of 3. If gisa
multiple of 5 or 7 it isincluded in lists A or B. If g is not amultiple of 5 or
7 it contains PSLy(17), PSL3(3) or PSLy(23) as a section and so is listed in
list E, F, or G. There are a few duplications between lists E, F, and G, but
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otherwise no duplications in the lists. If we did not use John Thompson's
unpublished results (1), apart from lists C and D we would also have to
consider all 62,500 multiples of 16. This would add a large number of
orders to be examined, but probably not very many difficult ones, since
in practice the orders with only high powers of small primes seem to be
the most difficult to eliminate.

From the result (11) of Brauer and Reynolds, if g is divisible by a prime
p > 100 then as g < 1,000,000, p < g8 and so G is necessarily PSLs(p)
or PSL,(2") where p = 2"+ 1 is a Fermat prime. Hence we may assume
that g is divisible by no prime greater than 97.

At this stage we can divide our search into two parts. For the first part
g isdivisble by aprime p in the range 37 < p < 97. For the second part
every prime dividing g is at most 31. The first part is far easier. We have
aprime p dividing g where p* > g, since 374 = 1,874,161 > g. Suppose
first p3|g. Then G has 1 +kp Sylow subgroups S(p) and (1 +kp)p?®| g < p*,
whence k=0 and so S(p) < G and G is not simple. Next suppose that p?|g,
and that G has 1 + kp S(p)’s. Then (1 + kp)p?|g < ptand so 1 + kp < p=.
Here an S(p) of order p?is necessarily Abelian. As 1+ kp < p?,two S(p)’s
have an intersection of order p. For if Py () P, =1, where Pyand P, are
two distinct S(p)’s, then P, would have p? distinct conjugates under Py and
G would have at least 1 +p*> 1 + kp Sylow subgroups S(P), a conflict.
But then by Brodkey’s result (5) all S(p)’s intersect in a subgroup of order
p which is normal in G, and so G is not simple. It follows therefore from
our assumption that if g is divisible by a prime p such that p*= g, then
only the first power of p divides g.

For the primes p with 37 =< p < 97 we rely on the Brauer-Reynolds
results of (11) and (12). The number 1 + rp of admissible S(p)’s was calcu-
lated by (31 1), and degrees satisfying (3.2) were found. In g = (1 +rp)pgw
the values of g and w were determined so that g would be divisible by 168
or 48, following Gorenstein and Walter's results (2) and (3). The details of
these calculations for p = 59 are given in Example 1 of § 5.

The Stanton condition of (8) and the principle of block separation are
applicable. An illustration of block separation is given in Example 2 of § 5.
All orders multiples of primes p, 37 <p = 97, were eliminated in this
way except for g = 265 680 =16-81-5-41, which is the order of the simple
group PSLy(81). The value g = 885 720 which is the order of PSLy(121)is
amultiple of 61 but did not come into consideration since here g is divisible
by exactly 8 but not by 7 and so its Sylow 2-group must be dihedral and
thus the Gorenstein-Walter results apply.

The remaining numbers in the lists A through G were calculated by
multiplying out products of the primes 2 through 31 in all possible ways
for each ligt giving al vaues of g in the lists not exceeding one million.
This saved the trouble of factorization and automatically eiminated all
orders divisible by primes exceeding 3 1.
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The number of orders in the lists at this stage was as follows:

Form of g Number of orders Reduced number

A 240m 1064 684
B 336m 563 208
C 840m 181 135
D 2184m 68 32
E 2448m 125 29
F 5616m 72 52
G 12144m 44 6

Totals 2117 1146

At this stage the computer calculated for every order the possible num-
ber of S(p)’s for p =7, .., 31 Sylow numbers 1 +rp which arose were
then listed by the primes, and, assuming g to be divisible by exactly the
first power of p, further factorizations of the form (p— 1)(1 +rp) =
(up + D(vp — 1) were found. Here a given (p— 1)(1 + rp) was tested for divis-
ibility by al numbers up+ 1 or vp — 1 less than 1000, since in every case
1,000,000 =g=p(1+rp) > (p-1)1+rp). If one or more further factor-
izations for (p— 1)(1 +rp) were found, then for each value of ¢ dividing
p-1 which actually arose for some order the degrees satisfying (3.2) for
1 +rp S(py's were listed. Note that the existence of a second factorization
does not guarantee the existence of degrees greater than 4(p—1) satis-
fying (3.2). For example with 320 S(11)’s, 10-320 = 100-32 but no de-
grees are found for ¢ = 2, 5, or 10.

Suppose g is divisible by exactly the first power of the prime p. For
n, = 1 +rp Sylow p-subgroups, and g| (p— 1), the order of the automor-
phisms induced in S(p) by N(p), if there is no set of degrees satisfying (3.2)
this is a combination to be excluded and as such a “bad” combination.
If g isdivisble by p? or a higher power and if 1+ rp <p?, then in the rep-
resentation of G on 1 +rp letters every orhit is a p-cycle and so S(p) is
Abdian of exponent p. But then any two S(p)’s have a non-trivia inter-
section and by Brodkey's result (5) all S(p)’s intersect in a non-trivia
subgroup of G which is necessarily normal. Hence if p?*|g, 1 + rp<p?
S(p)y’s is not possible in a simple group.

The computer took the 2117 orders each with its list of Sylow numbers
1 +rp and order of N(p) g/(1 + rp) and marked it “Fails Brauer test on
p = §” in case for the prime s dividing g to the first power, no pair 1 +rs,
gl s— 1, sq(1 + rs)]g was a good pair and marked it “Fails Sp” test’
if p”lg, n-2 and dAl 14+rp < p? This reduced the number of orders to
be considered from 2117 to 1146. Note that the tests used so far depend
essentially on a Sylow number 1 +rp and, if only the first power of p
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divides g, then aso on ¢|(p— 1). These tests involving table look-ups were
easy to put on the machine.

The remaining 1146 orders were examined individually. The Stanton
principle, that if every set of characters for Bo(p) (p dividing g to the first
power) contains a character of degree less than 2p, we must have w = 1,
could have been mechanized. But this test, illustrated in Example 3 of
§ 5, was not difficult to apply by hand.

Certain orders were eliminated by consideration of Sylow groups of
order p?or higher. Example 4 of § 5 illustrates a relatively easy case.

The interplay between a Sylow p-group and a Sylow g-group provided
information in many cases. Since a group of order 35 is necessarily cyclic
it follows that if an S(5) is of order 5 and an S(7) is of order 7, then if 7
divides the order of N(5) then also 5 divides the order of N(7) and con-
versely.

Since an overwhelming fraction of the orders were divisible by a prime
p to exactly the first power, most investigations relied on the Brauer
theory (6) of modular characters for these. For the most part the compu-
tations relied on the principal block By(p). Here C(p) = S(p)X V(p). If
V(p) # 1 the restriction formulae (3.3), (3.4) and (3.5) were very valuable.
Example 5 eliminating the order g = 25200 = 16-9 -25 -7 illustrates sever-
a of these principles, including the use of the Brauer-Fowler formula

Example 6 shows how this theory is useful in constructing the simple
groups when they exist. For g = 29120 = 64-5-7-13, there is a unique
simple group, the Suzuki group Su(8). The Brauer theory makes the con-
struction of the complete character table easy. From this table we are
then able to deduce that G has a doubly transitive permutation represen-
tation on 65 letters. We can then construct this permutation representation
and thus prove the existence and uniqueness of a simple group of this
order. Z. Janko [25] has shown how to use the character table of his group
to construct it as a matrix group of dimension 7 over GF(11).

5. Examples of application of the general theory.

ExavpeLe 1. g is a multiple of p = 59. Here g = 59(1+ 59r)qw, 4= 2.
Thus r = 143. In the formula (3.11) h =< 4. r = F(59, u, h). There are 9 com-
binations (h, u, r) satisfying (3.11).

(h, u, 1) (p—D(1+rp) = (1 +up)vp—1), g = (1+rp)pqw

(1,1,31)  58.1830 = 60.1769, g = 107,970gw
(1, 28, 85)  58.5016 = 1653.176, g = 295944qw
(1,57, 115) 58.6786 = 3364.117, g = 400,374qw
(2, 1,61) 583600 = 60.3480, g = 212,400gw
(2,3,92)  58:5429 = 178.1769, g = 320,311qw
(2,28, 142) 58.8379 = 1653.294, g = 494,361qw
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(3,1,91) 585370 = 60.5191, g = 316,830gw
(3,2, 121) 58.7140 = 119.3480, g = 421,260qw
(4,1, 121) 587140 = 60.6902, g = 421,260qw

The last two give the same value of r so that we are dealing with a triple
factorization
58.7140 = 60.6902 = 119.3480.

In every case then we have qw < 9 and 0 necessarily g = 2. We have shown
that we need consider only values of g which are multiples of 168 or 48.
We consider the factorization of 1 +rp.

1830 =2-3-5-61

5016 = 8-3-11-19

6786 = 2-81-43

3600 = 16-9-25

5429 = 61-89

8379 = 9-49-19

5370 = 2-3-5-179

7140 = 4-3-5-7-17
In order that g be a multiple of 168 or 48, with the possible values of qw
making g < 1,000,000, we need consider only 1 +rp = 1830, ¢ = 2, w = 4;
I+rp=5016, g=2,w=1; 1+rp=13600,g=2z,w=1 or 2;
1+rp= 7140, g = 2w= 1L

The basic relations (3.2) on the degrees of B(59) reduce here to
1+8ofo+061f1 = 0, d1f1 =1,0ef0 = —2(59),
fol2(L+rp), f1]2(1+rp), fo, f1>29. (5.1)

For the four possible values for 1 +rp we find degrees satisfying (5.1)
only in the first and last cases.

1830 S(59)’s 1-61460 =0 (5.2)
7140 S(59)’s 1-1204+119=0

For 1830 S(59)’s, since the degree 60 is less than 2p = 118, the Stanton
condition (8) requires w = 1, but this is in conflict with the condition
that g be a multiple of 4. Hence we may exclude 1830 S(59)’s. The only
case remaining is that of 7140 S$(59)’s, ¢ = 2, w = 1 and we have

g = 7140-59-2 = 842,520 = 8+3:5:7-17-59,
|N(59)| = 118 = 259, ¢ =2, w = 1. (5.3)
Degrees in By(59): 1-1204+119 = O.
Here a group of order 17-59 is necessarily Abdlian and so since 171 [N(59)|
it follows that 59¢|N(17) |. The only possible numbers of S(17)’s are

CPA 11
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easily found to be
15.59 = 885 §(17)’s with |N(17) | = 8-7-17
168.59 = 9912 §(17)’s with | N(17) | = 5-17.

If | N(17) | = 5.17, then S(17) is in the center of its normalizer and by
the Burnside condition (9) b has a normal 17 complement. We may ex-
clude this. An S(2) of order 8 is necessarily the elementary Abelian group
because of (2) and (4) and so with N(17)| = 8717 we must have g = 2,
w = 28 for N(17). Thus the relations (3.2) reduce to

14 dofo+ 011 = 0, bofo = —2(17), 61f1 = 1(17) (5.4)
and fo, f1 divide 2-885=2-3-5-59, fi < 8. No such divisors exist and so
we may exclude 885 S$(17)’s. We conclude that no simple group of this
order exists. This completes the elimination of al orders which are mul-
tiples of 59.

ExampLE 2. Block separation.
g = 783216 = 16-27-49-37, 5292 S(37)s, g =4, w= 1L

Degreesin By(37): [1-189+2(112)-36 = O.
Hel’e 60f0 = - 1891 6lfl = 62f2§= 1 125563f3 = -36.
Here there are (37— 1)/4 = 9 37-conjugate characters of degree 189, and
in Bo(37) two characters of degree 112 and one of degree 36. The charac-
ters of degree 189 and 112 are of 7-defect 1. For any 37-regular element
x we have by (3.12)

1= 21ge(x) + 4 §u(%) + ¥ Za(x) = 236(x) = 0. (5.5
The characters of degrees 189 and 112 belong to 7-blocks of defect 1,
those of degree 1 and 36 to 7-blocks of defect 2. Hence by block separa-
tion asgivenin Lemma 2 in (11) of § 3 we must have
1—y36(1) = 1-36 = -35 = 0 (mod 49)
But this is a conflict and so there is [no simple group of order g. (All
other possibilities were eliminated by more elementary arguments.)
EXAMPLE 3. The Stanton condition
g = 92400 = 16-3-25-7-11.
For p = 11 the only number of S(11)’s for which degrees satisfying
(3.2) exist is 210 S(11)’s. Here | N(11) = 440 = 8-5-11.
For ¢ = 2 the degrees 1 + dqfp+ d2fs = 0 are14+20—-21= 0.
For ¢ = 5 degrees are 1 + dofo+ dafe+ Oafs+ dafs+ 05f5 = 0,
where dofs = 6, 50, or 105 and §;f; = 210, -175, 100 -21, 12, -10.
10
For ¢ = 10 degreesare 1 + ) 4,; = 0
i=1

with §;f; = 210, -175, 100, -ZI, 12, -10.
For ¢ = 5 or g = 10 there is in every instance a degree 10 or 12.
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By the Stanton principle quoted in (8) since there is in every instance
a character in By( 11) of degree less than 2p = 22 in g = p(1 +rp)gw
we must have w = 1. But here gw = 40 and so for ¢ = 2, w = 20:
g =5 w =28, ¢g=10, w = 4. Hence the condition is violated and there
is no smple group of order g = 92400.

ExampLE 4. The Brauer method for groups divisible by p2.

g = 202800 = 16-3-25-169

Numbers of the form 1 + 13k dividing g are 1, 40, 300. By the Brodkey
argument (5) as 40< 169 we cannot have 40 S(13)’s. Suppose we have
300 S(13)ys and |N(13)| = 676 = 4-169. As 300 = 1+23-13, and
23 £ 0 (13), if Py is an §(13) there must be a P; with [Pg: Pe\P1] = 13.
Write Py P, = K. In the notation of (3.14)

300rg = (1+ 13b5)[G : No(K)]. (5.6)

As] <1+ 13bx <300 and as (1 +13bx)/g, its only possible value is
40 = 1+3-13. Hence

300rx = 40[G : Ng(K)] (5.7)
15rx = 2[G : No(K)].
Here (3.15) takes the form
299 = 13 ;rxbx+a-169 (5.9)

23 = ¥ rbx+ 13a.
K

But 14513 = 40 and s0 bx = 3 in every case and from (5.7) it follows

that rg is even. Thusin (5.8) aisodd and 13a < 23 and so a = 1 giving

23 =Y 3rx+ 13 whence 3|23 — 13 = 10 which is false. We have reached
X

a conflict and conclude that there is no simple group of order 202 800.

An dternate argument applicable here rests on showing that no group
contains exactly 40 §(13)’s. From the writer's result (14), since 40 is not
a prime power and 40 has no proper factorization 40 = (1 + 13r)(1+ 13s),
it follows that if there is a group with 40 S(13)’s then there is a simple
group with 40 S§(13)’s. Since 40 < 169 there is no simple group G with
40 S(13)’s if 132|g, by the Brodkey argument (5). If g = 40-13gw, since
12-40 does not have a further factorization (13u+ 1)(13v— 1), the Brauer-
Reynolds argument (11) shows that there is no simple group of such an
order, as13— 1 isnot a power of 2 and PSL, (13) has 13 + 1 = 14 S(13)’s.
Hence no group has 40 §(13)’s. Thus it is impossible that H,(K) has
40 §(13)’s in the above argument.

EXAMPLE 5. g = 25200 = 16-9-25-7.

For p = 7 the admissible Sylow numbers and orders of N(7) are as
follows :

11+
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36 8(7ys, |N(7)|= 700 = 4-25-7
50 8(7y’s, |N(7) =504 = 8-9-7
120 S(7)’s, [N(7) 1 =210 = 2-3:5-7
2258(7ys, |N(7) | = 112 = 16.7
400 S(7ys, |N(7) |=63=9 -7
1800 S(7ys, [N(7) | = 14 = 2.7
We shall handle these separately. Except for 1800 S(7)’s we have w=1i.
In Bo(7) for 36 or 50 S(7)’s we have a character of degree 6 or 8in every

case. By the Stanton condition in (8) we may exclude 36 or 50 S(7)’s.
For 120 S(7)’s, |N(7) =2+3+5:7 and there are characters of degree 6 or

8 to be excluded by the Stanton condition except for
g =2, w=15, degrees 1 —16+15 = 0 (I+dofo+dsfs = 0);
g =6, w=25, degrees
1—-48+2(36)+2(—20)+15 = 0,
if 1204+-2(—48)+2(—20)+ 15 = 0.

In all three cases we have a single character of degree 15, which is there-
fore necessarily rational. Hence on restriction to V(7) (writing x5 for a
character of degree 15)

215 | V(T) = 00+ 7 pe. (5.9)

Here oy is the identity character for V(7) and us a character of degree 2,
necessarily rational since y15 is. But by the Schur result (3.13) a rational
character of degree 2 can represent a group whose g order is divisible by
at most 23- 3 =24 and by no prime p = 5. But w = 15 or 5 and this con-
flicts with the Schur result if V(7) is to be faithfully represented, as it
must be if G is smple.

For 225 S(7ys [N(7)| = 112 = 16-7 we must have q = 2, w = 8 and
as the only degrees possible are if 5 - 6 = 0 the Stanton condition ex-
cludes this. Again for 400 S(7)’s, |[N(7)| = 63 = 9.7, we must have q =3,
w = 3 and the degrees are al excluded by the Stanton condition.

For 1800 S(7)’s [N(7)] = 14 = 2.7 we have q = 2, w = 1. The possible
degrees 1 + bofo+ 0af2 = 0 are:

1+5-6 =0,
1-16+15 =0, (5.10)
1- 9+ 8=0.

The first case may be excluded by Schur’s result since the rationa char-
acter xs cannot faithfully represent a group whose order is divisible by 25.
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Here N(7) has the following defining relations: ¢?= 1, b2 =1, bab = g-1,
The table of characters for N(7) is as follows:

exy 14 17 7 2
h(x) 1 2 7
X 1 a a& @@ b
2o 1 | 1 ! ! (511)
Al 1 1 ! 1 -1
Hr 2 M N2 N3 o
pe 2 M2 M3 M o
ps 2 M3 M1 My o

X is an eement, h(x) the number of conjugates of X, c(x) the order of C,(x).
Here my = e+ &71, 5o = &2+ ¢72, m3 = &+¢&73, where ¢ is a primitive 7th
root of unity, and n;+ns+7n3 = —1

From the Brauer results (3.3) the other degrees in (5.10) correspond to the
following characters in G:

c(x) g 7 I 7

h(x) I 3600 3600 3600
x 1 a a? ad b
0o 1 1 ! ! ! (5.12)
01 15 1 ! |

6 16 m 1n2 M3
6 16 1M 7m3 mMm
s 16 n3 m 12

c(x) g 7 7 7
h(x) 1 3600 3600 3600
x 1 a @& & b
0o ! l l ! !
01 8 l 1 ! (5.13
61 9 M1 M2 M3
2 9 M2 N3 M

03 9 M M 72

Since g = 25200 = 16-9-25-7, the characters in (5.12) 8,, 02, 65 are of
highest type for p = 2 and so vanish for b, a 2-singular element. All further
characters for G have degrees multiples of 7 and vanish for a, a2, and 4.
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Hence, by orthogonality between the a column and the & column in (5.12),
01(b) = — 1. By the Brauer-Fowler formula in (3.17) we have ¢ = 7 if
x; = x; = band x; = a. Here this gives

25200 1
7 =w(l+ﬁ). (5.14)

This gives ¢(p)? = 3840 which is a conflict since 3840 is not a square. Hence
we may exclude the degrees in (5.12).

For the degrees in (5.13) if we restrict o1 to N(7) we see, from the values
01(1) = 8, g4(a) = 1, that we must have

01| N(T) = A+ A+ pa+ pa+ s, (5.15)
where 2; and 4; are any combination of 4, and 4. We conclude that
Ql(b) = 2’ 0’ -2. (516)

The matrix M(b) which has g4(b) as its trace has 8 eigenvalues which are
+1lor~1,sayr(+1)sandt(—1)s, wherer + ¢ = 8. The determinant of
M(b) (which may be taken in diagonal form) is (— 1)‘. As the determinant
of M isaone-dimensional representation of G, which is simple, it must be
1 for every element. Hence ¢ is even and g1(b) =r-t =8 -2t = 0 (mod 4).
Thus g1(6) = 0 (mod 4) and from (5.16) this makes g1(b) = 0. The 7-con-
jugate characters 01, 03, 05 are equal for b and so, by orthogonality with the
a-column, 6y(b) = 65(b) = 63(b) = 1. In this case with x; = x; = b, x;=a
the Brauer-Fowler formula becomes

1= 36%2’)9:1 = (1—%), (5.17)

giving ¢(b)® = 3200 which is not a sguare, and so the degrees (5.13) are
also to be excluded.

Thus every posshility has been excluded and we conclude that there is no
simple group of order 25200.

There are other cases, not illustrated here, in which the restrictions to
V(p) such as 15| V(7) = oo+ 7z are very useful. For example if thereis an
involution 7 in V(7) we must have p2(7) = -2 in order for the determinant
to be ++ 1. In this case 7 isthe only involution in V(7) and so in the center
of N(7). Also y15(r) = - 13 and s0 ¢(7)=>169. If say [N(7)| = 84, then
H = C4(7) properly contains N(7). This may force H to be G or to contain
a number of S(7)’s such as 15, which is impossible by the writer’'s results
in (14).

ExampLE 6. The Suzuki group.

g = 29120 = 64-5-7-13.
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Here the Suzuki group Su(8) of order 29120 = 64-5-7 13 will be con-
structed directly from its order using the Brauer theory of modular charac-
ters.

The only divisors of g of the form 1 4 13k are 14, 40, and 560. By the
Brauer-Reynolds results (1 1), 14 S§(13)’s is possible only for PSLs(13).
There is no further factorization 12-40+(13u+1)(13v—1) so that 40
S(13)’s is impossible. For 560 S(13)’s we have the factorizations
6720 = 12-560 = 14-480 = 40.168 = 105-64. Here |[N(13)|=52=4-13. For
g = 2 there are no degrees 1 + dofg+ 05fa = 0 with f;|2- 560, dofp = — 2(13),
8afa = 1(13). For ¢ = 4 we have 1+dofo+8afa+dafa+0sfa = O with
£114-560 and dofo = —4(13), 8,f; = 1(13), i = 2, 3, 4. Here the possible
values for dofe are -4, -160, -56, 35 of which the 4 is too small since
4<1(13—1) = 6. For §,f; the possible values are 560, 14, 40, - 64. Since
one of thef’s must be odd we must have dqfp = 35, and we find the only
combination to be

1+35—64+2(14) = 0. (5.18)

As 7 1|N(13)| it now follows that 13 1 |N(7)| and so the number of S(7)’s
isamultiple of 13. For S(7) we must have ¢ = 2 since 3 does not divide g.
Here 1 +d¢fp+ 02f2 = O with dofs = -2 (mod 7), 61/1 = 1 (mod 7). As
degrees not in (5.18) are multiples of 13 this forces dsf; = 64, and so we
have d¢fo = — 65 and the S(7) degrees are

1—65+64 = 0. (5.19)

Since these degrees must divide g( 1 +rp) = 2( 1 + 7r) the only possibility is
1+ 7r=65+32=2080 S(7)s, N(7) = 14, g = 2w = 1. Since degrees not
in (5.18) or (5.19) are multiples of both 7 and 13, and as g = 29120 is the
sum of the squares of al degrees, there is exactly one further irreducible
character and thisis of degree 91.

At this stage we have a partiad character table for G, where an S( 13) = (a)
with ¢ = 1 and N(13) is defined by

a® =1, pt= 1, b-lab= a5 (5.20)
There are three classes of elements of order 13 with representatives a, a?,a®
and as c(a) = 13 each of these contains 2240 elements. For an S(7) = (c)
we have as defining relations for N(7)

¢ =1 x2=1 xcx= ¢} (5.21)

and each of the three classes with representatives ¢, ¢, ¢* contains 4160
elements. The partia table follows:
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ox)y g 13 13 13 7 7 7
h(x) I 2240 2240 2240 4160 4160 4160
X 1 a a a c c? Tl
0o l l l l l ! l
01 64 -1 -1 -1 | | l
02 14 1 ! 1 0 0 0
03 14 l l 1 0 0 0 (5.22)
04 35 —Uy —uz —Us 0 0 0
05 B —uy —uz —uw 0 0 0
0s 3B —ug —uy —us 0 0 0
o7 65 0 0 0 V1 Vg Vg
0s 65 0 0 0 Vg Vg M1
09 65 0 0 0 v3 " Vo
o0 91 0 0 0 0 0 0

Here the u's are Gauss sums of 13th roots of unity, the v’'s of the 7throots
ofunityand wuy+ustus = vi1+va+vs = -1

For an S(5) we have g = 2 or g = 4. If g=2the degrees are 1 + dofo+
+ 8of> = 0 with daf;, = 1 (mod 5) and dofp = -2 (mod 5). There are no
such degrees and s0 we have ¢ = 4 and the degrees satisfy 6;f; = 1 (mod 5).
The only possibility is

|-64+2(-14)+91 = 0. (5.29)

All other characters are of degrees multiples of 5. Hence for N(5) we have

g=4,w=1
B=1 yt=1, yidy=d. (5.24)

The degrees in (5.23) serve as a partia confirmation that a group of the
order may exist. As (5.23) is the relation ondegrees for By(5) with ¢ = 4,
and necessarily w = 1 since all other degrees are of highest type for g =5,
we must have 1456 S(5)’s and so d has ¢(d) = 5 and then h(d) = 5824.
Also 0¢(d) = 1, 01(d) = = 1, 0o(d) = = 1 and 016(d) = 1, while ¢{d) = 0
for the remaining characters.

There are 11 distinct irreducible characters for G, the two of degree 14
being complex conjugates from considerations of the tree for Bo(13) as
given by (5.18) or By(5) as given by (5.23). Hence there are exactly 11 con-
jugate classes of elements in G with representatives 1, a, a3, @4 ¢, ¢, ¢3, d
for eight of these and three other classes of which b and 4% from (5.20)
must be two. As b?is of order two each of its charactersisasum of +I's
and — I'sand so redl. All charactersin (5.22) are rea as are aso the char-
acters of d. If the characters of b were dl rea then by orthogondity all
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characters would be real, contrary to the fact that ¢2 and ¢s are complex
conjugates. Thus some character of b is complex and its complex conjugate
is the character of 51 Hence 42, b and b—1 are representatives of the
three remaining classes. It remains to determine their characters. We shall
firs give the complete table and then say how (5.22) was completed. Here is
the full table.
g= 29120 = 64-5-7-13
ox) & 13 13 13 7 7 7 5 64 16 16

h(x) | 2240 2240 2240 4160 4160 4160 5824 455 1820 1820
x 1 a @ @ ¢ ¢ ¢ d B b p?
o 1 1 1 1 IR
o, 64 -1 -1 -1 10 0 0

-

! ! !

1 ! |
02 14 ! ! ! 0 0 0 -1 =2 2i -2i
03 14 ! ! ! 0 0 0 -1 =2 -2i 2i
04 3B —u =uy —us 0 0 0 0 3 -1 -1
05 3B —ur —uzy —ux 0 0 0 0 3 -1 -1
06 3B —ug —u1 —ug 0 0 0 0 3 -1 -1
o7 65 0 0 0 7 v2 w3 O 1 1 !
08 65 0 0 0 v2 v 7 0 1 1 !
09 65 0 0 0 v v1 v2 O ! 1 1
io 91 0 0 0 0 0 0 0 -5 -1 -1

(5.25)

As there is only one class of involutions, namely = = b2, we may apply the
Brauer-Fowler formula three times, namely for By(13), Bo(7), and By(5),
to 7. As gy of degree 64 is of highest type for p = 2, then ¢1() = 0 and o for
By(7) with degrees 1 — 65 + 64 = 0 we find by orthogondity ¢+(7) = es2) =
(%) = 1 and the Brauer-Fowler formula becomes

29120 1
7 =@ -z (5.26)
yielding c(7)? = 4096, c(t) = 64.

As ¢y and ¢ are complex conjugates but real for = we put 02(7) = g3(z) = x.
Also g4(7) = 5(t) = y as these are algebraic conjugates but rational for 7,
We dready have g+(7) = 04(r) = 1 and g1¢(z) = z. Orthogonality with the
columns for a and d and the order of ¢(7) give
1+2x+y = 0,
1-2x+z =0, (5.27)
14+2x2+3)24+3422 = ¢(zr) = 64.
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This leads to 18x2+8x—56 = 0 whose roots are x = -2 and X = 14/9,
Since x is a rational integer it is x = pa(7) = p3(zr) = -2 and the charac-
ters for 2 = 7 are completely determined.

The remaining 3640 elements are equally divided between the classes
for b and 5 since c(b) = ¢(b~1) whence there are 1820 in each and
c(b) = ¢(b~ = 16. As al characters except g and es are real we have
g:(0) = e:d™) in dl other cases and row orthogonality determines all of
these. Complex conjugacy and the fact that c(b) = 16 determines g, and
o3 for b and -1,

From the table of characters we see that S(2) is non-Abelian since
ob) = 16, and so the center Z(2) of S(2) is of order 2,4, or 8. An element of
order 5 or 13 in N(2) would normalize and so centralize Z(2) contrary to
the fact that C(5) = S(5) and C(13) = S(13). Hence the number of S(2)’s
isamultiple of 65 and so is either 65 or 455. If the number were 455, since
455 == 1 (mod 4) there would be two S(2)’s Py () Py = K where Kis of order
32 and Ng(K)contains an odd number of S§(2)’s. As 32— 1 = 31 is not a mul-
tiple of 5, 7, or 13 an element of odd order normalizing Kcentralizes some
2-element, contrary to the fact C(5) = S(5), C(7) = S(7)and C(13) = S(13).
Hence the number of S(2)’s is not 455 but is 65 and N(2) is of order 64.7 and
is a Frobenius group as C(7) = S(7). Thus S(2) has a center Z(2) of order
8 and S(2)/Z(2) is aso of order 8 and both are acted upon by S(7) without
fixed points. Each of 65 S(2)’s has 63 elements besides the identity giving
4095 2-elements  which must be distinct since G has 455 involutions and
3640 elements of order 4. Hence the S(2)’s have trivia intersection and in
the representation of G on the 65 cosets of N(2), every 2-element fixes exactly
one letter. Gy = N(2) is a Frobenius group on the 64 letters it moves, being
the regular representation of S(2) normalized by an element ¢ of order 7.

An automorphism m of order 7 on an elementary Abdian group of
order 8 satisfies either xm*+m+1 =t or y#*+m*+1={ for every element. The
group S(2) of order 64 is determined up to isomorphism by the fact that it is
non-Abelian and has a center Z(2) and factor group $(2)/Z(2) both elemen-
tary of order 8 and having an automorphism of order 7 which is fixed point
free. Here c, of order 7, induces the automorphism, and on S(2)/Z(2), we have
the relation x®*+¢+1 = 1 and on Z(2) x**+**+! = 1. If the same relation
held in both places S(2) would be Abelian. Interchanging the relations
amounts to replacing ¢ by ¢-1.

Take b1 = b of order 4 and b? = ey is in Z(2). The automorphism in-
duced by ¢ (x » ¢~xc) is given by

bl g b2s ey - 629
by - bs, €3 —+ €3, (5.28)
by — b1by, €3 > €1€3.
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These give rise to relations

bl = e1 = (by, b3),
b% = e3 = (by, ba)(by, b3), (5.29)
b3 = e3 = (by, ba)(by, bs)(be, bs),

using the commutator notation (x, y) = x~1y~Ixy.

We may now give the permutations on letters 0, . . . , 63 generating N(2).
¢=(0), 2,34, 5,6, 78,9, 10, 11, 12, 13, 14)(15, 16, 17, 18, 19, 20, 21)
(22, 23, 24, 25, 26, 27,28)(29,30,31,32,33,34, 35)(36,37,38,39,40,41,42)
(43,44,45,46, 47, 48, 49)(50 51,52,53,54,55,56)(57,58,59,60,61,62,63).
b=5;=(0,8, 1, 15)(2, 22, 6, 50)(3, 29,4, 36)(5, 43, 7, 57)(9, 39, 58, 25)
(10,28, 52, 14)(11, 37,46, 51)(12, 62, 40, 27)(13, 33, 34, 19)(16, 60, 44, 18)
(17,49, 24,42)(20,61, 41, 54)(21,45, 56, 31)(23, 53, 30, 32)(26,48, 47, 55)
(35, 59, 63, 38).

(5.30)

The Suzuki group G will be obtained by adjoining a further letter « and
finding an involution T (necessarily conjugate to b?) interchanging - and O
and so normalizing the group (c). = must aso have the property that for
any u € G,, = N(2) rur = xvy for appropriate x, y € N(2). With a certain
amount of trial this determines ¢ (up to a conjugate by ¢) as

1= (w, O), 57)(2, 63)(3, 62)(4, 61)(5, 60)(6, 59)(7, 58)(8, 26)(9,25)
(1024)(11, 23)(12, 22)(13, 28)(14, 27)(15, 37)(16, 36)(17, 42)(18, 41)
(19,40)(20, 39)(21, 38)(29, 52)(30, 51)(3L, 50)(32, 56)(33, 55)(34, 54)
(35, 53)(43)(44, 49)(45, 48)(46,47). (5.31)

6. Construction of a new simple group of order 604,800. In his announce-
ment “Still one more new simple group of finite order” Zvonimir Janko
gives a character table for a simple group of order 604,800 if such a group
exists. In this group there are two classes of involutions, one with a central-
izer of order 1920, the other with a centralizer of order 240. He gives the
character table for such a group.

The group has 21 classes and three of the characters are as follows:
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Order of an element ! 2 486 12 10 10 2 6 10 10

Order of centralizer g 1920 96 8 24 12 10 10 240 12 20 20
V1 1 11111 11 11 11
Vs 36 4 40 1 1 -1 -1 0O 0 0 O
Y10 63 15 31 00O0O0-1-1 -1 -1

Yit+ys+¥io = % 100 208222 0 O O O O oO

3355655 15 15 7
1080 36 300 300 50 50 15 15 7
111111111
90 4 41 1111 ©b
033322000
0 300000 0 2

Under the assumption that % is the character of a group G of order
604,800 represented as a permutation group on 100 letters, the group G will
be constructed and it will be shown that G is simple.

The stabilizer of aletter G, is of order 6048. From the fact that an S(7)
is its own centralizer it is not difficult to show that G, must be the smple
group Us(3). Asy isthe sum of three irreducible characters of G it follows
that G, has precisely two orbits besides the fixed letter «, and in D. G. Hig-
man’s terminology, G is a rank three group.

In GF(3% the mapping x—x3 = X is an involutory automorphism. The
unitary group Us(3) consists of the linear transformations over GF(3%) on
X, ¥, z leaving invariant for points A = (x, y, z) the metric

(A, A) = xx+yp+zz. 6.2)
A natural representation for H = U,(3) is as a permutation group on the
28 points A for which (A, A) = 0 considering these as points in the projec-
tive plane PG(2, 33. These lie in sets of four on 63 lines and form a block
design D with parametersb= 63, v =28, r=9, k=4, A = 1. Number the
points 1, . .., 28 and the lines 37, . . . ,99 we have for the set of lines con-
taining the point 1

L37" 1, 2, 3, 4
Ly: 1,5, 18, 28
Ly 1,6, 14, 23
Leg: 1, 7, 15, 22
Lest 1,8, 19, 25 (6.3)
L 1,9, 16, 27
Lg: 1,10,17, 24
L,: 1,11, 20, 21
Ly: 1,12,13, 26
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Here His generated by the permutations

a= (157 3, 1224 11)2,23, 4, 27,13, 1426)(6, 20, 18, 8, 25, 21,28)
(9, 10, 17, 15, 22, 16, 19),
b= (1)QEG 46, 17,7, 16, 8, 20, 6, 13)(9, 19, 11, 14, 12, 18, 10, 15)

(21,23, 26, 28, 24, 22, 21, 25).
(6.4)

The Sylow 7-group (a) is normalized by the element ¢ and N(7) = (a, ¢)
where

c=(1)220, 10)(3, 11, 24)(4, 21, 17)(5, 7, 12)(6, 19, 27)(8, 16, 23)
(9, 14, 25)(13, 18, 15)(22, 26, 28). (6.5)

Here (c) is normalized by the involution d where

d= ()©)1925)2 283, 18)(4 5)(6:27)(7, 17)9, 14)(1022)(11, 13)
(12, 21)(15, 24)(16, 23)(20, 26). (6.6)

We shdl construct G as a permutation group on the 100 symbols 00,01, . . . ,
99 and H shdl be the stabilizer G go. From the character % of (6.1) we see
that a 7-element fixes exactly one of the 99 |etters moved by H; thus of the
two orbits of H on the 99 letters one is a multiple of 7 in length, the other of
length congruent to one modulo 7. As both orbit lengths are divisors of
6048, the only possible lengths are 36 and 63. The 63 orbit for H will be on
the blocks of D numbered from 37 to 99. The 36 orbit will be on cosets of

the subgroup (a, d) of order 168 and isomorphic to PSLx(7), numbering
the cosets from O1 to 36. The permutations representing the elements

a, b, ¢, d are as follows:

a =
(00)(01)(02,03, 04, 05,06,07, 08)(09, 10, 11, 12, 13, 14, 15)
(16, 17, 18, 19, 20, 21, 22)(23.24, 25,26,27,28,29)
(30, 31,32,33,34, 35, 36)(37, 38, 39,40,41,42,43)
(44,45,46,47, 48,49, 50)(51, 52, 53, 54, 55, 56, 57)

(58, 59, 60, 61, 62, 63, 64)(65, 66, 67, 68, 69, 70, 71)
(72,73, 74, 75, 76, 77,78)(79, 80, 81, 82, 83, 84, 85)
(86, 87, 88, 89,90,91, 92)(93, 94, 95, 96, 97, 98, 99)

= = =
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b=

(00)(0, 02, 09, 16, 23, 20, 30, 17)(03, 35, 13, 29, 31, 24, 25, 11)
(04, 26, 27, 07)(05, 21, 14, 10)(06, 19, 32, 36)
(08, 18, 28, 22, 15, 12, 33, 34)(37)(38, 92, 67, 77, 99, 89,49, 84)
(39, 59, 82,46, 88, 54, 52, 68)(40, 55,47, 81,75, 95, 61, 78)
(41,44, 63, 58, 72, 65, 50, 51)(42, 76, 53, 93, 86, 80, 79, 57)
(43, 85,48, 70, 96, 83, 66, 94)(45, 97)(56, 87)
(60, 71, 91, 69, 90, 73, 64,74)(62, 98)

¢ =
(00)(01)(02, 28,21)(03,23, 18)(04,25, 22)(05,27, 19)(06, 29, 16)
(07,24, 20)(08,26, 17)(09, 13, 14)(10, 15, 11)(12)(30, 36, 34)(31)
(32, 33, 35)(37, 50, 63)(38,45, 60)(39,47, 64)(40, 49, 61)(41,44, 58)
(42,46, 62)(43,48, 59)(51, 65, 72)(52, 67, 76)(53, 69, 73)(54, 71, 77)
(55, 66,74)(56, 68, 78)(57, 70, 75)(79, 89,96)(80, 91, 93)(81, 86,97)
(82, 88,94)(83, 90, 98)(84, 92, 95)(85, 87, 99)
d=
(00)(01)(02)(03,05)(04,25)(06)(07, 20)(08, 17)(12)(13)(09,14)(10)(11,15)
(16,29)(18,27)(19, 23)(21,28)(22)(24)(26)(30)(31)(32,35)(33)(34,36)
(37, 44)(38, 88)(39, 64)(40, 90)(41, 50)(42, 95)(43, 97)(45, 82)(46, 92)
(47)(48, 86)(49, 83)(79, 89)(58, 63)(59, 81)(60,94)(61, 98)(62, 84)
(80, 85)(87, 93)(91, 99)(96)(51, 72)(52)(53, 68)(54, 71)(55, 66)(56, 69)
(57)(65)(67, 76)(70, 75)(73, T8)(74)(77)
(6.7)
In H = Goo the normalizer of a 7-group is Nyx(7) = {a, c) of order 21.
In G the normalizer N(7) of a‘l-group is of order 42, and S(7) isits own
centrdizer in G. Thus in G there is an involution ¢ such that Ng(7) =
(a, ¢, t) and such that tat = g=1. Of the two classes of involutions
in G, one fixes 20 of the 100 letters, the other none. Since (a) has 2 fixed
letters and 14 7-cycdles, an involution u fixing 20 letters must fix two or
more letters in one of the 7-cycles and for such an involution we cannot
have uau = g~ Hence the involution t in Ng(7) must move al letters.
We may choose a conjugate of t in Ng(7) so that ct = tc is of order 6.
We shall determine this permutation t.
Since tat = ¢~%, and t moves al 100 letters, t interchanges the two

letters 00 and 01 fixed by a Since tc = ct and ¢ fixes exactly the four letters
00, 01, 12, and 31, it follows that t also interchanges 12 and 31. Hence, as
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tat = a1,

a = (09 10 1L 12,13 14,1930, 31, 32, 33 34, 35, 30).
a-1 = (34 33,32, 3130, 36, 35)(13, 12 11, 10,00, 15, I f

Thus
t = (00,01)(09, 34)(10, 33)(11, 32)(12, 31)(13, 30)(14, 36)(15, 35). (6.9)

At this stage an element of luck enters in. The element 6%t has a rela-
tively large number of its values determined:

th%t = (00, 01, 13, 30, 32, 35, 31, ... (6.10)
34,01, 00, 12, 15, 10, 09, ) '
We now form an element fixing 00:
(
2atb2 = (00, 01, 13, 30, 31,32.35, . . .|, 6.11
ettt (8 §4011009151§’,...) (611

This is sufficient to determine the permutation completely. It is g3h8qadad.
Thus t must satisfy

a4’ = a®bPadad. (6.12)
In permutation form this begins
t(oo, 01, 02, 03, 04, 05, )
01,00  4; ’
pogt (01,00 A; )
13,00 4,
(12004 ) (6.13
30,01 05
( 30, 01, 19,05 24
01,0936, 14 1 )

141
t(003343;14;36,21, 32 )

The element ¢ interchanging 00 and 01 normalizes the group (a, d) of
order 168 fixing 00 and O1. Its orbits are

{00},

{01},

(09, .. .,15},

(30, . ..,36}, (6.14)

(02, ...,0816, ...,22,23 ...,29},
(51, ..., 57,65, ...,71,72,...,78},
(37, ..., 43,44, ..., 50,58, ...,64,79, ... 85 8, 69293 , 9)
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Since ¢+ moves al letters it must interchange the orbits of odd length. In
paticular if ¢ = (03, A4;)then A4; is one of the numbers 51,. . . ,57,65,. ., ,71,
72...,78. Astat = a™%,

(02,03,04,05,06,07,08) (615
('_’ Aia ) Aj, ........ )

where (—, 4 A;...) is in some order (51, 57, 56, 55, 54, 53, 52),

(65,71,70,60,68,67,66) or (727877,76,7574,73) and dso bat =, .
We have
bt = (00)(0l, 13, 35,26,04, 24, 15, 30)(02, 20,21, 14)
(03, 10, 18, 19, 33, 05, 11, 32)(06, 36, 16, 17)
(07, 23, 34, 22,09,27,08, 25)( 12, 31, 29,28)
(37, 41, 60, 88, 56, 53, 90, 61)(38, 71, 66, 40, 44, 62, 59, 50)
(39, 79)(42, 57, 73, 78, 52,43,45,49)(46, 51, 48,93, 84, 89, 81, 99)
(47, 72)(54, 65, 55, 85, 67, 96, 70, 80)(58, 69, 77, 86, 83, 98, 95, 75)
(63,76,97, 94, 82, 92, 74, 68)(64)(87,91) (6.16)

Here 4; = 73, 4; = 78 is the only pair from the 21 orbit of (a, d) in
the 63 orhit of H satisfying 5% = 04 and a7t = (... 4p—.4;. . )

Sl

Hence from (6. 13) we must have ¢ = (03, 73). The equation (6.13) and the

rlations tat = & tc = ¢ now completely determine ¢:

t = (00,01)(02, 74)(03, 73)(04, 72)(05, 78)(06, 77)(07, 76)(08, 75)(09, 34)
(10, 33)(11, 32)(12, 31)(13, 30)(14, 36)(15, 35)(16, 71)(17,70)(18, 69)
(29, 68)(20, 67)(21, 66)(22, 65)(23, 53)(24, 52)(25, 51)(26, 57)(27, 56)
(28, 55)(29, 54)(37,91)(38, 90)(39, 89)(40, 88)(41, 87)(42, 86)(43, 92)
(44,99)(45,98)(46,97)(47,96)(48,95)(49,94)(50,93)(58, 85)(59, 84)
(60, 83)(61, 82)(62, 81)(63, 80)(64, 79). (6.17)

We now have a permutation group G on 100 letters 00, 01,. . . ,99,
= (a, b, & dagroup H = (a, b) fixing 00 where it is known that

H is the simple group of order 6048. Let M = Gyg be the subgroup of
G fixing 00. It is well known that M is generated by the 300 eements

X T~ % T, xit T (049

where x; =(00) i=00,..., 99, are coset representatives of M in
i,.

Gand y = x_,-‘is the coset representative of My = Mx;. Here, with the help
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of Mr. Peter Swinnerton-Dyer and the Titan computer at the Cambridge
University Mathematical Laboratory, it was shown that each of the 300
permutations in (6.18) liesin H = (a, b). Thus M € H, and so M = H,
whence Ggo = H and G is of order 604,800.

It remains to be shown that G is smple. In G the normafizer of the group
(a) contains the element t interchanging 00 and 01. As these are the only
letters fixed by (a) it follows that [NG(<a>)] =2 As ]NH(<a>)| = 21it
follows that ]NG(<a>)| 42 and (a) = S(7) is its own centralizer in G.

In a chief series for G one of the factors has order a multiple of 6048.
If thisis not a minimal normal subgroup, then a minimal normal subgroup
K has order 2, 4, 5, or 25. But then an S(7) normalizing X must also cen-
trelize K, which is false since §(7) is its own centralizer. Hence a minimal
normal subgroup K has order a multiple of 6048 and also 14,400 since
it must contain all 14,400 S(7)’s. Thus either [G:K] = 2 or G = K and
Gissmple. If [G:K] = 2 then Ng(7) is of order 21 and so ¢t K but HS K.
But mapping G/K onto thegroup + 1, - 1wemap H-+ 1, t - = 1 and
this conflicts with the relation (6.12). Hence G is simple.

As this is written some questions remain unanswered. The original
character table given by Janko has been shown by Walter Feit to be in
error. Janko has made corrections to his table. The character table of the
group constructed here has not yet been calculated. And it has not been
established that there is a unique simple group or order 604,800.

[Added in proof by the Editor: The uniqueness of the simple group of
order 604,800 has since been established ; see Marshdl Hdl Jr. and David
Wales. The simple group of order 604 800, J. Algebra 9 (1968), 417-450.]
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Computational methods in the study
of permutation groups

CHARLES C. Swms

1. Introduction. One of the oldest problems in the theory of permutation
groups is the determination of the primitive groups of a given degree.
During a period of severa decades a great deal of effort was spent on
constructing the permutation groups Of low degree. For degrees 2 through
11 lists of all permutation groups appeared. For degrees 12 through 15
the lists were limited to the transitive groups, while only the primitive
groups of degrees 16 through 20 were determined. A detailed account of
the early work in this area can be found in the first article of [12] and refer-
ences to later papers are given in [1] and in [2] p. 564. The only recent
work of this type known to the author is that of Parker, Nikolai, and Appel
[13], [14], and a series of papers by Ito. These authors have shown that
for certain prime degrees any non-solvable transitive group contains the
alternating group.

The basic assumption of this paper is that it would be useful to extend
the determination of the primitive groups of low degree and that with
recent advances in group theory and the availability of electronic com-
puters for routine calculations it is feasible to carry out the determination
as far as degree 30 and probably farther. Ideally one would wish to have
an agorithm sufficiently mechanical and efficient to be carried out entirely
on a computer. Such an algorithm does not yet exist. The procedure out-
lined in this paper combines the use of a computer with more conventional
techniques.

Suppose we wish to find the primitive groups of a given degree n. It
will be assumed that the primitive groups of degree less than n have a-
ready been determined. Since a minima norma subgroup of a primitive
group is transitive and is a direct product of isomorphic simple groups, the
fird dep is to teke each of the known dmple groups H, induding the groups
of prime order, determine the transitive groups M of degree n isomor-
phic to the direct product of one or more copies of H, and then for each
such group M find the primitive groups containing M as a normal sub-
group. While this is by no means a trivial procedure, it is considerably

t This research was supported in part by the National Science Foundation.
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easier than the second step, showing that there are no other primitive
groups of degree n. The list of primitive groups so far constructed can fail

to be complete only if there exists a primitive group G of degree n which
is a new simple group and so cannot be represented faithfully on fewer
than n points. Here it seems useful to distinguish three cases:

1. G is simply primitive, that is, primitive but not doubly transitive.
2. G is doubly transitive but not doubly primitive.
3. G is doubly primitive.

The first two cases will be dealt with in the next two sections. In the
third case, G is a transitive extension of one of the primitive groups of
degree n- 1 which contains only even permutations. The techniques of
transitive extension are discussed at length in [S] and [II]. Thus it seems
necessary only to point out that the non-existence of transitive extensions
for several families of transitive groups is already known. See for example
[9, [10], and [16] p. 22. It seems praobable that a computer program could
be written to construct up to isomorphism as permutation groups the
transition extensions of a given transitive group. So far, the author has
found that with the program presented in § 4 of this paper and a small
amount of hand computation all transitive extensions can be determined
easily.

The paper concludes with a short description of a computer program
for finding the order and some of the structure of the group generated by
a given set of permutations and with a list of the 129 primitive groups
of degree not exceeding 20. This list was taken from the literature and
checked by the methods described here. The notation and terminology for
permutation groups is that of [16] with one important exception. The term
“block” is used only in the context of block designs and the older terms
“sets of imprimitivity” and “systems of imprimitivity” are used for what
are called blocks and complete block systems in [16]. Throughout G
will denote a primitive group on the finite set Q with |Q| = ».

2. Simply primitive groups. In this section we discuss techniques for
handling the first of the three cases described in the Introduction. For
each a€Qlet Ay(x) = {a}, A5(@),. . ., Ai() be the orbits of G, numbered in
such a way that A af) = Afx)¢ for dl g¢ G. Let n; = |Afw)|. We shall
assume 1 = my=mp=<... sm and k=3. For 1 i<k we denote by i’
that integer such that 4,(«) is the orbit of G, paired with 4,(e). A necessary
condition that i’ = i isthat nn; is even. The following theorem contains
most of the known number-theoretic conditions satisfied by n and the
n;. These conditions follow easily from results in [16], in particular Theo-
rems 117, 139, 174, 175, 17.7, 182, and 312

THEOREM 2.1. Let 1= ny=ny=<... < m, k = 3, be a sequence of posi-
tive integers. Let = be the smallest set of primes such that
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() = contains all prime divisors of the #;,

(b) if $n;<p <n; for some i and somep ¢ z, then = contains the prime divi-
sors of all integers m such that p<m=< n;. If in addition n;—p = 3, then
contains all primes less than z;,

The following are necessary conditions for there to exist a primitive
group G of degree n = n; + . .. +n such that G, has k orbits of lengths
Ry, . ., N

(1) If m=>1,then (n;, m) £1,2=<i=<k.

(2) n; < nam;_y, 2 < i < k. If the number of »; equal to n, is odd, then
n=<(ny—Dm_y, 3<i<k.

(3) No element of s is greater than #s,.

4) If %n,- <p=n; for some i and some p¢m, then there exists an H;>n;
such that #; divides n,(n;,— 1).

(5) If n; is a prime, then »? does not divide any ;.

(6) If n is odd, then for each odd number t the number of #; such that
n; = tis even.

(7) If nis aprime, then ny= ng=...= ng. (In this case G is solv-
able.)

(8) If nz < 2, then n is a prime.

9) If nis twice a prime, then k = 3, n = 2s+ 124 1, ne = s(2s+ 1),
and ng= (s+1)(2s+ 1).

(10) If 3 =ns= 4 and n is not divisible by a prime greater than 3, then

n= 2%orn= 3%and in either case a < #,,

In addition, we note that the primitive groups in which n, = 3 have
been completely determined by Wong [17].

Once those partitions n= n;+ . . .+n, which satisfy the conditions
of Theorem 2.1 have been found, we can apply the results of Higman [7]
to reduce the possibilities still further. Given a primitive group G in which
G, has orbits 44(x), . . . , 4x() as above, we may define nxn matrices B,
I= i< k, whose rows and columns are indexed by the elements of Q, as
follows :

B = [bf‘p]
where
o {if acA4p),
«f 0 otherwise.

We aso define k X k matrices M;, 1 < i<k, by
M; = [my], mh = A)NA(B) |, Bedu(a).
THEOREM 2.2. The integers mjk satisfy the following conditions:
Z m]’:k = nj, Z m}k = ny m;:k = m{k:,
i J
mjy = Oyni, miy, = O,

o ! e
Myhe = Mghy, Wil = Mgh; = M.
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THEOREM 2.3. The matrices M;,1 < i<k, forma basis for a subalgebra
of the algebra of kX k matrices. In fact,

M,-Mj = Z m{'ker.
k

An r Xr matrix C will be called irreducible if there is no permutation g
of 1, ..., r such that when ¢ is applied to the rows and columns of C,
the result is a direct sum of two matrices. Because of the primitivity of
G we have

THEOREM 2.4. Fixi,2 <i<k andletM = M, and A= B, Then

(1) M and A are irreducible.

(2 M and A have the same minimal polynomia f.

(3) If we define vectors U,, ¢=0, by U, = (u,y,. . .,4g), Up= (1, O,
0,0,...,0), Uyr1 = UM, then the trace of 42is nuy.

(4) n;is aroot off and if n; = 64, 8,,. . . , 6, are the distinct roots off,
then the multiplicity of 6; as an eigenvalue of A is

e; = trace f(A)/f(9)),

where f(x) = f(x)/(x—ﬁj)di and d; is the multiplicity of 6; in f. Also d; =
ey — 1.

In view of part (3) of Theorem 2.4 the e¢; can be computed from a know-
ledge of M. The fact that the e; must be positive integers imposes still
further conditions on the matrices M; and the integers »;,. Once matrices
M,,. .., M, satisfying the conditions of Theorems 2.2, 2.3, and 2.4 have
been found, it is usually not particularly difficult to construct the possible
matrices By,. . . , B, if they exist. This is of course equivaent to finding
the graphs & ; as defined in[15]. Once the B; are known, G must be a sub-
group of the group of permutation matrices commuting with each of the B;.

3. Doubly transitive groups. In this section we take up the second of the
three cases described in the Introduction. Throughout, G will be assumed
to be doubly transitive on Q. For any subset 4 of 2, A* will denote the
set of 2-element subsets of 4 and G* will denote the permutation group
on Q% induced by G. We shall not explicitly make the assumption that
G is not doubly primitive, but many of the results are trivial for doubly
primitive groups.

Of fundamental importance to the following discussion is the concept
of ablock design. A block design, or more correctly a balanced incomplete
block design, with parameters », b, k, r, 2 isa set Q of points together with
a set B of blocks and an incidence relation between points and blocks such
that

M= v
(2)|B] = b,
(3) each block is incident with exactly k points,
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(4) each point is incident with exactly r blocks,
(5) any two distinct points are incident with exactly A blocks.

The parameters of a block design satisfy the conditions
bk = rv, r(k- 1) = Awv— 1).

A Steiner triple system is a block design with 2 = 1 and k = 3. A project-
ive planeis ablock design with A= 1and b = v = 4. We shall say a block
design istrivia if for every k-element subset A of  thereis ablock I' such
that every point in 4 isincident with 1", An automorphism of a block de-
sign consists of a permutation g of the points and a permutation h of the
blocks such that a point a is incident with a block I' if and only if «# is
incident with ™. In many situations, in particular when 2 = 1, two blocks
are the same if they are incident with the same points. In this case h is
determined by g and we may consider the automorphism to be the permu-
tation g. For a more complete discussion of block designs the reader is
referred to [6]. We note that for any subset 4 of Q with |4 = 2 the double
transitivity of G implies that (2, B) is a block design, where

B= {4 |gcG}

and incidence is set membership.

The following is an analogue of Theorem 18.2 of [16] for doubly transi-
tive groups.

THEOREM 3.1. Let G be a doubly transitive group on £, let a and 8 be
distinct points of 2, and let I" be an orbit of G,; on Q—{x«, }. Then at
least one of the following holds:

(1) Every composition factor of G, is a composition factor of some
subgroup of GLg.

(2) G is a group of automorphisms of a non-trivial block design with
point set @ for which 1 = 1.

Proof The following lemma is easily verified and we omit its proof.
LEmA 3.2. Let A be a subset of Q with [4| = 2. Then A* is a set of
imprimitivity for G* if and only if (2, B) is a block design for which 2= 1,
where
B= {4¢]|gcG}.

Now assume that conclusion (2) of the theorem does not hold.

Lemwa 3.3. Let V& 1 be a subgroup of G fixing two points. There exists
g€ G such that g7'Vg = U= G and U + 1.

Proof Let y ¢ I" and let A be the fixed point set of V. 2 < 4| < Q]
Consider

p=[) 4,
8
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the intersection being taken over al g in G such that {«, f} € 45 Then
p* = n (A%
4

and y* isaset of imprimitivity of G*. By Lemma 3.2 |y| = 2. Thus there is
ag in G such that {a, f} S 4¢ and y ¢ 4¢. Then U = g~1¥g € G,; and
Ur &+ 1

The proof of Theorem 3.1 is completed as in the proof of Theorem 18.2
of [16].

We wish now to consider the consequences of the assumption that G*
is imprimitive. If we are assuming that G cannot be represented non-
trivially on fewer than n = |Q| points, then G* cannot have a set of impri-
mitivity with more than (n— 1)/2 elements. Let B = {E; |1 < i < b} be
a non-trivial system of imprimitivity for G*. Let 4; denote the union
of the elements in E; and let &, be the undirected graph (4;, E). (2, B) is
a block design, where a point a is incident to E; if and only if a ¢ 4.
(It is possible to have 4; = 4; with i £]j.) Let », b, k, r, 2 be the para-
meters of this block design. The graphs &, are all isomorphic and the
automorphism group of any one of them is trandtive on vertices and edges.
Thus there is a positive integer d such that each vertex of @), is connected
to exactly d other vertices. The integers », b, k, r, I, d will be called the
parameters of the system of imprimitivity B.

THEOREM 3.4. The parameters of a system of imprimitivity B for G* satisfy
thefollowing conditions:

(1) bk = ro,

(2) r(k-1) = Xov—1),

(3) dk is even and bdk = v(p— 1),
(4) rd = w-I,

(5) dA = k-I.

Proof. Let B = {E;|] < i = b} and let ¢; be as defined above. (1) and
(2) follow from the fact that (€2, B) is a block design. Since @; has k vertices
and each vertex is connected to d other vertices, lEi[ = dk/2. Therefore

| 0* =vw—1)2=b|E =bdk/2,

bdk = »(v— 1).

(4) follows from (1) and (3). Findly (2) and (4) imply (5).
We now prove an analogue of Theorems 17.4 and 17.5 of [16].
THEOREM 3.5. Let G be doubly transitive on £, let a and g be distinct points
of Q, and let the orbits of G,; be {a} = A, {f} = s, 43, .. ., A, Set

n; =|4;)and suppose 1 = ny=ns < my<... <n,. Then at least one of
the following holds:

or
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(1) if 3=i=<t then ny=<ngn_1and (n,n,) + 1,

(2) there exists a non-trivial system of imprimitivity for G* for which
d=1,

(3) G is sharply doubly transitive.

Proof. If n, =1, then G is sharply doubly transitive. If #,> 1 and n3 =1,
then by Theorem 3.1 G is an automorphism group of a non-trivial block

design with A = 1. If ¢y, . . ., 9, are the blocks of this design, then
{yf, . . ., i} is anontrivial system of imprimitivity for G* for which
d=|v|-1=2 Thus we may assume n; = 2 for i = 3. Suppose there exists

an i = 3 such that (n; n,) = 1. For any two distinct points y and é of Q let
I'(y, 8) denote the union of those orbits of G,; with length n,. Clearly
I'(y, 0) = I'(6, ). Now choose y ¢ 4,. From the proof of Theorem 17.5
of [16] applied to G, we see that I'(«, 8) = I'(a, ¥). Thus we can obtain
a non-trivial equivalence relation ~ on Q* by defining {y, 8} ~ {&, )
if and only if I'(yp, 6) = I'(s, ). The equivalence classes of ~ form a
non-trivial system of imprimitivity for G* for whichd = n; = 2. If thereis
an i = 3 such that »; > nan;_;, we define I'(y, 6) to be the union of dl
orbits of G,, with length at least »;. If 9 € A3, then by the proof of Theorem
17.4 of [16] applied to G, I'(x, B) = I'(«, ¥) and we can proceed as before.

THEOREM 3.6. Let v, b, k, r, I, d be the parameters of a non-trivial system
of imprimitivity of G*. Any one of the following implies that G is sharply
doubly transitive or an automorphism group of a non-trivial block design
for which A= 1:

(1) d=2

2)d=1landk = v—1,

(3)d=1, k=6, and visodd.

Proof. We shall show that if any one of the conditions (1), (2), or (3)
holds, then, for any two distinct points a and g of Q, G,, fixes at least 3
points. It will follow by Theorem 3.1 that G is sharply doubly transitive
or an automorphism group of a non-trivial block design with 4 = 1. Let
B ={E |1 =i < b} be the system of imprimitivity for G* and let the
graphs @); be defined as before. Suppose first that d = 2. Givena + f
there exists a unique y + 8 such that {a, f} and {a, y} are edges of the
same . Therefore G, fixes y. Suppose now that d = 1 and k = v- 1.
Then b = » and for each a ¢ Q there is a unique @, such that a is not a
vertex of ;. Given g + a, G,, must fix the unique point y such that {8, y}
is an edge of &, Findly, suppose d =1 and k = 6. Then k =4 or 6.
If k=4, let E; ={{a B}, {y, S}}. G, maps {y, &} into itself and if G
is not an automorphism group of a block design for which 1 = 1, then
G,; is a 2-group. If in addition v is odd, then G,; must fix a third point.
A similar argument takes care of the case k = 6.

THEOREM 3.7. Let G be doubly transitive on £, let a and 8 be distinct
points of €2, and let H be the subgroup of G mapping {a, f} into itself. If G,
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has a set of imprimitivity on Q—{«} of length m = 2, then H has an orbit
of length less than or equal tom — 1 on @ - {«, S}.
Proof. Let 4 be a set of imprimitivity of G, with |[4] = m. Let

A={(, {8, &) |6+e 3I9g¢Gsuchthat y# =aand {5, ejf < 4}.
A simple computation shows that
A = In(n—i)(m- 1),

If welet I'={y| (y,{a B) € A}, then I' = m 1land I' is mapped
into itself by H.

If in Theorem 3.7 m =< 4 and G* is primitive, then it follows from
Theorem 2.1 and the remark following it that G is abstractly a “known”
group.

The results of this section seem to indicate that at least for low degrees
most doubly transitive groups which are not doubly primitive will be sharply
doubly transitive or automorphism groups of block designs with } = 1.
The sharply doubly transitive groups are known. The question of which
block designs with 2 = 1 have doubly transitive .automorphism groups is
till open. It is known that projective planes with doubly transitive groups
are Desarguesian. Also, Hall [5] and Fischer [3] have made some progress
in the case of Steiner triple systems.

4. A computer program. In this section we present a short description of
a computer program for determining the order and some of the structure
of the group generated by a given set of permutations. Before describing
the program itself, however, it is necessary to discuss the method to be
used for storing a permutation group G in the computer. There are three
basic requirements which such a method should satisfy:

(1) it should be efficient with respect to storage,

(2) given a permutation h it should be easy to determine whether or

not hisin G,
(3) it is should be possible to run through the elements of G one at a
time without repetitions.
One method satisfying all of these conditions will now be presented.

Let G be a permutation group on 2 = {L, ..., n}. Let G® = G and
for 1 <i=n-1let GV be the subgroup of G fixing 1, 2, . . ., i. Let j
be a system of right coset representatives for G& in G¢-1,1 < i <n- 1.
Define

m =| Uy = |G¢-: GO,

n; is the length of the orbit 4 of G¢—D containing i and for each j ¢ A there
is a unique element in U; taking i to j. Also

n—1
|Gl - Il
i=1
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and every element of G has a unique representation of the form
8n—18n—2+.. 81,

where g; £ U;. We shal store the group G by storing the permutations in
each of the U,. The total number of permutations stored is

n—=1
L, mi< nlnt )2,

Thus the storage space required to store an arbitrary permutation group
of degree »n grows as 3. By “packing” more than one integer into a com-
puter word, one can easily store a group of degree 50 on any of the large
computers available today. Because of the canonical form described above,
it is easy to run through the elements of G one at a time. Also, suppose
we are given a permutation h on £ and we wish to find .out if h isin G.
A necessary condition that h € G is that there exists g1 € U; such that Ag;?
fixes 1. Similaly there must be a g2 € U, such that hgylgyt fixes 2. Continu-
ing in this manner we either arrive at elements g; € U; such that
hgi'gst. .. g =1

and so

h=gn18n—2...81€G,
or his not in G.

Permutation groups are not usually given by sets U; and so we need a
program that will construct sets U; for the group G generated by a set X
of permutations. Given X it is easy to construct U,. If for any g ¢ G we
denote by ¢(g) the representative in Uy for the coset G®g, then, by Lemmas
7.2.2 of [4], GV is generated by

X, = {ux¢p(ux)~tu € Uy, x ¢ X}.

Continuing in this manner we can obtain generators for each of the
subgroups G and construct sets U; of coset representatives. There is one
difficulty which must be overcome. In genera the set X; will be much
larger than X. Unless some care is exercised, the sets of generators can
grow so large as to be unmanageable. This can be avoided by not con-
structing all the generators of G® at one time, but rather as soon as a new

generator for G® has been obtained, using it to construct new elements
inU;,; and new generators for GU+D Also, whenever one of the elements
ux¢(ux)~' is computed, the process described above should be used to
determine ifit can be expressed in terms of the coset representative aready
constructed and is therefore redundant.

A computer program of the type described has been written for the IBM
7040 at Rutgers. In its present form it can handle any group of degree 50
or less and can be of some use up to degree 127. Problem 5 on page 83 of
[4] can be done in dightly over a minute.

5. The primitive groups of degree not exceeding 20. In this section we
provide a list of the 129 primitive groups of degrees 2 to 20. The information
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Degree

we

10

e 1. The Primitive Groups of Degree not

No.

e
LD T AR WN — 2 0 © PO I R®N— N dwhNe— Ut @R — R WRN — O R WN — NN

Order

168
2520
5040

56

168

168

336
1344

20160
40320
36
72
72
72

144

216

432

504
1512
2-9!

9!
60

120

360

720

720

720
1440

Charles C. Sims

t N
2 —_—
3 3Gl
2P e.a.
4 e.a.
5G1
2 5GI
3P| -
5 5G4
2P| —
3 6G1
4p | =
6 6G3
7GI
7GI
2 7GI
2 —
Sp| -
7 7G6
P | ea.
2P e.a.
2P [ =
3 8G3
3 e.a.
6p| —
8 8G6
e.a.
e.a.
2 e.a.
2 e.a.
2 e.a.
2 e.a.
2 e.a.
3P -
3p | 9G8
7P o
9 9G10
10G1
2P| =
2p | 1063
3 | 10G3
3 | 10G3
3| 1063

exceeding 20
G, Generators + Comments
- | S,
Ag
2GlI w— | S
3G1 A,
3G2 | Ss
as
as, bg
as by -
4Gl A;
4G2 —|Ss
5G2 | as, b}, as PSL(2,5)
5G3 | a5, b;, ag — | PGL(2, 5)
5G4 Ag
5G5 —_| s
a,
Gy, bg =
aq, b3
ay, b7 —
A5 C; PSL(3, 2)
6G3 4,
6G4 —| s,
7GI | a4, @
1G3 | a,, b%, ag
7G3 | a,, b3, d, PSL(2, 7)
1G4 | a,, by, dy -— | PGL(2, 7)
165 | a, ¢, 04
7G6 4g
767 — | S
as’ C%
ay, Cg, dQ -
dg; Ca -
Qy, Cg, ngg
ay, Cg, dy —
ay, 3, &
g, €95 & -
8GI | ay, ag, fy PSL(2, 8)
8G2 | aq, b, ag, fs
8G6 4,
8G7 -5
a%m Dyo As
410, Y10 — |5
9G1 | ay, cf, €10 PSL(2,9)
9G2 | ay, ¢}, dy, €19 — | Ss
9G3 ay, Cg, C1g PGL(Z, 9)
9G4 dq, Cy, ngsy €10
9GS | ay, g dy, €10 —

Degree | NO.
8

9

11 1
2

3

4

5

6

7

8

12 1
2

3

4

5

6

13 1
2

3

4

5

6

7

8

9

14 1
2

3

4

15 1
2

3

4

5

6

16 1
2

3

4

5

6

7
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-10!
10!
11
22
55
110
660
7920
111
I
660
1320
7920
5040

-121
121
13
26
39
52
78
156
5616
13!
13
1092
2184
14!
14!
360
720
2520
0160
=151
15!

160
240
288
320
480
576

10p

TasLe 1 (continued)

N

10G8

1161
11G1
1161

1nG7
1261

12G3

136Gl

13G1
13G1
136G1
13G1

136t
1461
14_G5
15G1

15G:
e.a.
e.a.
e.a.
e.a.
€.a.
e.a.
e.a.

Gy

9G10
9611

10G1
10G6
10G8
1069
11G3
1G4
1G5
11G6

nG7
11G8

12G5
12G6
13G5
13G6
13G8
1369

14G3
14G4
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Generators + Comments
A
- | Sw
a1
a11s bil -
ay, bi,
ay3, by -~
@y, big> €11 PSL(2, 11)
ay, c3, cyd;, C10, dyy 1t
Al
— |51
Q11 b%l’ alz PSL(29 11)
ay1, by, M2 m= | PGL(2, 11)
afg, bigs €115 D12 My,
as;d‘f'g, Colys Cyps M.
115 €12
A,
- | Sp
13
ays, by,
813, biz
a3, b5 —
a3, bis
a3, byg -
13, €13 PSL(3, 3)

ays b2, ay
ays by, a1

ays, by
35, C15
155 415
15 €15

Q15: Gy

sz, 15, g

a15€15 Aig

byss Ayes fros &6
a5, Ay €15

1515 Q160 €ig

b1ss B1e fres Br6fae

13

13
PSL(2, 13)
PGL(2, 13)
Al‘

S14

-46
S

4;
PSL(4, 2)
A 15

815

[continued on p. 1807
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TasLe 1 (continued)
Degre | No. Order t N G, Generators + Comments
16 $ 576 e.a. bys, Q14 Jiss G160
1681616
9 960 e.a. Q15 Q1g> 118
10 960 2 e.a. A15€15, A16s €16
11 960 2 e.a. Qg5 Aygs T1g
12 1152 e.a bisy G165 fier £160
16
13 1920 e.a. Ays, 165 J1a
14 1920 2 e.a. Q15 Args Kig
15 2880, 2 e.a. A15€15, G165 T g
16 5760 2 e.a. Q15815 Ags Kyg
17 5760 2p | ea. | 15GI | @y bysy @6
18 11520 2p e.a. | 15G2 | ays, €45, a6
19 | 40329 3 ea. | 15G3 | by., dy;, ay,
20 |22560| 3 | ea. | 15G4| dy;, es are
21 2-16! 14p | — | 15G5 Al
22 16! 16 | 6G21 | 15G6 — | S5
17 1 17 — ay,
2 34 17G1 a4, b},
3 68 17G1 ay,, b,
4 136 1761 ag,, b3,
5 272 2 | 17G1 ayq Diy —_
6 4080 3 — | 16G3 | 915815, Qe €17 PSL(2, 16)
7 8160 3 | 17G6 | 16G6 | ajseys, arg, €3gs €12
8 | 163290 3 | 17G6 [16GIC| ayseys, dues €165 €15
9 | 17 15p | = |16G21 Ay
10 17! 17 | 17G9 |16622 — | 517
18 1 2448 2p | — | 17G4 | ay,, bl ayg PSL2, 17)
2 4896 3 18G1 | 17G5 | ayy, by,, ayg w— | PGL(2, 17)
3 | 3181 16p | — | 17G9 A1g
4 18!| 18 | 18G3 |17GIC - | S
19 1 19 — ayy
2 38 19G1 Gy, b3 —_
3 57 19G1 54, bSy
4 114 19G1 ayy, biy —
5 171 19G1 ayq, biy
6 342 2 | 19G1 Ayq, Dig -—
7 |19 — | 18G3 Aig
8 19! 19 | 19G7 | 18G4 e | Sig
20 ! 34200 2p | — | 19G5 | ay, bl as, PSL(2,19)
2 6840 3 | 20G1 | 19G6 | ayg, big, a0 — | PGL(2, 19)
3 1.20! 18p | — | 19GT7 Aszq
4 201 20 | 20G3 | 19G8 — | S20

Computational methods for permutation groups

TaBLE 2. Generating Permutations

181

Degred

10

11

12

13

14
15

Permutations

a=(1,2,3,4,5)
b=(1)Q23 5,4

(
a=(»1,6)(2) 3,4 )

1,2,3,4,5,6,7)
1) @2,4,3,75,6
D@23 47 66

(1,8 (2,4 G. 7 (5, 6)
(1,4) 2,8 3,5) 6,7
1,7) (2,5 G, 8) (46
1,827 G466

(1,2,3)(4,5,6) (7,8
1,4, D@5 83,6
)(2,6,4,9 3,8, 7,
NDEG GG 69
)@2.4,93,7, 5 ©)(8)
) 2,7 3,6 4.3 6,9

Qo on

9)
9

-

LU L T T TR

e Qe o

a=1{,8) (2,56 3 409, 7, 10)
b=(,57) @9 4) (3, s, 10) ()
c= 1,100 Q2 B) &7 G, 6) (8,9

@=(1,2,3,4,5,6,7, 8,09, 10, 11)
bh=(1)(2, 3,5 9,6, 11, 10, 8, 4, 7)
¢ = (1,11) 2, 7) 3, 5) 4, 6) (8) (9) (10)
d=1) Q@048 G6,96 7 10,11

a=(1,12) 2,11) 3, 6 @, 8) (5, 9) (7, 10)
b=M0L25G,6@ 7 ® qod1,12)
c=(1)@2 B)@4,7) (5,8 (6,9) (10) (11, 12)

a=(1,23,4,5,6, 78,9, 10, 11, 12, 13)
b=(1) (2 3,5, 09, 4,7, 13, 12, 10, 6, 11, 8)
c=(1) 2,3 @G 10) 6) 7, 11)(8) (9, 12) 13)

a=(1,14) 2, 13) 3, 7) (4,5) (6) (8,12) (9) (10, 11)

(1, 15, 7, 5, 12) (2, 9, 13, 14, 8) (3, 6, 10, 11, 4)
(1, 4,5) (2,8, 10) (3, 12, 15) (6, 13, 11) (7, 9, 14)
,7) 2,11) 3,12) (4,13) (5, 10) (5) (8, 14) (9) (15)
1,9, 5, 14, 13, 2, 6) (3, 15, 4, 7, 8, 12, 11) (10)

DA O

(1, 3,2) (4, 8, 12) (5, 11, 14) (6, 9, 15) (7, 10, 13)

[continued on p. 1827
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TasLe 2 (continued)

Degee Permutations

16 |a=(1 16) (2, 3) (4,5) (6, 7) (8, 9) (10, 11) (12, 13) (14, 15)
=(1,3) (2, 16) (4, 6) (5, 7) (8, 10) (9, 11) (12, 14) (13, 15)
(1,5) (2, 6) (3, 7) (4, 16) (8, 12) (9, 13) (10, 14) (11, 15)
(1,9) (2, 10) (3, 11) (4, 12) (5, 13) (6, 14) (7, 15) (8, 16)

(1, 12,7,5) (2, 4,13, 11) (3, 8, 10, 14) (6, 9) (15) (16)
(1,3,2) (4, 12, 8) (5, 15, 10) (6, 13, 11) (7, 14, 9) (16)

(1) (2,3) @) 5) (6, 7) (8, 12) (9, 13) (10, 15) (11, 14) (16)
1 15 @ 12) (3) @ 10 (5) (6) (7, 9) (8) (11) (13) (14) (16)
1, 7) (2, 120 (3,11 (4, 100 (5, 13) (&) (8) (9, 15 (14) (16)
1 14 2 13 (3) @ 1) (5 (6) (7, 8) (9) (10) (12) (15) (16)
1, 3)(2) (4, 8) (5,11 (6, 10) (7,9) (12) (13, 15) (14) (16)

(1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17)
M) @ 4, 10, 11, 14, 6, 16, 12, 17, 15, 9, 8513, 3, 7)
1) (2,3) (4,9) (5, 7) (6, 8) (10, 14) (11, 13) (12, 15) (16, 17)

18 |a=(1,18) (2) (3 10) (4, 7) (5 14) (6, 8) (9, 16) (11, 13) (12, 15) (17)

19 1a=(1,2734,5,6,7,8,9 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
b=() (23,5917, 14, 8, 15, 10, 19, 18, 16, 12, 4, 7, 13, 6, 11)

b
c
d
e
f
9
h

R

17

O T o
Iy

20 |a=(1,20) (2 19) (3, 10) (4, 7) (5, 15) (6, 16) (8, 9) (11, 18) (12, 13) (14, 17)

is given in the form of two tables. In Table 1 the groups are listed together
with some facts about them. In Table 2 we give the generators for these
groups which are referred to in Table 1. The groups in Table 1 are listed
by degree and for a fixed degree by order. Beyond this the numbering is
arbitrary. The order of the group is listed as is the transitivity ¢, whenever
t = 1. If the group is t-fold primitive, this fact is indicated by the letter p
following the trangitivity. Generating permutations are given for al groups
except the alternating and symmetric groups of each degree. The entries
in this column refer to permutations in Table 2. For example, a, denotes the
first permutation listed under degree 7 in Table 2. No attempt has been
made to give generating sets with the fewest possible elements. Permuta-
tions in Table 2 should be considered defined on and fixing al integers
greater than the degree under which they are listed. A minus sign (-) in
the column headed + indicates that the group contains odd permutations.
Whenever the group G is doubly primitive so that the subgroup G, fixing
the last integer on which G acts is a primitive group of degree n— 1, this
subgroup G, is given. The symbol 6G3, for example, refers to the third
group of degree 6. In all cases @G, is the actual group listed and not just
permutation isomorphic to it. Any primitive group G of degree n < 60
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has a unique minimal norma subgroup N. If # =< 20, then N is simple
and primitive or elementary abelian. If N is primitive, it is listed, with a
dash (-) indicating that N = G. The letters e.a. mean that N is elementary
abelian and imprimitive. We note that for groups 1, 2, and 5 of degree
8 N = (a, by, cs), for groups 1 to 7 of degree 9 N = (qy, by), and
for groups 1 to 20 of degree 16 N = {azs, b1s, €16, dis). Whenever the
group is abstractly isomorphic to a member of one of the families of groups
A, S,, PSL(n, g), PGL (n, g), thisfact is noted in the last column. In those
cases involving the groups As = PSL(2, 4) = PSL(2,5), S5 = PGL(2, 5),
PSL (2, 7) = PSL (3, 2), As2 PSL (2, 9) and 43 = PSL (4, 2), only one
of the two or three possible designations is listed.

Great care has been taken to ensure the accuracy of these tables. However,
the author would appreciate being informed of any errors that may be
found.

REFERENCES

1 E R Benner: Primitive groups with a determination of the primitive groups of
degree 20. Amer. J. Math. 34 (1912), 1-20.

2. H. BurckHARDT and H. VoaT: Sur les groupes discontinues: Groupes de substitu-
tions. Encyclopédie des sciences mathématiques pures & appliquées, Edition Fran-
caise. Algebre, Tome I, Vol. | (Arithmétique), Chapter I, § 8 (1909).

3. B. FiscHer Eine Kennzeichnung der symmetrischen Gruppen vom Grade 6 and 7.
Math. Z. 95 (1967), 288-298.

4. M. Ha: The Theory of Groups (New York: The Macmillan Company, 1959 ).

5. M. HALL: Automorphisms of Steiner triple systems. Proc. of the Symp. in Pure
Math. 6 (1962), 47-66.

6. M. Ha: Block designs. Applied Combinatorial Mathematics 369-405. (New York
John Wiley & Sons, 1964).

7. D. G. Hoeman: Intersection matrices for finite permutation groups. J. Algebra 6
(1967), 22-42.

8 T. C. Howoke: On the structure of multiply transitive permutation groups. Amer.
J. Math. 74 (1952), 787-796.

9. D. R. HugHes: On t-designs and groups. Amer. J. Math. 87 (1965), 761-778.

10. D. R HucHes: Extensions of designs and groups: projective, symplectic and certain
affine groups. Math. Z. 89 (1965), 199-205.

11. W. A. MANNING: Primitive Groups, Part | (Math. and Astron., VVol. I) (Stanford:
Stanford Univ. Press, 1921).

12 G. A Muier Collected Works, Vol. | (Urbana:  University of Illinois Press, 1935).

13. E. T. Parker and P. J. NikoLAl: A search for analogues of the Mathieu groups.
Math. Tables Aids Comput. 12 (1958), 3843.

14. E T. Parxer and K. I. AppeL: On unsolvable groups of degreep = 49+ 1, p and q
primes. Canad. J. Math. 19 (1967), 583-589.

15. C. C. Swms: Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.

16. H. WieLANDT: Finite Permutation Groups (New York: Academic Press, 1964).

17. W. J. WonG: Determination of a class of primitive permutation groups. Math. Z.
99 (1967), 235-246.

CPA 13



An algorithm related to the restricted Burnside
group of prime exponent

E. KrRausE and K. WESTON

Introduction. Denote the freest Lie ring of characteristic ¢ on n generators
satisfying the mth Engel condition by L{e, n, m).

It is a long-standing conjecture, probably introduced by Sanov, that the
Restricted Burnside Problem for prime exponentp is equivalent to the prob-
lem of nilpotency for L(p, n, p- 1). In this report we discuss a general algo-
rithm for Lie rings which analogously to the collection process yields
L(p, m, m) (m=<p) as the latter yields R(p, n). This algorithm is not only
more practical but can be readily used with a computer. For instance we
applied the algorithm aided by a Univac 1107 computer for p = 5, n = 2,
m = 4, and found L(5, 2, 4) [1].

An associated matrix algebra of a Lie algebra. Suppose L is a Lie adgebra
over afield F spanned by elements 8 = {my, . . . , my} and Mgy, isthe
F-space of %k 1 column matrices over F. Define the coordinate mapping
fo: L = My, by fy(m) = column of coordinates of m ¢ L with respect to
some linear combination of B (i.e. if § is not a bads, fg(m) requires a choice
between al of the linear combinations of . In this case any fixed choiceis
sufficient for m). If Tis a linear operator of L let M,(T) designate the matrix
whose ith column is f3(T(m;)). Also denote the inner derivation of 7 € L by
g(D). Then the associated F-algebra A4g of L consists of elements from My,
under ordinary matrix addition and multiplication is defined by

C1®c2 = Mﬂ(g(fﬂ—l(cz))x €1, C1s CzeAﬁ (l)

(X denotes matrix multiplication).

The following theorems are easily verified.
basTHEOREM 1. f; is an isomorphism between L and A; if and only if  is a

S

THEOREM 2. If L(p, n, m)/L¥(p, n, m) is spanned by B = {m;, . . ., mg}
modulo L¥ (p,n,m) then A, is a Lie algebra over GF(p) on n generators satis-
fying the mth Engel condition if and only if

4p = L(p, n, m)[LX(p, n, m).

The associated algebra of a finitdy generated Lie algebra. If L is a Lie
algebra with generators xy, . . . , X, Spanned by monomials 8 = {m, . .
13 1
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myY, mp = myX1, . . ., X,), We show here an easy method to calculate A,
from the matrices My(g(x1)), - - - My(g(x,)).
If 44, . ... A isthe natural basis for A, then by (1)

A ® Ay = My(g(m))) X 4;

(i.e. 4® 4 =the jth column of AM(g(m;))). Thus a multiplication table
for A, is easily calculated by observing the columns of the matrices
My(g(my)), . . o Mp(g(my)). N _ _

Because of our convention of writing operators on the left, the inner deri-
vation g is a Lie anti-homomorphism of L into the algebra of linear opera-
tors :
gle-m) = [g(m), g(e)] = = [g(e), g(m)], e, m EL, where [T, §] = TS— ST,
S, T linear operators. Also My(g(e-m)) = [M,(g(m)), Mx(g(e))] or more
generaly

My(g(es, ., ., e)) =(=1)*[Mp(g(er), Mp(gles), . . ., Mylgle;)].  (2)

Consequently (2) affords a simple formula for calculating Mj(g(m)),
i= 1,..., kfromthe matrices My(g(x1), - - ., My(g(x,).

Therefore, with restrictions on the size of k of course, one can use a com-
puter to calculate and even print the multiplication table of A, given the
matrices Mp(g(x1)); . . ., Mp(g(x,)).

Algorithm for L(p, n, m) (m < p). Designate L(p, n, m) by L; since
m<p, L(p, n, m) is nilpotent of dass ¢ [2]. We wish to use Theorams 1 ad 2
to dtemine abeds f for L/I* (k =1,2, ..., c) fromthebesesof L/L2,. . .,
L¥~%/L¥-1 Therefore A, = L/L* by Theorem 1.

Suppose L is generated by x4, . . ., x, and L*/[**1(a= 1, ..., X- ])
has a basis consisting of monomials §, = {m, y+L**., ..., m,; +L**1}
m, j=my ; (xX1,. .., X,). Next select any set of monomials
Bey={me_s +1x, L omeea g L5y g = g, (X Xa)

which span Lk~ For example f,_; could consist of all of the
monomials with k- 1 factors. Then L/L¥ is spanned by

/3 = {m1,1+L", ..., g, j1+Lk, ..... mk_1,1+L", Ly mk_l’jk_l-*—Lk}
and # congtitutes a basis if and only if §,_; isabasis. Thusif A, isalie
algebra over GF(p) on n generators satisfying the mth Engel condition,
then 4, L/L* by Theorem 2. Hence, by Theorem |, f is abasis, which in
turn implies that 3,_; isabasis. If A, failsto satisfy any of the above con-
ditions, §,_; must be a set of dependent vectors. Thus we have to select a
proper subset spanning L*—1/L* and repeat the process.

This process of coue only dfods us a dhek whetha a beds hes bemn
found for L¥-1/L* and does not actually calculate one except by trial and
error. The use of a computer to calculate A, has aready been mentioned.
A computer may be used also to scan the multiplication table of A, and
determine which of the conditions of Theorem 2 are fulfilled by A,. A pro-
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gram for determining whether A, is a Lie algebra on n generators satisfying
the mth Engel condition is on file in the Computing Science Library of the
University of Notre Dame.
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A module-theoretic computation related to the
Burnside problem

A. L. TRTTER

ALTHoucH the Burnside conjecture is known to be true for exponent 4
(i.e. dthough it is known that finitely generated groups of exponent 4 are
finite), we cannot usefully say that the Burnside problem is seftled, even in
this case. For instance, a sharp bound on the order of B(4, n) would be
valuable, and there are perhaps other questions that arise in consideration
of the Burnside problen whose answers would be of interest.

1. Introductory considerations. Defining the lower central series {G}
and the derived series {G@} of a group G in the usud way :

Gl = G’ Gi+1 = [Gia G],
GO = G, Gi+D = [GO, GO,

where [H, K] (H& G, K& G, G a group) is the least subgroup of G contain-
ing all commutators h~1k-thk (h¢ H, k€ K), we know that, for every
group G and for every natura number n, GWC G,.. But we can deduce
from aresult of C. R. B. Wright [1] that, when G is of exponent 4, any
inclusion GNC G, not predicted from this elementary result (i.e. with
27<s) must lead to a bound for the derived length of G. If we choose
G = B, 8) and n = 3, what we are saying is this:

(i) we know G® C Gg to be true,

(i) if we could show G®C Gy we could bound the derived length of

every group of exponent 4.

The bound would be applicable to al groups of exponent 4 because of the
natural homomorphisms to groups of exponent 4 on fewer than 8 genera-
tors and the fact that, for any group G, G® is generated modulo Gy by com-
mutators of the form

[[[ao, ab], [02, 03]], [[04’ 05], [aﬁ’ a7]]]’

where the a, are among the generators of G, so that no more than § digtinct
generators of G could be present in any one of these commutators. We wish,
therefore, to show that:

189
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With G = B(4, 8) generated by go, gy, . . ., g7, the commutator
[l[g0, &1 [g2 &3]l [[g4 g5, (g6 £2]1]

lies in G® modulo commutators of order higher than 8.

It is sufficient to place this one commutator, since both G® and G, are
plainly Se-modules (Ss acting by permuting the g;), and commutators of the
same apparent form, but in which not al generators which appear are dis-
tinct, can be taken to be homomorphic images of commutators of this form
with al generators distinct.

Professor G. Higman, to whom | am indebted for this problem, has
shown [2] that this group-theoretic question is equivalent to the following
module-theoretic question (which arises upon examination of the associ-
ated Lie ring of G):

In the free Lie ring of characteristic 2 on 8 generators xg, xi, X2, - - . X7
we consider the element ) xg x1, xo, - - - X7, (Multiplications to be per-

formed from left to right;, where the o are precisely those permutations

(there are 1312 such) on the integers 1, 2, . . ., 7 for which (i+ 1)o< io for
no more than two values of i.
Letting Sy act by permuting the integers 0, 1, 2, . . ., 7 occurring in the

subscripts on the x;, we generate an Sg-module from this one element,
and we then close this Sg-module under addition (in the ring), yielding
an additive Sg-module.

Question-does the element (((xox1)(xax3))((xaxs5)(Xex7))) lie in this
additive Sg-module ?

This paper is concerned with the use of the I.C. T. Atlas, located at Chilton,
Berkshire, and sponsored by the Atlas Computer Laboratory of the U.K.
Science Research Council, to answer this question.

2. General approach. To search for an element in a finite additive module
(and this one has no more than 2% elements) is a task most straightfor-
wardly accomplished by representing the module as a finite-dimensiona
vector space, obtaining a basis, and seeing whether the “target” element is
linearly dependent upon this basis. It is clear that al the ring elements which
interest us, whether target or “data’, are balanced homogeneous elements
of weight 8; it is therefore true that the space they span lies within that
generated by all the balanced homogeneous elements of weight 8, equiva
lently by the left normed monomials in which the x; appear once each. The
5040 balanced left-normed Lie monomials of weight 8 with x, appearing
first are known on Lie ring-theoretic grounds to be linearly independent
and to generate (additively) al these monomials, and hence any element of
that part of the ring on which our attention is focused has a unique expres-
sionas a sum of terms drawn from among them; this expression may be
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found by repeated application of the second and third of the “Jacobi iden-
tities” appearing in the customary definition of a Liering :

(iaa=0 for al elements a
(ii) ab+ba =0 for al elements a and b
(iii) a(bc) + b(ca) + c(ab)= 0  for al elements a, b and c.

Thus, our problem splits into two parts in a completely natural way. We
must, first, represent the data by a matrix, 8! by 7!, over the fidd with 2 ele-
ments (each row giving the expression of a single data element in terms of
the balanced left-normed Lie monomials of weight 8 with x, at the far left),
and, second, triangularize this matrix, meanwhile searching for proof that
the target vector is, or is not, representable as a sum of rows of the matrix.

We observe that, as representations are unique, no question can arise as
to whether we shal recognize the target when we see it, and that the one ring
element from which al other data elements are generated actually arisesin
the form desired, namely as a sum of (13 12) balanced left-normed Lie mono-
mials of weight 8, with xo appearing first in each term. Henceforward, we
reserve the word “term” for this rather special sort of term, a balanced |eft-
normed Lie monomial of weight 8 on the letters x,, x1, x2, . - ., x7, With
X0 appearing at the far |eft.

3. Generating the matrix. The module appearing in the quesion we are
dealing with has been embedded in the vector space of dimension 7! over
GF(2) and is therefore of dimension no more than 7!, and the addition of
the vector space is the ring-addition. But the second operation (upon terms)
with which we are concerned is not the second ring operation, Lie multi-
plication, but is rather that operation upon terms induced by permuting the
ring generators xg, X1, X2,..., X7. Now it is self-evident that any permuta-
tion of the generators which fixes x; merely induces a permutation of terms,
but a hand-calculation upon a few examples of the effect of a permutation
of generators not fixing xo will easily convince the reader that the situation
here is not so smple. We therefore choose an 8-cycle R from Sz and repres:
ent every element of Sg as the composition of some power of R with a per-
mutation fixing O (remember, we think of Sg as acting on the subscripts, not
the  generators).

The single generator of the &-module we are producing leads to a total
(including itself) of 8 elements if we construct the R-module it generates,
and these 8 elements generate as & -module the structure we want; here Sz
is the subgroup of S which fixes 0. But the action of §; upon terms is
merely to permute them in the obvious way, and it is therefore the case that,
once we have 8 generators for an &-module instead of only one for an
&-module, the two operations we need are simply the addition and mul-
tiplication of the group ring of S; over GF(2). It is furthermore true that the
full significance for our structure of the Jacobi identities will have been
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expressed in the technique we use to apply the operation on terms induced
by R, in getting from one generator for an &-module to 8 generators for an
ST-module.

To sum up, for reasons of computational simplicity we shall not look
directly at the Sssmodule generated by Y, xox1,%s, - - - X7,, bUt we shall

seeit by looking at the S,-module genera&d by
{2 XomX1oridXgors- . Xnepe| 0 < i < 8},
2]

4. The R-module. There is a natural mapping from the group ring
of Sz over GF(2) onto that part of our Lie ring we have aready termed
interesting, the balanced homogeneous elements of weight 8, induced by

mapping 0 1
2 ...7
(Oto al a2 . . . ac7)

onto the balanced left-normed monomid x, x,x,, . . . x,, clealy of
weight 8, and extending linearly. Also, there is a one-to-one mapping onto
the group ring of §; (the subgroup of S fixing 0) over GF(2) from this same
part of the Lie ring induced in exactly the same way, but requiring the ele-
ment of the Lie ring to have been expressed in its unique form as a sum of
left-normed monomials in which x, appears first. The composition of these
two mappings is a mapping u from the group ring of Ss over GH2) onto
the group ring of §; over GF(2), fully expressing the effect of the Jacobi
identities in this part of the Lie ring. It should be observed that the restric-
tion of u to the group ring of §; (the subgroup of §; fixing 0) over GF2)
is the identity mapping.

It should now be clear that to construct the mapping on terms induced by
R, we need only know how to multiply each element

az(l 2o Th o

A1 Oges . %7

(0 12 . "7)201

0 xy o2 ... Oy

of the group ring of Ss over GF(2), by R, and obtain the image under x in
the result. This, in fact, is precisely what we do. The R we employ (it could
have been any B-cycle) is

(0 1 2...7) . . ifl 0=si<7
; ie. (R = ,
1 2 3...0 0 i=17

The method is as follows. For every x¢ S, thereisaunique k, 0 <k <8,
and a unique z< S, such that xR = R¥z, We regard this relation as defin-
ing two functions k and z of x, and we tabulate these two functions. That
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is, we serially number the elements of S, so that for every g€ S; thereis a
uniqueg, 0 < g < 5040, corresponding to it, and we construct two tables of
5040 entries so that as x varies over S, we have 27-% in the one, and Z in the
other, in the Xth entry. We also construct a table in which appear the R¥u;
in fact, we must multiply Rfu by z in caculating xR- u = Rkz- u =
= Reezu= RF-pz = RFu-z (since multiplication in the group ring is asso-
ciative, and z¢ Sy). As it can be shown that the number of terms occurring
in Rkuis 2% for 0 < k < 8, and as it is clear that ei = e (where e is the
identity of Ss), we give this table 128 entries:

in the Oth, we place e

in the Ist, we place the serial number of the term R7u,

in the 2nd-3rd,  we place the serial numbers of the terms of R8yu,
in the 4th--7th, we place the serial numbers of the terms of RSy,

in the 8th-15th, we place the serial numbers of the terms of Riu,
in the 16th-31st, we place the serial numbers of the terms of R3u,
in the 32nd-63rd, we place the serial numbers of the terms of R2g,
in the 64th-127th, we place the serial numbers of the terms of Ru.

It is now the case that the quantity 27—* (which must at first have appeared
quite artificia) gives not only the length of the block in this table corre-
sponding to R¥, but also where in the table to look for it: the serial numbers
of the terms of R¥u begin at the 27~*th entry and occupy 27-% entries.

It is necessary to explain that we have recorded  in this table in order to
make considerably more efficient the operation of multiplying by z. The
problem is that, as will be more fully explored below, we do not know how
to right-multiply an element of the group ring (from now on, of S; over
GF(2), represented as a sequence of seria numbers unambiguously delimit-
ed) by an arbitrary element of S,; what we do know how to do is to right-
multiply by each element of §; in turn, without having any idea of which is
which, nor of the order in which they appear (to be sure, without repetitions
or omissions). We have, therefore, retained & so that, when the entries in this
128-entry table are modified so as to represent the effect of right-multiply-
ing them all by a specific but unknown element of S, we can look at the
Oth entry to find the effect of the multiplication upon the identity element
of the group, and hence to find by what element we have multiplied; if we
are applying the operation on terms induced by R to an element of the
group ring in which the term x appears, and if xR = R¥z, and if the Oth
entry is z, then the block of entries starting at the 2?~*th and going on for
27—k entries gives the serial numbers of the terms of xRu.

This method allows us to proceed from each generator of the &-module
to the next, starting with the sole generator of our &-module. After seven
applications of it, we have eight ring elements forming an R-module, and
these generate as S;-module the structure we want.
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5. The &-module. Let the eight ring elements so far constructed be
caled Pg, Py, Py, - - ., Py, in the order in which they were obtained. Then
Py is the generator originaly given for the Sg-module and, if we regard the P,
for the moment as elements of the group ring of S, over GF(2), we have
P; = P;_yRu (0<i<8);the §! rows of our data matrix are seen to be the
elements Pig (0 =i < 8, g¢ §7) of the group ring of §; over GF(2). What we
have till to do to be able to construct this matrix is discover how to mul-
tiply an arbitrary element P of the group ring by an arbitrary element g of the
group; equivaently, since P is represented as a sequence of the serial num-
bers of those elements of S; which appear in it (coefficient 1 rather than 0),
we want to congruct for each g¢ §; a function that will get us from x to xg
for every x€ S;.

This function is, of course, the right regular representation of §,, and
it is most easily displayed as the Cayley table of that group; the table has
(71)2 entries, more than 25 million. Let us look more closely at what we
are actualy obliged to do:

For an element Pof the group ring, which we might as well regard as
arbitrary (of course it is not, but it is about the structure of P that we
hope to learn), we must be able to compute Pg for every g¢ S;, but we
do not care in what order we compute these, nor yet which is which,
just so long as our computation is exhaustive.

Our origind thought was to enumerate S in some way 00, g1, g2, - - - , &5039
and produce successively Pgo, Pg1, Pgs,. . ., Pgsose, UL to right-multiply

an arbitrary P by g; requires the availability of the entire column of the
Cayley table of §, which corresponds to the group element g;, and this
is unmanageable. Suppose, however, that the enumeration {g;} is such
that g;-1g; takes only comparatively few distinct values; then Pg; = Pg;_; x
ghg; can be derived at each step from Pg;_, rather than from P, and
only comparatively few columns (four will suffice) of the Cayley table need
be available.

This enumeration is recognizable as one of the central problems of cam-
panology (bell-ringing: vide infra), and there is an extensive and centur-
ies-old non-mathematical literature about it. There is aso a developing
mathematical literature on the subject [3].

The campanological approach we have actually taken to this problem
uses a composition attributed [4] to John Vicars (most likely date: 1740)
for a full peal of Grandsire Triples; more familiarly, we have taken from
Vicars the specihcation of four elements ho, A1, k4, k3¢ S7 and a function
k:5040—~4 (a sequence ko, k1, k2,. - ., kgosg @l drawn from among 0, 1,2,3)
such that if we put go = A, and g; = g;_sl, (0 < i < 5040), then go, g3,
g3, ..., 8s039 congtitutes an enumeration of §,. The function k and the col-
umns of the Cayley table of $; which correspond to 7#g, k4, hs, hg ae al
computed and stored, making possible the right-multiplications which
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we need for this section; but, as explained above, this multiplication is
also perfectly satisfactory for calculating the R-module beforehand.

Theoretically, then, we have solved the problem of generating the data
matrix; practically, a program having the structure here specified has
been written, debugged, and run on Atlas. It occupies approximately
500 words of store and takes about six minutes to run, but its tables fill
the core store; the part of the program which computes k, the campano-
logical subroutine, takes 43 instructions and 9 words of tables (in machine
code), and runs in a few milliseconds. The program writes the data matrix
onto magnetic tape, and ends by wriiing out a “key block” containing
such information as the target vector and how much of the triangular-
ization (none, at this stage) has already been done.

6. Bell-ringing. To the reader entirely unfamiliar with campanology (as
pursued in England) | can offer no better advice than to entertain himself
reading Dorothy Sayers  delightful detective novel The Nine Tailors [5],
where he will find an enticing introduction to the subject and an adequate
bibliography; when | recognized my problem as possibly campanological
this was the sole source of my own familiarity. | then, however, approached
D. Roaf, of Oxford University, for a tutorial session on mathematical
campanology (something | was not then certain existed), and it is to him
that | must express heartfelt thanks for a more detailed exposition of the
subject.

Broadly, then, let us suppose that we are ringing n bells. We ring them
al, one after the other, in some sequence; thisis called a row of the com-
position. Then we ring another row; the place-permutation (not the let-
ter-permutation) applied to the bells to get from one row to the next is
called a change-hence the term change-ringing. The way in which aringer
memorizes his duty varies a little, but ordinarily he learns the changes
and various sequences (called leads) of 2n changes ; a ringer learning to
conduct will certainly also learn the orbits, or parts of the orbits, of sever-
a bdls, and will be able to give simple rules for the sequencing of leads
in any composition with which he is familiar. But as every ringer must me-
morize all the changes employed, only a few group elements 4; can occur,
and as the rules a conductor learns are smple, the function k must be easy
to calculate.

As to nomenclature, the term Triples signifies that n = 7, and a method
on n bells is a set of A, so that in Grandsire Triples we have seven
bells and four changes (1)(23)(45)(67), (12)(34)(56)(7), (12)(3)(45)(67),
(D(2)(3)(45)(67); a composition is a function k specifying a sequence for
the A;.

7. Triangularizing the matrix. At this stage, our problem is as follows:
given 8! vectors of dimension 7! over GF(2), and one more such vector,
is or is not the one a linear combination of the 40320? In general, such
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a question is most straightforwardly answered by developing a triangular
basis for the space spanned by the row vectors, and “pivoting” each basis
vector in turn “out” of the target vector; if there appears no basis vector
at al to correspond to some non-zero coordinate of the target vector then
the answer is found to be “no”, if the target vector suddenly disappears
then we know the answer is “yes’. Triangularizing a matrix is neither en-
tertaining nor interesting.

When interest is aroused, it is by one or other of the effects that scale
can have on this problem. Most usualy, the interest lies in problems of
loss of significance caused by limitations on the accuracy with which ma-
trix elements can be retained. But our problem is not of this kind; as our
matrix is over a finite field, we necessarily retain absolute accuracy. In-
deed, as the fidd is GF(2), each exact matrix element occupies only one hit in
memory, vector addition is represented by the “exclusive-or” operation,
and multiplication does not arise. In our problem, the sheer immensity
of the data leads to a class of questions concerning the distribution in time
of machine errors.

Once we have said this, we have opened Pandora’s box. When a ma-
thematical “proof” is based in part upon error-preventing, error-detecting,
and error-correcting techniques whose reliability is statistical in character,
the nature of proof is utterly unlike anything David Hilbert might have
recognized as such. But this problem goes far beyond the scope of the
present paper; we shall attempt to discuss it elsewhere. In this paper, we
shall do no more than to look briefly a some of the methods actually
employed in the computer program which makes the calculation.

If the answer to our question is “yes’, if the target vector is a linear com-
bination of the data vectors, then it is found to be so in an explicit way,
and detailed record-keeping along the way should make it possible to say
something like :

The target vector is the sum of such and such basis vectors and, for
each of them, this basis vector is the sum of that data vector and those
earlier basis vectors.

In this case we should have available an effective, and cheap, way of con-
firming that the answer is indeed “yes’.

But suppose the answer to be “no”. Then we are asserting that there
are 28! linear combinations of the data vectors, and that the target vector
is none of them. How can such an assertion be verified, except exhaus-
tively (i.e. by doing it again)? Well, there is one thing available for us to
try-if the matrix actualy yielded 7! basis vectors, there has surely been
an error. But if only a smaller number have appeared, we are on no surer
ground than before.

Let us recapitulate. An affiative answer would be verified if we were
to maintain records from which the “pedigree” of the target vector and
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every basis vector could be determined. A negative answer could be made
marginally more convincing if we knew the rank of the data matrix. But,
in general, to be justified in accepting a negative answer, we must repeat
the entire calculation at least once.

Suppose we do so. And suppose the answer isnow“yes’. What do we do ?
Or suppose the answer is again “no”. How reliable is a single bit? Should
we try again ? Or what?

What, in fact, we do is this. We do, of course, keep the pedigree records,
and we aways know how many basis vectors have been found. But, in
addition, every operation (including the checking operations) is performed
twice, and the results are compared, bit by bit. In a single magnetic tape
pass, the data matrix is read in from two separate files assumed to hold
identical data, and, for so long as that is true, the common value of the
input data is accepted; as wide as possible a section of the data matrix
is processed en passant and the result is written out as adatafile. Then it is
done again; the same two data files are read in and compared a second time,
their common value processed a second time, and the result written out
as a second file which should be identical to the first. These two data
files are the input to the next tape pass, when they will be compared hit
by bit (and each file consists of more than 200 million bits), twice, and so
on. The basis vectors developed on the first run through a pass go onto
an output tape, those from the second onto another, at the time; these
are compared explicitly, twice (of course), after the second time through.
If at any stage a discrepancy is discovered between tapes whose contents
should be identical, elaborate signalling and recovery procedures are auto-
matically put into operation; we shall say no more about these but that
we have available, on a typical tape pass, three sets of tapes, caled A, B,
and C, such that if we are now reading data from B and writing it to C,
then B was written on the previous pass and A was being read on that
pass. That way, if we discover a discrepancy in the B tapes after having
written upon the C tapes, the A tapes (from which B were made, and which
have aready satisfied two bit-by-bit comparisons) are still intact. When
| say that the data matrix occupies a file taking up two reels of tape, you
will see that this program keeps 14 tape drives busy — A, B, C, each 2
reels long, + ! reel output for basis vectors, X2 copies of everything.

A magnetic tape pass takes about 18 minutes from beginning to end,
of which the second half is a repetition of the first; the program can be
interrupted under switch control, with effectively no wastage of machine
time, at any such breakpoint. Another switch will cause the program to
pause at the next breakpoint and await the instruction to interrupt or to
proceed; yet another, inspected by the program three times per second of
elapsed time, says to interrupt at once, discarding anything done since the
last previous breakpoint. Other switches instruct the program whether
to stop or to go on to get the rank of the data matrix in case the answer



198 A. L. Tritter

is found to be “yes’, in case it is found to be “no”, in which of two modes

a continuously monitored visual display is to show progress, and finally
something dlightly peculiar. Suppose that an input discrepancy is found
on, say, a B-C pass. A decision is taken to “back off” and run A - B again.

Now, if this decision is implemented immediately, no new problem arises.
But, suppose as well that we interrupt at this point; then, when we go back
onto the machine to re-run A-B, there is no record anywhere except in
our own minds that it is not possible to back off from this pass (as C is
not the predecessor of A here-it has been dtered on the abortive B-C
pass). The last switch is used to inform the program that thejirst magnetic

tape pass of the present machine run is one from which no back-off is
possible; it is, of course, used on the very first run, as well as in the more
complex situation described above.

One more word about the triangularization. It has been necessary, for
efficiency’s sake, to economize as much as possible on the total time for
which the program occupies Atlas, and this has meant developing a new
triangularization agorithm. This agorithm will be discussed elsewhere,
rather than here. It is a natura modification of existing methods, simply
taking maximal advantage of the fact that the matrix is over a finite field
while, a the same time, using the space outside the upper right triangle
of the matrix, as it is progressively vacated by the triangularization, as the
place to record al the “pedigree” data (there is exactly the necessary
amount of space).

8. Present status. The matrix-generating program is written, debugged,
and run. The triangularization algorithm has been tested by hand, and is
correct. The triangularization program is written and undergoing debug-

ging.
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Some combinatorial and symbol manipulation
programs in group theory

Joun  J.  CANNON

Introduction. Over the past two years computers have been used to
carry out a number of large calculations, of both a numerical and non-
numerical nature, arising out of research in group theory at Sydney.
These problems include :

(i) construction of subgroup lattices;
(ii) investigation of positive quadratic forms;
(iii) determination of the groups of order p®, p > 2;
(iv) construction of counter-examples to Hughes conjecture in group
theory.
Only (i), (iii) and (iv) will be discussed here.

All programs described here have been written in the English Electric
KDF9 Assembly Language, USERCODE.

Subgroup lattices. A program has been written which determines the
generators and relations of all the subgroups of a finite soluble group. The
program finds the subgroups using the same method as Neubiiser [I] with
the difference that as a subgroup of order dis found the generators and
relations of all possible groups of order d are checked through to find a set
of generators and relations for the subgroup. As the program is restricted
to goups of oder less then 400 by mechine conddadions one only nesds
to know al the possible groups of order less than 200, and most of these
are known.

The program reads the generators and relations of the given group and,
using coset enumeration, finds a faithful permutation representation
(possibly the regular representation). The permutation representation is
used to determine the elements of the group and to find its Cayley table,
and is then discarded. At the same time as the group elements are being
found as permutations they are also found as words in the original ab-
stract generators. These n words are stored in an n-word stack so that in-
stead of using either the abstract word or its permutation representation,
one uses the number indicating the position of the group element in this

CPA 14 199
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stack. The Cayley table may then be stored compactly as a Latin square
with several entries stored in a single machine word. In this manner the
multiplication tables of groups of order up to 380 may be kept in-the core
of a 32K machine. Only when group elements are being output is refer-
ence made to the stack of group words.

The user has the option of outputting either the generators and rela-
tions of each subgroup or the elements of the subgroup or both.

So far the program has been run successfully for a number of small groups
(al of order less than 100). Before larger groups can be run more sets of
generators and relations have to be checked and included in the program.

Investigation of groups of order p®, p > 2. R. James has been enumerating
the p-groups of order p% p > 2, checking the work of Easterfield, by the
method of isoclinism.

Isoclinism [2, 3] splits the possible sets of generators and relations into
classes so that all members of a class have the same commutator relations.
The problem then is to find al the non-isomorphic groups within each
isoclinism class.

We may suppose that isomorphism is an automorphism and apply a
general automorphism to a general set of generators and relations (remem-
bering that commutator relations are invariant within an isoclinism class).
This will give rise to a set of relations on the integers mod n, for some n
(obtained by equating indices of each generator before and after the
automorphism). For p-groups, n = p" for some r. These relations can be
expressed as an equivalence relation on a set of matrices over GF(p).
The equivalence classes of these matrices give the non-isomorphic groups
of thisisoclinism class.

Difficulties arise in the determination of a set of equivalence class repre-
sentatives for general p and it is to this problem that a computer has been
applied. Using a computer it is simple to calculate the equivalence classes
and to select a suitable equivalence class representative (an element which
will give the corresponding generators and relations in the simplest possible
form) for each class, for the first few primes. It is then usually easy to
write down a set of equivalence class representatives for general p.

The groups of order p’(p > 2) were checked by this method and the
groups of orderp® (p > 2) are being found.

Hughes’ conjecture and commutator calculations. Consider a group G of
order p® where p is a prime. Take the subgroup H of G generated by the
elements of G having order greater than p. We suppose that G has some
elements whose orders are greater than p. Then Hughes' conjecture is that
Hisof index 1 or pin C. It istrue for p=2, 3.

G. E. Wall has shown that the conjecture is false for p if a certain ex-
pression Eis zero in a Lie agebra generated by two elements of nilpotency
class 2p—1, satisfying the (p - 1)th Engel condition, over GF(p).
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Hand calculations carried out by Wall show that the conjecture is false
for p = 5. As the calculations are extremely long and tedious, it was
decided to develop programs to verify the calculations for p = 5, and to
carry them out for p=7 and 11.

The problem will be considered in four parts:

(1) Determination of a basis for the two-generator free Lie algebra of
nilpotency class 2p - 1.
(2) Determination of a basis of the algebra in (1) with the (p— 1)th
Engel condition imposed.
(3) Calculation of the expression E.
(4) Expression of E in terms of the basis elements found in (2).
These will now be considered in turn.

(1) Let & and n denote the two generators of the algebra. We define the
weight of an arbitrary element of the algebra as follows: The elements &
and n are of weight one. If A = (P, Q) is an element of the agebra, then

weight A = weight P+weight Q.

Basic commutators are next defined together with an ordering (<) on
them. The elements £ and 7 are basic. Under the ordering al basic commu-
tators of weight w come after those of weight w— 1. Ordering is arbitrary
among basic commutators of weight w, but once an ordering is chosen it
must be adhered to. A commutator C = (A, B), A = (P, Q), where A
and B are basic, ishasicif A >Band B= Q.

The elements of weight w form a subgpace  of the agebra and a basis
of this subgpace is provided by the basic commutators of weight w [4].

Given an element of the algebra, (A, B), where A = 24,C;, B = 2uC;,
C;, C' basic, we describe a collection process [5].

(i) Put (4, B) = ZAy; (C;, C).
(ii) If C;and C; are basic, put
@ (C,C)=0 if C: = C;,
®) (Cy C) = = (G, O if ;<G
(©) (Ci’ Cj) = (Cb Cj) if Ci > Cj-
(i) If C; > C; are basic and C; = (P;, @), put
(@ (Ci C) = (P O, C) if C; =0,
(b) (Cx,'Q) = —((@» C), P) +((P; C,)’ Q) if C; < Q..

(iv) Return to (i) and repeat the process until (A, B) is expressed as a
linear combination of basic commutators.

A program has been developed which calculates the basic commutators

14
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of weight w by combining all the basic commutators of weight w- 1 with
£ and u in turn, and applying the collection process.

The basic commutators are placed in a stack as they are formed and so
the order of occurrence of the commutators in this stack gives a suitable
ordering of the basic commutators. Each basic commutator (P, Q) is stored
in the stack as a number pair (p, q), where p is the integer giving the
position of the basic commutator p in the stack and similarly for g.

For the collection process linear combinations of commutators are
dored in a list structure. List elements consst of two consecutive words the
first of which contains the coefficient of the present term and a pointer
to the next term, while the second contains the commutator in the form
((p, 9), r). New list elements may be obtained from a free space list.

When the Jacobi identity is applied to commutators of weight w, one
requires A = (P, Q), P, Q basic, weight A less than w, to be expressed in
terms of basic commutators. So to avoid much recaculation, after al
the basic commutators of weight w have been found, al products of
pars of basc commutators giving linear combinations of basic commutators
of weight w are calculated and entered in a table. It is possible to arrange
the table so that no space is wasted and so that products can be looked up
quickly. In the table commutators are again represented in a list structure,
this time, however, using one word list elements. Each lis element contains
the coefficient of the present term, the number giving the position of the
commutator in the stack of basic commutators, and a pointer giving the
address of the next term.

On a KDF9 with a 16K store, the 2538 basic commutators of weights
equal to or less than 14 were found in 5 minutes. When the store is in-
creased to 32K, the machine will be able to find the 4720 basic commutators
of weights equal to or less than 15. | hope also to express al terms of the
Campbell-Baker-Hausdorff formula, of weights equal to or less than 15,
in terms of basic commutators.

(2) The (p— 1)th Engel condition states that
(-—-4,B)———-,B =0
B e —
r—1
where B is an arbitrary element of the Lie algebra
The basic commutators of weights less than p remain independent.
For weights greater than p- 1 one first finds the basic commutators as in
(1), and then derives al the relations between them generated by the Engel
condition. These relations give rise to a homogeneous system of linear
equations in the basic commutators over GF(p), which upon solution
gives alinearly independent set of basis elements, i.e. Engel basic commu-
tators.
The programming is tedious but straightforward.
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(38) The expression E is constructed as follows (all variables are non-
commutative and the polynomials are over GF(p) from (iv) on):

(i) a(X,Y) = ((==—=(Y,X),X) -—- ) X)where(4, B)= AB— BA.
T 1X's

(ii) b(X,Y) = coefficient of #7=1 pin (AX+uY)?.
(i) X, Y) = b(X,Y)— a(X, ).

=2 1
iv) dXx, Y) = Y,

oy € (1Y) where (i) denotes a certain ith
i=o U :

derivative.
—2

W) «X,Y) =3 (X+Y) dX, ¥) (X+ ¥p-i-2.
i=0

(vi) f(X,Y) = set of terms of e(X, Y) involving (p— 1) X's and (p- 1) Y's.
Now put X = £ Y = gwhere ab™= (a, b). (The Lie agebra product.)

(vii) E = EA(E, @)

A powerful programming system was developed with the ability to
handle non-commutative as well as commutative polynomials. It is hoped
to publish a description of this system shortly.

As an illugtration, the polynomia f(X, Y) for p = 7 contains about
840 terms and took 3 minutes machine time for its construction.

(4) Straightforward.
The hand calculations for p = 5 were verified and a new counter-
example found for p= 7. It is hoped to run p= 11.

Acknowledgments. | would like to thank Dr. Neubiiser for vauable
suggestions concerning the subgroup lattice programs and Professor Wall
who provided the initial motivation for the development of the programs
associated with Hughes' conjecture.
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The computation of irreducible representations
of finite groups of order 2", n <6’

P. G. Ruub and R. Keom

1. Introduction. Most textbooks and monographs on group represen-
tation theory include the statement that the construction of the irreducible
representations of a particular group or family of groups is an art rather
than a science. This paper is a contribution to the art in the case of 2-groups
of order 2", n =< 6. The construction is based on the definitions of these
groups given in the monumental work of Hall and Senior [5. The authors
and their colleagues have computed a representative element from each
one of the classes of equivaent irreducible representations in the case of
each class of isomorphic 2-groups of order 2" (n < 6) and of numerous
groups of order 64. An omission in the origina program, whose correction
is now believed understood, prevented the successful calculation of al
of the representations of the groups of order 64.

This collection of 2-groups contains many abelian and metacyclic
groups for which a general theory of their representations exists. However,
there are many 2-groups in the collection of Hall and Senior for which
such a theory is not currently available. This paper is a description of a
method of computation rather than a theory of the representations of
2-groups.  The calculation does not employ trial-and-error or iteration
procedures.

A monomial representation of afinite group G is a matrix representation
T of G such that each matrix T(g), g € G, contains exactly one non-zero
entry in each row and column. An induced monomial representation of G
is any induced representation U¢ where U is a one-dimensional represen-
tation of some subgroup. It is known, see Curtis and Reiner ([3], pages
314 and 356), that every irreducible K-representation of a finite nilpotent
group G is an induced monomial representation. Every finite 2-group is
known to be nilpotent. The defining relations of Hall and Senior provide
an ascending normal series of the form

(JcH,c...CcH =G, (L1)

T This work was a collaboration between the authors and R. F. Hansen, E. R.
McCarthy and D. L. Stambaugh.
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in which esch subgroup H; is a subgroup of index two in H; 1, 1 < i =
r— 1, where G is a 2-group of order 2. Our irreduci’ole representations are
monomia representations constructed by induction on the normd series
(1.2). Origindly the authors believed that each odf-conjugate represen-
tation of an H; in this series would generate the two associated represen-
tations of H;,; under multiplication by the appropriate scalar matrix.
This idea proved fase Presently, it is conjectured (not proved) tha a
minor modification of the method and program will avoid this error.

The second section of the paper discusses the manner of obtaining the
Cayley table of a 2-group from the defining relations of Hdl and Senior.
The third section explains the inductive congruction of the irreducible
representations  from the Cayley table The fourth section describes the
programs used in the caculation. Until the early part of 1967, the present
authors were unaware of the very dSgnificant work on representation theory
in progress abroad, see Brott [2], Gerhards and Lindenberg [4], Linden-
beg [8], and Neuwbiiser [10]. Excdlent sources of information on the theo-
rems quoted in this pgper are the monographs of Boerner [l], Curtis and
Reiner [3], and Lomont [7].

2. Development of the Cayley tables of 2-groups. The method of cacula-
tion of the irreducible representations of 2-groups described in this paper
depends upon the availability within the computer of the Cayley table of
the group under invedtigation. The work of Hall and Senior describes eech
group of order 2%, 1 < n =< 6, in three ways “(1) by generators and de-
fining relaions, (2) by generating permutations; and (3) by its latice of
normal  subgroups, together with the identification of every such group
and its factor group’. The generation of the Cayley table from the per-
mutation presentation of a group appeared to be the most expedient
method, if not the most concise R. F. Hansen [6] wrote the necessary
program and assumed the burdensome task of preparing the necessary
input for dl 2-groups of order grester than 4 and less than 128. All Cayley
tables were computed by this method and checked for accuracy. A very
smal number of typographicd mistakes in the lists of permutation gen-
gaors was gpparently uncovered in the process. D. L. Stambaugh [12]
attacked the problem of discovering a satisfectory method of obtaining
the Cayley tables directly from the generators and the defining reations.
An examination of a number of Cayley tables strongly suggests that a
presentation of the generators as regular permutations with degrees equa
to that of the group can be obtained in a direct manner. In order to describe
the method discovered by Stambaugh, it is convenient to briefly discuss
the definition of the groups by means of the Hdl-Senior defining relations.

Each group G is described by a set B of generators [y, . . ., b,] where
the number r is the exponent of 2 in the order 2" of the group. Every e
ment g of G has a unique standard expansion,

g=bs. .. b, 2.1
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in terms of these generators where eech ¢, 1 < i = r, is ether 0 or 1. The

dement g with corresponding exponents the set [e1, . . . , ] is numbered

e 214 .. e+l 2.2)

We adopt the notation H; for the subgroup (b1,. . . , b;) generated by the
first j generdors. The ascending norma  series,

{I}cHyc... CcH =G, (2.3)

is the bads of the present caculation of the irreducible representations of G.

The Hal-Senior defining relations are given in terms of a subset [ay,. . . , ;]

of B. The squares @?, 1< i=j, of these are listed either in terms of cen-
trd dements or a’s with smdler subscripts. The collection of al commu-
tators [a;, a,] = a7 a,%aq,, | <i < m =j, is similarly described. The
st [ay,. . -, aj] is a proper subset of [by, ..., b] when G is not a sem group.
Stem 2-groups are those in which the center Z is contained in the derived
goup G of G. Additiond informaion is given for nongem groups en
aling one to extend the information from the st [gq,. . . , aj] to the st
[bs,. . ., b]. The computationd scheme of Stambaugh is based on a st of
defining relations which gives dl sgquares b2, 1< i < r, and dl commutators
[b6;sb,], 1 si<m =, in terms of generators with smaller subscripts.
Stambaugh writes the commutators in the form

b[bm = bmbixs l=si<ms=r, (24)

where x is obtained a an earlier stage in an inductive computationa scheme.
We refer to the description of each group in terms of the b’s as the
Hall-Senior defining relations dthough, drictly spesking, these correspond
exactly to those of ther monograph only for stem groups.

The set [y1,.. ., ¥,] of regular permutations corresponding to the set
[61,. . ., b] of generators of the group G has a number of properties con-
veniently discussed together. Each permutation y; is associated with three
sets, B;, E;, and S;, which ae defined as follows B; consgs of the st
[1,. .. ,2771] of the first 2i=1 integers;, E; consists of the set [2-1+ 1, ... ,2]
of the next 2i-1 integers while S;, the union of B; and E;, conssts of the
fird 2 integers Each y; is determined by a permutation p; defined on the
st S; where it maps B; in a oneone fashion on E; and conversdy. Con-
sequently, its inverse p;l has the same domain, but the opposite effects
on B; and E;. Each permutation p; is extended to the set of the first 2
integers by means of a family of permutations [c1,. .., ¢,_1]. The permu-
tation ¢; is defined on the sat S;,.; in the following fashion:

cik) = k+2i, k € Bi+1=
_ l=sisr-—-1. (2.5)
Ci(k) = k—2', k € E;y 1s

The ith permutation p;, defined on the st S;, is extended by successve
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products and conjugations to obtain

yi = pilepicit] [cipwpicpi(civ1c) X,

(2.6)
X lererpiCroa, . cipder_1. . c)7Y.

The permutation p, is associated with the sets B;, E;, and $; correspond-
ing to [1], [2], and {1, 2] respectively; it is defined to be the transposi-

tion (2?) It is easily checked that p; fulfills the above regquirements.

The permutation y; corresponding to &; is obtained by means of equation
(2.6).

The construction of the remaining p's and y’s is carried out by induc-
tion. Suppose that the definition of the set [yy, . . ., ¥ 1] Of the first k- 1
permutations has been completed. We consider the construction of p,.
We are given the following conditions:

1) pl)= 267141,

(2) Y1Pk = DPeV1g1s

o (2.7)
(k) yr_1pr = Pr¥e—19k-1,

*k+D  ppr - 9

which are required to hold on S, where the set of permutations [y, . . . ,
Vi1 1+ -5 gl @€ known.

The preceding £+ 1 conditions are written in the form employed in
the program of Stambaugh; however, a description of his method appears
somewhat clearer if the commutation relations are rewritten in the form

pe = Oilpyidgy l=issk-1 (2.8)

One begins the construction with the knowledge of p.(1), always defined
by (2.71). At the beginning of the ith stage, employing 2.7(G+ 1)), p«
has been defined on the set B; of the first 2i-1 integers with p, taking values
in E;. The problem is to extend the domain of definition of p, to the set
E; of the next 2-1 integers with p, taking values in E;. The right factor
g; of the product (y;1piy)q; maps the set E; onto itself in a I-I man-
ner. The next right-most factor y; maps E; onto B; where p, is aready
defined. The mapping p, itself maps B; into the set E;, which is carried into
itself by the last mapping y;! in the product. It follows that the defini-
tion of p, has now been extended to the set B;.,. After condition (2.7k)
is employed, p; is defined on B, with pg taking values in Eg. This implies
that pi? is defined on E, and tekes its values in B,. The (k+ 1)th
relation of (2.7) can be rewritten in the form

Pk = Qi (2.9
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where the permutation on the right is well-defined on the set E, and as-
sumes values in By. This completes the definition of p, on the set S;. The
definition of y, follows from equation (2.6). This method of construction
is effective for all groups of order 32 and for those groups of order 64
for which it has been employed.

A modification of the method is under consideration in which the back
solutions of (2.7) are used to extend the permutations rather than (2.6).
These equations can be rewritten in the form

(D) pul) = 2k-141,

) pipe = pirs,
(2.10)

(k) px_iPr = Prlk_1,
(k+1) Pr = repit,

denoting p; and its extensions by the same symbol, where the set {p;,. . . ,
Pr—1,11,. . +» 'r_ 1] Of permutations is known on the set S;._ 1 before the kth
stage of construction. One finds from (2.10) permutations representing
the 2¥-1—~ 1 elements of G following &, in the Cayley table. These appesar
in the form

(1) P1Prk = Dil'y,

2 DDk = Pila, @.11)

(12 L (k-" l)) PiD2 . .. D= Pilira. . . I'g_1.

Assume, as an induction hypothesis, that all of the known permutations
agree on Sj_, with the presentations of their corresponding elements in
the left regular presentation of G. The values of the left members of (2.11)
are known for the left regular presentation on the number 1, which im-
plies that p,, the permutation representing b, in the left regular presen-
tation, is known on the set S;_;. Using equation (2.9), one determines
the values of the left regular presentation of &, on the remainder of the
set S, of the first 2 integers. Solving for the 2F~1 permutations preced-
ing pi in the form

Pi...Pi=Pir1. . . Fipgt (2.12)

permits their evaluation on the set E; and, consequently, on the set .
The determination of the left regular presentations of the 2¥-1— 1 de
ments following b, on the set S, can then be completed. This finishes
the kth stage of the construction. Since the induction hypothesis is surely
fulfilled for k= 1, it follows that this method determines the left regular
presentation of the group G. It appears that this method will generate the
Cayley table in substantidly less time than the first. It has not yet been
programmed.
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3. The calculation of the irreducible representations of 2-groups. This
section discusses a systematic method of calculation of the irreducible
representetions  of 2-groups. Some basc  definitions and results are given
to make the materid more intdligible to the non-specidid.

Let + be an r-dimendond matrix representation of the subgroup H  of
index k in the finite group G. Denote by [g:1H,. .., giH] the collection of
al didinct left costs of H in G. The function T which makes correspond
to eech x of G the block matrix

'(grtxgy) . . . (g7 xgw)
T(x) = ) (3.1)
1'(grixgy) . . 1'(gktxgi)
where eech #'(g; 1xg;) isan r X r marix, 1 <1, j < k,
with
1'(gitxg;) = 0, gi'xg;¢ H,
and

t'(gitxgy) = t(gilxgy), gitxg; € H,

is an (rk X rk)-dimensond representation of G which is sad to be induced
by the representation ¢ of H. Only under specid circumstances is T an
irreducible representation of G even though t is an irreducible represen-
tation of H. Given a representation T of G, there exists a representation
t of H whose vaues are given by

tth) = T(h), heAH. (3.2)

The representation t is said to be subduced by the representation T. As in
the case of induced representations, the subduced representation ¢ of
H need not be irreducible even though the subducing representation T
of Gis

The following remarks are vdid in the case where H is a normd sub-
group of G, but not dways in the gened cae. Let f be a representation
of Hand g ay edement of G. The mapping 7, defined by

t(h) = 1(g7hg), heH, (3.3)

is a representation of H which is sad to be a conjugate of t. The represen-
tation 7, is sad to be obtained through conjugation of ¢ by g. The repre-
sentetion f may or may not be eguivaent to its conjugate z,. The st K
of dl g such that ¢, is equivalent to ¢ is a group cdled the little group of t.
A representation ¢ which is equivdent to each of its conjugates is sad to
be self-conjugate.

Let ¢+ be a representation of H subduced by the irreducible represent-
ation T of G. The representation ¢ is the direct sum

1= mht . b (3.4)
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of irreducible representations of H. The set [z, . . ., 1] of irreducible
representations which appear with non-zero coefficients in (34) is cdled the
orbit of T. The number of dements in an orbit is cdled its order. Accord-

ing to a rexult of Clifford, the eements of an orbit are mutudly conjugate
and every conjugate appears. Furthermore, each conjugate occurs the
same number of times in eguation (34) which can be written

t=nlty+ ... ). (3.5)

The number n is referred to as the multiplicity of the orbit. It is known that
every irreducible representation ¢ of H beongs to the orbit of a lesst
one irreducible representation T of G

Two irreducible representetions T and 77 of G ae sad to be associates
if their orbits have an irreducible representation ¢ of H in common, which
implies that their orbits coincide. An irreducible representation T of G
is sad to be self-associate if its orbit is digoint from that of every other
non-equivaent irreducible representation of G. When His a subgroup of
index two in G, the orbit of an irreducible representation T of G is dther
a dngle sdf-conjugete irreducible representation ¢+ or a par, t and t', of
mutualy conjugate irreducible representetions of H. In ether case, the
multiplicity of the orbit is dways one In the second case the represen-
tation R of G induced by ¢t is an irreducible representation of G equivaent
to T. In the firg, the representation R induced by ¢ is equivaent to the direct
sum, T+ T°, where T is the only other associate of T.

These results suggest that the irreducible representations of 2-groups
can be computed by induction if a convenient agorithm can be developed
for reducing the induced representations arisng from sdf-conjugate repre-
sentations of a subgroup of index two. The remainder of this section is
devoted to the devdopment of such an dgorithm and the description of a
practicd scheme of induction. We begin with an observation concerning
the one-dimensona representations of any 2-group given by the Hal-
Senior  defining  relations.

THEOREM. Let[by,..., b,] be the Hall-Senior generators of a 2-group
G of order 2", 1=<n= 6. Let C be the set [cy,.. ., ¢z] of those generators,
defined inductively, which either appear as a commutator in the defining
relations or as one factor of a commutator given by the defining relations
in which the other factors are already in C. Each set K of complex numbers
[k1, . . ., k,] which satisfy the defining relations, k; having the value 1 for
each element ¢; of C, determines a one-dimensional representation of G
which is specified by its values on the generators, namely,

TK(bi) = ki, lsi=n (36)
Each one-dimensional, irreducible representation T of G corresponds to

exactly one such K. The derived group G’ of G is generated by the elements
of the set C. Each maximal subgroup M of G is the kemel of a representation
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Tk Where each of the dements of K is either 1 or - 1. The Frattini subgroup
of G is the intersection of the kernelsof all irreducible representations obtain-
ed from such K’s.

Proof It is clear that each K, as defined above, defines a one-dimensional
representation of G, and that distinct pairs, K and K, define distinct irre-
ducible representations. Conversely, every one-dimensional representation
T of G determines a unique K. Thus every one-dimensional representation
of a 2-group G can be obtained immediately from its Hall-Senior defining
relations. Each K, containing at least one - 1, whose elements are either
1 or - 1, determines an irreducible representation T one-half of whose
values are 1 and the other one-hdf are - 1. The kernel of the corresponding
Ty is clearly a maximal subgroup A of G. Conversely, each maximal sub-
group A4 generates a one-dimensiona representation corresponding to a
K of this type. The Frattini subgroup is the common part of these kernels.
The subgroup (C) generated by C is contained in the derived group G'.
To see that (C)coincides with G', let b; be any generator coming later in the
sequence of generators than the elements of C. We construct a K to show
that no element of G having b; in its standard expansion is an element of G,
Let k; have the vdlue - 1 and let k,, have the value 1 for m different from j
except when p2 equals ;. In this exceptional case, which can occur for at
most one b, let k,, have the value i. Let Tk be the corresponding one-dimen-
sona representation and note that any element of G whose standard expan-
sion contains p; does not belong to the kernel of Tx. It follows that the ele-
ments of C generate G'.

We turn to the calculation of the higher dimensiona irreducible repre-
sentations of G. Note that a 2-group of order 16 or less cannot have an
irreducible representation of dimension greater than two and that a 2-group
of order 32 or 64 cannot have an irreducible representation of dimension
greater than four. Let the central series of G determined by the Hall-Senior
defining relations be given by

{t}yc Hic...c H,=0G.
Recall that H,,1 = r < n, denotes the subgroup (&4, . . . , b,) determined by
the first r generators. The irreducible representations of H, can be deter-
mined by induction from the irreducible representations of H, , ad its sub-
groups. Some, perhaps al, of the two-dimensional representations of H,
can be calculated immediately by induction from the pairs of conjugate
one-dimensional representations of H,_;. However, the two-dimensional
self-conjugate representations of H,_,, if any exist, give rise to a more
troublesome problem. Each of these, say t is the orbit of a pair, T and T',
of associated two-dimensional irreducible representations of Hr. The repre-
sentation R induced by tis the direct sum of the associated pair, Tand 7".
To avoid the reduction problem, we note that each self-conjugate two-
dimensional irreducible representation « of H,_, is an induced representa
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tion from either member of a pair, s and s', of conjugate representations of
some normal subgroup Kof H,_;. The subgroup K can be readily identified
from the representation ¢ since it consists of those elements of #,_, which
are mapped into diagona matrices by ¢. Furthermore, the pair, s and s', of
conjugate representations of Kcan be read off from the entries of these dia-
gonal matrices. Observe that each of the associated representations, T and
T', of H, abduce the representation ¢ on H,_, and, consequently, give rise
to the same matrices for K ast. Moreover, either of T and T, say T, must

be an induced monomia representation obtained by induction from a one-
dimensional representation of some normal subgroup H, containing K, of
index two in H,. The set of normal subgroups, containing K, of index two
in H, can be determined immediately from the one-dimensional represen-
tations of H,. Each of these is of the form (K, g) for an easily determined
element g of H,. Such a subgroup (K, g) is asuitable H for our purposes
only if the irreducible representations of Kiscarried into itself under conju-
gation by g, a property easily checked from the data available.

When a suitable H has been determined, one computes the pair, g and r,
of associated one-dimensiona representations of H, each of which ab-
duces the representations on K. The representation g of Hinduces one of the
pair, T and I”, of associated representations of H, each of which has [¢] for
its orbit. The representation r induces the other. This completes the construc-
tion of the irreducible, two-dimensional representations of H,. When
the order of H, exceeds 16, there may exist four-dimensional irreducible
representations of H,. These arise from conjugate pairs of two-dimensional
or from sdf-conjugate four-dimensional irreducible representations of H,_;.
The construction of the self-associated four-dimensional representations of
H, from the conjugate pairs of two-dimensional representations of H,_; is
draightforward. The construction of the associated four-dimensiond  repre-
sentations, T and T’, of H, from a self-conjugate four-dimensional irredu-
cible representation ¢ of H,_, is very much as before. Select the subgroup
K of index four in H,_; whose elements correspond to diagonal matrices
under the representation ¢, A set [sy, 52, 53, 54] Of four mutually conjugate
representations of K can be determined from the diagona matrices which
are images of K under the representation ¢, The subgroups of index four of
H, which contain K are of the form (K, g) and can be determined from the
available data. Such a subgroup H of H, is suitable for our purposes only if
the representation s, of K is carried into itself by conjugation under g. This
being the case, §; is a self-conjugate representation of K considered & a b
group of index two in H. Consequently, s; induces a pair, g and r, of asso-
ciated one-dimensiona representations of H. The representation ¢ of H
induces one of the associates with orbit ¢ and the representation r induces
the other.

This concludes the outline of the method of calculation. The next section
is concerned with the programs for the calculation.
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4. Current computer programs. During the study and analysis of finite
groups at Texas A &M University, several computer programs have been
written. These programs are all written in FORTRAN |V language and are
operational on the IBM 7094 digital computer. The following paragraphs
are devoted to a discussion of the capabilities of available programs the
extent to which each has been used and the relative merits or demerits of
each.

(1) A program has been written to test whether a Cayley table presenta-
tion isin fact a group by appealing to the group axioms. This program is
completely genera and the size of the group that can be tested is limited
only by the machine storage capacity. The highest order group tested on
this program to date is a group of order 64. Should the set being tested fail
to satisfy the requirements of a group, the program indicates which axioms
were violated and which elements of the set faled to comply.

(2) Given the Cayley table of a finite group, a program was written to
determine how many conjugacy classes the group has and to provide a listing
of the elements in each class.

(3) A program was written to determine the order of each element of the
group.

(4) A progran was written which firs determines al subgroups of a given
group when provided with the Cayley table of the group in question. Thisis
accomplished by using the test program to verify which combinations of
gements are in fact groups. It then determines which subgroups are normdl.
Finally, using the normal subgroups, the corresponding factor groups are
computed. The total output from this program for a given group includes
all proper subgroups, indicates which subgroups are normal and gives the
Cayley table of the corresponding factor group.

This program has been run for groups only as high as order 16. It is not
efficient in the sense of computer time for groups of higher order.

(5) As noted in § 2, a progran was written to construct the corresponding
group Cayley table from the generating permutations for the group. This
program has been used to construct the Cayley tables of all groups of order
2", n =< 6, usng the permutations provided in the work of Hal and Senior [5].

(6) The procedure discussed in § 2 for computing Cayley tables of
2-groups from the generators and commutator relations was programmed.

This program has been used to generate the Cayley tables for al groups of
order 2% n =< 5, and some of the groups of order 28,

(7) In the analysis of a particular group, it is beneficial if the student can
examine different Cayley table presentations of the same group. Some of the
variations studied were rearrangements of the table according to element
order, conjugacy classes or by positioning a particular normal subgroup of
index four or less in the first part of the table. A program was written to
produce the transformed Cayley table from the original by providing the
computer with the desired isomorphism and the original Cayley table.
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(8) An agorithm similar to the one discussed in§ 3 for computing irredu-
cible representations was programmed. This algorithm differed only in that
the programmed version did not permit the calculation of two or four-
dimensional representations which arose from self-conjugate two-dimen-
sional representations of the subgroup of index two. Consequently, this
program cannot be used for those groups of order sixty-four where the
above situation arises. The program does calculate one element from each
class of equivalent irreducible representations for groups of order 2,
n =< 5. The program is contingent only upon having a suitable Cayley table
presentation of the group available. This poses no restriction in 2* since any
group may be appropriately transformed using the program in paragraph
(7) above. The logic of the procedure is to use the known irreducible repre-
sentations of the group of order 2! to obtain those of the group of order 22,
then use these representations of 22 just determined to obtain those of the
next subgroup and so on to the group of order 2". The output from the
program consists of the matrix representations evaluated at each element
of the group. All groups of order 27, # =< 5, have been subjected to this
program with appropriate results obtained. Approximately 34 minutes of
computer time were used. The same program has been used to caculate the
irreducible representations of some of the groups of order 64.

In actual practice, many of these programs are used simultaneously with
results from one conveyed to others as necessary. For example, the 3%
minutes of computer time above included generating the Cayley tables from
the generating permutations, verifying that the result was in fact a group
satisfying the generating relations, and determining the conjugacy class
structure and the irreducible representations.

As this study of finite groups, and in particular 2-groups, continues, sev-
eral new problems are being contemplated. Clearly a modification of the
representation program to carry out the complete algorithm of § 3 isimme-
diate. The method of § 2 for generating Cayley tables looks promising in
considering the step towards 2-groups of order 128. Now that irreducible
representations are available for other 2-groups, a study of their subgroup
structure and other properties is simplified. The question of whether the
representation algorithm would apply with reasonable modification to
groups of order p", p aprime, also merits consideration.

Readers who might be interested in programs or results of the foregoing
are invited to contact the authors at Texas A&M University, College
Station, Texas, or a the University of Arkansas, Fayetteville, Arkansas.
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Some examples of man-machine interaction in
the solution of mathematical problems

N. S. MeENDELSOHN

Summary. Three illustrative examples are given of how the enormous speed
and capacity of computing machines can be used to aid the mathematician in the
solution of problems he might not otherwise be willing to undertake. The waysin
which man and machine can interact are many and varied. The examples given
indicate three distinct directions in which such interplay can take place.

Example 1. The Sandler group. The collineation group of the free plane
gaaded by for pants wes suded by R G- Sade in [3. The gouwp hes
its own intrinsic interest but there were two directions in which it appeared
that interesting information might be obtained. Two natural analogies sug-
gested themselves.

In the first case, by analogy with the situation in classica projective
planes, there was the possibility that this group, or at least a very large
subgroup, might yield a new simple group of very large order, and if this
were so one might expect an infinite class of such groups based on the
collineation groups of the free planes which are finitely generated.

Secondly, an analogy with group theory is possible. In group theory,
every group on k generators is a homomorphic image of the free group
with k generators. It might then be possible to show that the collineation
group of every projective plane generated by k points is a homomor-
phic image of the collineation group of the free plane generated by four
points.

We show here that the second possibility is closer to the true situation.

Sandler’s group has the presentation

G={A B,C 42= B*= (2= (4B)*= ((B24))C)* = CBAB’ACB: = I}.

It can be shown that the element AC has infinite order. To study this
group it is convenient to look at homomorphic images in which AC is of
finite order. Accordingly, let G, be the group obtained from Sandler's
group by adjoining the relation (AC)” = I. It is not hard to see that A and
B generate the symmetric group S, on four symbols, and that in any homo-
morphic image of G the image of the subgroup generated by A and B must
be the full group S, or the identity. Coset enumeration is used for the first

15' 217
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few values of p, Here are some of the results.
G =1, Gy = I
G3 = LF(2, 7), with a faithful representation
4 - (26) (34),
B - (23) (4567),
c - (12) (45).
It is to be noted that Gj is the collineation group of the Fano projective
plane which contains seven points.
Gy = LF(2, 7) with a faithful representation (using subscripted letters)
Ay - (26) (34),
B, - (23) (4567),
C, - (12) (67).
An isomorphism between G; and Gs is given by the mapping A4+ 4,
B1<B, C1<~B~2CB2.
Gs isagroup of order 1080. A faithful representation of degree 45 which

is equivalent to the representation given by the permutation of the sub-
sets of the subgroup generated by A and B under right multiplication is

given by

A~ (1) (5) (7) (12) (35) (36) (41) (44) (45) (2, 6)(3, ¥ (8, 9) (10, 11)
(13, 14) (15, 24) (16, 23) (17, 18) (19, 34) (20, 21) (22, 25) (26, 30)
(27, 28) (29, 33) (31, 32) (37,43) (38, 39) (40,42),

B (1) (44) (45) (2, 3) (32, 43) (39, 40) (4, 5, 6, 7) (8, 16, 17, 22)
(9, 29, 14, 15) (10, 13, 28, 21) (11, 34, 23, 24) (12, 38,41,42)
(18, 19, 20, 30) (25, 26, 27, 33) (31, 36, 37, 35),

C > (3) (9 (13) (16) (19) (24) (25) (32) (40) (L 2) (4, 10) (5, 17)
(6, 8) (7, 28) (11, 12) (14, 30) (15, 37) (18, 31)(20, 35)(21,22)(23,38)
(26, 41) (27, 34) (29, 36) (33, 42) (39, 45) (43, 44).

Marshall Hall pointed out to the author that this representation is
imprimitive with 1,44, 45 a set of imprimitivity. By considering the repre-
sentation obtained by permuting the sets of imprimitivity one obtains a
factor group of G; of order 360, and hence G5 has a normal subgroup of
order 3. A faithful representation of this factor group by permutations on
15 symbols is given by

A~() (5) (7) 2,6)(3.4) 8 9) (10, 11) (12, 15) (13, 14),
B (1) (23) (456 7) (8 9 11, 14) (10, 13, 12, 19
c - (3) (9) (13) (1, 2) (4, 10) (5, 11) (6, 8) (7, 12) (14, 15).
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This factor group is not 45 since it has S, a a subgroup while 45 contains
no elements of order 4.

G,. The group Gs is of infinite order. In this case we find a homo-
morphism of Gy onto SL(3,Z), where the latter is understood to be the set
of al non-singular matrices of order 3 and determinant 1 and whose entries
ae integers.

The following mapping exhibits the homomorphism explicitly :

0 0 -1
A~ 0—1 0)‘,

-1 0 0

0 0 -1
B-|1 1 1),

0—-1 0

1 0 0
c-| o0-1 0).

-1 0 -1

A direct verification shows that the defining relations are satisfied by these
matrices. On the other hand the three matrices generate SL(3, Z) as is
seen by the mappings

1

X = C(ACPBABC Lo

<

AXA -

B24AB*AXB*AB%4 —~

AB?AB?AXB’AB> ~

AB24AB*XAB*AB? —~

— — D D = O O - O, O~ O
—_0 O = OO OO O = OO == O

0
1
i
0
1
0
0
1
B2AB*XAB?AB?4A ~ | O
0
1
0
1
1
0
0
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where it is known that the six matrices appearing on the right generate
SL(@3, 2).

The following geometrical corollary then follows. The group generated
by dl relations of a finite Desarguesian plane which is generated by four
points is a homomorphic image of the collineation group of the free plane
generated by four points.

Example 2. Complete latin squares. A complete latin square of order n
is an array in which every row and every column is a permutation of n
symbols and such that every ordered pair of symbols appears as a consecutive
pair exactly once in the rows and once in the columns. For example

A B C D
C A DB
B D A C
D C B A
is a complete latin square of order 4.

In [2 B. Gordon has shown that complete latin squares exist for every
even order and in [1] E. N. Gilbert has given a number of special con-
structions all for even order. It is known that for n= 3, 5, 7, 9 no complete
latin square exists and it had been conjectured that none exists for any odd
order. An exhaustive search by machine is quite impractical for n =11 so
that a specialized search based on an incomplete mathematical theory may
be of use

Following Gordon we look for a solution in which the sgquare is the
multiplication table for a group. The problem is then reduced to the follow-

ing. Let gy, g2, - - ., g, be the distinct elements of a group. Is it possible to
arrange them so that the elements g1, g7'g», g5'¢s, - - + 87248, ae dl
distinct ?

If the group is of odd order and Abdian it is known to be impossible
for such an arrangement to exist. Hence we look to groups which are
non-abelian. The smallest order of a non-abelian group of odd order is 21.
However, a search through the 21! permutations of the elements of the
group is dtill impractical. The compromise used was to start the arrange-
ment of the elements of the group by hand until one gets stuck (usually
after 16 to 18 elements). When this is finished the arrangement was put
into the machine with a back-tracking program to try to ater and complete
the arangement. This proved eminently successful. On p. 221 is an example
of one of the latin squares of order 21.

Example 3. Commutators. There are a number of combinatorial prob-
lems in which it is important to know whether or not an element of a
commutator subgroup is a commutator. More generally the following
guestion is of interest. Given an element A of the commutator subgroup,
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An example of a latin square of order 21 without repeated digraphs
(both rows and columns)
ABCDEFGHIJIJKLMNOPOQQRSTWU
KAPI SMTRQFBEJHTCODNLUG
OMLKBRFD SQHNECTJIPGUAI
PFSAKHIQEI NRLOGMZCUTBD
EDAJCPSLHBTIGFOQNUIKMRDO
RCFLGSKTONJADIEUBPHAOQM
CJEBANMILDRHSPUFOTG GKDQ
FNGCRIDOALPTHUMSEG QKUJB
LQBMOCESNKGDUJIRTAFHP
M HTPNOQI CKEOURGJLSDUBFA
S | KFPOLERAUQTMDMHGIBJNTC
QGI TDKPJIJMULFCARBNSOTEH
TENHMGRKUPD CBLAQIJFI OS
NPMETLBUCHTFKIQSGAORDJ
B KOQLJUNDMASFRPCIHEGT
GLRNFUHATCOQOKSBI MJDPE
HOJSUEAGPRMBOQDLTI KT CNIF
DTQUIBOFJGEMPKNAHLCSR
JRUOHDQPBSCGNTFELIAMK
Il UD GQACMZFTSJOBHIKREPLN
USHRJTNBGOIPAEKDFMQZCL

find the minimum value k such that Ais expressible as a product of k com-
mutators.

This problem, in general, is known to be unsolvable. However, for free
groups it is solvable but the solution is by no means trivial. The author
has studied the problem of a machine program for making the compu-
tations. To test the possible efficiency of the program the author carried
out hand calculations which would imitate the machine’s behaviour.
Naturaly, relations were generated in a random order, but a number of them
proved to be very interesting and one of these led to an interesting theorem.
Here are some of the results turned out at random, all referring to free
groups.

(a) In afree group aword of length six or less which lies in the commu-

tator subgroup is a commutator, e.g.
a~1plcigbe = (ba, be).
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(b) The cube of a commutator can be expressed as a product of two
commutators,  eg.

(a, b)® = (alb-la-lba, a~1h=2g)(aba='b1a, b).

(c) Each of the products (a &) (c, @ and (& &) (b, €) can be expressed as
a single commutator.

d) e73(cx)3x73 = (xc?, c7Ix72).
This last relaion leads to a very interesting theorem of group theory.

THeOREM  Let G be a group for which every commutator has order [ or 3.
Then G’ is periodic.

Remark. This theorem was proved by a colleegue of mine, N. D. Gupta
He used a more complicated lemma than that used in the proof below.

Proof. From the identity ¢~3(cx)3x™3 = (xc2, ¢"1x~2) it follows that
(ex)® = ¢*x® where c and ¢* are commutators. Hence if ¢y, €2, €3, - - +y Cp
ae commutators (cicz . . . ¢,)? = ei*es*. .. ¢k, By iteration (cica . . .
¥ = 1.

Concluding remarks. The above examples indicae tha there can be a
fruitftul symbioss between machine and mahemdtician. The author would
adso point out that it is wel worth while for him to scan the output of a
computer even though it may appear random and disconnected. There is
the posshility of rea discovery.
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Construction and analysis of non-equivalent
finite semigroups

RoBerT J. PLEMMONS

1. Introduction. In searching for examples of finite dgebrac sysems
that satify certain identities or have specific properties, it is often conve-
nient to have avalable a liging of al non-equivdent (i.e, norn-isomorphic
or anti-isomorphic) systems of given types and orders, together with
information concerning their properties. This paper is concerned with the
development of algorithms used to design computer programs for the
purpose of condructing and andyzing certain sysems such as groupoids
and semigroups, having small orders. Of course, the basic problem in
such projects is to develop an efficient agorithm to condruct one repre-
sentative system from each class of those that are ether isomorphic or
anti-isomorphic.

Digital computers were firs gpplied to the construction of non-equivaent
finite semigroups by G. E. Forsythe in 1954 [3], when he congructed al
semigroups of order 4 by use of the computer SWAC, a Los Angdes.
Hand computations [10] had previoudy yidded those of order N = 3. In
1955, T. S. Motzkin and J. L. Sdfridge obtained dl semigroups of order 5,
dso by usng SWAC, and about the same time smilar results were obtained
in Jgpan by hand computations [11]. It was not until 1966 that the results
foor N = 6 were obtained a& Auburn University [§].

In §2 we develop an algorithm to construct all non-equivalent semi-
groups of order N = 6, the resllts for N = 6 being new. The andyss of
these semigroups is discussed in § 3. In addition, some applicaions to
the development of certain theorems about finite semigroups are mentioned,
along with the formulation of an associated conjecture. All notation
and definitions follow [1] and [2].

2. The construction algorithm. As we have mentioned, the problem of
condructing al non-equivalent finite agebrac sysems of given type and
order is esstidly the problem of efficiently choosng a representative
sysem from each cdass of those that ae ether isomorphic or anti-iso-
morphic. It is trivid to condruct an dgorithm to do this One needs only
to compute al posshle systems of tha type, to determine which are iso-
morphic or anti-isomorphic and then to choose one system from each
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such class [3. However, the computation time is then proportional to the
total number of such systems. The algorithm presented in this paper con-
structs only those groupoids that are neither isomorphic nor anti-iso-
morphic; and, after adding a routine to ensure associativity, it makes
feasible the construction of al semigroups of order N = 6, on most
modern digital computers.

The agorithm will be given for the most general binary system, the
groupoid, since routines to restrict the binary operations can readily be
added. Let N be a positive integer and let S be the set of al positive integers
less than or equal to N. We choose this as the set of elements for our
groupoids of orderd, snce they ae readily used as subscripts in FORTRAN.
Let Ry denote the set of al NXN matrix arrays

A = (a,‘j)
where each g, ¢ S. Then each array (a;) represents a groupoid of order N
with binary operation o defined by

in = djj.
Conversely, each groupoid of order N has such a representation.

Let Py denote the permutation group on S and let AT denote the transpose
of A€ Ry. For each a € Py and each A = (a;) € Ry we define
Ao = B = (by)
where N
b,'j = a[al-l(,-)z—l(j)], I €S.

Then two groupoids of order N, represented by A and B in Ry, are iso-
morphic if and only if 5
Ax =

for some a ¢ Py, and are anti-isomorphic if and only if

AT!S’ =B
for some B ¢ Py,.
Now the set Ry is ordered by the relation =<, defined by the rule that
if A, B¢ Ry then
A=<B

if and only if a; = b; for each i, j € S, or glse there isapair m, k ¢ S such
that
Ak < bmk

and a; = b; foral i,j € S where
j+(i-)N < k+(m-I)N.

In other words the ordering is row-wise.
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Now for each A ¢ Ry we let I, denote the set of &l A«, as aranges over
Py. Then either I, = I,y or else I, N 14z = §§, and moreover |, = 1, if
and only if 4= AT for some a ¢ Py.

In order to construct only those groupoids that are non-equivalent, we
construct only the minimal matrix (with respect to the ordering) in the
set I, \U Iz, This can be accomplished in the following way, using the fami-
liar backtrack method of exhaustive search. Starting with all ones (the null
groupoid), we initiste a process of backing up and going forward, row-wise,
in defining terms in the table, beginning with the last position, Now when-
ever the process backs up in the table, the previous position is zeroed and
we condder the product there as undefined. In general, suppose the process
is at position (i, j). The term g, is replaced by a;;+ 1. Then:

1.If a; > N, we set a; = 0 and back up in the table. If i=j= 1,
the process is complete and we have all the desired systems; if not, the
process goes to position (i, j- 1) if j &= 1 or (i- 1, N) if j = 1.

2. 1f a; <N, we first check to see if the binary operation defined by
the partial table constructed thus far satisfies the necessary restrictions.
If it does not, we once again increment g;; by one. If it does, we next
check to see if the partial table would come first in the ordered set I, ) 14z.
To do this we consider permutations a € Py and check to see if

@y < a[@a1ap]
and
ay < a[a 1),

Whenever a,-y,-iijy and a,-1(j-1 are defined. If either of the inequal-
ities does not hold we once again increment a4, by one. Otherwise we
go forward in the table. Now if i = = N, we have a desired system. If
not we go to position (i, j+ 1) if j & Nor (i+ 1, 1) if j = N, and continue.

Using this algorithm, we may construct all the non-equivalent groupoids
of order N, each of which is minimal in its class. The method enables us
to exclude consideration of many tables at one time. In fact, if we have a
fallure a postion (i, j) and if dl posshilities are exhausted below (i, j) in the
row ordering, we may exclude from consideration a total of N* tables
where

k= N2—[j+(i— N].

Also, the process can often be augmented by devices to reduce the work
factor. For example, we usually need to consider only certain permutations
of § in Py, depending on the type system we are constructing and on the
form of the partial table, constructed at that stage in the process. One
method for accomplishing this is the following. Let D = (g;) be the dia
gonal of A = (ay) ¢ Ry. Consider these diagonals ordered in the usual
sense from the (1,1) to the (N, N) positions, and for each diagonal D and
each a ¢ Py let Dx denote the diagona of Ae«, where D is the diagonal
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of A. Now suppose that
{Di1, ..., Dn}

is the st of dl diginct diagonas with the property that D; =< D for
wﬁl o E PN- La
Lp,

denote the sat of al non-equivaent groupoids with diagond D;. Then

(o

is the sat of dl noneguivadent groupoids of order N. Thus to construct
these groupoids we need only condruct esch diagond D;, lowest in the
ordering, determine the subgroup of P, leaving D; fixed, and then con-
sruct al non-equivdent groupoids with diagond D; by usng this sub-
group in the equivalence checks This procedure reduces the work factor
considerably. In addition to this, terms can often be defined ahead in
the table to ensure that the binary operation in the patid table has the
desred  properties.

This algorithm has been coded into FORTRAN and the program has
been run, in one form or another, on severd computers, including those a
Auburn University, the Universty of Tennessee and the Nationd Security
Agency. Programs reaulting from the dgorithm have been gpplied to the
congruction of various types of systems, such as groupoids, semigroups
and loops, with the construction of the Cayley tables for dl semigroups
of oder N = 6 heng one of the more noteworthy results A monograph
liging these tables, dong with other information, can be obtaned from the
Depatment of Mahematics a& Auburn University, Auburn, Alabama [8].

3. Some analysis results. These finite semigroups, constructed by use
of the agorithm described in § 2, have been dasdfied according to severd
properties, such as being regular, inverse or subdirectly irreducible  Such
classification is accomplished by adding appropriate subroutines to the
construction program. A table giving the number of (regular, inverse)
semigroups of order N =< 6 is given a the end of the paper (p. 228). Also
included is the number of semigroups containing k idempotents for
k=1 .. ,N

Perhaps the mogt interesting use of the dgorithm has been in the con-
gruction of specific finite sysems of order N that satisfy certain identities
or have certain properties, or ese proving that no such systems exist for
that order. For example, one such application has solved the problem of
finding the smdlest order semigroup whose sysem of identities has no
finite basis [9, [6], [7].

THEOREM. There is a semigroup of order 5 whose system of identities has
no finite basis, and, moreover, the system of identities for each semigroup
of order N <5has a finite basis.
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Other andyss results were obtained by congructing al the congruence
rdlations on each semigroup of order N =< 5 and on sdected semigroups
of order 6. The adgorithm to condruct these reations firs determines the
equivalences on the set and then tests for compatibility with the binary
operations of the non-equivalent semigroups of that order. The resulting
examples ae ussful in the sudy of semigroup decompostions and in the
sudy of homomorphisms, since the condderaion of homomorphisms can
be limited to the condderation of congruences. These computations have
suggested the next result.

Theorem. The following four conditions concerning a semigroup S of
order N > 2 are equivalent.

(A) Each reflexive relation on S is |eft compatible.

(B) Each equivalence relation on § is a left congruence.

(C) For each x, y and z in § either xy = xz or Xy =y and xz = z.

(D) S=A |UB, where 4B = § and where, for some idempotent
function ffrom A to A the binary operation for § is given by

_{f(x) if x¢Ad.
YE1 y if xe B

This theorem, together with its duad, shows that each equivaence reation
on a semigroup S is dso a congruence relation if and only if § is a [left,
righf zero semigroup.

The examinaion of thee examples has ds0 led to the following con-
jecture :

If a finite semigroup of order N > 3 has exactly one proper congruence
relation, then it is a group or a sSmple group with zero.

In concluson we mention tha the condruction of dl non-equivaent
semigroups of order 7 would be rather difficult, both from the standpoint
of running time on aty paticular computer and from the dandpoint of
output volume. Although there is no known rule giving the number of
non-equivaent finite semigroups as a function of the order, a good edti-
mate for the number of order 7 is around 200,000. However, the con-
gruction and analysis of specid types for N = 7 is someimes feashle and
could be useful in the formulation and testing of conjectures.
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Some contributions of computation to
semigroups and groupoids’

TAKAYUKI  TAMURA

Reviewing the contribution of computers to the theory of semigroups,

we note that G. E. Forsythe computed all semigroups of order 4 [2] in

1994, ad T. S Mazkin and J L. SHfridge odtained dl samigroups of order
5[4 in 1955. For the ten years from 1955 through 1965, nobody treated
the computation of all semigroups of order 6. However, R. Plemmons did
all semigroups of order 6 by IBM 7040 in 1965 [5. On the other hand the

author and his students obtained the semigroups of order 3 in 1953 [§],

of order 4 in 1954 [9) and of order 5 in 1955 [1d] by hand, independently
o those mationed above Bedde thes oatan gedd types of samigroups
and groupoids of order 3, which are distributive to given semigroups of
order 3, were computed by hand [12], [13], [14]. In 1965 we obtained
the number of non-isomorphic, non-anti-isomorphic groupoids of order
=<4 which have a given permutation group as the automorphism group
(8§ 1.4, 1.5). Although the result was presented at the meeting of the Amer-
ican Mathematical Society at Reno, 1965, it has not been published. After-

wards R. Plemmons checked the total number by computing machine and
wrote to the author that our number was correct; the author wishes to
thank Dr. Plemmons. Recently R. Dickinson analyzed the behavior of
some operations on the binary relations by machine [17].

In this paper we announce the result concerning the automorphism
groups and the total number of groupoids and additionally we introduce
the significance of a new concept “general product”, which uses a machine
to get a suggestion for an important problem on the extension of semi-
groups, and further we show the result in a special case which easily com-
puted without using a machine. The detailed proof of some theorems will
be omitted becarse of presre on ece in thee Proceedings and the come
plete proof will be published elsewhere.

T This research was supported by NSF GP-5988 and GP-7608.
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PART 1. GROUPOIDS AND THEIR AUTOMORPHISM
GROUPS

1.1 Introduction. A groupoid G is a set S with a binary operation 6 in
which the product z of x and y of Sis denoted by

Z = Xey.
G is often denoted by G = G(S, 6). An automorphism « of G is a per-
mutation of S (i.e. a one-to-one transformation of S onto S) such that

(x0y)e = (x)b(yx) for al x, ye S.
The group of all automorphisms of G is called the automorphism group
of G and denoted by (G) or U(S, 6). It is a subgroup of the symmetric
group &(S) over S. The following problem is raised:

Problem. Let S be a fixed set. Under what condition on S|, for every
subgroup § of &(S), does there exist G = G(S, 8) such that (G) = H?
This problem is a step towards the following problem.

Let § be a subgroup of &(§). Under what condition on § does there
exist a groupoid G such that %(G) = £?

However, we will consider only the first problem in this paper.

The answer to the problem is:

THEOREM 1.1. For every subgroup $ of &(S) there is at least a groupoid
G defined on S such that A(G) = Hifand only if | s[ = 4.

In the next section we will sketch the outline of the proof. From now
on we shall not distinguish in symbols S from G, that is, G shal denote
a set as well as a groupoid defined on it. The groupoids with operations
6,&, . aedeaed by (G, 0), G &), . The automorphism group (G, 6)
will be denoted by %(G) or A(B) if there is no fear of confusion as far asa
s G is fixed &(G) is the symmetric gop over a & G.

1.2. Outline of the proof of Theorem 1.1. The following theorem was
given in 1963 [16].

THEOREM 1.2 Every permutation of a set G is an automorphism of a
groupoid G if and only if G is either isomorphic or gnti-isomorphict onto one of
the  following:

1 .1) A right zero semigroup: xy =y for all x, y.
(L2) The idempotent quasigroup of order 3.
(1.3) The groupoid {1, 2) of order 2 such that
x1=2, x2=] (x=12).
The following theorem partially contains Theorem 1.2.
THeorRem 1.3. Let | G = 5. The following statements are equivalent.

t We will use “dudly isomorphic’ as synonymous to “anti-isomorphic”.
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(1.4) A groupoid G is isomorphic onto either a right zero semigroup or a
left zero semigroup.

(1.5) AG) = &(G).

(1.6) Every even permutation of G is contained in %(G).

(L7) A(G) is triply transitive (ie. 3-ply transitive (cf. [3])).

(1.8) A(G) is doubly transitive and there is an element ¢ € %(G) such that
ap = a, bp =b for some a, beG,a+ b, but xp + x forall x + a,
x + b.

Proof. The proof will be done in the following direction:

17)———(1-4)

B
|

(1 §)ame 10 5) 7

(1.4) > (1.5) isgiven by Theorem 1.2; (1.5) — (1.6), (1.5) - (1.8) are obvi-
ous ; (1.6) - (1.7) is easily proved by the fact that the alternating group
is triply transtive if |G|= 5. We need to prove only (1.7) - (1.4) and
(1.8) —» (1.4). The detailed proof is in [20].

Remark. We do not assume finiteness of G. The definitions of double
and triple trangitivity and even permutation are still effective.

Let § be a proper subgroup of &(G), [(G)| = 5. If $ can be an auto-
morphism group of a groupoid (G, 8) for some 6, then § is neither triply
transitive, nor the aternating group on a set G.

Theorem 1.4. Every permutation group on a set G, |G| < 4, is the auto-
morphism group of a groupoid (G, 8) for some 6.

The proof of Theorem 1.4 is the main purpose of § 1.4, 1.5 below.
In order to count the number of groupoids for each permutation group,
we will experimentally verify the existence for each case.

§ 13 is the introducion of the besic concent for the preparation of 88 1.4,
15.

1.3. Preparation. Let ¢ denote the set of al binary operations 6, &, * .
ddined on a st G. Let g B, ' ' be elementsof &(G), i. e. permutations of G.
To each a a unary operation z on ®, § - 8%, corresponds in the following
way :

x0% = {(xx D0y}, x, y € G.
The groupoids (G, 6) and (G, 6%) are isomorphic since (x6*y)e—1 =
(xa~H)f(ya~1). C learly ais an automorphism of (G, 6) if and only if
6% = §, The product «p of « and § is defined in the usua way:
gaE = (657 for all 6¢@.
It is easy to see that B
638 = g=¢ for all H¢@.

CPA 16
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6= = g3 if and only if «f-1€9[(f). Let § = {a; 2€&(G)}. Then g is

isomorphic onto &(G) under « - a. Suppose « = 8. «f~1isin Y(G, §)

for dl 8¢ . On the other hand, there is 6,¢ @ such that (G, 6,) consists

of the identical mapping ¢ alone (cf. [20]). Hence 5~ = ¢ and so « = .
Define another unary operation § - 6 on @ as follows:

x0'y = yOx.
Then clearly (§")’ = 6 and (G, ) is anti-isomorphic onto (G, 6'); §' = 6
if and only if (G, 6) is commutative. Also (8')* = (6%)" for al 6 ¢ (.
We denote (6')* by 6%, Then a is an anti-automorphism of (G, )
if and only if 6% = 6. We can easily prove

(698 = 0=8
(65)8 = GeF
08 = §oB,

As defined in § 1 .1, U(6) is the automorphism group of (G, §) while A'(6)
denotes the set of al anti-automorphisms of (G, 6).
We define
B(O) = AWB) u A'().
Then B(f) is a subgroup of &(G, §) and the index of A(E) to B(8) is 2.
Let €&(G). Then

AOF) = B~-AWG)B, A (0P = f~1-90(6)B.

Let § = UG, 0) and let xc&S(G). Then H = AG%) if and only if « is
in the normalizer R(H) of H in &(G). Therefore 6% = 67 and W(G*) =
A7) = A@B) = H if and only if «, 8 € 9N) and & = g (mod H).

Let § be a permutation group over a set G and suppose that § is gen-
erated by a subset & = {«;; 1 € X} of 9.

Let

GXG = {(x,y); x,y€G}.
A binary operation on G is understood to be a mapping 9 of GX G into G.
9 is contained in the automorphism group A(G) of a groupoid G defined
by 6 if and only if, for x, y ¢ G,
[(x, »)0le = (xa, ya)f for all «€.

We define an equivalence relation § on GX G as follows:

% y) B (z wif and only if z= xa, u = ya for some « ¢ . Clearly 8
is the transitive closure of a relation ¥y, defined by

(X Y) By (z ) if and only if z= xa, # = ya for some a € {.

If we let ¢ = (a, b)f and if (x,y) %(a, b), then (x, y)§ is automatically
determined by

x, )6 = [(a b)8Jx for some a €.
Let {(a, b¢); & ¢ £} be a representative system from the equivalence classes
modulo B. We may determine only {(a:, b:)8; & €Z}. However, there
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is some restriction for choosing (a: b:)6:
[(as, be)O)e = (ax, bex)f.

For (a; b:) define an equivalence relation ~ 0N the set union {YK-1

asfollows:
a ~ f ifandonly if (asx, bx) = (asB, bef).
3

For (as, b:) we select an element c: of G such that the following condition
issatisfied : ) _
a ~fimplies ¢ = cef.
&

14. Groupoids of order = 3. First of all we explain the notation and the
abbreviations appearing below :

[5) Automorphism group 9.

S, The symmetric group of degree i.

¢ The number of conjugates of 9,
, 18
1.€. C =m~

n The index of $ to its normalizer,

| Normalizer |

"TOTTIRr

up to is0 Up to isomorphism.

up to dual Up to dua-isomorphism (i.e. anti-isomorphism).

self-dual Anti-isomorphic to itself.

comm Commutative.

First we have the following table for groupoids of order 2. Since the
case is simple, we omit the explanation.

Taee 1. Groupoids of Order 2

| ‘ N : Semi-
If-dual,l Non-self-
C Sel-du ) dual ! Tot;l Total groups
) c i n o oo | Dom- i up to i;o i up 10180, {1 5 iso | up to iso,
up to 10 | comm, ( up ’l up to dual (o doat
up to iso l up to dua }
S, 1 1 0 ] 0 2 ) 2 4 1
{e} 1] 2 4 0 1 ! 5 6 3
|
Total 4 o | 3 \ 7 10 4

16*
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For S,

20 210 11
1 11

For {e 11
{}f“ Y

Y

1 112/
2 21

In the following table [(I, 2, 3)] is the permutation group generated by

a3-cycle (1,2,3).[(I, 2)] 1s one generated by a 2cyde or subituion (1, 2).

TasLe 2. Groupoids of Order 3

Self-dual | Non-self- Total Semi-
% Comm, | non- dual, od Total groups
c | n . : up to is0, ; !
up toiso | comm, | upto iso,| M. " 2| up to isOlup toso,
up toiso bip to duay| UP 10 duat up to dua
Sy 1 1 1 0 1 2 3 1
I(1, 2, 3)] 1 2 4 0 4 8 12 0
[, 2 3 1 8 0 35 43 78 5
{e} 1| 6| 116 9 1556 1681 3237 12
Total 129 9 159 1734 3330 18

By Theorem 1, if § = §,, we have two isomorphically, dual-isomorphic-
ally distinct groupoids :

123 ‘132
123 321
123 213

Cae 9 =1[(1,2, 3)]. Let 2 = (1, 2, 3). %-classes :

12

1
11 denotes the multiplication table 1‘ 11
122 222
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Since there is no restriction to choosing ((1 . 1)8, (1-2)8, (2-1)0}, we have
27 groupoids G such that
[«] & AG).

However, the set of the 27 groupoids contains the 3 groupoids in which
S5 is the automorphism group; the number of isomorphically distinct
groupoids G for § = [«] is

27—~ 3) = 12 where n = 2 in Table 2.

If G has dual-automorphisms, 8 = (1, 2) must be a dual-automorphism.

In ths casg dnce

(3-3)p =33 (19 =12, @D = 2-1,
we must have (3-3)8 = (1-2)8 = (2:1)0 = 3. Therefore if § < 9(G) and
if (1, 2) is adua-automorphism of G, then G is

N W
— N W
[OS I  S)

while this G is already obtained for $ = S3, and (1, 2) is an automorphism.
In the present case there is no self-dual, non-commutative groupoid. There
are formally 9 commutative groupoids; but excluding one we have non-
isomorphic commutative groupoids :

30— =4
and 12-4 = 8 non-salf-dua G's,
8+2 =4 isomorphicaly distinct non-self-dual G's.

Therefore we have 444 = 8 non-isomorphic, non-dual-isomorphic G's.
Case = [(1, 2)]. Let « = (1, 2). There are 5 &classes among which

a class consists of only 3.3. Clearly (3.3) 6 = 3. The number of non-iso-
mophc Gs is

81-3 = 78.
If G is commutative then (1-2)« = 1.2, hence (1-2)8 = 3. The number of
non-isomorphic commutative G’s is

9-1 = 8.

The number of non-self-dual G's is 78-8 = 70, and hence the number of
those, up to isomorphism, is

70+2 = 35.
Therefore the number of non-isomorphic, non-dual-isomorphic G's is
35+8 = 43.

We remark that there is no non-commutative self-dual groupoid for
because §; has no subgroup of order 4.
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Case $ = {e). First, we find the number of self-dual, non-commutative
groupoids G for {e}. Let § = (1, 2) be a dua-automorphism of G. Then
we can easily see that

(128 = (1-2), 2D = 2-1), 3-3)8 = (3.3)
1D = 2:2,1-3p= (3:2), 3-D = (2-3),
and hence
(1-2)6 = 2-1)6= (338 = 3.

The 27 G’'s contain the 9 G’s which appeared in the previous cases. We
have that the number of isomorphically distinct G's is

+(27-9) =9
since we recall that the normalizer of [(I, 2)] is itself.

The number y = 116 of al non-isomorphic commutative groupoids
whose automorphism group is {€} is the solution of

6y+4X2+8X3+1 = 38,

The number x = 3237 of al non-isomorphic groupoids corresponding
to {e} is the solution of

6x+78X3+12X2+3 = 3%
The number of non-self-dual G's, up to isomorphism and dual-isomor-
phism, is

+(3237—(116+9)) = 1556.
The total number of G's up to isomorphism and dual-isomorphism is the

sum
116+9+1556 = 1681.

For [(1,2, 3)], let « = (1, 2, 3):

Ix y z
% XX yx

|ya2 202 xo?

where (X, y, 2) is
120,221, 2 32, (21,3 commutative,
112,211,212, (2 3 1) non-self-dual.
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For [(1, 2)}, let 8 = (1, 2

commutative

x 3 z

3 xp z8
z zB 3

where (X, z) is

(1, 1), (1, 3), 2, 1), 2, 2),
2 3,3 D@3 2), @3 3).

Non-self-dual :

Xy z
B xB 28
u up 3

where (X, ,z, u) is

1111),(1,1,31),1,323),2122),2312),311.3),3132),

(1,1,1.2),(1,132),(21,1,1),(2,.1,23),(2.3,1,3),(3.1,2,1),(3133),
(1,1,2,1),(1,1,33),(21,1,2),(2.1.3,1),(2,323),(3.1.22),(33,12),
(1,1,2,2),(13,1,2),(21,1,3),(2,.1.3.2),(31,1,1),3,123),(33,13),
(1,1,2,3),(13,1,3),(21.2,1),(2.1,3.3),(31,1.2),(3.13,1).(33,2.3).

For {€}:

x 3 v
3 xp zB
z y8 3

where (X, y, 2) is
L L2 (2 1 2),
@ 13 (213,
4 2,3 (2,2 3 (3,2 3).
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1.5. Groupoids of order 4.

TaBLE 3. Subgroups of §,

L2y .30 0(1,2,3),(1,2.4}3 01,30,(1,2,3,413

This diagram shows that A is lower than B and is connected with B by
a segment if and only if some conjugate of A contains some conjugate of B.
If $ =S, Gisisomorphic to either aright zero or a left zero semigroup,

by Theorem 1.1

(1) $=11,2, 3), (1, 2, 4] (dternating group).
Leta= (1, 2, 3), = (1, 2, 4). We have the !&classes :

(3:3)=3-3implies3-3 = 3, hence G has to be idempotent. G is aright
zero semigroup if 4:2 = 2; aleft zero semigroup if 4-2 = 4. Let G, be a
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groupoid determined by 4-2 =i (i = 1, 2). G4 isisomorphic to G» under a
transposition (1, 2) and also G, is anti-isomorphic to Gs.

Gy 1234 Gy 1234
1%1342 111423
214213 213241
3124 31 7 314132
413124 412314

G is characterized by the groupoid, which is neither a left nor a right zero
semigroup, such that any permutation is either an automorphism or an
anti-automorphism.

@ 9=11,3, (1,2 34)]
The normalizer of § is § itself, |H| =8, n =1, c = 24/8 = 3.
Leta=(1,3),8=(1, 2, 3, 4. We have the ‘B-classes :

2-4
2:2
20 U kA
1 -e—————33 al QI a la 1 34————»3 B
a \ /

N
|
™
=Y
Qt
|
Ko
=
g
[j
I
-

The calculation 22X 4 = 16, 16 -2 = 14 gives the number of non-iso-
morphic G’s. Suppose the groupoids have a dual automorphism. Since no
subgroup is of order 16, every element of § is a dual automorphism. For a
dual automorphism a, (1-3)a = 13, hence 1-3 = 2 or 4. For an auto-
morphism 8, (1-3)f = 2-4 = 2 or 4 because (2-4)x = 2+4. However, this
is a contradiction to 23 = 3,4 = 1. Hence there are no self-dual G's. The
number of non-isomorphic, non-anti-isomorphic G'sis 14+2 =7

(3 9 =10, 2), Q3.
9] = 6, n =1,c = 24/6 = 4 We have the B-classes :

N4 e e \3

i, +4,4-1=1 org, 44=4
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The calculation 4x23 = 32, 32 -2 = 30 gives the number of non-iso-
morphic G’s. If a dua automorphism exists, then it is in §&. Accordingly
if Gis sef-dual, it must be commutative.

We find the commutative G’s:

1-2)x =21=1:2,12 =3 or 4

We have 8 non-isomorphic commutative G’s, and the calculation 30— 8 =
22, 2222 = 11 gives the number of non-self-dual G’s, and we have a
total of 8 + 11 = 19 non-isomorphic and non-anti-isomorphic G's.

@ 9= [ 23,4, (1, )2, 9]
19 =4, Hisnormal, n=24/4 =6, c = 1,
The number of groupoids G with § ¢ A(G) which appeared in the pre-

ViOUS Cases is
14X3+2+2 = 46.

Let « = (1, 2)(3, 4, 8 = (1, 3)2, 4). We have the ‘B-classes:

SN N AN A
XJ/N/}%/N/

The calculation 44—46 = 210, 210+6 = 35 gives the number of non-
isomorphic G's. There is no commutative G in the 35 G's, because
(12a = 1.2
and we have no value 1-2.
Suppose y = (1, 3) is adual automorphism. We then have the *B-classes:

7

T,
/\ /\ /\ /\
R VAN N

22,24=20r4

The class of 224 = 16 groupoids contains 2 of those corresponding to
[(1, 2, 3), (1, 2, 4)], and so we calculate 16-2 = 14, [4+2 = 7, for the
number of self-dual, non-commutative G’s. Since the normalizer of [(1, 3),
(1, 2, 3, 4)]isitself, §+4 = 2, and we calculate 35-7 = 28, 28 +2 = 14
non-self-dual G's, giving 14+7 = 21 for the total up to isomorphism and
dual-isomorphism.
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=[(1,2, 3 4]
i9] = 4. The normalizer of His[(1, 3),(1,2,3,4)] of order 8, n=8/4 =2,
c= 24/8 = 3.
The number of the groupoids corresponding to the groups which contain
His
14+2 = 16.
Let « =(1,2, 3,4). We have the ‘B-classes:

/\ 2NN /\
4/ \4.1/ EN M/ k\ 4_2/‘

We calculate 44— 16 = 240, 240 + 2 = 120 for the number of non-iso-
morphic G’s. We have [(1, 2, 3, 91 [(1, 3),(1,2,3,4)]. Supposey = (1, 3)isa
dual-automorphism. Then (1-2)« = (1-2)y, but there is no value 1-2 which
satisfies this. Suppose some G is commutative. Then (1-3)a2 = 3:1= 13,
but there is no 1-3 fixed by «2. Consequently there is no self-dual G in this
case, and we have only the

120 a 2 = 60 non-sdf-dud G's.

(6) @ = [(l, 2)5 (39 4)]'
|9 | = 4. Its normalizer is [(1, 2), (1,3,2,4)] of order 8, n = §/4 = 2,
c= 24/8 = 3.
The number of the groupoids corresponding to the groups - 9 is
1442 = 16.

Let a=(1,2), p = (3, 4). We have the %-classes:

[P 33*_[1,4»4 23 32
o’ \B 5/’ NF
/ N R
13 24 31 42
A ‘\
8\ a B\ Ja
w.2<a_—2.1 5.44—’/3)4 3 14 a4

M 42:10r2 33,34=30r4

We calculate 24x 42 = 256, 256— 16 = 240, 240+2 = 120 for the number
of non-isomorphic G’s. We can prove that there is no self-dual G, so we

have
120 « 2 = 60 non-self-dual G's.

M H= 1123}
$ = 3. The normalizer is [(1, 2), (1, 3)] of order 6, n = 6/3 = 2,
c = 24/6 = 4.
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The number of groupoids corresponding to the groups bigger than § is

304+2+2=34.
Letx = (4, 2, 3).
! 2 2 14 41
7 AN
:/ : a e/ a a/ a / \a a/ \c
7 / \ N\ 4-4=24
/ ) Y 3 \
3 e 22 B 23 T 32 3ha— 24 G B 42
a a
44 =4

We cdlculate 45 = 1024, 1024 - 34 = 990, 9902 = 495 for the number
of non-isomorphic  G's.

The number of the groupoids which have g = (1, 2) asadua automor-
phism is

23%4 = 32

since1-1 = 1 or4, 2:3=1or4, 3:2 = 1 ord

Among the 1024 groupoids, there are 64 commutative ones. Eight of the
64 correspond to [(1, 2), (1, 3)], and so 32 — 8 = 24 is the number of non-
commutative G's which have (1, 2) as a dua-automorphism. Two of these
24 G's correspond to [(I, 2, 3), (1, 2, 4)], leaving

24-2 = 22.
The number of commutative G’'s is (64— 8) = 2 = 28 (up to isomorphism).
The number of non-commutative self-dual G's is
22 + 2 =11 (up to isomorphism).

To count the total number up to isomorphism and dual-isomorphism, we
calculate
495— (28 + 11) = 456, 456 +2 = 228, 228 +39 = 267 for this number.

@®) H = [(1, 2G, D]

$ =2, thenormalizer is[(1,2), (I, 3, 2, 4)jof order 8, n=8/2 = 4,

c=24/8=3.

The number of G's with A(G)oH is

240+240+4-210+42+2+2 = 736.
Under « = (1, 2)(3, 4), we have the %-classes.

tefezs  33afmas  t2=fepr a2 fg:

14e2e23 41232 3«2 sl zif s
The calculation 48— 736 = 64,800, 64,800+ 4 = 16,200 gives the number
of non-isomorphic G's.
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Considering the sdf-dual G's, we have
(L 2)3, Dl < {1, 2, 3, 4}
[(L,2GE, <3, 2, 4],
[(1, 2)(3, 9] c [, 2)(3, 4, (1, 3)(2, 9.
If 8 =(1, 2) is a dual-automorphism, we have the & classes:

pefeaz 33a Cest S Ty
Ve N # AN
3 4. 2
\
a , //é a\ /ﬁ
Vd
2=<Zmz 342 w23 24 a
8
t2,33=30r4 34 =tor2 t1=1or2

Here we have 24x 42 = 256 non-isomorphic G’s.

Ify = (1,3)(2,4), is a dua-automorphism, (1:3)y = 1-3, but no element
is fixed by 9. This case is impossble, therefore we see that there is no com-
mutative G.

If §=(1, 3, 2, 4) is a dua-automorphism, under é, we have the B-classes:

NG N N N
N4 NA ONLA A

We have 44 = 256 non-isomorphic G's in this case. The two cases contain 16
groupoids in common among which 14 correspond to [( 1,2)(3,4), (1, 3)2,4)]
and 2to [(1, 2, 3), (1, 2, 4)], and we cdculate 256~ 16 = 240,240 X 2 = 480,
480+4 = 120 self-dua non-commutative G's, and further calculation
gives 16,200— 120 = 16,080, 16,080 + 2 = 8040, 8040+120 = 8160 for
the number up to isomorphism and dual-isomorphism.

® % =100 21
$ | = 2, the normalizer is [(1, 2), (3, 4)] of order 4, n= 4/2 = 2,
c=24/4=6.
The number of G's with (G H is
60+240+-14+2 = 316.

Under a = (1, 2) we have the %-classes:

a

1) et 2.2 (R 2 e
1

142wy 33, 44, 34, 43
\-—V———

23
TP 3T >332  Gi=—T g 3ord



244 Takayuki Tamura

We calculate4® X 2% = 65536, 65,536— 316 = 65220, 65,2202 = 32,610,
for the number of non-isomorphic G’s.
(1, 2]<=((1, 2), 3,4)].
Suppose 5 = (3, 4) is a dual-automorphism. Then
(B-Ha = (3-4)8 = 3.4.
This is impossible since no element is fixed by both a and 8. Therefore there

is no self-dual non-commutative G. To find al commutative G's, we have
the B-classes :

flate22 2221 (3elep3  ta=Sep4 U 8

1.2, 3.3, 3-4. 44 = 3or 4,

and we find 43x24 = 1024 non-isomorphic G's.
The 32 commutative groupoids correspond to [(I, 2), (1, 3)]. Of these, 16
are contained in the 1024 groupoids, and we calculate :
1024— 16 = 1008,
1008s 2 = 504 (commutative, up to isomorphism),
32,610—504 = 32,106,
32106 + 2 = 16,053 (non-commutative, up to isomorphism),
504+ 16,053 = 16,557 (total, up to isomorphism and dual iso-
morphism).
(10) © = {e}.
n=24,¢=1.
We consider G’s. with dual-automorphisms. We may assume that (1, 2)
is the only dual-automorphism.
The %-classes are:

| —e2.2 I 4e—m4q-2 3.3; 44,142,241 =3 or4
13e—e32  dle—=24
Fee23  34e—ea3

We find 4¢ x 2¢ = 65,536 non-isomorphic self-dual G’s.

Among them there are 43X2¢ = 1024 commutative G’s, leaving
65,536 — 1024 = 64,512 non-commutative self-dual G's.

The number of self-dual, non-commutative G’'s with dual-automorphism
(1, 2) adready counted is :

for [(1, 2, 3), (1, 2, 9] IX2= 2
for [(1, 2)(3, 4), (1, 3)(2, 4)] TX2=14
for[(1,2, 3)] 11x4 = 44
for [(1, 2)(3, 4)] 1202 = 240
totalling 300
leaving 64,512—-300 = 64,212.

The self-dual non-commutative G's number 64,212+ 4 = 16,053.
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Next we count the number of commutative G's, comprising the already
counted commutative G's:

8x 4= 32

28X 8 = 224

504x 12 = 6048

totalling 6304.

Solving 24x+ 6304 = 410 = 1,048,576, we obtain
x = 43428.

To count the total number y of non-isomorphic G’s, we may subtract the
following sum from 416;

2X1+1X2+14X3+30X4+35X6+120X6
+120X6+495X8+16,200X12+32,610X12;

then we have y = 178,932,325.
To count the number z of non-self-dual G's, we have:

2z+43,428+4 16,053 =178,932,325,
z = 89,436,422.
The number w of non-isomorphic, non-anti-isomorphic G's is

w = 43,428 +16,053 489,436,422 = 89,495,903.

Table 4 shows the summary.

Addendum. We would like to mention the following propositions.

THEOREM 1.5. Let G be a finite set. For every permutation group $ on G
(i.e.  C &(G)), there is at least a groupoid G with $ S U(G).

Let N(§) denote the number of all groupoids G with $ S %(G) and
M(9) the number of al groupoids G with § = A(G). N(H) and M(D) are
the numbers which count seemingly distinct G(containing isomorphic or
anti-isomorphic  G’s).

The following theorem is obvious.

THEOREM 1.6. Let § be a proper subgroup of &(G). There exists a groupoid
G with = W(G) if and only if

N(©) = ) M(%).
9Cw
Problem. Let [G{ = 5. Under what condition on the properties (for

example transitivity) on §, do there exist groupoids G, |G| = 5, such that
H = AG?
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TABLE 4. Groupoids of Order 4 and their Automorphism Groups
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PART 1lI. SYSTEM OF OPERATIONS AND
EXTENSION THEORY

2.1. Introduction. Let T be a right zero semigroup, i.e. «f = § for al
a, § €T, and {D,;ac T} be a system of semigroups with same cardinality
|D,| = m. The problem at the present time is to construct a semigroup D
such that D is a set union of D,, a ¢ T, and

DmD,g C Dﬂ for all a, [BET

D does not necessarily exist for an arbitrary system of semigroups. For
example, let

a b

D,: right zero semigroup of order 2. ;, (4 »
b ab

c d

D,: a group of order 2. cle d
d dc

Here D, N D, = @. Then there is no semigroup D satisfying
D = D1UD2, Dng - Dz, Dng - Dl.
So our question is this:

Under what condition on {D,; « ¢ T} does there exist such a semi-
group D?

How can we determine all D for given T and {D,; a¢ T}?

The problem in some specia cases was studied by R. Yoshida [18],[19]
in which he dd nat assume the same cadirdity of D, In this pgoar we look
at the problem from the more general point of view; we will introduce the
concept of a general product of a set by a semigroup using the system of
groupoids. Finaly we will show the computing results on a certain special
case. The detailed proof will be published elsewhere.

2.2. The system of operations.+ Let E be a set and B be the set of all
binary operations (not necessarily associative) defined on E. Let X, y € E,
6 ¢ B and let xfy denote the product of x and y by §, A groupoid with 8
defined on E is denoted by E(6). The equality of elements of B is defined
in the natural sense:

6 = nif and only if x8y = xny for al x, y€E.
Let a ¢ E befixal For a we define two binary operdions , % and % , as fol-
loas :
x(0 %k My = (x6a)y, 2.1)
x(0 %2 n)y = x0(any). 2.2

t The system of semigroup operation was studied in [7].

CPA 17
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Immediately we have :
ProposiTioN 2.1. B is a semigroup with respect to , % and % , for all a ¢ E,

The semigroups B with , % and * ,are denoted by B, (,) ad B (% L)
respectively.
E(9) is associative if and only if § ,x 0 =0%, fforadl a¢E
Let ¢ be a permutation of E. For 6 ¢ B, g is defined by
x(0p)y = [(x¢™ 0o ], (2.3)
Thus ¢ induces a permutation of Bz. For 6 ¢ B another operation 6’ is
defined by

x0'y = ybx.
LEmma. (0 a % Mo = (6p) o % (p),
(0 *amp = (09) * 4 (9),
(6 a ¥ 77), = 77' *a o,
(0 %am) = nax 0.
ProposITIoN 2.2. Bg(, %) is isomorphic with Bx(,* ) and is anti-iso-
morphic with Bg( *,) for all a, b € E

2.3. General product. Let S be a set and T be a semigroup. Suppose
that a mapping @ of TX T into By, (a, O = 0,, 5, satisfies

Bup a% Oupy = Oupy %a 05, fordl a B, yeTanddl acsS (24)
Consider the product set
SXT= {(x,); x€S,x€T}
inwhich (x, @)= (y, ) ifand only if x =y, a=§.
Given §, T, 0, abinary operation is defined on SX T asfollows :
(x, @) (v, B) = (%0, 3 ¥, of). (2.5)

ProposiTIoN 2.3. 8X T'is a semigroup with respect to the operation (2.5),
and it is homomorphic onto T under the projection (X, a) —e.

Definition. The semigroup, SXT with (2.5), is caled a generalproduct of
ast Shy a semigroup T with respect to @, and is denoted by

SXel.
If it is not necessary to specify @ it is denoted by
S-R-T.

ProposITION 2.4. Suppose that T is isomorphic with 77 under a mapping
y and S| = |§’|; let g be a bijection S-S. Then

S;(— @T = S'Y@’TI
where @ = {0, 5; (@, ) € TXT}, 0’ = {0y, s, (ap, fp) € T'xX T"}
and x0w. 55y = [(x™)0,, s(y@™Vlp, x, Y € &
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In this case we say that @ in Sis equivdent to @' in S”.
We understand that S X ¢T is determined by T, S| and the equivalence
of @ in the above sense.

Definition. If a semigroup D is isomorphic onto some S x o7, then D is
caled general product decomposable (gp-decomposable). If |§] > 1 and
|T| > 1, then D is caled properly gp-decomposable.

Definition. Let g be a homomorphism of a semigroup D onto a semi-
group T:D = | JD,, D,g = a. If |D,| = | Dyl for al a, B ¢ T, then g is called
aET

a homogeneous homomorphism (h-homomorphism) of D, or D is said to be
h-homomorphic onto T. If |D,|> 1 and |T}> 1, then g is called a proper
h-homomorphism.

THEOREM 2.1. A semigroup D is gp-decomposable if and only if D has an
h-homomorphism.

In other words, D = SX 6T, |S|> 1, |T|> 1, for some @ if and only if D is
properly h-homomorphic onto T.

Proof. Suppose that D is h-homomorphic onto T under g.
D= U D, Dg=a
et T

Let S be a set with |S| = |D,[for dl a¢ T, and let f, be abijection of D, to
S. Fixing { £, ;a ¢ T}, for each (a f) € TXT we define a binary operation 0,, ,
on Sasfollows. Let x,y € S:

X6s, 5y = [0S o

Let a be any dement of D, hence a € D, for some a € T. We define a mapping
yof D onto SX T as follows :

a —~ (af,, o).

Then v is an isomorphism of D onto $X 6. The proof of the converse is

E'ven if D, S, Tare given, @ depends on the choice of {f,; a € T}. How-
ever, @ is unique in some sense. To explain this situation we shall define a
terminology.

Definition. Let gand g’ be homomorphisms of semigroups A and B onto a
semigroup C respectively. An isomorphism h of Ainto (onto) B is called a
restricted isomorphism of A into (onto) B with respect to g and g or we say
A is restrictedly isomorphic into (onto) B with respect to g and g if there is
an automorphism k of C such that h-g'= g k:

45¢
B Wk
BgcC

17¢
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Dejinition. Let G(0) and G'(8’) be groupoids with binary operations 8, ¢’
respectively. If there are three bijections h, ¢, r of G(8) to G’(6") such that

(x0)r = (xh)0'(yg) for dl x,y ¢ G (6),

then we say that G(8) is isotopic to G'(6"). If it is necessary to specify h, q,
r, we say G(8) is (h, g,r)-isotopic to G'(6'). We denote it by
GO) =~ G'(0) or G(8) =~ G'(6).
(’MI. f)

THEOREM 2.2. Let Sand T be a fixed set and a semigroup respectively. Let
(@,0)0 = 0, 4, (x, P)O' = 0, 4, a, B T. SX,T is restrictedly isomorphic onto
SXe T with respect to the projections of S oT and SxTte T if and only jf
there is an automorphism a —o«’ of T and a system {f,; a € T} of permutations
of S such that a groupoid S(6, ) is (f,, f5, fys)-isotopic to S(b,. ) for all

o, BeT.
Let o and o be relations on a semigroup D. As usua the product ¢ -o

of p and ¢ is defined by
00 = {(x,); (x,2) €0, (z,y) €0 for some z¢ D}
Let w = DxD,t = {(x, xX); x € D}.

THEOREM 2.3. A semigroup D is gp-decomposable if and only if there is a
congruence o on D and an equivalence ¢ on D such that

00 = o, (2.6)
one =1, 2.7

in which (26) can be replaced by
0'0= O, (2.6")

Then D =(D/o)x(D/o) where D/p is the factor semigroup of D modulo ¢ and
D/o is the factor set of D modulo o.

We know many examples of general products. Direct product, semi-
direct product [3], [6], group extension [3], Rees' regular representation of
completely simple semigroups [1], the representation of commutative
archimedean cancellative semigroups without idempotent [11], Q-semi-
groups [15], and so on.

2.4. Left general product. As a specia case of a general product, we
make the

Definition. A general product S'x ,7 iscaled a left general product of
S by Tif and only if

@ PP = (z,y)@ fordl apyeT (2.8)
Sx T iscaled aright general product of S by T if and only if
@p@=( )0 fordl af,yeT. (2.8")
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In case (2.8), fl,, ; depends on only a, sod,, , is denoted by 0,.. Then (2.4) is
rewritten :

O, a¥ Oppe= 6. %, 05 fordla €T, dlacs. (2.9)

In case (2.8"), 8,, 5 is independent of «, and 6, , is denoted by 6.5 and (2.4)

1S
G a% 6.5 = G.aﬁ * 4 0.5 for dl a, ﬂ €T, dl aeS. (2.9

A left congruence is a left compatible equivalence, namely an equivalence
o satisfying
xo0y = zxozy for dl z
THEOREM 2.4. Let D be a semigroup. D is isomorphic onto a left general
product of a set S by a semigroup T if and only if there is a congruence p on D
and a left congruence ¢ on D such that
Djo=T, Djo = S|
and
o+.¢ = o (equivalently 09 = o),
oNo =

ExawpLE. Let T be a semigroup, F a set, and let x denote a mapping of
Finto T:
Jx = ay where 3 ¢ F, o € T.
The set of al mappings x of F into T is denoted by S. For § € T andx € Swe
define an element - x as follows:
Ix = o = MBex) = Poa.
Then
B)x = B-(yx).
A binary operation is defined on G = SX T as follows:
(x, ), B) = (@y, «p). (2.10)

Then G is a semigroup with respect to (2.10) and it is a left genera product
of S by T. Further the semigroup G with (2.10) is completely determined by
a semigroup T and a cardina number m = |F|, and G is denoted by

G = &9,/(T).

We can describe the structure of Bg(,* ) in terms of the semigroup of this
kind.

THEOREM 2.5. Letm = lE[— 1 and Se be the full transformation semigroup
over E (c¢f. [1]). Be(, %) is isomorphic onto &D,,(Tg).

2.5. Sub-generalproduct. In § 2.3 we found that the two concepts, h-homo-
morphism and general product, are equivalent. What relationship does there
exist between general products and homomorphisms?
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Let 7 be a subset of §% T, and define
Py U) ={e€T; (x, ) ¢ U}
Dejinition. If U/ is a subsemigroup of §%,T and if p, (U)=T,thenyis
caled a sub-general product of SX 5T

In the following theorem, the latter statement makes the theorem have
sense.

THeorem 26. If a semigroup D is homomorphic onto a semigroup T under
a mapping g, then D is restrictedly isomorphic into §x ¢7" with respect to g
and the projection of §°x ;T to Tfor some S, Furthermore there exists an §,

among the above S such that S, is either the minimum of S| or possibly the
minimum  plus one.

Proof. Let D= J D, D,g =& Clearly D,|=<|D fordlac¢T. The set

a€T
{|D.|; a€ T} has aleast upper bound. (For this the well-ordered principle is
used.) Let

m=1+lub. {|D,|; a¢T}
and take a system of sets S, of symbols such that
|S,[=m for dl agT

and a set S, with | § = m. Further we assume that D, C S, and S, contains
a specia symbol 0,,
0,¢D,,

and S, contains a speciadl symbol 0. Now let £, be a bijection of Sto S, such
that
Of, = 0.

We define a binary operation on G = SX T as follows:
. ~1
(x’ “)(y’ ‘3) - {((-xfa yfﬁ)f;ﬂ » OC‘B) xf;EDa‘s yfﬂEDp
©, «p) otherwise.
Then we can prove that G = $X o7 where
¥y = {((xﬂ)(yfp))f;pl, 3/.&Ds, y€ Dy
0 otherwise.

Let D’ = {(X, a); xf, ¢ D,,a€T}. Then P,; (D’) = T and D’ = D under
(xa a)"’xa,a€T.

2.6. Congtruction of some general products. As a simplest interesting
example of general product, we will construct all general left products of
aset S by aright zero semigroup T.

o« f
Let T = {a B}, aE 8
f e B
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The equations (2.9) are
Ou ok Op. = O, *a Op.
eﬂ' a¥ 0.:. = 0,3. ¥g 0. (2_11)
0o a% 0o = Oue %, O
65. a¥ 6ﬁ. = 05 %, 0[3-

6.. and 0. are semigroup operations. In order to construct al left general
products G = §X 1" we may find all ordered pairs of semigroup operations

on S
(0.., 0s)
which corresponds to
G = G 0.)U Go(05), Go|=1Gs]
For fixed Tand S, G is denoted by G(0,., 05.). Clearly
G(0,., 05.) = G(p., 0..).
Instead of ordered pairs it is sufficient to find pairs (6,., 6,.) regardless of
order.

Let & denote the set of all semigroup operations defined on S. (€5 con-
tains isomorphic ones.) We define arelation ~ on &; as follows:

0 ~ mifand only if 0 ;%7 =0%,n and n,%0=1n %,0 forall ac S.
The relation ~ is reflexive symmetric.

Let ¢%, 12 be transformations of S defined by

z¢h = z0x, zyf = x0z
respectively.  Then
f .,%xn=0x.nfordl a¢S if and only if
ot = ot foral x,y € S.

As specid cases we will determine the relation ~ on &g in the case
|S]=3.

I. Left generalproduct of S, [S! = 2, by right zero semigroup T.

a b
Let S= {a b} |~ y" . X, Y,Z,u=aor b isthetablea | x y
zZ u b
| Z U
Explanation of the notations which will be used later: For example
4 denotes the semigroup Zzl, ie 40 =4

| 1 b
4, denotes [ZZi which is the isomorphic image of 4 under 1 (Z a) .
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TaBLE 5. Semigroups of Order 2

°Gs) ()

ab
1 ab 0
aa bb
2 aa bb
aa ab
3 ‘;b—l bb
4 ab ba
ba ab

11 is exactly the same as 1, i.e. [, = 11.

1" denotes ZZ , omitted from Table 5.

Table 6 shows al # such that 8, ~ 5. We may pick 8, from all non-iso-
morphic semigroups, but must select ¢ from all semigroups. Generally the
following holds :

6 ~ n implies 6p ~ yg for al permutations ¢ of S (see § 2.2), (2.12)
€ ~ 7 implies 9" ~ §'. (2.13)

TaBLE 6

b ~ 9

Oy 7

BN
AN
EL A

From the table we also have

0o = 21, n =21, 31,
6o = 31, 1 = 21,31,
0o = 41, n =4, 4L
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Table 7 shows all non-isomorphic left general products D of §,|S| = 2,
by aright zero semigroup of order 2.

TABLE 7

0,. Bg.

.;;wl\Jl\.)l—:'—
0O W N

As an application of the above results, we have

THEOREM2.7. Let Sbeaset, |S| = 2, and T be aright zerosemigroup of order
n. A left general product D of S by T is isomorphic onto either the direct
product of a semigroup S of order 2 and a right zero semigroup T of order n

D = SXT, |S|=2, |[T|=n
or the union of the two direct products
D = (S1XT)U (S2X Ty,
where T, and T, are right zero semigroups, T1] + T2] =nand §, is a null
semigroup of order 2 and Sy is a semilattice of order 2.

[1. Left generalproduct of §, |.S|= 3, by right zero semigroup.
« p
Let T =f{a B}, dq« 8 .
Blae B
The method is the same as in case |, and we use the same notation. Let
©; denote the set of al semigroups defined on S, §| = 3. Table 8 shows
&3 except the dual forms. Those were copied from [8], [10]. Table 9 shows
dl # for given 6, such that 6y ~ 7.
This table shows, for example, that 2 = 20 = 21, 25 = 23,2, = 2;.
In the following family § of ten subsets of &, each set satisfies the

property: Any two elements of each set are --equivalent, and each set is
a maxima set with this property.

{1}, {2) 3, 15}9 {4, 52, 16}: 63 627 64}5 {75 72, 1 1}9
{(7, 12:), {2, 8, 14, 14}, {2, 9, 18}, {2, 10, 10}, {2, 13, 13; 17},

Let ' denote the family obtained from § by replacing (6, 62, 64,} by {6}
and (2, 10, 101) by (2, 10} and leaving the remaining sets unchanged.
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Tase 8. Al Semigroups of Order 3 up to Isomorphism and Dual-isomorphism

10

abc abe abce abe abe abc
0<abc) 1(acb) 2(bac) 3(bca) 4(cab) 5(cba)

abce

abe 0 0 0 0 0

abce

aaa bbb cecce

aaa 0 bbb 2 eee 4

aaa bbb 6ee

aaa aaa bbb cbb ccc bee

aaa aca bbb bbb cac ccc

aab aaa bba bbb

( CECl ccce

aba aac baa bbe caa chbe

bab aac abb bbe ace bebh

aba cca abb cech ace cbe

abb acc bab beb cca cch

baa caa aba che eea ceh

baa can bab bebd aac bbece

abe cab beca

bca 0 abe 2 cab 4

cab bca abe

aba aac‘ abb bbe acce che

aba aac abb bbc ace che

aba aacj abb bbe acce cbe |

aaa abc abe

abe 0 bbb 2 abe 4

abe abc cce

aaa ‘aaa aba che aac bbc

abb acc bbb bbb aac bbc ,

abb aee aba chc ccx e ccc

aaa aaa abe cbu abgw i bac

abc ach bbb bbb bac abce |

ach abe cha IabC cee cce
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TaeLe 8 (continued)
abc abc abc abe abc abce
o(abc) 1(acb) 2(bac) 3(bca) 4(cab) (cba)
aba aac abc
11 abb abc 0 bbe 1 3
abe acc che
abb acc aba abe aac abe
12 abb abc aba che abe bbce
abe acce abce che aac bbc
aaa aaa Ibbb! abb cce acc
13 aaa aba bbbj bbb chbe cce
aac aaa bbe ! bbb cce cce
aaa aaa |bba‘ !abb cac acc
14 aab aba bbb | bbb che bcce
aac aca bb01 chbbd ccc cec
aaa aaa bba abce cac abce
15 aab abe bbb bbb abce bece
abce aca abe cbb ccce cce
aba aac baa abe caa abe
16 bab abe abb bbe abce bch
abe cca abce cch acc cbce
——tT
aaa1 abb acc |
17 uba 0 bbb’ 2 cbe 4
aac] bbc cce
i | |
aaa’ ‘aaa aba'! s abe aac abc
18 abb l abe bbb | bbb abe bbhe
‘abc ace abcl [ che eex cce

We have the following theorem, in which we do not assume T is finite:

THeorem 2.8. A left general product D of §, | | = 3, by a right zero

semigroup T is determined by a mapping « of the set T into one of the sets
belonging to £’ in such a way that f,, = n(a), « € T. Every left general
product D of §, |S| = 3, by T is isomorphic or anti-isomorphic onto one of
those thus obtained. Accordingly D is the disjoint union of at most four
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distinct (but not necessarily isomorphically distinct) direct products, i.e.

D = U (S(@E)XT), m <4,
i=1

m
where T = LT;,-Ti-'s are right zero semigroups and either 6; = n(7})
i=

(=1 ... morb;=a(T)@i=1...,m).
I11. Right generalproduct of S by right zero semigroup.

«fp
First let T=1{a, g}, xa § .

Bap
The equations (2.9°) are

B o O = 0.4 %4 0,
6~ﬁ ok e-a = 01 *a 6-1
O a% O = 0.0 ¥4 6.,
O % 05 = 0.5 %, 04

A relation & is defined on &g as follows:

(2.14)

6 ~ n if and only if
60%7]:7] *a 7

foral a¢S.
n aXk 6= 6 *a 0
Recall that
208 = z0x, 28 = xbz.

Using these notations,

O ok m=mn*ksnforallac Sif and only if yi, = yIy7 for all x, y < S.

Therefore x -+ 47 is an anti-homomorphism of a semigroup S(6) into the
left regular representation of a semigroup S().

We have obtained al non-isomorphic right general products of S,
|S| = 3, by aright zero semigroup of order 2. The results will be published
elsewhere.

IV. General product of S by a right zero semigroup T of order 2.

Let T= {x, 6},

R R R
™o ™

a
p
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7

1

2,3,3,,8,8,9,9,10,10,, 13, 13,,14,14,,14",14], 15, 15,. 17, 18, 18,

3 {23 15

4 14 52 16

5 | 4.5, 16,

6 |86,6,6,

1 7, T2, 11,124
8 |2 8 14. 14
9 |29 18

10 |2 10, 10,

11 7, 7 11

12 | 72 12

13 2,13, 13, 17
14 |2 8, 14, 14,
15 |2 3 15

16 | a4, 516

17 | 2 13, 13,, 17
18 [ 2 9 18

1 Thee were computed by P. Dubois, J. Youngs, T. Okamoto, R. Kaneiwa, and
A. Ohta under the author's direction.

To find (6, ., 0., 4> 05, 0, 5) We may solve the following equations:

Oua a¥ Oup = 0up ¥4 Oup Opp a¥ Op0 = 050 ¥4 0,0
eu_p a¥ eﬂ,a = Ozx,a *a eﬁ,a, Gﬂ,a a¥ 01,5 = eﬂ,ﬁ *a oa,ﬂ’
Oa,ﬂ ok Bﬁ,ﬁ = ea,ﬁ *a Bp,p, ep,a a¥ 91,, = Gﬁ,a * a Gm,

eu.a aX¥ Ou,a= eu,a. *q ea.,m 05,5 a ¥ 66,5

6.6 *a 0Op,6.

(2.15)
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These are equivalent to:

Y oepP = eplyelf, i Pelc = feyle

’Pi’ ﬁ(Pg’“ = (P’;g»’ “ll)i’ a: vy “(p;’ﬂ = ‘P;’ ﬁ‘l’f}'ﬁ (216)
VePehf = el Pzl whcepe = opyke

0., and 0, ; are semigroups.

The author and R. Dickinson have computed al non-isomorphic general
products of S, |S| = 3, by aright zero semigroup of order 2 using a CDC
6600. The rexults will be published esewhere.
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Mr. Richard Biggs for Part I,
Mr. Robert Dickinson, Professor Morio Sasaki and his students for
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Simple Word Problems in Universal Algebras’

Donaeb E. KnutH  and PeTer B. BENDIX

Summary. An algorithm is described which is capable of solving certain word
problems: i.e. of deciding whether or not two words composed of variables and
operators can be proved equal as a consequence of a given set of identities satis-
fied by the operators. Although the general word problem is well known to be
unsolvable, this agorithm provides results in many interesting cases. For example
in eementary group theory if we are given the binary operator . , the unary oper-
ator -, and the nullary operator e, the algorithm is capable of deducing from
the three identitiesa-(b-¢) = (ab).c, a.a— =€, g.e=a telaws g—.q = €,
ea=a a =a etc.;and furthermoreit can show thata-6=5.g-isnot a
consequence of the given axioms.

The method is based on a well-ordering of the set of al words, such that each
identity can be construed as a “reduction”, in the sense that the right-hand side
of the identity represents a word smaler in the ordering than the left-hand side.
A st of reduction identities is sad to be “complete’ when two words are equa
as a consequence of the identities if and only if they reduce to the same word
by a series of reductions. The method used in this dgorithm is essentidly to test
whether a given set of identities is complete; if it is not complete the algorithm
in many cases finds a new consequence of the identities which can be added to the
list. The process is repeated until either a complete set is achieved or until an
anomalous situation occurs which cannot a present be handled.

Results of several computationdl experiments using the agorithm are given.

Introduction. The purpose of this paper is to examine a general technique
for solving certain algebraic problems which are traditionally treated in
an ad hoc, trial-and-error manner. The technique is precise enough that
it can be done by computer, but it is also simple enough that it is useful
for hand calculation as an aid to working with unfamiliar types of algebraic
axioms.

Given a set of operators and some identities satisfied by these operators,
the general problem treated here is to examine the consequences of the
given identities, i.e. to determine which formulas are equal because of the
identities. The general approach suggested here may be described in very
informal terms as follows: Let us regard an identity of the form a = § as a
“reduction,” where we choose one side of the identity, say S, as being
“simpler” than the other side a, and we agree to simplify any formula

T The work reported in this paper was supported in part by the U.S. Office of Naval
Research.

CPA 18 263
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having the form of « to the form of g. For example, the axiom a=1(ab)=b

can be considered as a reduction rule in which we are to replace any for-
mula of the form a~}(ab) by b. (The associative law for multiplication is
not necessarily being assumed here)) It is demonstrated in this paper that
the most fruitful way to obtain new consequences of reductions is to
take pairs of reductionsa; = By, 22 = f2 and to find a formula which has
the form of ¢; and in which one of the subformulas corresponding to an
operator of g; also has the form of a,. If the latter subformula is replaced
by Bs, and the resulting formula is equated to 53, a useful new identity
often results. For example, let @; = «; = a~Yab), and let 3, = B2 = b;
then the formula (x=%)~1 (x~1(xy)) has the form of «; while its sub-
formula (x—*(xy)) corresponding to the multiplication of a by b in #;
haslihtle form of «,; so we can equate (x=1)-1 (x-*(xy)) both to xy and to
(x~H=1y.

The generd procedure which has been described so vaguely in the preced
ing paragraph is formalized rigoroudly in §§ 1-6 of this paper. § 7 presents
over a dozen examples of how the method has given successful results
for many different axiom systems of interest. The success of this technique
seems to indicate that it might be worth while teaching its genera principles
to students in introductory algebra courses.

The formal development in § 1-6 of this paper is primarily a precise
statement of what hundreds of mathematicians have been doing for many
decades, so no great claims of originality are intended for most of the
concepts or methods used. However, the overall viewpoint of this paper
appears to be novel, and so it seems desirable to present here a self-
contained treatment of the underlying theory. The main new contribution
of this paper is intended to be an extension of some methods used by
Trevor Evans [4]; we allow operators to be of arbitrary degree, and we
make use of a wel-ordering of words which dlows us to trest axioms such
as the associative law. Furthermore some of the techniques and results of
the examples in § 7 appear to be of independent interest.

1. Words. In the following sections we will dedl with four fixed sequences
of quantities:

(@ An infinite sequence of variables vi, v, vs, . . . , Which are digtinguish-
able symbols from an infinite aphabet.

(b) A finite sequence of operators fi, fa,f3, . .., fv» Which are digtinguish-
able symbols from some aphabet, digoint from the variables.

(c) A finite sequence of degrees dy,ds, ds, . . . , dy, Which are nonnegative
integers. We say d; is the degree of operator f;.

(d) A finite sequence of weights wy, wa, wa, . . ., Wy, Which are non-

negative integers. We say w; is the weight of operator f.
An operator whose degree is 0, 1,2,3,. . ., will be cdled a nullary, unary,
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binary, ternary, . . ., operator, respectively. Nullary operators take the
place in this discussion of what are traditionally called “constants’ or
“generators’. We will assume there is at least one nullary operator.

Two specia conditions are placed on the sequences defined above:

(1) Each nullary operator has positive weight. Thus if d; = 0, w; > O.

(2) Each unary operator has positive weight, with the possible exception
of £, Thusifd;=landj<N,w;>0.

The reason for these two restrictions will become clear in the proof of
Theorem 1.

Certain sequences of variable and operator symbols are called words
(“well-formed formulas’), which are defined inductively as follows :
A varigdble »; standing alone is a word; and

Sy . ad (1.1)

isaword if ay,. .., a; ae words and d = 4;. Note that if £; is a nullary
operator, the symbol f; standing alone is a word.

The subwords of a word a are defined to be (i) the entire word a itself,
and (ii) the subwords of al, . . ., a4 if a has the form (1.1). Clearly the
number of subwords of a is the number of symbolsin a, and in fact each
symbol of a is the initid symbol of a unique subword. Furthermore,
assuming that a and § are words, $ is a subword of aif and only if fisa
substring of a, i.e. a= ¢fy for some strings of symbols ¢ and 7.

Let us say a nontrivial subword is a subword which contains at least one
operator symbol; i.e. a subword which is not simply of the trivial form
“p;” for some variable v;. The number of nontrivial subwords of a word
ais clearly the number of operator symbolsin a.

This definition of words and subwords is, of course, just one of many
ways to define what is essentially an “ordered tree structure”’, and we may
make use of the well-known properties of tree structure.

Let us write n(x, a) for the number of occurrences of the symbol x in
the word a. A pure word a is one containing no variables at dl; i.e. ais
pure if n(v;, a) = 0for al j. The weight of a pure word is

w(o) = jZ win(fj, «); (1.2)

i.e. the sum of the weights of its individual symbols. Since every nullary
operator has positive weight, every pure word has positive weight.

The set of al pure words can be ordered by the following relation:
a= fif and only if ether

(1) w(a) > w(B) ; or

(2) W(a) = W(B) and a = f}ocl e Otdj, /3 = ﬁ,ﬁl e ﬂdk’ and either

(28)] > k; or

2b)j=Fkanda;=p8y,....0_1= B, >p forsome ¢ 1 <= d,

i8*
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It is not difficult to design an algorithm which decides whether or not
a > f, given two pure words a and j; details will be omitted here.

THEOREM 1. The set of all pure words is well-ordered by the relation « >

Proof. First it is necessary to prove that a > 3 > y implies a > y; and
that for any pure words a and £, exactly one of the three possibilities
a>f,a=p a < p holds. These properties are readily verified by a
somewhat tedious case analysis, so it is clear that we have at least a linear
ordering.

We must now prove there is no infinite sequence of pure words with

Ay >0 >0Ug>. ... (13)

Since the words are ordered first on weight, we need only show there is
no infinite sequence (1.3) of pure words having the same weight w.

Now let a be a pure word with n; symbols of degree d,. It is easy to
prove inductively that

notnytne+ ... = 14+0ng+1-n1+2n3+ .. .,

re.no=14ny+2n34....Snce each nullary operator has positive weight,
we have W = n,; so there are only a finite number of choices for ny, n,,
ns, . . ., if we are to have aword of weight w. Furthermore if each unary
operator has postive weight, we have w = n;, so there would be only finitely
many pure words of weight w. Therefore (1.3) isimpossible unless f isa
unary operator of weight zero.

Therefore let wy = 0, dy = 1, and define the function h(a) to be the
word obtained from a by erasing all occurrences of fy.Clearly if ais a
word of weight w, so is h(a). And by the argument in the preceding para-
graph only finitely many words /() exist of weight w. To complete the
proof of the theorem, we will show there is no infinite sequence (1.3)
such that A(xs) = h(xs) = hlag) = - - - -

Let h(a) = 51 52.. . . s,; then ahasthe form f s1 fi3s2 . . . fi s, where
ri, ..., *, ae nonnegative integers. Define r(a) = (ry, ..., %), an n-tuple

of nonnegative integers. It is now easy to verify that, if h(e) = h(f), we
have a > § if and only if r(@) > »(8) in lexicographic order. Since it is
well known that lexicographic order is a well-ordering, the proof of
Theorem 1 is complete.

Note that if f; were a unary operator of weight zero and j < N, we would
not have a well-ordering, since there would be a sequence of pure words of
the form fya > fifyx > fififye>.... And if we have nullary operators
of weight zero, other counterexamples arise; for example if f; is nullary
and f»is binary, both of weight zero, then

fafsfifify = LARAAfIfL > fARAffAfI 1>

This accounts for the restrictions we have imposed on the degrees and
the weights.
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2. Substitutions. Most of § 1 was concerned with pure words, and it is
now time to consider the variables which can enter. If ais a string of
symbols containing variables, we let v(a) be the largest subscript of any
variable occurring in a. If a involves no variables, we let »(x) = 0.

If a 01,0 ..., 0,arestrings of symbols, where n = v(a), we will write

S(019 023. ey 671; 0'.) (21)

for the string obtained from a by substituting ¢; for each occurrence of
v, l<j=n For example if v(a) = 2, S(zs, v1; @) is obtained from a by
interchanging the variables 1 and vs.

We say aword § has the form of aword a if § can be obtained by sub-
dtitution from & i.e. if there exist words 6y, 6., . . ., 6, such that § =
S = (61,62, ey, 6,“ a).

It is not difficult to prove that two substitutions can always be replaced
by one, in the sense that

S(‘pl’ ey (Pm, S(elu ey 9,,; a«))
=SS@1, ..., om; 01), ..., S(@1, ..., Pm; 0,); ). (2.2)

So if ¥ has the form of § and 8 has the form of a, y also has the form of a.

It is comparatively easy to design an algorithm which decides whether
or not § has the form of a, given two words 8 and a. Brigfly, let a =
A1 As... A, where each 7; is a variable or an operator. Then 8 must have
the form 8 = B1Bz. . .B= Where, if y; is an operator, y; = B;; and if
¥; = yisavaiable then 3, = g isaword, for 1 <j <k <=m.

Let wo be the minimum weight of a pure word; thus wo is the minimum
weight of a nullary operator. We define the weight w(a) of an arbitrary
word to be the minimum weight of al pure words which have the form of a:

w(a) = wo g @ a)+, ;)“,lw,-n( fi» a). (2.3)
J

We now extend the “= relation, which was defined only for pure
words in § 1, to words involving variables. Let us say that a > f§ if and
only if either

(1) w(a) > w(8) and n(v;, a) = n(y;, f) for dl i=1; or

(2) w(a) = w(B) and n(v;, a) = n(v, B) foral i = 1

and either a= fyu, f§ = v for some t= 1, or

oc=f}061.. . Oy ﬁ: fkﬁl. . ank and ether

(29) j = k; or

(@b)j=kandas=Py,...,0_7=F_1,a >p forsome1l=<t=d.

It is not difficult to design a relatively simple agorithm which determines,
given words a and f§, whether a < 8, or a= 8, or a > §, or whether a

and 8 are unrelated. In the latter case we write “a # £”. When a and
8 are’ pure words, the situation a4 f is impossible; but when variables
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are involved, we can have unrelated words such as
Jsvwiv1eivs # favavavy, (2.4)
Sav1vs % fovary, (2.5)

where f2, f3, f5 areoperators of degrees 2, 3, 5 respectively.
The principal motivation for the given definition of a > § is the following
fact:

THEOREM 2. If @ > f then §(601,0s,. . ., b5 0) > S04, 02, .., 6,; B), for
all words 04, .. .,8,.
Proof Let o' = S(0y, 05, ..., 6,5 a)and g = S(Gy, b2, . . ., 6,; ).

If condition (1) holds for =« and g, then it must hold also for @ and f'.
For in the first place, every word has weight = w,, So

w(@') = w(2) +j§1 n(z;, oc)(w(ﬂj) - Wo)
= w() + i; n(v;, BY(w(6;) — wo) = w(B").
Secondly,  n(;, &) = 21 n(vy, an(vy, ) = Y nvy, Pno,, 0) = n(w;, B).
> j>1

J

If condition (2) holds for = and g, then similarly we find w(x') = w(8’)
and n(v;, &) = n(v;, B foral j,and o' = fioy . .. ag, f'= fibi . . . Pa,
where «; = S(6,, . . ., 8,;a) and B, = S0y, . . ., B,; B,) for al r. Hence
either j = k, or an inductive argument based on the length of a will
complete the proof.

Corollary. There is no infinite sequence of words such that a, > ay >
=>ag > .... For if there were such a sequence, we could substitute a
nullary operator f* for each variable v, j = 1, Theorem 2 implies that this
would give an infinite descending sequence of pure words, contradicting
Theorem 1.

It should be emphasized that Theorem 2 is a key result in the method
which will be explained in detail in subsequent sections; and the fact that
« # f# can occur for certain words a and 8 is a serious restriction on the
present applicability of the method. The authors believe that further theory
can be developed to lift these restrictions, but such research will have to
be left for later investigations.

It may seem curious that f; 27 v1v101V2 % f3vavsevy; SUreEly f50101010109
appears to be a much “bigger” word than fsv.v,v,, But if we substitute a
short formula for #; and a long formula for ¢, we will find fzwwev; is
actually longer than fyv,vyv,0125.

Theorem 2 is not quite “best possible’; there are words a and § for
which a 3 B yet S(0y, 03, . .., 0,; «) > S(04, 05, . . ., 0,; B) for al “pure’
words 64, . . ., ,. For example, consider

favr # fofi (2.6)
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where f3 and f> are unary operators of weight one, and f: is a nullary
operator of weight one. If we substitute for »; a pure word 6 of weight 1,
we have f3 = f3f1 by case (2a); but if we substitute for 2, any word 8
of weight greater than one, we get f30 > foft by case (1). We could there-
fore have made the methods of this paper slightly more powerful if we had
been able to define fary > fafi; but such an effort to make Theorem 2
“best possible” appears to lead to such a complicated definition of the rela-
tion & > f that the comparatively simple definition given here is preferable.
So far in practice no situation such as (2.6) has occurred.

Let « and § be words with #(«) < n, #(f) < n. In the following
discussion we will be interested in the general solution of the equation

SO ... 0, 0=S01..., 0:08 (2.7)
in words 6, . . ., §,. Such an equation can always be treated in a reasonably
simple manner:

THeorREM 3. Either (2.7) has no solution, or there is a number k, 0=k =<n,

and words oy, . . . , 0, with 2(6;) < k for 1< =< n, where
{'Ul, /Uz, P ] vk} g {01, ) Gn}s (2'8)
such that all solutions of (2.7) have the form
6].: S(q’)l’ ..,’(pk;()'j), 1<]< n. (29)
Moreover, there is an algorithm which determines whether or not (2.7) is
solvable, and which determines ¢4, . . . , g, when a solution exists.
(Note that this theorem provides the general solution of (2.7). The signi-
ficance of relation (2.8) is that the simple words 74, vy, . . ., 7 are included

among the 0's, i.e. that some k of the §’s may be selected arbitrarily and the
other n-k s must have a specified relationship to these k “independent”
variables. This result is equivalent to the “Unification Theorem” of J. A.
Robinson [lo].)

Proof Theorem 3 can be proved by induction on n, and for fixed »n by
induction on the length of «8, as follows.

Case 1. « = %, fi = v, If p = q, then obviously any words 61, .. ., fx
will satisfy (2.7), so we may take k= n, 61 = ¥1,.. .,0,= v If p & q,
the general solution is clearly obtained by taking k = n- 1,

015 V.o 5 04-1% VUgqy, 04 = VUp,y Og+1= Vgp o+ s 0n = Up_y-
Case 2. a = fmi.. .2 f§ = v, Then if the variable v, appears in a,
the equation (2.7) has no solution since the length of S, ..., 4, @ is
greater than the length of 8, = S(6,,.. ., 6,; 8). On the other hand if
v, does not appear in 2 we clearly have k=n- 1, 01 = ?5,..., 0,1 =
Vgops Og = S o Vi Ypls e s Va3 @), Ogy = Vg oo, Oy = Upa

as the general solution.
Case 3.2 = v, 8= f,f1...B,; Thisiscase 2 with » and § interchanged.
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Case 4. a = fpur. .ay, = fofs1. . .p; Here there is no solution of
(2.7) unless p = ¢, so we may assume p = g and d = 4’. Now (2.7) is
equivalent to the system of d simultaneous equations

SO, .. vy 005 %)= S(0s, . .+, O3 B)) (2.10)
for 1= j= d. If d = 0, the genera solution is of course to take k = n,
01= ?1, ...,0, =V, Suppose we have obtained the general solution of

the system (2.10) for 1 <| < r, where 0 < r < d; we will show how to extend
thisto a solution of (2.10) for 1 <j < r+1:1f (2.10), for 1 <j<r, hasno
solution, then (2.10) certainly has no solution for 1 < j =< r+ 1. Otherwise
let the general solution to (2.10), for 1 < j<r, begiven by k, gy,...,a.
Now the general solution to (2.10) for | <j= r+ 1 is obtained by setting
b= Slps,. . ., gp; o), 1<j<n,and S@,,.. ., 0,; a+) = SOy, . ., 0,
B..1). By (2.2) this requires solving

S @r; (01, - 5 O @ i1)) =
S(@1, ..., gr; SO, 1 1 ., Ou; Bren)). (2.12)

The general solution of this equation can be obtained by induction, since
citherk <nork=nand{o1,....0,} ={v1,....9,}and S(oy, . . .. 0,
%11)8(01, . . ., 045 B,.4) is shorter than «B. If (2.11) has the generd solution
K, 63,..., 04 then (2.10) for 1 < j< r+ 1 has the genera solution «,
S(oy,. . .,00501), . .. 8(a}, ..., o4; 0,). The latter strings include {vy, . . ., v}
since{oy, . ., ox} 2{v1, . . w0} aNd {0y, . . .,0,} 2{v1, . .., %} Thisinduc-
tive process ultimately allows us to solve (2.10) for 1 < | =< 4, as required.

This completes the inductive proof that a general solution (2.8), (2.9)
to the equation (2.7) can be obtained, and it is evident that the proof is
equivalent to a recursive agorithm for obtaining the solution.

As an example of the process used in the proof of Theorem 3, let
n=714di=1,dy=2, and

o = fof1/2 /104 /o3 120202 fov1 fovs f1v1,
B - f 2f1fa05f: 2U5Ve f202.f2. /106 f1.f2V5Vs.

We wish to determine what formulas can be obtained by a common sub-
titution in a and §, which is essentially saying we want to solve the equa-

(2.12)

tion « = B for vy, ..., v, This reduces, first, to solving the simultaneous
equations
11 ¢ 10 Wanfiobeby = f1f2vsf2vsve, (2.13)
Savifovsfivy = favifafivef1favsve (2.14)

To solve (2.13), we first remove the common 1, at the left, then solve
the system fivy= vs, fovsf1fovavs = foUsvs, €tcC., and we ultimately obtain
the conditions

vy = U5 = f1vs, ¥ = f1/2v00n. (2.15)
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Substituting these into (2.14) gives the equation
fanfefosfior = forfofififavavafifafivafi faveve,

and to make a long story short this equation in the variables v1, v2, ¥4, 7
ultimately implies that

vy = f1foUsve, V1= v7 = Sef1f1favove f1f2v200.

Finaly, in connection with (2.15), we have found that every word obtain-
able by a common substitution of words into a and § is obtained by sub-
stituting some word for %, in

Tofrfofififevavafafif1fovave f1fovavafofof1f1f2020, 1 /30202
Jafrfifovave fifef1f1fevavsf1fovava.

Stating this in the more formal language of Theorem 3 and its proof,
the genera solution to (2.7), (2.12) is given by

k-1, o= 07- fafafifovivififoaviv102 = 01,
03 = 05 = fififavivs, 04 = 06 - fifevivr

3. The word problem. Given aset R = {(A1, 01), . . . , (Am, 0,,)} Of pairs
of words, called “relations’, we can define a corresponding equivalence
relation (in fact, a congruence relation) between words in a natura
manner, by regarding the relations as “axioms’,

M=o (R), l=sk<m, (3.1)

where the variables range over the set of al words. This “ = ” relaion
is to be extended to the smallest congruence relation containing (3.1).

For our purposes it is most convenient to define the congruence rela-
tions in the following more precise manner: Let g be a subword of «, s
that a has the form ¢gy for some strings ¢, y. Assume that there is a rela-
tion (4, ¢) in R such that 8 has the form of A: 8= S, . . ., 0,; 4 for
some 64, . . . .0, where n = »(4), (o). Let 8’ = S(b4, . . ., 6,; 0), SO that
g and g are obtained from A and ¢ by means of the same substitutions.
Let & = pB’y be the word a with its component § replaced by 8’. Then we
say areduces to «’ with respect to R, and we write

a—-a (R). 3.2)
Finaly, we say that

x = B(R) (3.3)
if there is a sequence of words ao, &1, . . . , «, for some n = 0 such that

« = aq, @, = P, and for 0=<j < n we have either «; - a1 (R) or
%1+ % (R). (Note: When the set R is understood from the context,
the “(R)” may be omitted from notations (3.2) and (3.3).)

The word problem is the problem of deciding whether or not a = § (R),
given two words a and § and a set of relations R. Although the word

problem is known to be quite difficult (indeed, unsolvable) in generd,
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we present here a method for solving certain word problems which are
general enough to be of wide interest.

The principal restriction is that we require al of the relations to be
comparable in the sense of § 2: we require that

>0 (3.4)
for each relation in R. In such a case we say R isaset of reductions. It
follows from Theorem 2 that

a -z implies a » a’. (3.5)

4. The completeness theorem. Let R be a set of reductions. We say a
word a is irreducible with respect to R if there is no a’ such that a -+ a’.

It is not difficult to design an agorithm which determines whether or not
agiven word is irreducible with respect to R. If R :§(Al,gl), cois Ry O}
we must verify that no subword of a has the form of 2;, or 4,,.. ., 0r 4,,.

If ais reducible with respect to R, the algorithm just outlined can be
extended so that it finds some a’ for which a - a’. Now the same procedure
can be applied to «’, and if it is reducible we can find a further word &',
andsoon. Wehaveo - o' — o' —.,,; S0 by (35) and the corollary to Theo-
rem 2, this process eventually terminates.

Thus, there is an algorithm which, given any word a and any set of reduc-
tions R, finds an irreducible word o, such that a = a, with respect to R.

We have therefore shown that each word is equivalent to at least one
irreducible word. It would be very pleasant if we could also show that
each word is equivaent to at most one irreducible word; for then the al-
gorithm above solves the word problem! Take any two words a and 8,
and use the given agorithm to find irreducible «y and . If a = g, then
%9 = By, SO by hypothesis «, must be equal to . If a %= 8, then oy = S,
S0 @ must be unequal to 8. In effect, ¢, and 5y are canonical representa-
tives of the equivalence classes.

This pleasant state of affairs is of course not true for every set of reduc-
tions R, but we will see that it is true for surprisingly many sets and there-
fore it is an important property worthy of a special name. Let us say R
is a complete set of reductions if no two didinct irreducible words are equi-
valent, with respect to R. We will show in the next section that there is an
agorithm to determine whether or not a given set of reductions is complete.

First we need to characterize the completeness condition in a more
useful way.

Let “—* denote the reflexive transitive completion of “—~", so that
a -~*f means that there are words ¢, «y,.. ., a, for some n = 0 such
that a = «p, o = oy, fOr 0=<j<n, and «, = 4.

THeorem 4. A set of reductions R is complete if and only jf the following
“lattice  condition” is  satisfied:
If & o’ and o« - &' there exists a wordy such that a’ = *yand «' - * y,
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Proof. If x — a’ and a - «’/, we can find irreducible words «, and «,’
such that o' »* a5 and o’ ~* ap’. Since a5 = &', we may take y = oy = ap’
if R iscomplete.

Conversaly let us assume that the lattice condition holds; we will show
that R is complete. First, we show that if a -* ¢y and a —~* «g, where g
and «, are irreducible, we must have gy = xo. For if not, the set of all
x which violate this property has no infinite decreasing sequence so there
must be a “smallest” a (with respect to the > relation) such that a —* o,
a »*ay = a0, Where both oy and «, are irreducible. Clearly a is not itself
irreducible, since otherwise g = X = xy. SO we must have a % %o, a £ o,
and there must be elements «, «; such that a » «; >* a9, @ - a; ~* a.
By the lattice condition there is a word y such that a1 —~* y and «; » * y.
Furthermore there is an irreducible word y, such that ¥ -* yo. Now by
(3.5), a=> al, so (by the way we chose a) we must have oy = yo. Smilarly
the fact that a > «; implies that «, = po. This contradicts the assumption
that oo %= 0(6.

Now to show that R is complete, we will prove the following fact:
Ifo. = B,a~*ao, and 3 ~* Bo, Where g and f, are irreducible, then «o = .
Let the derivation of the relation a = § be a = gp«>0,< ... <0, = §, where
“” denotes “—" or “« . If =0, we have a= j3, hence «o = ﬁo by
the proof in the preceding paragraph. If » = 1, we have either a -~ 2 or
B - «, and again the result holds by the preceding paragraph. Finally
if n> 1, let o,~* ¢, where ¢ is irreducible. By induction on n, we
have ¢; = fo, and aso o; = «p Therefore R and the proof are both
complete.

5. The superposition process. Our immediate goal, in view of Theorem 4,
is to design an algorithm which is capable of testing whether or not the
“lettice condition” is satisfied for al words.

En terms of the definitions already given, the hypothesis that a -~ a’ and
a - ¢’ has the following detailed meaning: There are subwords 81 and
£ of a, so that « has the form

a= @ifpr = @apapa. (5.2)
There are aso relations (45, 01), (1.2, 02) in R, and words 01, . . -5 Om
01y« « +s Op such that
fgl = S(ela ey 9”!9 }*1)’ ﬁz = S(Gl, Ly O'n; 3.2) (52)
and
a' =SBy, . .. Omsonys, a = 2SO Oxs 02y (5.3)

The lattice condition will hold if we can find a word y such that a’ —~* y
and a” »* 2

Several possibilities arise, depending on the relative positions of Bi
and f, in (5.1). If 8, and g, are digoint (have no common symbols), then
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assuming ¢ is shorter than g, we have ¢, = @115 for some g3, and the
lattice condition is trivialy satisfied with
Y= ‘Pls(el, BRX] 0m7 91)<P3S(01, vy Opy 92)1#2'

If 81 and B are not digoint, then one must be a suoword  of the other,
and by symmetry we may assume that §; isa suoword of .. In fact we
may even assume that cc = 8,, for the lattice condition must hold in this
specia case and it will hold for a = gy, if it holds for a = g, In view
of (5.2), two cases can arise:

Case 1. fyisa suword  of one of the occurrences of ¢, for some j.
In this case, note that there are n(v;, 4;) occurrences of aj in a, and &
has been obtal ned from a by replacing one of these occurrences of g; by
the word o;, where o; - o}. If we now replace g, by &/ in each of its remain-
ing n(v;, )LZ) -1 occurrences in a, we obtain tﬁe word

!
@1=8(01, . . .. 05 1,0/, 0541, . . . a; Ag);

and it is clear that a’ —* ¢, Therefore the lattice condition is satisfied in
this case if we take

7= S(Gl, .o 1 -1 G G]+13 . s Ops 92)
Case 2. The only remainlng possibility is that
ﬁl = S(Ul, R Gn; /,l) (54)

where g is anontrivial subword  of A,. (See the definition of “nontrivia
sowod”  in § 1.) The observations above show that the lattice condition
holds in all other cases, regardless of the set of reductions R, so an ago-
rithm which tests R for completeness need only consider this case. It
therefore behooves us to make a thorough investigation of this remaining
possibility.

For convenience, let us write simply 2 instead of 1,. Since y is a -
word of 4 we must have 4 = guy, for some strings ¢ and y, and it follows
from the assumptions above that

#1= 8001, .. 00 9), P1= SO, . . ., On} ). (5.5)

THEOREM 5. Let p be a subword of the word A, where A = guy, and let
C(A1, u, 4) be the set of all words a which can be written in the form

a= @80, .. ., 0m p=80, ..., a: 4 (5.6)

for words ay,. . . . @, 0y, . . 6,, where p; and y, are defined by (5.5). Then
either C(4,, p, 4) is the empty set, or there is a word ¢(2,, g, 4), the

“superposition of 4; on 4 in 1,” such that C(14, i, 4) is the set of all words
that have the form of a(4,, p, 2); i.€.

C(4s, M )&) = {S((p1, s Prs 0'(]:1, My ]t)) P1,. .., PgalCwords}. (5.7)

Furthermore there is an algorithm which finds such a word ¢(2;, p, 2),
or which determines that (74, g, 4) does not exist.
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Proof Let A’ = S(@,,1, . . ., Upym; 41) b€ the word obtained by chang-
ing dl the variables v; in A4 to Vyi s then 2 and 2 have distinct varia-
bles. Let 0,.,=0,,...,0,.m =0, andlet r=m+n Then the words
a,.... o are solutions to the equation

S(o1, <oy a3 A) =S80y, ..., a;9) S(oy, - -+, 0,5 4) S(og, - -y a5 Y).

By Theorem 3, we can determine whether or not this equatlon has sol U-
tions, and when solutions exist, we can find a generd solution k, of, . . ., o
Theorem 5 follows if we now define o(4, g, ) = S(oy, . . ., 6,5 A).

COROLLARY. Let R be a set of reductions; and let A be any algorithm which,
given a word a, finds a word xo such that a - * 29 and «g is irreducible, with
respect to R. Then R is complete if and only if the following condition holds
for all pairs of reductions (11, 01), (A2, 02) in R and all nontrivial subwords ¢
of Az such that the superposition o(%1, g, J2) exists:

Let

a= o(ly, g, 22) = 91801, . . .y Om; A1 = S(03, . . ., &; 42),  (59)
where g1 and 13 are defined by (5.5). Let
0 = 91501, . . ., O 00)y1, 0" = S(o1, . .., Ou; 01), (5.9)

and use algorlthm A to find irreducible words gy and a" such that
a’ -*o,and g, —~* o, Then (;0 mist be identically equal tooy .

Proof. Sincea -~ & and a — &', the condition that oy = ¢y’ is certainly
necessary if R is complete. Conversely we must show that R is complete
under the stated conditions.

The condition of Theorem 4 will be satisfied for all words a unless we
can find reductions (41, 1), (A2, 02) @d a nontrivial subword ¢ of 4, such
that, in the notation of Theorem 4,

a:S((Ph ey ¢k;0), a’ :S((Pl:. .-5¢k;0‘,)7all=S(q)ly. .-,‘Pk;a")

for some words ¢, . . ., . (This must happen because the discussion earlier
in this section proves that we may assume a is a member of C(4y, p, 4) if
the condition of Theorem 4 is violated, and Theorem 5 states that a has
this form.) But now we may take » = S(p1, - - -, @rs 00) = S(@1, . . ., @&3 0p),
and the condition of Theorem 4 is satisfied.

Note that this corollary amounts to an agorithm for testing the complete-
ness of any set of reductions. A computer implementation of this agorithm
is facilitated by observing that the words ¢y, . . . , &, 61, . . ., 6,, of (5.9)
are precisely the words of, . . ., o, obtained during the construction of
o(41, 4, 49) in the proof of Theorem 5.

As an example of this corollary, let us consider the case when R contains

the single reduction
4, 9) = (fofor1vavs, fov1favevs).
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Here f, is a binary operator, and the relation 2 - p is the well-known
associative law, (¥1'vs)-v3 - v1-(ve-vg), if we write (r1-vg), for faviv,,
(Note that 4 > o, by the definition of § 2)

Since fafsv1vav3 has two nontrivial subwords, the corollary in this case
requires us to test o(Z, 4, 2) and o(4, fav1ve, 4). In the former case we ob-
viously have a very uninteresting situation where ¢’ = a’, so the condition
is clearly fulfilled. In the latter case, we may take

0 = o2, favyvs, 2) = fofafavivavsv,

"= fafovfovavsry, 0 = Jafov1vafovavs.
Both of the latter reduce to fov; fov,fov3vy, SO the associative law by itself
is a “complete” reduction.

The argument just given amounts to the traditional theorem (found
in the early pages of most algebra textbooks) that, as a consequence of
the associative law, any two ways of parenthesizing a formula are equal
when the variables appear in the same order from left to right.

We may observe that the testing procedure in the corollary may be simpli-
fied by omitting the case when %; = 43 = pu, since ¢’ = ¢'’. Furthermore
we may omit the case when p is simply a nullary operator fo since in that
case we must have i; = fq, and both ¢’ and a’ reduce to the common
word ¥ obtained by replacing all occurrences off, in gz by ¢1. (The argu-
ment is essentially the same as the argument of “Case |” at the beginning
of this section.)

6. Extension to a complete set. When a set of reductions is incomplete,
we may be able to add further reductions to obtain a complete set. In
this section we will show how the procedure of the corollary to Theorem 5
can be extended so that a complete set may be obtained in many cases.

First note that if R is a set of reductions and if R; =R U{(l., o)} where

= o (R), then R; and R generate the same equivalence relation:

az=f R)if and only if a = § (Ry). 6.D
For if a =8 (R) we certainly have a = § (R;); conversely if 6 - ¢ (Ry)
using the relation (4, g), it follows from 4 = ¢ (R) that § = ¢ (R), and this
suffices to prove (6.1) since all applications of the extra reduction (4, g)

can be replaced by sequences of reductions using R alone.
Now if Ry =R U {(4 o)} and R, =R | {(¥, ¢")}, where

P = o (R) and ) = ¢ (RY), 62)

we can prove that R; and R, are equivalent sets of reductions, in the sense
that
a = f(Ry if and only if o = B (Ry). (63)

For both of these relations are equivalent to the condition a =  (R; U Ry)
by (6.1).
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Because of (6.3), we may assume that, for each reduction (4, g) in R,
both 4 and » are irreducible with respect to the other reductions of R.

The following procedure may now be used to attempt to complete a
given set R of reductions.

Apply the tests of the corollary to Theorem 5, for all 41, A2, and p. If in
every case o, = 0y, R is complete and the procedure terminates. If some
choice of 13, 4y, £ leads to o,  6,’, then we have either oy > dy’, 6’ = 0y,
or gy # oy'. In the latter case, the process terminates unsuccessfully, having
derived an equivalence ¢, = g, (R) for which no reduction (as defined in
this paper) can be used. In the former cases, we add a new reduction
(0q, 00') Or (a0, ap), respectively, to R, and begin the procedure again.

Whenever a new reduction (;I’, o") is added to R, the entire new set R
is checked to make sure it contains only irreducible words. This means,
for each reduction (4, ) in R we find irreducible A¢ and ge such that 1 —~*2o
and g —~* o, With respect to R- {(4, 0)}. Here it is possible that 1o = oo,
in which case by (6.1) we may remove (4, 0) from R. Otherwise we might
have Ao > 00 OF gg > Ag, and (1, ¢) may be replaced by (%, 09) Or (00, 20),
respectively, by (6.3). We might also find that Ao # po, in which case the
process terminates unsuccessfully as above.

Several examples of experiments with this procedure appear in the
remainder of this paper. It was found to be most useful to test short
reductions first (i.e. to consider first those 41 and 42 which have small
weight or short length). Shorter words are more likely to lead to interesting
consequences which cause the longer words to reduce and, perhaps, eventu-
aly to disappear.

In practice, when equivalent words cc and 8 are found so that « # f,
it is often possible to continue the process by introducing a new operator
into the system, as shown in the examples of the next section.

7. Computational experiments. In this section we will make free use of
more familiar “infix” notations, such as «-f, in place of the prefix notation
fiaB which was more convenient for a formal development of the theory.
Furthermore the word “axiom” will often be used instead of “reduction”,
and the letters a, b, ¢, d will be used in place of the variables v;, v3, v3, 4.

The computational procedure explained in § 6 was programmed in
FORTRAN 1V for an IBM 7094 computer, making use of standard
techniques of tree structure manipulation. The running times quoted
below could be improved somewhat, perhaps by an order of magnitude,
(a) by recoding the most extensively used subroutines in assembly language,
(b) by keeping more detailed records of which pairs (43, 42) have already
been tested against each other, and (c) by keeping more detailed records of
those pairs («, 2} of words for which we have already verified that a does
not have the form of A. These three improvements have not been made at
the time of writing, because of the experimental nature of the algorithm.
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Example 1. Group theory I. The first example on which this method was
tried was the traditional definition of an abstract group. Here we have
three operators: a binary operator f2 = . of weight zero, a unary operator
fs = = of weight zero, and a nullary operator f; = e of weight one,
satisfying the following three axioms.

1. e. a— a (“There exigts a left identity, ¢.”

2. a7+ a—e (“For every a, there exists a left inverse with respect to e.”)

3. (@ b). ¢ —+ a-(b- ©). (“Multiplication is associative.")
The procedure was first carried out by hand, to see if it would succeed
in deriving the identities g-¢ = a, «~— = a, etc., without making use of
any more ingenuity than can normally be expected of a computer’'s brain.
The success of this hand-computation experiment provided the initia
incentive to create the computer program, so that experiments on other
axiom systems could be performed.

When the computer program was finally completed, the machine treated
the above three axioms as follows: First axioms 1 and 2 were found to
be complete, by themselves; but when 1; = a-. a of axiom 2 was super-
posed on u = a.b of 4, = (a- b)-c of axiom 3, the resulting formula
(a=- @)+ b could be reduced in two ways as

(@ -a)b > a-(a-b)
and
(@ -a)b > eb b
Therefore a new axiom was added,
4. a‘-(a-b) ~ b.

Axiom 1 was superposed on the subword g.b of this new axiom, and
another new axiom resulted:

5. e - a.
The computation continued as follows:
6. a--e - a
7. a=b—>qgb
Now axiom 6 was no longer irreducible and it was replaced by

from 2 and 4.
from 6 and 3.

8. g.e ~a.

Thus, the computer found a proof that e is a right identity; the proof is
essentially the following, if reduced to applications of axioms 1, 2, and 3:

a-e = (e-a)-e = (a—-a~)-a)-e = (a~+(a"-a))-e 3 (a~"-e)e
=a".ee) =a e =a"(aa) = (a""a)a
=ea =a

This ten-step proof is apparently the shortest possible one.
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The computation continued further:
9.¢e-—~e from 2 and 8.

(Now axiom 5 disappeared.)

10 a-- -~ a from 7 and 8.
(Now axiom 7 disappeared).

11. g-a— e from 10 and 2.

12. a-(b-(a-b)") e from 3 and 11.

13.a-(@-h) + b fromll and 3.
So far, the computation was done almost as a professiona mathematician
would have performed things. The axioms present at this point were
12, 3,438,910, 11, 12, 13; these do not form a complete set, and the

ensuing computation reflected the computer’s groping for the right way
to complete the set:

14. (@-b)=+(a+(b+c)) » ¢ from 3 and 4.
15. be(c+((b-0)~-a) > a from 13 and 3.
16. b-(c(a-(b-(c-a)7)) — e from 12 and 3.
17. a-(b-a)— - b~ from 12 and 4, using 8.
18. b+((a-b)=+¢) »a~-¢ from 17 and 3.
(Now axiom 15 disappeared.)
19. b-(c-(a-(B-0))7) »a from 17 and 3.
(Now axiom 16 disappeared.)
20. (a-b)~ -~ b=-a- from 17 and 4.

At this point, axioms 12, 14, 18, and 19 disappeared, and the resulting
complete set of axioms was:

1l ea—a 9.e+e
2.aa-~e 10. a0~ —+a

3. (a-b)+c =+ a-(b+c) 11. a.a” —»¢e

4. a-(a-b) + b 13. a-(a+b)+b

8. a-e + a 20. (a:b)y” > b~a”

A study of these ten reductions shows that they suffice to solve the word
problem for free groups with no relations; two words formed with the
operators +, ~, and e can be proved equivaent as a consequence of axioms
1, 2, 3 if and only if they reduce to the same irreducible word, when the
above ten reductions are applied in any order.

CPA 19
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The computer took 30 seconds for this calculation. Note that, of the 17
axioms derived during the process, axioms 5, 14,15,16, 18, 19 never took
pat in the derivations of the final complete set; so we can give the machine
an “efficiency rating” of 1 /17 = 65%, if we consider how many of its
attempts were along fruitful lines. This would seem to compare favorably
with the behavior of most novice students of algebra, who do not have the
benefit of the corollary to Theorem 5 to show them which combinations
of axioms can possibly lead to new results.

Example 2. Group theory Il In the previous example, the unary operator —
was assigned weight zero. In § I we observed that a unary operator may
be assigned weight zero only in exceptiona circumstances (at least under
the well-ordering we are considering), so it may be interesting to consider
what would happen if we would attempt to complete the group theory
axioms of Example 1, but if we made a*“dlight” change so that the = opera-
tor has positive weight.

From the description of Example 1, it is clear that the computation
would proceed in exactly the same manner, regardless of the weight of -,
until we reach step 20; now the axiom would be reversed:

20. b=-a= -+ (a-b)~.
Thus, (a-b)~ = faf2ab would be considered as a “reduction” of the word
b=-a~ = fafsbfsa; and this is apparently quite a reasonable idea because
(a- b)- isin fact a shorter formula

But if axiom 20 is written in this way, the computation will never termi-
nate, and no complete set of axioms will ever be produced!

THEOREM 6. If the operator = is assigned a positive weight, no finite
complete set of reductions is equivalent to the group theory axioms

(@-b)-c ~a-(b-c),eca>a, a-a-e.
Proof. Consider the two words
= Upp 1 (@10 (Vs - - - @arVasr) - - )

o= @y (V10 D =2
It is obvious that g, is not equivdent to any lesser word in the well-ordering,
snce al words equivdent to B, have at least one occurrence of each variable
U1, ..., ¥y Plus @ least n- 1 multiplication operators, plus &t least one -~
operator. Since a,, is equivalent to g,, any complete set R of reductions
must include some (4, @) which reduces a. Now no subword of «,, except a
itself, can be reduced, since each of its smaller subwords is the least in
its equivalence class. Therefore «, itself must have the form of 7; we must

have a, = S0, . . ., 6,; 2) for some words 6y, . . ., 6,. It is easy to see
that this means there are only a few possibilities for the word 4, Now the

word
a. = ?]n+2'(?]1'(?12 T ‘(’Un'vn+1)' : '))-_
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is not equivalent to any lesser word in the well-ordering, so a,, cannot have
the form of A This implies finally that 2 = a,, except perhaps for per-
mutation of variables; so R must contain infinitely many reductions.

Example 3. Group theory Ill. Suppose we start as in Example 1 but
with left identity and left inverse replaced by right identity and right
inverse :

l.ge—+a
2. 44" +¢
3. (@b):c + a-(b-c).

It should be emphasized that the computationa procedure is not Symmetrical
between right and left, due to the nature of the well-ordering, so that this
is quite a different problem from Example 1. In this case, axiom 1 combined
with axiom 3 generates “g.(e. b) - - 6”7, which has no anaog in the system
of Example 1.

The computer found this system dlightly more difficult than the system
of Example 1; 24 axioms were generated during the computation, of
which 8 did not participate in the derivation of the final set of reductions.
This gives an “efficiency rating” of 67%, roughly the same as in Example 1.
The computation required 40 seconds, compared with 30 seconds in the
former case. The same set of reductions was obtained as the answer.

Example 4. Inverse property. Suppose we have only two operators » and =
as in the previous examples and suppose that only the single axiom

1. a+(ab)~b

is given. No asocidive law, ec., is assumed.

This example can be worked by hand : First we superpose & -(a- b) onto
its component (a- b), obtaining the word a-- -(a~-(a- b)) which can be
reduced both to ¢:b and to a=— b. This gives us a second axiom

2.a b —ab

as a consequence of axiom 1.
Now g~.(a-b) can be superposed onto a~~-b; we obtain the word

a-- +(a~- b) which reduces to b by axiom 1, and to ¢- (a-. b) by axiom 2.
Thus, a third axiom

3. a(ab)-b

is generated. It is interesting (and not well known) that axiom 3 follows
from axiom 1 and no other hypotheses; this fact can be used to simplify
severa proofs which appear in the literature, for example in the algebraic
structures associated with projective geometry.

A rather tedious further consideration of about ten more cases shows
that axioms 1,2,3 form a complete set. Thus, we can show that ga=~.b5 = a: b

19%
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is a consequence of axiom 1, but we cannot prove that a-- = a without
further assumptions.

A similar process shows that axioms 1 and 2 follow from axiom 3.

Example 5. Group theory IV. The axioms in example 1 are dightly
stronger than the “classical” definition (e.g. Dickson [3]), which states that
multiplication is associative, there is at least one left identity, and that
for each left identity there exists a left inverse of each element. Our axioms
of Example 1 just state that there is a left inverse for the left identity e.

Consider the five axioms

1. (a-b)+c - a+(b-c)
2. ¢e.a—+ a

3. fa—~a

4. g a—+ e
5.a".a~f

where e, f are nullary operators; = and ~ are unary operators;, and « is a
binary operator. Here we are postulating two left identities, and a left

inverse for each one. The computer, when presented with these axioms,

found a complete set of reductions in 50 seconds, namely the two reductions

f-e
a- —-»a

together with the ten reductions in Example 1. As a consequence, it is clear
that the identity and inverse functions are unique.

The derivation off - e was achieved quickly in a rather smple way, by
first deriving “a-. (a+-b) - b” asin Example 1, then deriving “f=- b -+ p”
by setting a = £, and finaly deriving “f - ¢” by setting b = f.

Example 6. Central groupoids I. An interesting agebraic system has
recently been described by Evans [5]. There is one binary operator . and
one axiom

1. (a-b)+(b+c) = b.
Let us call this a “central groupoid”, since the product (a. b)- (b . ¢) reduces

to its central element b. The computational procedure of § 6 can in this case
be caried out easly by hand, and we obtan two further axioms

2. a-((a-b)-c) -~ a-b

3. (a+(b-c))ec ~ b-c
which complete the set.

Evans [5] has shown that every finite central groupoid has »2 elements,
for some nonnegative integer n. It is aso possible to show [7] that every

finite central groupoid with n2 elements has exactly » idempotent elements,
i.e. elements with ¢-a = a. On the other hand, we can show (by virtue of
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the fact that the three axioms above form a complete set) that the free cen-
tral groupoid on any number of generators has no idempotents at all. For if
there is an idempotent, consider the least word a in the well-ordering such
that « = «-«. Clearly a is not a generator, and so a must have the form
« =B+ 7 where a, f, and y are irreducible. Thus (8-7)- (8-7) must be redu-
cible; this is only possible if y = 8, and then . =a=a .« = §is not
irreducible after al. (This proof was communicated to the authors by Pro-
fessor Evans in 1966.)

Example 7. A “random” axiom. Experiments on several axioms which
were more or less sdected a random show that the resulting systems often
degenerate. For example, suppose we have a ternary operator denoted by
(x, ¥, 2), which satisfies the axiom

1. (a (b,c, a), d)—>c.

Superposing the left-hand side onto (b, ¢, a) gives the word
(b, (a, (b, ¢, ), b), d),
and this reduces both to (b, ¢, a) and to (b, ¢, d). Hence we find
(b, ¢, a) = (b, ¢, d).
Now the computational method described in § 6 will stop, since
(b, ¢, a) ¥ (b, ¢, d).
But there is an obvious way to proceed: Since (b, ¢, a) = (b, ¢, d), clearly

(b, ¢, a) is afunction of b and c only, so we may introduce a new binary
operator . and a new axiom

2. (a, b,c) - a-b.
Now axiom 1 may be replaced by
3. a«(bc) > c.
Axiom 3 now implies
c.d = a-(b-(c-d)) = a-d

and again we find ¢. d 4 ¢- d. Now as above we note that ¢- d is a function
only of d,and so we introduce a further operator $, a unary operator, with
the new axiom

4. a-b - b$.

Now axiom 2 is replaced by
5. (a, b,c) -+ b$

and axiom 3 reduces to
6. a$$ — a.

We are left with axioms 4, 5, and 6, and axiom 4 isirrelevant since the pur-
pose of the binary operator has been served. Thus, two words involving
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the ternary operator are equivalent as a consequence of axiom 1 if and only
if they reduce to the same word by applying reductions 5 and 6. The free
system on n generators has 2n elements.

Example 8. Another “random” axiom. If we start with
1. (a-b)-(c-(b-a)) + b,
the computer finds that

¢ = ((0-0)-0)-((@-b)-(c-(b-a))) = (-)-)-b,
so ((b-a)«c)-b - c. This implies
= (((b-a)-c)-b)-(b-a) = c-(b-a),
and the original axiom now says
¢ =h
Clearly thisis atotaly degenerate system; following the genera procedure
outlined above, we introduce a new nullary operator e, and we are left with

the axiom
a— e.

The free system on n generators has one element.

Example 9. The cancellation law. In the previous two examples, we have
seen how it is possble to include new operators in order to agpply this reduc-
tion method to axioms for which the method does not work directly. A
similar technique can be used to take the place of axioms that cannot be
expressed directly in terms of “identities’. Our axioms up to now have
aways been “identities’; for example, the reduction (a &). c—~a-(b- ¢) means
essentialy that

for dl words a, b, ¢, (a-b)-c = a-(b-c).

A genera reduction ¢ — 8 means that a = 8 for al values of the variables
appearing in aand 8. Of course many mathematical axioms are not smply
identities; one common example is the left cancellation law

for al words a, b, c, if 4.6 = g-c then b =c. (7.1)

The left cancellation law can be represented as an identity in the following
way. Consider a function f(x, y) which satisfies the identity

f(a, a-b) - b. (7.2)
If 8 represents any set of axioms, let &’ be the set of axioms obtained by
adding the left cancellation law (7.1) to &, and let §'* be the set of axioms
obtained by adding the reduction (7.2) to 8 where fis a binary operator
which does not appear in 8. Now we assert that any two words not involving
f which can be proved equivalent in 8 can be proved equivaent in 8. For
whenever (7.1) is used, we must have aready proved that a-b =a-¢, hence
fa,a.b)=1(a, g.c), hence b = ¢ by (7.2). Conversely, any two words« and
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not involving fwhich can be proved equivaent in 8/ can be proved equi-
vaent in 8': For if (7.1) holds, there exists a binary operator f satisfying
(7.2); one such hinary operator for example can be defined by letting f(x, »)
equd z if y can be written in the form x-z (here z is unique by (7.1)), and
letting f(x, y) equal x otherwise. This function f has properties which are in
fact somewhat stronger than (7.2) asserts, so if we can prove a = 5 under
the wesker hypotheses S’7, we can prove a = B with 8.

(The argument just given seems to rely on certain rules of inference not
amissble in some logicd systems. Another argument which systematicaly
removes all appearances off from a proof of « = g in the system &' =
=8 U{(7.1), (7.2)) can be given, but it will be omitted here; we will content
ourselves with the vaidity of the more intuitive but less intuitionistic argu-
ment given.)

A system which has a binary operation . and both left and right cancella-
tion laws, but no further axioms, can be defined by

1. f(a, a-b) ~ b

2. gla-b,b) » a.
Here f and g are two new binary operators. Axioms 1 and 2 ae complete by
themselves, so they suffice to solve the word problem for any words involv-
ing f, -, and g. Two words involving only . are equivalent if and only if they
are equal.

If we add a unit element, namely a nullary operator e such that

3. eqa—~a

4. gie » q,

then the computer will complete the set by adding four more reductions:

5. fla,a) - e

6. fle,a)»a

7. gla,a) e

8. g(a,e) - a

Example 10. Loops. Consider the axiom “for al a and b there exists ¢
such that g¢.¢ = b”. This amounts to saying that there is a binary operation
“\” such that ¢ = a\b, i.e. that a-(a\b) = b. (This law is a companion to the
cancellation law (7.1) which asserts that a most one such ¢ exists)

In the mathematical system known as an abstract loop, we have the
above law and its left-right dual, so there are three binary operators -, \,
and / which satisfy

1. a-(a\b)~b
2. (a/b)-b > a.
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There is also a unit element, so that
3. ea»a
4. g.e » a.
The computer, when presented with these axioms, will generate
5. e\a—-a
6. ale -~ a.
Axioms 1 through 6 form a complete set, but they do not define a loop;
two important axioms have been left out of the above discussion, namely
the left and right cancellation laws. So if we postulate two further binary
operators f and g as in Example 9, with two further axioms
7. fla, a-b) - b
8. gla-b,b) »a,
the computer will now generate
9. fla,b) - a\b
10. g(a, b) - a/b
11. a\(a-b) > b
12. (a-b)/b - a
13. aja > €
14. a\a -+ e
15. a/(b\a) » b
16. (a/b)\a - b.

Axioms 1,2, ...,6,9 10, ..., 16 form a complete set of reductions, and
if we remove axioms 9 and 10 (which merely serve to remove the auxiliary
functionsfand g) we obtain reductions for a free loop. This is a specia case
of the complete set given by Evans [4] who also adds relations between
generators (i.e. between additional nullary operators).

Note that in Example 9 the cancellation laws had no effect on the word
problem, while in this case the rules 11 through 16 could not be obtained
from 1 through 4 without postulating the cancellation laws. On the other
hand, when the mathematica system is known to be finite, the existence of a
solution ¢ to the equation g- ¢ = b, for dl a and b, implies the uniqueness of
that solution. Thus laws 11 through 16 can be deduced from 1 through 4 in
a finite system, but not in a free system on a finite number of generators.

The generation of the complete set above, starting from 1, 2, 3, 4, 7, 8,
took 20 seconds. Axiom 9 was found quickly since

b\a = f(b, b-(b\a)) = f(b, ).
Example 11. Group theory V. An interesting way to define a group with
axioms even weaker than the classicd axioms in Example 5 has been pointed
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out by 0. Taussky [11]. Besides the associative law,
1. (a-b)-c — a.(b-c‘),

we postul ate the existence of an idempotent element e :
2. ¢.¢ ~ €
Furthermore, each element has at least one right inverse with respect to e,
i.e. there is a unary operator ~ such that
3. a-a" »e
Finally, we postulate that each element has at most one left inverse with re-

spect to e This last assertion is equivalent to a very specid type of cancella
tion law, which is more difficult to handle than (7.1) :

for al a, b, c, if boa=ca=ethen b =c. (7.3)

This axiom (7.3) can be replaced, as in Example 9, by identities involving
new operators. Let f be a ternary operator and g a binary operator, and
postulate the following axioms :

4. fle,a,b)—»>a
5. fla-b, a, b) - g(a-b, b).

It is easy to see that these axioms imply (7.3). Conversely, (7.3) implies the
existence of such functions f and g, since we may define for example

7 ) {JV,. if x=e

X5 Vs = .

V2 x, if x £e
z, iIf x=eand z.y=e

g(x: y) = . . . —
x, if x % e or if there is no z such that z-y =e.

The later function g is well defined when (7.3) holds.

Thus, axioms 4 and 5 may be regarded, just as in Examples 9 and 10, as
equivalent to (7.3), if we consider the word problem for words that do not
involve f and g. (Note: Actually a binary operation f{x,y) could have been
used, but since f(a-b, a) # g(a- b, b), we used a ternary operation so that
axiom 5 could be considered as a reduction.)

The computer was presented with axioms 1 through 5, and an interesting
sequence of computations began. One of the consequences of axioms 1 and 3

aone is that
eeq-- = (a-a')-d_— 3 a-(a‘-a__ = g-e. (7-4)

After 2 minutes and 15 seconds, the computation process derived its 29th
consequence of axioms 1 through 5, namely that a-- —a. This meant that
(7.4) became

ea=a-e
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and the computer stopped since the definitions of § 2 imply that
e-a # a.e. (Thisis sensible for if we were to say e-a—a-e, the computer
would loop indefinitely trying to reduce the word e-e.)

Now we restarted the process as in Examples 7 and 8 by introducing a
new unary operator $, with e.g = a$. The axioms currently in the system

a that time were thereby transformed to include the following, among
others :

e§ > e
as$ ~ a$
are ~» a$
e.qg - a$
(ab)$ ~ a(b$)
gle,a$>—+a".
In order to make the well-ordering come out correctly for these reductions
we changed the weight of . from zero to one, changed the weight off from
one to two, and made $ a unary operator of weight one which was higher
than . in the ordering of operators.
Another axiom in the system at this time, which had been derived quite
early by superposing 3 onto 5 and applying 4, was
g(es a_) -+ a.
This now was combined with the rule a-- - ato derive
gle, @) - a-.
The reduction g(e, a$)~a~ now was transformed to
a$- » a-
and, with the law g—— - a, this became
a$ - a

Thus, the $ operator disappeared, and the traditional group axioms were
immediately obtained. After approximately 3 minutes of computer time
from the beginning of the computations, al ten reductions of Example 1
had been derived.

Actualy it is not hard to see that, as in the discussion of Example 2,
axioms 1 through 5 cannot be completed to a finite set of reductions. After
41 minutes execution time, the computer was deriving esoteric reductions
such as

flc, c-(a-b"), bea) -~ 9(c, b-a).
Since the process would never terminate, there was perhaps a logical ques-

tion remaining whether any new reductions would be derived (besides the
10 in the final set of Example 1) that would give us more than a group. Of
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course we knew this would not happen, but we wanted a theoreticd way to
get this result as a consequence of axioms 1 through 5. This can be done
in fact, by adding new axioms

gla,b) ~a-b-

fla,b,c) » b

to the long list of axioms derived by the machine after 3 minutes. These
axioms are how even stronger than 4 and 5, and together with the ten fina
axioms of Example 1 they form a complete set of twelve reductions. Thus
we can be sure that axioms 1 through 5 do not prove any more about words
in ., —, and e which could not be proved in groups.

The computer’'s derivation of the laws of group theory from axioms
1,2, 3 and (7.3) may be reformulated as follows, if we examine the compu-
tations and remove references to fand g:

“We have e-a=~ = g-e, asin (7.4), hence

a-e3 ea = (e0)ea”” =e(era ") =e-(ae).
.a e =e-(a -e) =(eca")e=(qg.e)e3 a-ee)
c.a(@e)3 a(a"e)=(@+a ")e3 ee=e.

il

ase.

So, by (7.3), a- is the Ieft inverse of g.e, and Smilally a--- is the left
inverse of a—~ .e = g.e. Hence

a -~ =a-
But now a is the left inverse of a- by (7.3) and axiom 3, and so a-- isthe
left inverse of a=~~ = a-, so

a Z a.

This implies that & is the left inverse of a = a--, so each element has a
unique left inverse. The left inverse of a-e is(a-e) ~, and we have seen that
the left inverse of a. e is a~, hence (a- €) = = a~. Now, taking primes of
both sides, we see that a¢-¢ = a, and the rest of the properties of group
theory follow as usual.”

A simpler proof can be given if we start by observing that (e-a).a =
=e-(ara”)=ee3 e =q-g;hence by (7.3),e.a=a Now (a-e)-a~
=g-(e-a”)=a-a” =¢ henceby (7.3), g-e = a

The computer’s proof is longer, but interesting in that it does not require
application of (7.3) until after several consegquences of axioms1, 2, 3 aone
are derived.

Example 12. (/, r) systems I. It is interesting to ask what happens if we
modify the axioms of group theory dightly, postulating a left identity
element and a right inverse. (Compare with Examples 1 and 3.) This leads
to an algebraic system which apparently was first discussed by A. H. Clif-
ford [1]. H. B. Mann [8] independently discussed this question, and called
the systems “(I, r) systems’. They are also caled “left groups’ [2].

i
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Starting with the axioms

l.ea—a
2. a.a —»e
3. (a:b)-c » a-(b-c),

the computer extended them to the following complete set of reductions:

4. e~ ¢

6. a-(a-b)-b

8. ae—a -

10. a==-b—+a-b
16. a=-(a-b) -+ D
18. a —~ - a-
29. (@-b)~ > b=-a.

(The numbers 4,6, 8, etc. which appear here reflect the order of “discovery”
of these reductions. The computation took 110 seconds. Of 26 axioms gen-
erated, 14 were never used to derive members of the final set, so the “¢effi-
ciency ratio” in this case was 46%;.) These ten reductions solve the word
problem for free (/, r)-systems defined by axioms 1, 2, and 3.

Example 13. (r, 7) systems. Similarly, we can postulate a right identity
and a left inverse. This leads to an algebraic system dua to the system of
Example 12, so it is not essentially different from a theoretical standpoint;
but since the method of § 6 is not symmetrical between left and right, a
test of these axioms was worth while as a further test of the usefulness of
the method.

This set of axioms was substantially more difficult for the computer
to resolve, apparently because the derivation of the law (a- by~ = b~-a~
in this case requires the use of a fairly complex intermediate reduction,
(a-b)~-(a-(b-c))~c~—, which would not be examined by the computer until
al smpler possibilities have been explored. When the roles of left and
right are interchanged as in Example 12, the steps leading to (a-b)~ =
= b~ , a- are much less complicated.

After 21 minutes of computation, the identity

b~"«(a-b)” = (c-a)"-c

was derived, and computation ceased because p—- . (a. b)™ # (c-a)- ¢,
However, it is plain that this quantity is a function of a alone, so we in-
troduced a new unary operator § and the rule (¢. a)~.c-a $. After another
23 minutes of computation the following complete set of 12 reductions
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for (r, ]) systems was obtained:

a.e - a b(ara”) > b
a-a e b-(a-(a-c)) » bec
(@:b)c -~ a-(b-c) a-(a-b) » a--
e- - e b-(@a~-c) > b-(a-c)
e-a - a-- a--- »a-
ab— - ab (@b > b-.a"

plus the further reduction a$ - a- which was, of course, discarded.

Example 14. (1, r) systems Il. If we introduce two left identity elements
and two corresponding right inverse operators, we have the five axioms

1. (a-b)-c »~a-(b-o),
2. ¢.q—a,

3. fra—~+a,

4. q-a” - e,

5 aa~ —~f

(Compare with Example 5.) After 2 minutes of computation, the computer
was only slowly approaching a solution to the complete set; at that point
35 different axioms were in the system, including things such as a----
ta "4 > a ™, a-a”"" + € ElC. ; just before we manually termin-
ated the computation, the reduction a- ~~- b - g™+ b was generated.

It was apparent that more efficient use could be made of the computer
time if we presented the machine with the information it had aready de-
rived in Example 12. Axioms1, 2, and 4 by themselves generate a complete
set of 10 axioms as listed in Example 12, and axioms 1, 3, 5 generate an
analogous set of 10 witheand replaced by £ and ~. Therefore we start-
ed the calculation again, with 19 initial axioms in place of the 5 above.
(In genera, it seems worth while to apply the computational method to
subsets of a given set of axioms first, and later to add the consequences
of these subsets to the original set, since the computation time depends
critically on the number of axioms currently being considered.) Now a
complete set of consequences of axioms 1 through 5 was obtained after
21 minutes of calculation; this complete set consists of the following 21
reductions.
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e"~e,  fr~f
e~ ~f [T
e-q—+ a, fea - a;
a-a- - e, aa~ — f;
a~~ - g, a~— -~ a ",
a " >a, a--- =+ av~;
ae - a -, af - a~;
(a-b)-c - a-(b-c);
a~-b - a-b;
(a-b)y- - b=.a-, (@b~ - b~-a~;
a «(a-b)- b, a-(a-b) - b;
a~~-b- a-b.

It is clear from this set what would be obtained if additional left inverse
and right identity functions were supplied. Furthermore if we were to
postulate that g~ = a~, then e = £. If we postulate that e = f; then it fol-
lows QUICkly that a-- = a_"’, hence a- = a " =g~~~ = g~
Example 15. (1, r) systems [11. Clifford’s paper [1] introduces till an-
other weakening of the group theory axioms; besides the associative law

1 (a-b)-c- a-(b-c)
and the existence of a left identity
2. ¢-a - a,

he adds the axiom, “For every element a there exists a left identity e and
an element b such that p-g = e.” This was suggested by an ambiguous
statement of the group theory axioms in the first edition of B. L. van der
Waerden's Moderne Algebra [Berlin: Springer, 1930, p. 15]. Following
the conventions of the present paper, this axiom is equivalent to assert-
ing the existence of two unary operators, ‘and *, with the following two
axioms :

3. d-a - a*,
4. a*.b - Db.

Clifford proved the rather surprising result that this set of axioms defines
an (I, r) system; and that, conversely, every (I, r) sysem satisfies this set of
axioms. Therefore we set the computer to work on axioms 1, 2, 3, 4, to
see what the result would be.

After 2 minutes of computation, it was apparent that the system was
diverging; 32 axioms were present, including

G4 aT 5T ’
¢ ¥ e Illl*’ a*/nl* - a*////, a.a///// — a//lll*
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and others of the same nature. It was not hard to show that, as in Exam-
ple 2, no finite complete set of reductions would be found by the computa-
tional method.

But there is a “trick” which can be used to solve the word problem for
words composed of the operators e, ’, *, and ., by introducing two fur-
ther unary operators $ and # , such that a’-e = a#, q.4’ = a$. One of
the consequences which the machine had derived very quickly from axioms
1,2, 3,4wasthat a-(¢’-b) -~ b; so, putting b =e, we have a-a# =e.
Similerly the law a’«(g@-b) -~ b had been derived, and it follows that
a’ =4'(a-a)= a'+a$ = a'(e-al) = (a'.e)-a$ = a# .a$.

Therefore if we take any word involving e, ’, *, and ., we can replace
each component of the form & by a# .«$. Then we have a word in the
operators e, *, ., 4, and $. For this new system, axiom 3 should be re-
placed by

3. a# .(a$-4) » a*
We aso know from the above discussion that the axiom
5. a-a¥ -e

is a legitimate consequence of axioms 1, 2, 3, 4, and since axioms 1, 2
and 5 define an (7, r) system we added their consequences

6. qg-e - a#t =,
7. aft # £ > o,

gc, as determined in Example 12. The following complete set of 21 reduc-
tions was now obtained for wordsine, *, ., #,and $:

(a-b)-¢c » a-(b-¢);

e:a - a, a-ai —~e, a.e - att # ;
a¥ # 4% > a#, a# # b - a-b;
a-(a% +b) ~ b, a# -(a-b) - b;
(@-b)# - b#-a#;
e - e | e* —¢e;
a*.b - b, a$:b - b;
a# .g - a*, a-a* - q;
a** - a* (a-b)* - b*;
a$ # »e, a*# -e¢ a#* —e, a$* - a$.

This complete set can be used to solve the original word problem presented
by axioms 1, 2, 3, 4.

Note that although, as Clifford showed, systems satisfying axioms
1, 2, 3, 4 are equivalent to (/, r) systems, the free systems are quite differ-
ent. The free system on n generators gy, . . ., & defined by the axioms 1,2,
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3 of Example 12 has exactly p+ 1 idempotent elements, namely e,
21°81,- .. 8 &y the free system on one generator defined by axioms 1,2, 3,4
of the present example has infinitely many idempotent elements, eg.
a$ for each irreducible word a.

Example I6. Central groupoids 11. (Compare with Example 6.) A natu-
ral model of a central groupoid with n? elements is obtained by consider-
ing the set S of ordered pairs {(x1, x2) [x1, X2 € So}, where So is a set of n
dements. If we define the product (x, x2)- (1, ¥2) = (x2, y1), we find that
the basic identity (a. b) . (- ¢) = bis satisfied.

If x = (xy, x2), it is the product of two idempotent elements (xi, x1)-
+ (x2, x2). We have (x1, x1) = (x-x)-x, and (x,, x¥2) = x-(x-x), and this
suggests that we define, in a central groupoid, two unary functions
denoted by subscripts 1 and 2, as follows:

1. (a-a)-a- a;
2. aa-a) - a2

in addition to the basic axiom
3. (a-b)-(b-c) -b

which defines a central groupoid.
For reasons which are explained in detail in [7], it is especidly interest-
ing to add the further axiom

4. az-b - a-b

(which is vdid in the “natura” central groupoids but not in al central
groupoids) and to see if this rather weak axiom implies that we must have
a “natural” central groupoid.

This is, in fact, the case, although previous investigations by hand had
been unable to derive the result. The computer started with axioms 1, 2,
3, 4, and after 9 minutes the following complete set of 13 reductions was
found :

(a1 ~ 4, (a2 - a, (@21 > ay, (@2)2 -~ az;
(a-b)1 —+ ay, (a-b)y - by;
a«(bsc) - a-bs,  (a-b)-c - bi-c;
ds:b ~ a-b, a-by - a-b;
d«ds —~ ds, ai«a - a, di-ag - a.
The computation process generated 54 axioms, of which 24 were used in

the derivation of the fina set, so the “efficiency rating” was 449;. This
is the most difficult problem solved by the computer program so far.

As a consequence of the above reduction rules, the free system on n gen-

erators has 4n2 elements.
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Example 17. Central groupoids Ill. If we start with only axioms 1, 2,
and 3 of Example 16, the resulting complete set has 25 reductions:
(a-a)-a - al, a-(a-a) - as;
ai-as - a, as+a; -~ a-da,
a-a; - a-a, as:a - a-a;
(a-a); - as (@-a)y ~ay;
(ani-a - ay a-(as); - as;
a;-(a-b) - a, (a-b)-bs - b;
(a@-b)1:b - a-b, a-(a-b): - a-b;
(a-by)-b - by, a-(asb) - a;
(a-a)-(a))s —+ay, (a21+(a-a) - as;
(a-a)-(arb) - ay, (a-b2)(b-b) - by;

(a-(b-b))-b1 - b-b, az-((a-a):b) - a-a;
(a:b)+(b-c) - b;
a-((a-b)-c) - a-b, (a-(b-c))-c - b.c.

Of course these 25 reductions say no more than the three reductions of
Example 6, if we replace a; by (@ a)- a and g3 by a. (a-a) everywhere,
so they have little mathematical interest. They have been included here
merely as an indication of the speed of our present program. If these 25
axioms are presented to our program, it requires amost exactly 2 min-
utes to prove that they form a complete set.

Example 18. Some unsuccessful experiments. The major restriction of
the present system is that it cannot handle systems in which there is a com-
mutative binary operator, where

aob = boa.

Since we have no way of deciding in general how to construe this as a
“reduction”, the method must be supplemented with additional tech-

niques to cover this case. Presumably an approach could be worked out

in which we use two reductions

«—>fand f ~«

whenever we find that a =g but a 48, and to make sure that no infinite
looping occurs when reducing words to a new kind of “irreducible” form.
At any rate it is clear that the methods of this paper ought to be extended
to such cases, so that rings and other varieties can be studied.

We tried experimenting with Burnside groups, by adding the axiom
a-(a-a) -e to the set of ten reductions of Example 1. The computer almost

CPA 20
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immediately derived
a«(b'-a) = b-(a’-b)

in which each side is a commutative binary function of a and b. There-
fore no more could be done by our present method.

Another type of axiom we do not presently know now to handle is a
rule of the following kind:

ifa £ 0 then a-a’ - ¢

Thus, division rings would seem to be out of the scope of this present
study even if we could handle the commutative law for addition.

The “Semi-Automated Mathematics’ system of Guard, Oglesby,
Bennett, and Settle [6] illustrates the fact that the superposition techniques
used here lead to efficient procedures in the more general situation where
axioms involving quantifiers and other logical connectives are allowed as
well. That system generates “interesting” consequences of axioms it is
given, by trial and error; its techniques are related to but not identical
to the methods described in this paper, since it uses both “expansions’
and “reductions’ separately, and it never terminates unless it has been
asked to prove or disprove a specific result.

8. Conclusions. The long list of examples in the preceding section shows
that the computational procedure of § 6 can give useful results for many
interesting and important algebraic systems. The methods of Evans [4] have
essentially been extended so that the associative law can be treated, but
not yet the commutative law. On small systems, the computations can be
done by hand, and the method is a powerful tool for solving agebraic
problems of the types described in Examples 4 and 6. On larger problems,
a computer can be used to derive consegquences of axioms which would
be very difficult to do by hand. Although we deal only with “identities’,
other axioms such as cancellation laws can be treated as shown in Exam-
ples 9 and 11.

The method described here ought to be extended so that it can handle
the commutative law and other systems discussed under Example 18.
Another modification worth considering is to change the definition of the
well-ordering so that it evaluates the weights of subwords differently de-
pending on the operators which operate on these subwords. Thus, in
Example 11 we would have liked to write

fla-b, a) ~ g(a-b, b),
and in Example 15 we would have liked to write
a’ » a# .as.
These were not alowed by the present definition of well-ordering, but

other well-orderings exist in which such rules are reductions no matter
what is substituted for a and b.
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The application of computers to research in
non-associative  algebras

LoweLL J. PaIGE

1. Introduction. The number of papers presented here at this conference
indicate a wide area of computer applications in agebraic research; group
theory, algebraic topology, galois theory, knot theory, crystallography and
error correcting codes. | wish to confine my remarks to less specific
details, and | will indicate where the computer has been used in my own
research and in the work of others involved with non-associative systems.

It seems to me that the computer can and does play different roles in
algebraic research.

| would classify the potential of computer assisted research in the fol-

lowing manner:

(A) The computer can provide immediate access to many examples
of any algebraic structure so that reasonable conjectures may be
formulated for more general (possibly machine free) investigation.

(B) The computer can be used for a search for counter-examples of a
general conjecture.

(C) The computer can be used to provide the “proof” required in a
mathematical argument.

In the next section, | shall attempt to indicate by means of various exam-
ples where the computer has led to success and failure in the categories
listed above. Finally, | would like to suggest in the field of Jordan algebras
the possibility of computer assistance to attack the general problem of
identities in special Jordan algebras.

2. Examples of computer assisted research. My own introduction to
computer assistance in research arose in an investigation of complete
mappings of finite groups. This problem stems from an early attempt to
construct a finite projective plane by means of homogeneous coordinates
from a neofield, and the problem for groups may be stated briefly as follows.

Let G be a finite group (written multiplicatively) and let 8 be a bijection
of G. For what groups G is the mapping 7: x -+ x-8(x) a bijection of G?

A complete solution for this problem in the case that G is abelian was
obtained in 1947 [I]. | obtained some fragmentary results for non-abelian
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groups in 1951 [2] and Professor M. Hall generalized the results for the
abelian case in 1952 [3].

It was at this time (1953) that | sought help from the computer and ob-
tained a detailed analysis of complete mappings for groups of small order.
The memory capacity of SWAC at that time prevented any large-scale
analysis, but the results were of such a nature that Professor Hall and |
reconsidered the problem. We gave a complete solution to the problem
for solvable groups and stated the following conjecture in 1955 [4]:

Cowecture: A jinite group G whose Sylow 2-subgroup is non-cyclic pos-
sesses  a complete mapping.

This conjecture has never been verified nor has a counterexample been
found. Computers could certainly provide more evidence, but the solution
of the problem has rather dubious applications to the original problem of
projective planes. There is, however, an interesting footnote to the conjec-
ture. | felt that | could provide a solution if the following published prob-
lem of 1954 were true

ProBLEM  Let G be afinite group and S, a Sylow 2-subgroup. In the coset
decomposition of G by §,, does there exist an element of odd order in each
coset ?

The problem remained unsolved until Professor John Thompson pro-
vided a counterexample in 1965. His example was the group of 2 x 2 unimod-
ular matrices over the Gaois Fidd GF(53). It is easy to see that the Sylow
2-subgroup of Thompson's example is non-cyclic, and there is reason to
suppose that this example might provide a counter-example to our origina
conjecture; however, the order of this group (148,824) makes it seem unlike-
ly that even today’s computers would be capable of providing the answer.

My experience with computers and 10 x 10 orthogonal lattice squares
was not a particularly successful venture. In 1958, | wrote, “consequently,
the total time necessary to do an exhaustive search for latin squares ortho-
gonal to our example would be approximately 4.8 X 101 machine hours’.
Perhaps the time computation was correct but we are al wel aware that the
counter-example to Euler’s conjecture was provided the next year.

An example of a computer-provided counter-example to another of Euler's
conjectures occurred last January when L. J. Lander and T. R. Parkin
published the following numerical relation [9] :

27548454 110° 41335 = 1445,

Let me turn now to an example from loop theory for a more favorable
experience with a “machine suggested” conjecture. First, a brief review of
the pertinent loop theory.

Two loops (G, +) and (H, x ) are said to be isotopic if there exists atriple
of bijections («, 8, y) of G to H such that

() X (¥B) = (x-y)y
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for al x, y of G . Professor R. H. Bruck raised the following problem in
1958 [6]:

Find necessary and sufficient conditions upon a loop G in order that every
loop isotopic to G is isomorphic to G.

The answer to this problem, as was pointed out by Bruck, would have
interesting interpretations to projective planes.

It is well known that a group G has the property that it is isomorphic to
all of its loop isotopes. A student at the University of Wisconsin, working
under the direction of Professor H. Schneider, examined all loops of order
7 on a computer and discovered that the only loop isomorphic to al of its
loop isotopes was the cyclic group. He has proved subsequently that any
loop of prime order satisfying the property that it was isomorphic to al of
its loop isotopes must be the cyclic group. Moreover, | understand that he is
now considering a generaization of this result to loops of prime power
order.

Another example which comes to mind involves a question raised by Pro-
fessor T. A. Springer [7] concerning elements in a Chevalley group; specifi-
cally,

“Is the centralizer, G,, of a regular unipotent element x, an abdian
group ?'

Dr. B. Lou, working under the direction of Professor Steinberg at the
University of Cdlifornia, Los Angeles, has given the answer to this ques-
tion in those cases left open by Springer, and a considerable portion of her
work in the associated Lie algebras was done on a computer.

It would be a matter of serious negligence in surveying the applications of
computers to non-associative systems if one were not to mention the work
of Professor Kleinfdld [§) on Veblen-Wedderburn systems with 16 dements,
or that of Professor R. Walker [9 in extending these results to a listing of
finite division agebras with 32 elements. Finaly, the work of Professor
D. Knuth [10] in providing new finite division algebras is an excellent
example of computer assisted research.

3. Jordan algebra identities. The problem of determining identities
satisfied by the elements of a non-associative algebra is one area in which
the computer could be expected to make research contributions. For exam-
ple, Professor R. Brown of the University of California has discovered an
identity in one variable for certain algebras arising in his investigation of
possible representations of the Lie group associated with E..

Professor M. Osborne of the University of Wisconsin has published all of
the possible identities of degree 4 or less for commutative algebras. These
were done without the aid of a computer. However, Professor Koecker of
Munich has sought computer assistance in determining all possible identi-
ties of a non-associative algebra where the degree of the identity is restrict-
ed to degree 6 or less. The early estimates of the machine time required for



302 Lowell J. Paige

this problem are of the order of 107 years and hence it seems appropriate to
make rather severe redtrictions on the type of identities desired. | would like
to illustrate the possible use of the computer with an example from the area
of Jordan algebras.

Let us recall afew facts concerning Jordan algebras. An abstract Jordan
algebra 9 over afield @ is a non-associative agebra satisfying the identities

ab = ba,
(a?b)a = a*(ba)
fordl a,b ¢y,

The simplest examples of Jordan algebras arise from associative alge-
bras. Thus, let 9 be an associdive agebra over a field @ of characteristic not
two. In terms of the associative multiplication of elements in U, written
a- b, define a new multiplication

ab = Xa-b+b-a).

If we retain the vector space structure of 9 and replace the associative mul-
tiplication, a- b, by the new multiplication, ab, we obtain a Jordan algebra
which we denote by 9[-,

If a Jordan algebra & is isomorphic to a subalgebra of an algebra 9+
(A associative), then J is called a special Jordan algebra. One of the fasci-
nating aspects of Jordan algebras is that there exist Jordan algebras which
are not speciad; these Jordan agebras are caled exceptional.

The best known example of an exceptional Jordan algebra is constructed
as follows : Let C be an eight-dimensional generalized Cayley agebra over
the field @. Denote the involution in C by X » %, where x+ x ¢ @. Consider
the set H(C) of 3 X 3 matrices

« ¢ b
;i
b a yi,

where a, 8,y ¢ @ and a, b, ¢ ¢ C; i.e. the hermitian 3 X 3 matrices. Multipli-
cation for the elements of H(C) is the usual Jordan product

XY = L[X - Y+ Y-X]

and it is not difficult to see that H(C) is a Jordan algebra. Professor A. A.
Albert and | [11] have shown that H(C) is not the homomorphic image of
any special Jordan algebra, and this implies that there are identities satisfied
by special Jordan agebras which are not valid for al Jordan algebras.
A search for these identities presents interesting possibilities for a com-
puter.

In order that | might sketch a possible attack on the problem of identities
in special Jordan agebras, we shall need a few more results about special
Jordan algebras which are due to Professor P. M. Cohn.
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Let 4 be the free associative algebra on the set of generators
{x1, X2, . .., X} and denote by J§” the Jordan subalgebra of A™* gener-
ated by {x1, X2, . . ., X}. On A® define a linear mapping x-+x*, the
reversal operator, by the equation

(x,-lx,-z P x,-,)*: X,-kx,'k_1 R x,-gx,-l

for monomials consisting of products of the generators xi1, Xz, . . ., X,
Since the monomids form a basis for 4%, the reversal operator * is uniquey
determined and

() = prak, X=X

for al x, y € A™. An element x of A” is said to be reversible (symmetric) if
x* = x. The set of dl reversible elements H® of 4™ is easily seen to be a
Jordan subalgebra of A"+ : furthermore,

H® 2 Jm

for al n. Cohn has shown that
H® z~ J@ and H® ~ J@®

and otherwise J{ is properly contained in H®.

The exceptional Jordan algebra H(C) described earlier is generated by
three elements. Hence, it is the homomorphic image of the free Jordan
agebra J® on three generators. On the other hand, H(C) is not the homo-
morphic image of J§& (the free special Jordan algebra on three generators).
Thus, we know that the natural homomorphism v from

p o JB & J(()3)

has a non-zero kernel K®. A basis for K® has not been found. Professor
Glennie [12] has shown that there are no elements of degree less than 7 in
K® and that there are elements of degree 8 in K@, It should be clear that
any non-zero element of KX® will provide an identity for special Jordan
algebras which is not valid for all Jordan algebras.

The importance of Cohn’s relationship, H® = J@®, lies in the fact that we
have an explicit way to write the elements of the free special Jordan algebra
J® in terms of reversible elements. Hence, treating J\ as a graded algebra
(by degree), we can compute the number of basis elements of a fixed degree.
For example, if we let the generators of J$ be a, b and ¢, then the number
of basis elements for the vector subspace  spanned by all elements of tota
degree 8 and degrees 3,3 and 2 in a, b and c respectively is 280.

A computer attack for the determination of the elements in K® for the
natural  mapping

y  JO® J(()s)

may now be described.
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We may linearize the defining identity (a%b)a = a®(ba) of a Jordan algebra
to obtain the identities:

(wx)(yz) + (wy)(zx) + (wz2)(xy)
= [wlep)lz+ wp2)1x+ [wzx)ly (3.1

and
wlx(y2)]—wl(xy)z]
= [wx)zly + [(wp)zlx = [w2)xly = [(wy)xlz. (3

Again, for convenience, let us denote the generators of J® by a, band c. If
we are interested in the identities of degree 8, then we might as well restrict
our attention to identities involving the generators a, b and c. Moreover,
it is known that any identity linear in one of the generators is valid for all
special Jordan algebras [13]. Hence, we may begin by considering those of
degree 3in a, degree 3inband degree 2 in c.

We can now proceed to select w, X, y,zin (3.1) and (3.2) in al possible
ways so as to yield monomias g*pfc¥ compatible with the total degree
being 8 and involving a, band c to the total degree 3, 3 and 2 respectively.
This will give us a set of homogeneous equations in the various monomial
elements of J®. Many duplications will be present and obvious reductions
may be made by using the commutative law. Let us assume that we have p
equations in m elements. The m eements may be ordered and we proceed to
reduce the equations to echelon form.

Graphically, we would reach a stage where our equations would have
the form

b equotions < x

zeros :

zeros

The diagonal elements would be non-zero and the k elements would span
the vector subgpace of elements of J® of total degree 8 and degree 3, 3 and
2ina, band c. We know that k = 280, since the homomorphism v would

imply that a similar reduction could be made for the corresponding ele-
ments of J®,
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If k = 280, then we could show that v was bijective on the elements of
degree 8 and of the form we are considering. This is not the case

If k> 280, then we could select 281 of the k elements and take their im-
ages in J®. We could then express one of these elements in terms of the other
280 and this would provide an identity valid in J& and not in J®; hence an
element of X®. In this manner we would probably obtain K- 280 elements
of K® and consequently a basis for K@,

The beginning of this program had been established when Professor
Glennie informed me of a method which appeared to be more promising.
Details will be found in the following paper in this volume.
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Identities in Jordan algebras

C. M. GLENNIE

THE main part of this paper is the calculation of the dimensions of certain
subspaces of Jordan algebras. From a knowledge of these dimensions we
deduce a theorem on identities in Jordan algebras. Thisis given in the third
and fma section. In the first section we set up some notation and give some
preliminary results. The results are not new but it is convenient to gather
them together here. The second section gives the statement and proof of the
main theorem. The reader should consult the preceding paper by L. J. Paige
in this volume for background material.

1. We shall work throughout over a fixed but arbitrary field of charac-
teristic zero and shall not refer to the ground field again. The restriction on
the characteristic can almost certainly be relaxed but this would require
further investigation which we have not carried out. We shall be working in

certain free Jordan and free associative algebras and shdl use a, b, ¢, . . . to
denote the free generators. In particular places we shall writep, ¢, r, . . .
instead of &, b, c, . . . when the result we are stating remains true if the

variables are permuted or if we wish to indicate a typical monomia. The
element pgrs+srgp in an associative algebra will be denoted by pgrs, and
caled atetrad. Similarly pgrst + tsrqp IS pgrst and so on. Tetrads such as

abcd, dcba, acef, fecain which the |etters appear in aphabetical or reversed
alphabetical order will be called ordered tetrads. As associative products
occur only under bars we shall also use juxtaposition to denote the Jordan
product 4pg. Products in the Jordan algebras will be left normed, i.e. xyz
means (xy)z and so on. We use the following notation.

L(n) sbspace  of the free Jordan algebra on n generators spanned by
monomials linear in each generator,

M(n) absgpace  of the free special Jordan agebra on s generators
spanned by monomials linear in each generator,

N abspace  of the free associative agebra on » generators spanned

by the 371! elements # arising from the »! monomials w linear in
each generator,

S(n) (n = 2) subgpace  of L(n) spanned by monomids pw where w is a
monomial linear in each of the generators other than p,
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T(n) (n = 3) sbgpace of L(n) spanned by monomials pgw where w is a
monomial linear in each of the generators other than p and g,

U(n) (n = 2) subspace  of s(n) spanned by monomials pw with p £ a,

V(n) (n = 3) subspace  of T(n) spanned by monomials pgqw with p & a
andg * g

(W] subspace  spanned by the subset W of a vector space,

R(x) the mapping y -+ yx, x and y elements in the Jordan agebra

under consideration,

P(x, y,2) R(x)R(yz) + R(¥)R(zx) + R(z)R(xy),
O(x, y,2) R(yz)R(x) + R(zx)R(y) + R(xy)R(2),
SCx, y,z)  R(X)R(Z)R(y) + RO)R(Z)R(x).
With the above notation the linearized form of the Jordan identity
xyyt = xy%y is

xP(y, z, 1) = xQ(y, 2, 1) )]

or XR(yzt) = xP(y,z, t)—xS(y, z, t). P}
From (1) and (2) we have at once

xR(yzt) = xQ(y, z, 1)—xS(y, z, 1). (3)

It is clear that M(n) € N(n). We have aso

LEmw 1. Forn =3, U(n)+ V(n) = L(n).

Proof. Let w € L(n). Then w is a sum of elements aR where R is a mono-
mial in operators R(x) and each x is a monomial in some of the genera-
tors b,¢,. . . . If x contains more than two generators then by (2) R(x) can

be expanded as a sum of words R(y) where each y contains fewer generators
than x. Repeating such expansions as often as necessary gives the result.

COROLLARY. 5’(n) +T(n) = L(n) and S(n) + V(n) = L(n).

LEmwa 2.dim S(n)=<ndim L(n—1), dim T(n) < 3n(n— 1) dim L(n — 2),
dim U(n)< (n=1)dim L - 1), dim V(n) < §(n = 1)(n = 2) dim L(n~ 2).

Proof. The proofs of these inequalities follow at once from the definitions
of S(n), etc.

The following relations, in which p, g, r, . . . denote distinct elements
from b,¢,d,... and x isamonomia in the remaining generators, are either
clear from the definitions of the operators or follow easily from (1), (2), (3)
and previous relations in the set.

xQ(p, 9, r) € U(n) (4)
xP(p, ¢, 1) € U(n) Q)
xS(p, ¢, r) € Uln) (6

xR(pqr) € U(n) )
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x(gr(st)) = xQ(q, r, st) € U(n) 8)
x(gr)(st) — xQ(g, r, st) € U(n) )
xp(gr(st))—xP(p, qr, st) € Un) (10)
x(arp)(st) + x(stp)(ar) — *@(p; qr, st) € U(n). (an

The following lemmas are due to Cohn. Proofs will be found in [1].

LEMWA 3. abed-(sgn m)pgrs € M(4) where p, q, r, s is the permutation &
of a, b, ¢, d.

LEMMA 4. M(n) + [W(n)] = N(n) forn=1, . .., 7 where W(n) = ¢ (the
empty set) forn= 1, 2, 3, W(4) = {abed}, W(5) = :{Bg_rst}, V_@ =
= {pgrstu-+pqrsut, pqrs(tu), parstu-parsutl, W(7) = {parstuv-+pgrsutv,
pars(tu)v, pqrstuv-paEIjtv}. In the cases n =5, 6, 7 the set is to include all
elements obtained by replacing p, g, r, . . . by any permutation of a, b, ¢, . . .
such that pqgrs is an ordered tetrad.

Let U be a subspace  of the vector space V and W = {wy, ..., w,} be
asubset of V. If r; (i=1, ..., m)denotes the relation
lefjwj cU
amongst the elements of W and R={r,. . . , r,} we shal call the mXn

matrix 4 = (4;) the word-relation matrix for Wand R. We have

LEMMA 5. dim (U+[W]) =< dim U+(n-rank A).

Proof. Let r = rank A. We can find r elements from W each expressible
as a linear combination of some element in U and the remaining n-r ee-
ments of W. So U+ [ #1is spanned by any basis of U/ together with n-r ele-
ments from W, and the result follows.

2. THEOREM 1. Forn=1, ..., 7, dim L(n) = dim M(n). The dimensions
are respectively 1, 1, 3, 11, 55, 330, 2345.

Proof. The mapping a -~ a, b - b, €tc., can be extended to a linear
transformation of L(n) onto M(n). So dim M(n) = dim L(n). For each n
we now find a number d(n) such that dim L(n) =< d(n) and dim M(n) = d(n).
It follows at once that dimL(n) = dim M(n) = d(n). We shall use w(n)
to denote the number of elements in W(n). For simplicity we write L
for L(m) and so on when dealing with the case n=m.

n= 1. Take d= 1. L isspanned by asingle monomial. So dim L =<d. By
Lemma4, M = N.Sodim M = dimN = | = 4.

n =2 Take d = 1. L is spanned by the single monomia ab. So
dim L <d ByLemma4, M = N.Sodim M = dimN = | = 4.

n = 3. Take d = 3. L is spanned by abc, bca, cab. So dim L = d. By
Lemma 4, M = N.Sodim M = dim N = 3 = (.
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n=4. Take d = 11. L is spanned by the twelve monomias upaqr, ap(gr),
a(pq)r (see proof of Lemma1). These are subject to the relation

aP(b, ¢, 4) = aQ(b, ¢, d)
and the word-relation matrix has rank 1. So by Lemma 5 (with U = {0})
dim L < 11 = d. From Lemma 4 we have that M+ [W]= N where w = 1.
S0 dim M = dim N—dim [/¥] = dimN-w= 12-] =11 = d.

n = 5. Take d = 55. Since pgr(st) = stR(pgr) = stQ(p, q, r)—stS(p, q, 1)
we have that VC U and U = L. Thendim L =dim U< 5dim L(4) =
=38%11 =55=4 From Lemma 4, M+[W]=N with w=35. So
dm Mz=dmN ~w =60—-5=55=d.

n=6. Take d = 330. From Lemma 2, dim U= 5dim L(5) = 275. V is
spanned by (i) 60 elements apgr(st), (i) 30 elements a(pq)r(st), (iii) 30 ele-
ments ap(gr)(st). From (1), (8), (9), (10), (11) we have

ap(qr)(st) — a(grp)(st) - a(stp)(gr) € U.
Defining T(p, g, 1, s, t) as
[Q(q, r,p)~S(q, r, DIR(st) +[Q(s, 2 p) = S(s, 1, p)IR(gr)

we have
ap(gr)(st) = aT(p, q,r, 5,1) ¢ U. (12)
Also, from (5):
apqP(r, s, t) €U (13)
alpg)P(r, 8, 1) € U. (14)
and from (1) :
aP(I’, q, I')R(St) - aQ(p, q, r)R(St) el. (15)

(12) to (15) give respectively 30, 20, 10, 10 relations. Setting up the word-
relation matrix for the 120 spanning elements of V and these 70 relations we
get a 70x 120 matrix of which the rank is 65. Then by Lemma 5,
dim (U+ V) =< dim U+(120—-65). So
dim L = dim (U4 V) =< 275f 55 = 330 = d.
From Lemma 4, M+ [W] = N with w = 45. Now let W’ be the subset

of W consisting of the 30 elements pgrstu-pgrsut, pqrs(tu), and let N’ =
= M+ [ W’]. We have 45 relations amongst elements of W- W’ obtained
from

abcdef — abedfe + bedefa — bedeaf + cdefab — cdefba + acdfeb-"acde ¢ N

(16)
by permuting a, b, ¢, 4, e, f and using Lemma 3. We have a further 6 rela-
tions obtained from

cdefab - cdefba + defbac- defbca + efbead — efbcda
+ fbedae —fbedea + bedeaf — bedefa ¢ N (17)

Identities in Jordan algebras 311

by permuting a, b, ¢, d,e, ¥ and using Lemma 3. (16) is the linearized
form of
abcdab-abcdba € N’

which comes from
acdb®a —cdb®aa + cdb®a®  bdca?h + dca?bb —dea?h? = 0
using Lemma 3 and

pgrst = qrstp-rstpgfstpgr- tpgrs+parst. (18)

(17) comes from Y (cdefub- cdef(ab)) = O where the sum is taken over
the cyclic permutations of b, ¢, d,e, ¥ and Lemma 3 is used where neces-
sary. The rank of the word-relation matrix for the 15 elements in W- W
and the 51 relations above is 15. So dm N = dim (N'+ [W- W']) =
dm N’'+15—15=dim N. Whence N = N'. So dim M= dim N-30 =
360-30 = 330 =d.

n=7. Take d = 2345. From Lemma 2, dim S< 7 dim L(6) =7 x 330 =
= 2310. V is spanned by elements of types (i) apgrs(tw), (ii) a(pg)rs(tu),
(i) ap(gr)s(tw), (iv) apqrs)(tu), (v) alpg)(rs)(tu). N ow tuR(apqrs),
tuR(a(pg)rs), tuR(apq(rs)), and tuR(a(pq)(rs)) are in S. This follows at
once on expanding the operator R using (3) and then using (3) again where
necessary. So L = S+ V is spanned by S and the set of 180 elements
ap(gr)s(tu). Now let X be the set of the 48 elements of type (iii) in which
g=bandt=cor g=candt=b. Consider the following table, in which
each element is to represent the set of elements obtained from it by
replacing p, g, r, s by al permutations of d,e, £, g:

ap(bq)r(cs) ap(cq)r(bs)
ap(qr)b(cs) ap(bq)c(rs) ap(cq)b(rs) ap(qr)c(bs)
ab(pq)r(cs) ap(gr)s(bc) ap(bc)q(rs) ac(pq)r(bs)
ab(cp)q(rs) ab(pq)c(rs) ac(pq)b(rs) ac(bp)q(rs)

Each element in the table can be expressed modulo S as a linear combina-
tion of elements in higher rows. Thus, for example:

ap(gr)b(cs) = —ap(bq)r(cs)—ap(br)g(cs) (mod S)
since apQ(q, r, b)R(cs) = apP(q, r, b)R(cs) and the elements in this last

expression are all of type (iv) and so in S. The expression for ab(cp)q(rs)
arises from

cpQ(a, b, Q)R(rs) + rsQ(a, ¢, p)R(bq) + bgQ(a, r, s)R(cp) — aQ(bq, cp,rs) € S.
So we now have that S+ [X] = L. But there are further relations modulo
S amongst the elements of Y. These are:
Y ap(bg)rcs) € S 19)
> apleq)r(bs) € S, (20)

CPA 21



312 C. M. Glennie

where in each case s is fixed as one of 4, e, f, g, and the sum is taken as
p, ¢, r run over al the permutations of the remaining variables, and

ap(bg)r(cs) + ap(cq)r(bs) = ar(bp)s(cq) — ar(cp)sba) €S, (21)
where the sum is taken as p, ¢ run over the permutations of two of the vari-
ables and r, s over the permutations of the remaining two. For (19) it is
sufficient to show that ap(bp)p(cs)is in S for (19) can then be obtained by
linearization. But 2ap(bp)p(cs) + abpp(cs) € S and abp?p(cs) = abpp?(cs) € S.
(20) is obtained similarly. (21) is the linearized form of ap(bp)r(br) —
ar(bp)r(bp) € S. Now
8lap(bp)r(br) ~ ar(bp)r(bp)1 = 8 [ap(bp)r(br) + ap(br)r(bp) + ar(br)p(bp)]

(by (19) and (20)) 2(abp2br® -+ apripb® + arb?rp?)

- al R(B*p*)R(r®)+ R(p*r»)R(®)]

+ R(r*b®)R(p?)

aP(b?, p%, r*) = 0 (al congruences mod S).

We now have 14 relations (4 each of (19) and (20) and 6 of (21)) amongst
the 48 elements of X, and the word-relation matrix has rank 13. So

dm L = dim (S+ U) <dm §+(48— 13) < 2310+35 = 2345 = d.
Now M+ [W] = N from Lemma 4. If W’ consists of the 210 elements
pqrstuv+ pgrsutv, pars(tu)v it follows from work done in the n = 6 case
that M+ [#’] = N. Also we have

Pgrsqsp +pqrssqp + qprspsq + qgprsspq € M. 22)
To establish (22) we use the following (congruences are modulo M):

1]

n

8p2gPrs = p2qtrs? + GPPUrsE+ rgPpis® + pPgRst
= 8pq?rs®p + 8qpirs*q

pacrs®p = 2rs’pqqp = 4pqrsqsp

pqirs?p = 2pqPrssp = 4rspqsqp = 4pgrssqp
and the relations obtained by interchanging p and g. If we linearize (22)
and substitute all permutations of a, b, c, d, e, f, g we obtain 315 relations
corresponding to the 3 15 words pg(rs)t(uv). But we know that dim (S+ U)
-dm § = 35. So a most 35 of these relations are linearly independent.
If we choose 35 relations corresponding to 35 words in I/ which are line-
arly independent mod § we can set up the word-relation matrix for these
and the 105 words of W’ involved in them. The rank of this matrix is 35
(see comment at end of proof of theorem). So dim M = dim N-(210-35)
= 2345 = d. This completes the proof of the theorem.

Comment. The proof requires at several stages the calculation of the

rank of a matrix. In all cases but the last this calculation was carried out
by hand. The work involved is not as bad as might be feared because of the
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large number of zero entries and the pattern of blocks within the matrix.
For the last matrix (which has 35 rows and 105 columns) use was made of
the KDF9 computer at Edinburgh University. The program was designed
to print out a basis for the space of vectors x such that x4 = O for a
given matrix A. In the present case the matrix was augmented by five rows
known to be linearly dependent on the chosen 35. The print-out showed
correctly the known linear dependences and this was regarded as being a
check on the accuracy of the program.

3. In [2, the cases n =< 5 of Theorem | were proved although no explicit
values for the dimensions were established. An example of an identity
in three variables valid in all specia Jordan algebras but not valid in al
Jordan algebras was given. This identity is of total degree 8, so in a line-
arized form shows that Theorem 1 is not valid for n > 7. The following
theorem, which is a corollary of Theorem 1, bridges the gap left in [2]
form =6, 7.

THeoREM 2. A multilinear identity of total degree 6 or 7 which is valid in
all special Jordan algebras is valid in all Jordan algebras.

It should be possible using the methods of Part 2 to find dim L(8),
dim M(8) and the degree 8 multilinear identities holding in special Jordan
algebras but not in all Jordan algebras. These correspond to the elements
in the kernel of the canonical linear transformation of L(8) onto M(8).

I should like to record my gratitude to Mr. J. K. S. McKay for his
encouragement in general and his help with the programming and com-
puter work in particular.
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On property D neofields and some problems
concerning orthogonal latin squares

A. D. KeebpweLL

THe concept of the property D neofield arose from the attempt to find an
explanation for the non-existence of pairs of orthogona latin squares of
order 6. The intention was to formulate a standard method of construct-
ing a pair of orthogonal squares of any sufficiently small order r distinct
from 6. The reason for failure when r = 6 could then be observed.

The standard method devised (which is reported fully in [1]) is essentially
a modification of the Bose method for constructing a complete set of mu-
tually orthogonal latin squares from a field. This construction can be exhib-
ited as follows. One square L, is the Cayley table of the addition group
of the field and its rows may be regarded as permutations Sg = I, Sy, 52 . . .,

S, 4 of itsfirst row. If O, 1, x, ..., x’—2, denote the elements of the field,
the remaining squares L¥ (i =2, 3,..., r— 1) are as follows
L¥ = O_Mi—lso :LMi—lSO xr—ZMi—ISO
().]‘li—]S1 I.Mi_1S1 T xr—2Mi—1S1
O.Mi—:lSr_l l.Mi_1Sy-—1 P X'_2Mi—1Sr—1
where M = (0)(1x x2.. . x"~%) and the first columns of al the squares are
the same.

Since the squares L1 = {So, S1, . . .,S,_,} and L3 = {MSo, MSy,...,MS,_3}
are orthogonal, it follows from a theorem due to H. B. Mann that the
permutations Syt MSo, Sy *MSy, ..., S;4MS,_; are a sharply transitive
set. Conversely, when these permutations form a sharply transitive set,
the squares L; and L§ will be orthogonal. It is useful to observe that, again
by a result due to H. B. Mann, the squares L; and Ls = {MS,M~1,
MSM~,..., MS,_ M~1} will aso be orthogonal. Moreover, the per-
mutations MS;M~1, being conjugate to the permutations S;, are easy to
compute, and the squares L; and Ls have the same first row.

When we exhibit the permutations S;1MS; as in Diagram 1, we observe
that the r xr matrix obtained is the Cayley table of the addition group of the
field, and that, if the first row and column are disregarded, the quotients
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of the elements in corresponding places of any two adjacent secondary
diagonals are constant. Moreover, in each such diagonal, the element
of the pth row and gth column is x times the element of the (p+ I1)th
row and (g- I)th column, so each element appears exactly once in each
secondary diagonal. Since the equation 1 +x° = 0 is soluble in the field,
one secondary diagonal consists entirely of zeros.

M = (0)1 X )

S;AMS, .y = ()1 Fxrtxdx2l L L X4 x0Y)

STAMS, p = (T4 W xbarmd L xR

S7IMS, = 1 +x X + X co. o XTT24X)

STIMS, = MHA+1 x+1 coxT24])
Diagram |

The above observations lead us to the realization that a sufficient con-
dition for the existence of a pair of orthogonal latin sgquares of order r is
that an (- 1) x (- 1) matrix 4; should exist with the following proper-
ties: (i) the integers O to r- 1 appear at most once in each row and column,
and the integer (r- [)— i never occurs in the ith row; (ii) the main second-
ary diagonal consists entirely of (r- 1)‘s; (iii) all other secondary diagon-
als comprise the elements O, I,. . ., (r-2) written cyclicaly; and (iv)
the differences between the elements in corresponding places of each two
adjacent secondary diagonals (excluding the main secondary diagonal)
are al distinct and none is equal to 1. For the details, see [1]. We exhibit
an example of such a matrix for the case r = 10 in Diagram 2.

027 6 1409
16 0 3 9 4

2 9 31
0
5

(¢}
w

o © N N M O ®
= ©
o N
~N o

5

8
1
9

0

6
2
3

© O DM R W oo NN
NN © 0O o w O
R 0 o © o P
©o ~ w Y
~N o o
N 0
Ul w o

Diagram 2

A matrix 4y having the above properties is completely determined by
its first row and may easily be obtained by computer by successive trial.
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We require a first row eg, €1, . . . , €,_3 such that (i) the e; are al different
and are the integers O, 1,. . . , r — 3 in some order, (ii) the r — 3 differences
d; = e;—e;_ are al different (taken modulo (r- 1)) and are the integers
2,3,...,r=2insome order, and (iii) the elements ¢; — i (fori=0,1, ...,
r- 3) are al different modulo (r- 1) and are the integers O, 1,. . ., r- 3
in some order.

It is necessary and sufficient for the existence of an array 4; that a
property D neofield of order r should exist, and the recognition of this
fact alows the above computer search to be made more economic. A neo-
field N is caled a property D neofield if (i) its multiplicative group is
cyclic, and (i) there exists a generator x of N such that (1 + x)/(1 + x'~1) =
= (1 +x%/(1 +x*°1) implies ¢+ = u for al integers ¢, # (taken modulo
r- 1). The divisibility property (ii) will be referred to as property D. It is
easy to see that the Cayley table of the addition loop of such a neofield,
with first row and column deleted, forms an array A; if we replace powers
of x by their indices and O by r- 1. Since1 + 1 = 0 in a neofield of even
order and 1 +x~92 = 0 in a neofield of odd order (see [3]), it follows
that the integer i must not occur in the ith column of an array A4; when r is
even and that there is a corresponding restriction when r is odd. Thus,
for example, when r is even, we know that ¢; % if 1, and this fact reduces
the time required for the search for arrays A; considerably.

A study of property D neofields leads to a number of interesting conjec-
tures.

(i) Do there exist property D neofields of al finite orders r except 67
Certainly this is true for al r < 21.

(ii) Can it be proved that both commutative and non-commutative
D-necfields exist for al r > 14 and that the number of isomorphically dis-
tinct D-neofields of assigned order r increases with r?

(iii) Do there exist planar property D neofields which are not fields?
None of those so far obtained by the author are planar either in the sense
of Paige [3] or of Keedwell [1}, as is proved in [2].

(iv) Is it true that, if a finite D-neofield of even order has characteristic
2 (or, equivaently, has the inverse property), then it is a field? Is the result
true when the neofields in question are restricted to being commutative?

It remains to explain the non-existence of matrix arrays Ay when r = 6.
As explained in detail in [1], the necessary and sufficient condition for the
existence of an array Ay (or of a property D neofield of order r) may be
re-formulated as follows : “A necessary and sufficient condition that an

array Ay exists for a given integer r is that the residues 2, 3, . . ., r-2,
modulo (r- 1), can be arranged in a row array P, in such a way that the
partial sums of the first one, two, . . ., (r = 3), are al distinct and non-zero

modulo (r- 1) and so that, in addition, when each element of the array is
reduced by 1, the new array P, has the same property.” In the case when
r =6, P, comprises the integers 2, 3, 4 and P, comprises 1, 2, 3. Since
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2+ 3 =0 (mod 5), we require that the integers 2, 3 be not adjacent in
either array, and this is clearly impossible. Thus, the non-existence of
orthogonal latin squares of order six appears to be due to a combinatorial
accident.

Our general method for the construction of a pair of mutually orthogo-
nal latin squares of assigned order r may easily be extended to give a method
for constructing triples. It is easy to see that the latin squares L, =

{S07 Sls [ Sr—1}> L; = {MSO’ MSl, L MSr—l}s and L; = {M2S05
M?2Sy, . ..) M2S,_;}, where M =(-1) (0 1...r-2) and So=1, S,
.., S,_; are permutations of the natural numbers O, 1, . .., r = 1, will be

mutually orthogonal provided that the two sets of permutations S;1MS;
and S7IM2S;,i=0,1,.... r =1, are both sharply transitive on the sym-
bols 0,1,....r— 1 Since S71M2S; = (S71MS))?, it is clear from Diagram 3
that a sufficient condition for the existence of such a triple of mutually
orthogonal latin squares of order 10 is that a 9 X9 marix A=(a,), i =1
to 9, j = 0 to 8, exist with the properties:

(i) each of the integers O, 1, . . ., 9 occurs at most once in each row and
column, and the integer i does not occur in the (i+ 1)th column or the
(9= ithrow;

(i) if a; =ay;,=...= dyg;, =1 then (a) the integers r+1, ay;41,
Ay jo1 ... 109 j,01 @€ @l different (all addition being modulo 9), r = 0,
1,2, . .) 8, and (b) the integers r+2, @y ; 19, Gzjpr2 - - - » Ggj,4o are al dif-
ferent ;

(i) if ay; = app,= . . . = 95, = 9 then (a) the integers 9, a, ; .4,
Q5,11 . . +> Gyj41 A€ Al different, and (b) the integers 9, a, .o, g, 49,

-1 8, ;49 areail different.

To the disappointment of the author, it turns out that the arrays Ajg
corresponding to the property D neofields of order 10 have properties (i),
@iy (d), (iii) (@), and (iii) (b), but fail to satisfy property (ii) (b).

For the purpose of searching for 9X9 matrices of type A, a computer
programme was written which would insert successively the integers aq,
a11, . . ., ags and would backtrack to the preceding place in the event that a
place could not be filled successfully. Details of the construction of this
programme so as to require as few instructions as possible, of the computer
time needed, and of the results appear in [1] and so need not be repeated
here.

SgMS, = 90 1 2 3 4 5 6 7 8
STIMS: = (8)aw aun @2 a3y G a4y dig dp i)
SgIMSy - (0)ase Gy1 a2 a3 a4 g5 ass  as7 Qo8

Diagram 3
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A projective configuration

J. W. P. Hi RSCHFELD

1. In ageometry over a field, four skew lines not lying in a regulus have
two transversals (which may coincide or lie only in a quadratic extension
of the field). From this come the following theorems.

The double-six theorem (Schlifli, 1858): Given five skew lines with a
single transversal such that each set of four has exactly one further trans-
versal, the five lines thus obtained also have a transversal-the completing
line of the double-six.

Grace’s extension theorem (Grace, 1898): Given six skew lines with a
common transversal such that each set of five gives rise to a double-six,
the six completing lines also have a transversal-the Grace line.

Conjecture: Given seven skew lines with a common transversal such
that each set of six gives rise to a Grace figure, the seven Grace lines also
have a transversal.

2. The double-six is self-polar and lies on a unique cubic surface, which
contains 27 lines in al. The configuration exists for all fields except GF(q)
for ¢ =2, 3 and 5 [1].

The six initial lines in the Grace figure are chords of a unique twisted
cubic and are polar to the completing lines, which are also chords of the
cubic. However, the theorem as it stands is true only if the six completing
lines Of the double-sixes are skew to one another. This is not necessarily
true, as the six lines may be concurrent. The configuration exists for GF(9)
but not for GF(q) with ¢ < 9 [2].

The conjecture depends only on the incidences of the lines. So, if it is
true over the complex field, it is true over any finite field large enough for
the seven Grace lines to exist.

Wren [3] mentions that both he and Grace attempted the conjecture but
were not able to achieve anything. Grace proved his theorem by, in fact,
first establishing a dlightly more general result. He proved a theorem for
linear complexes, which was then applied to special linear complexes,
which was in turn dualized to the theorem of the extension of the double-six.

In al, no one was very hopeful of extending Grace's theorem, which
itself was regarded as something of a fluke. Further scepticism set in on
finding that the conditions of linear independence on the initial set of
lines were not even sufficient for Grace's theorem.
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For the conjecture, the field GF(31) was chosen and, using a computer,
an initial set of lines found for which the seven Grace lines existed. The
latter did not have a common transversal. Hence the conjecture is false.

3. A theoretical approach to the problem is more difficult to envisage.
In Grace's figure, all was symmetry. There were two sets of 12 and 32
lines involved forming 32 double-sixes: each of the 32 lines met 6 of the
12 and could provide a starting point for the construction.

In the conjecture, the line b meets g4, as, as, aa, as, g, @z Which have in
fours the further transversals b, Then there are 21 double-sixes like

12 a3 ay as as az
b bios bioa biss bizs b1z

and 21 lines «;. The six lines «; ( + i) have atransversal f;, the Grace
line, giving seven lines B;. There are also seven twisted cubics #;, where z,
has the 12 chords a;, «; ( = i). The seven f; have a point P in common.
The dual result to this is that there is a unique plane = meeting b and the
7 a;in aconic C. The cubics #; and ¢ have in common the 6 chords o, a;
(k %1, j), which is the full complement for two twisted cubics with a point
in common.

Apart from the 71 lines so far obtained-l b, 7 a;, 35 by, 21 o, 7 fi—
there are 105 further lines f like f3;, the line common to the reguli
(b14sbrasb147), (b15abisebisy), (b16abiesbier), (br7abizsbize); there is no reason to
suppose that 83, = iy = Bi;. However, the five lines g5 (k + i, j) dl lie
in aregulus.

Since seven lines are under discussion (both the 7 g, and the 7 §,), Cay-
ley’s problem of seven lines lying on a quartic surface would appear
relevant. There are 34 linear conditions to determine a quartic surface
and 5 conditions for it to contain a given line. There are but 33 conditions
for b and the 7 g, to lie on a quartic surface. Hence there is a linear family
Fo+ AF, of quartic surfaces through these lines. One member of the pencil,
F; say, contains P (as a node) and hence the 7 cubics #;. Another, F, say,
has b as a double line, so that any two members of the pencil touch along
b. The curve of degree 16 common to all the surfaces consists of b (twice),
ai, ds, as, da, ds, ds, Gz plus a rational irreducible septimic S, which is
quadrisecant to each g, and unisecant to b. Both F, and F; are uniquely
defined.

The pencil of planes through b meets Fy residualy in a pencil of conics,
eight of which break up into a pair of lines a;, a; (i = 1, ..., 8). The conic
C lies on F, and meets one of gg, az, Which are incidentally both trisecant
to S. In this way, F, contains 27 = 128 conics. Several specia cases may
occur for this set of eight pairs of lines. Seven pairs, by the nature of the
construction, must lie in the field. The eighth pair may lie in a quadratic
extension of the field. There may be a node at the intersection of a pair of
lines (which then counts twice). Also there may occur a second isolated
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node collinear with the first and a point of b forming a torsa line of Fy
and making a4, a3, say, coincide. This torsal line then contains three nodes,
four being required before it is a double line. The last case was in fact
the one to occur in the computed example.

In the calculated example, the 7 lines f; were not in fact quite general:
one pair had a point in common. The seven lines therefore lay on a quartic
surface, which was unique. This surface contained another three lines. It is
not at all clear if there is aways a quartic surface through the 7 8.

It is also possible for the 7 cubics ¢; to coincide, in which case one mem-
ber of the family of surfaces through the a; is ruled.

Attempts to connect the 7 g; to the pencil Fp+ AF; and to obtain some
contradiction from the 176 lines mentioned above were unsuccessful.

My gratitude is to Dr. D. Barton for calculating the lines, to Mr. J. M.
Taylor for help with the further computing and to Prof. J. G. Semple and
Dr. J. A. Tyrrell for the exegesis of the pencil of quartic surfaces.
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The uses of computers in Galois theory

W. D. MAURER

ANy competent mathematician can learn FORTRAN in a few weeks and
can immediately start applying it toward solving problems which are
finite in nature. Constructing all the subgroups of a finite group, finding
the incidence numbers of a finite simplicial complex, and taking the partial
derivatives of alarge symbolic expression in several variables, are examples
of such problems, which take large amounts of programming but very
little “hard” mathematical thinking. Such procedures are now widely
recognized as having grest value in preliminary investigations as well as
for teaching purposes. The mgjority of good problems in mathematics,
however, are not finite in nature, and many mathematicians feel that the
computer is out of place in this environment. It is clear that we cannot
ask the computer to look a al cases, when the number of cases is infinite.

Of course, in many situations, we can think of mathematical arguments
which will reduce an infinite problem to a finite problem, and this is
what is currently done in Galois theory, as detailed below. It is our hope,
however, that these mathematical arguments will eventually themselves be
generated and applied by the computer, so that the computer may be
brought directly to bear on an infinite problem.

The problem of calculating the Galois group of a polynomia over the
rationals is remarkable among mathematical agorithms for the paucity
of its input-output. A single polynomia is given as input and a single
group code, or the Cayley table of a group, is returned as output. It is
the purpose of this paper to describe the computational difficulties that
arise in computing such groups and to indicate how they may be solved.

It has been noticed severa times that, athough the splitting fields
whose automorphism groups are the Galois groups of polynomials over
the rationals are infinite fields, the problem of calculating these auto-
morphism groups is actually a finite problem. The best known statement
to this effect was made by van der Waerden in [1]. Van der Waerden's
method of calculating a Galois group proceeds as follows: Let the poly-
nomialfhave degree n over the field 4 (in our case, 4 is the field of rationa
numbers) and let X' be the splitting field. Consider the ring &' (uy, . . . , 4, 2)
of polynomials, with coefficientsin 2, inthe (n+ 1) variablesuy, . . . , #,, 2.
Form in this ring the expression 6 = ayu; + . . . +a,u,, Where the ¢; are the
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roots of the polynomial (which are in X). For each permutation s in the
symmetric group §,, consider it as a permutation of the variables u; and
form the transformed expression s6. (For example, if s = (1 2), then 58 =
a1Ug+ ooty +ogus+asts+ . . . +o,u,) Finaly, form the product F of al
the expressions z—s6 for al s in the symmetric group S,,. Now Fisasym-
metric function of the «;, and hence can be expressed in terms of the ele-
mentary symmetric functions of the «,. These are precisely the coefficients
off, and in fact liein 4, so that Fis actually in the smaller ring A(uy, . . .,
u,, Z). Decompose F into irreducible factors 1, . . ., F,in this ring, and
apply the permutations s as above to the resulting eguation

F= Fp...'F,

Now: For an arbitrary factor (say Fy), those permutations which carry
this factor into itself form a group which is isomorphic to the Galois group
of the given equation.

It is clear that this is a finite method if the associated factorization is a
finite method, and this is shown in [1], vol. 1, p. 77. On the other hand,
van der Waerden's book first appeared in 1931, a long time before the
first computers, and he pays no attention to considerations of speed.
Some older mathematical algorithms, such as the Todd-Coxeter algorithm,
adapt very well to computers, but it is clear that this is not one of them;
even for a polynomia of degree 4, twenty-four polynomials must be
multiplied and the result decomposed into irreducible factors in five
variables.

Simpler methods are given by van der Waerden in the case in which
the polynomia has degree less than or equal to 4. These methods have been
improved on by Jacobson [2], vol. 3, pp. 94-95. We note first that if the
given polynomia has a linear factor, we may divide by that factor to
obtain a new polynomia with the same Galois group. After al linear
factors have been removed, a polynomial of degree 4 or less is either
irreducible or is a quartic polynomial with two quadratic factors. The
Galois group in this case is the direct sum of two cyclic groups of order 2
unless both polynomials have the same discriminant or unless one discrimi-
nant divides the other and the quotient is a square. Quadratic factors of a
polynomial may easily be found by Kronecker’'s method (cf. [1], vol. 1,
p. 77). Therefore we are reduced to the case in which the polynomial is
irreducible. If it is linear, the group is of order 1. If it is quadratic, the
group is of order 2. If it is cubic, the group is of order 3 if the discriminant
is a square, and is otherwise the symmetric group on three letters (of
order,6). There finally remains the case of an irreducible quartic, and here
Jacobson’s algorithm is as follows:

(1) Cdculate the resolvent cubic of the equation. This may be done
pirectly from the coefficients: if the equation is x*— a1 x%+ax2— asx +au,
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then the resolvent cubic is x3— bx2+ box— by, Where b1 = as, by = a1a3— 4ay,
and b3 = ayas+ a3 —2a.a,.

(2) Calculate the Galois group of the resolvent cubic.

(3) The Gaois group of the original equation may now be derived from
the following table :

If the Galois group of the then the Galois group of the original
resolvent cubic is equation is

the identity the Klein four-group
a cyclic group of order 2 acyclic group of order 4
or
a dihedral group of order 8

the dternating group As the aternating group A,

(cyclic of order 3) (of order 12)
the symmetric group S, the symmetric group S,

(of order 6) (of order 24)

where there is only one ambiguity-the case in which the Galois group
of the resolvent cubic is of order 2. In this case, the Galois group of the
original equation is the cyclic group of order 4, if and only if it is not
irreducible over the field obtained by adjoining the square root of the
discriminant of the resolvent cubic.

This method easily lends itself to calculation. The only apparent diffi-
culty is in the last step, and this is easily resolved by Kronecker’'s method
applied at two levels.

It is of some interest to note that heuristic methods may be used even
in a procedure as obvioudy combinatorial and manipulative as the one
described above. The heuristics are, however, not of the usual kind. Most
heuristic programs try various approaches, some of which are expected to
fail. In Galois theory, however, we find ourselves faced more than once
with the following situation : A program X solves a problem exhaustively.
A program Y may be run which decreases the number of cases that X must
treat, However, the program Y may take so long to run that no timing
advantage is conferred by running it. Therefore, an estimate of the running
time of X, of the improved X after running Y, and of Y is made, and a
decision made on this basis as to whether to run Y. The result is that, for
different input data, the program will perform the calculations in different
ways, attempting to choose the fastest way as it goes (for the given data).

An example of this occurs in irreducibility test routines. The program
X is the Kronecker's method program. The program Y finds the factors,
if any, modulo some integer. The number of steps in Kronecker’s method
is the product nine- . . . -n, Where each n; is twice the number of factors
of some integral polynomia value (including itself and 1). The irreduci-
bility test modulo p, for prime p, involves checking all the possible factors
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mod p; for a factor of degree Kk, as above, this is p¥. Since each of the g
in Kronecker's method is at least 4, the number of steps in the program Y
is always less than the number in X ifp = 2 or 3, and often ifp = 5. On the
other hand, the test modulo p may give information of a quite varying
nature. The polynomial may be irreducible mod p, in which case it is
irreducible. Or it may have factors mod p; then each factor must corre-
spond to a factor mod p or a product of factors mod p. An equation of
order 6 cannot have an irreducible factor of order 3 if it decomposes
mod p into three irreducible factors of degree 2. It is aso possible that
the factors mod p; do not agree with the factors mod p;. A polynomial
of degree 6 which has three irreducible factors of degree 2 (mod p;) and
two irreducible factors of degree 3 (mod ps) must itself be irreducible.
Another example occurs on a more global level. It is possible to find the
Galois group of an equation mod p by an obvious exhaustive process,
since in this case we are searching for the set of all automorphisms of afinite
field. This must then be a subgroup of the Galois group over the rationals.
This calculation may reduce the amount of time taken to calculate the
Galois group over the rationals by eliminating possibilities. If the Galois
group mod p is the symmetric group, then the Galois group over the ration-
als must be the symmetric group. If the Galois group mod p contains any
odd permutation (such as, for example, a transposition) then the Galois
group over the rationals cannot be the alternating group or any subgroup
of it. We can calculate roughly how long it will take us to find the Galois
group modulo the next prime p, and compare this with the time estimate
of the calculation of the Galois group over the rationals by other methods.
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An enumeration of knots and links, and some of
their algebraic properties

J. H. ConwAy

Introduction. In this paper, we describe a notation in terms of which it
has been found possible to list (by hand) all knots of 11 crossings or less,
and all links of 10 crossings or less, and we consider some properties
of their agebraic invariants whose discovery was a consequence of
this notation. The enumeration process is eminently suitable for machine
computation, and should then handle knots and links of 12 or 13 crossings
quite readily. Recent attempts at computer enumeration have proved un-
satisfactory mainly because of the lack of a suitable notation, and it is
a remarkable consequence that the knot tables used by modern knot
theorists derive entirely from those prepared last century by Kirkman,
Tait, and Little, which we now describe.

Tait came to the problem via Kelvin's theory of vortex atoms, although
his interest outlived that theory, which regarded atoms as (roughly) knots
tied in the vortex lines of the ether. His aim was a description of chemistry
in terms of the properties of knots. He made little progress with the enu-
meration problem until the start of a happy collaboration with Kirkman,
who provided lists of polyhedral diagrams which Tait grouped into knot-
equivalence classes to give his tables [9], [10], [11] of alternating knots with
at most 10 crossings. Little's tables [4], [5], [6] of non-alternating knots to
10 crossings and aternating knots of 10 and 11 crossings were based on
similar information supplied by Kirkman.

Tait's and Little's tables overlap in the 120 alternating lo-crossing
knots, and Tait was able to collate his version with Little's before publi-
cation and so correct its only error. The tables beyond this range are check-
ed here for the first time. Little's table [6] of non-alternating knots is
complete, but his 1890 table [5 of alternating 1 I-crossing knots has 1
duplication and 11 omissions. It can be shown that responsibility for these
errors must be shared between Little and Kirkman, but of course Kirk-
man should also receive his share of the praise for this mammoth under-
taking. (Little tells ys that the enumeration of the 54 knots of [6] took him
6 years — from 1893 to 1899 — the notation we shall soon describe made
this just one afternoon’s work!)
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Our tables of links, and the list of non-alternating 1 I-crossing knots,
appear here for the first time, so cannot be collated with any earlier table,
and for this reason the corresponding enumerations have been performed
three times.

The enumeration here described was completed some 9 years ago, and
a survey calculation of knot-polynomials was then made before an envis-
aged computer calculation. However, this survey brought to light cer-
tain algebraic relations between these polynomials which made the com-
puter redundant. But we suspect that our table will find its main use as a
basis for more sophisticated computer calculations with the many alge-
braic knot-invariants.

1. Notation for tangles. This paper is an abbreviated form of a longer
one in which completeness is proved by means of a process for locating
any knot or link within range of the table, but for reasons of space we
only sketch this process here. For the same reasons, we describe our ideas
rather informally, feeling that most readers will find that this helps rather
than hinders their comprehension. Since most of what we say applies to
links of 2 or more components as well as knots, we use “knot” as an inclu-
sive term, reserving “proper knot” for the I-component case.

In the light of these remarks, we define a tangle as a portion of knot-
diagram from which there emerge just 4 arcs pointing in the compass
directions NW, NE, SW, SE, hoping that Fig. 1 clarifies our meaning.

/N
= P Foef
/\ 2 )23 e 232\
)X X e e
© —{=1 21\ ~/211 \ 2m\

The NW arc we call the leading string of the tangle, and the NW-SE
axis its principal diagonal. The typical tangle ¢ we represent diagrammatic-
aly by a circle containing an L-shaped symbol with the letter ¢ nearby.
The 8 tangles obtained from ¢ by rotations and reflections preserving the
“front” of ¢ are indicated by making the corresponding operations on
the L-shaped symbol, leaving the origina letter ¢ outside. The 8 other
tangles obtained by reflecting these in the plane of the paper have the cor-
responding “broken” forms of the L-symbols, with the origina letter ¢
appended. Figure 2 shows how we represent the tangles, t,, ,, t, = t,, =~ ¢,
t, being the result of rotation in a “horizontal” or E-W axis, ¢, that of
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rotation in the “vertical” or N-S axis, and -t that of reflection in the
plane of the paper.

Tangles can also be combined and modified by the operations of Fig. 3,
leading from tangles a and b to new tangles a+b, (ab), a+, and a-.
Tangles which can be obtained from the particular tangles O and o by
these operations we call algebraic. In particular, we have the integral
tanglesn=1+41+. +landa=—n=1+1+.. .+1, both to n terms.
If mnp,..., 5t arelntegral tangles, the tangle mnp . . . st, abbreviating

CECROPORO

FiG. 2
et st §
(ab) at\ /a—
FiG. 3
T
ﬂ; = X
Fic. 4

(. . .(mn)p.. .$)1), the brackets being associated to the left, is called a
rational tangle. Figure 1 shows the step-by-step formation of the particular
rational tangles23 2 and 2 1 1 1 as examples. In the tables, the “comma’
notation (a, b, . ..,c) = @0+b0+  + c0'is preferred to the sum notation,
but is only used W|th 2 or more terms in the bracket. Figure 3 shows that
a0 is the result of reflecting a in a plane through its principa diagonal,
and ab = a0+ b. The abbreviation a-b denotes a6 (not a+ 6 or (a-)b),
and outermost brackets are often omitted, in addition to those whose
omission is already described above.

The tangles a and b are caled equivalent (written a = b) if they are
related by a chain of elementary knot deformations (Fig. 4). The impor-
tance of the class of rational tangles is that we can show that the rational
tangles ijk . .. Im and npq. . .stare equivalent if and only if the corresponding
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continuedfraction5m+—1 U 1 1_ and H..l_ 111

have the same vaue, so that there is a natura |-l correspondence

between the equivalence classes of rational tangles and the rational

numbers (including o = 1 /0). The continueolfractions2+_1_3 %and
-3+

1 1 1 T
T+T43 have the same value 8/5, and so the tangles 2 3 2 and
2111 of Fig. 1 are equivaent. Using this rule, we can reduce any rationa
tangle to a standard form, either one of 0, =, 1, —1, or aform mnp . . . st
inwhich |m|=2andm, n,. . . s t have the same sign except that ¢ might
be 0. Each rationa tangle other than 0 and «~ has a definite sign, namely
the sign of the associated rational number.

2. Notation for knots. An edge-connected 4-valent planar map we shall
cal a polyhedron, and a polyhedron is basic if no region has just 2 vertices.
The term region includes the infinite region, which is regarded in the same
light as the others, so that we are really considering maps on the sphere.
We can obtain knot diagrams from polyhedra by substituting tangles for
their vertices as in Fig. 5 == for ingtance we could aways subgitute tangles
1 or — 1. Now let us suppose that a knot diagram K can be obtained by
substituting algebraic tangles for the vertices of some non-basic poly-
hedron P. Then there is a polyhedron Q with fewer vertices than P obtained
by “shrinking” some 2-vertex region of P, and plainly X can be obtained
by substituting algebraic tangles for the vertices of Q, asin Fig. 5. Thus
any knot diagram can be obtained by substituting algebraic tangles for
the vertices of some basic polyhedron P — in fact P and the manner of
substitution are essentially unique, but we do not need this.

//
g
\
P Q
a )
T

Fic. 5 Derivation of knots by substitution of tangles into polyhedra.
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Only 8 basic polyhedra are needed in the range of this table (Fig. 6),
athough for convenience we have given one of them two distinct names.
The notations (2X3)* = 6*, (2X4)* = 8*, (2X5)* = 10*, (3X3)* = 9*
extend obvioudly to (X b)*.

The knot obtained from the polyhedron P* by substituting tangles
a, b, ...,k in the appropriate places we cdl P*a. b. . . .. k. To save space,
we omit substituents of value 1, telescoping the dots which would have
separated them so as to show how many have been omitted. Thus 8*2:3.4:.5
abbreviates 8%2.1.3.4.1.1.5.1, the final dots being omitted from the abbrevi-
ation. We aso omit the prefixes 1%, 6*, 6** from certain knot names —
the original form is recovered by prefixing 1* if the abbreviation has no
dots, 6** if it has an initial dot, and 6* otherwise. The symbol 10— ***

3. Some tangle equivalences. Flyping. The reader should now be able
to interpret any knot name taken from our table, but he will not yet appre-
ciate the reasons which make our ragbag of conventions so suspiciously
efficient at naming small knots. Much of this efficiency arises from the
fact that the notation absorbs Tait's “flyping” operation (Fig. 7), which
replaces 1 + t by #,+ 1, ori + t by #,+ 1. For rational tangles t we have
t=1,=1,=t,andsowhena b, ..., ¢ aedl rationd, the exact posi-
tions of the teems 1 or Tin (g b, ..., C) aeimmaterial, and we can collect
them a the end. Thus (1, 3,1, 2 =(3,1, 1,2 =(3, 2 1, 1).

Now using another part of our notation, we can also replace a pair
of terms t, 1 in such an expression by the single term t ™, or a pair t, 1
by t- . Supposing again that a, b, . . . ,¢ arerationd, this justifies the equi-
valences

(abcl)=(abct)=(a bt,c)=(at+, b0
and
(a,b, ¢, T)=(a b, ¢c~)=(a, b, ¢c) = (a, b, ¢),

showing that in such expressions the postscripts + and - can be regarded
as floating, rather than being attached to particular terms. We therefore
collect these postscripts on the rightmost term, cancelling + postscripts
with — postscripts. If this process would leave in the bracket only a single
tangle ¢ followed by p + signs and ¢ = signs, we replace the entire express-
ion by ¢n, where n = p-g. B

Now from the formula x— = x 1 0 and the continued fraction rule, it
follows that we have the equivalences

2—=-2,3-G-21, 21-k-3, 22=-211,
as particular cases of the equivalences
mn...pgl- = —mn...pr and mn...pr— =mn...pql,

for more general rationa tangles, which hold whenever r = g+ 1. This
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o~

010)01010
10*0 %?é? %?éﬁa

*a  6%bedef 6%a b.cdy.

8*abcdefg.h 9*ab.cdefghi
10%abcdefghij 10**a.b.cdefghiy
1O‘gu.b4cdef.g.h.y 11*G.b.c.dAe.f.g. hi.jk

Fic. 6. The basic polyhedra

¢
N t
X<
th +1

F1G. 7. Flyping — the equivalence of 1 + ¢ and r, + 1
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leeds to a kind of conceded flyping, instanced by:
22,32,-D=223-2)=22,-21,2)=(-211,3,2),

& illusraed in Fg. 8 Each of these expressons should be trandated at
sight into (2 2,3,2 —) which is regaded as the standard form. The reader
should smilarly be able to write down 2 2 3 on seeing any of the flyped
variants shown in Fig. 9.

V ~
Fic. 8. Concedled flyping

e ,
V98 WIE XS NI,

G \ \ \ G
R > /@6}\% @/3/\ >y
Fic. 9. Flyping variantsof 22 3

4. Equivalences for knots. The following equivaences refer to the whole
knot diagram rather than its component tangles. If two vertices of a tri-
angular region are subdtituted 1 and -~ 1, then in al cases within range the
fird deformation of Fg. 10 produces a form with fewer verices in the

Fic. 10. Two knot reductions

basic polyhedron. If the subgtituents x andy of 6** x . a. b . c. d. y ae
both 1, then the second deformation of Fig. 10 produces a form with
basic polyhedron 1*. This increases the crossing number by 2, but we
can use the continued fraction rule to reduce it by 2 again should any one
of a, b, ¢, d be a negative rationa tangle. If instead x and y ae ~ 1
and 1, other reduction processes gpply to al cases within range.

In the tables, these and other equivdences have been taken into account,
s0 that for example no subdtituent in the form 6**. a. b . c. d is negative
rationd (this remark explains our preference for the 6** form rather than
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the 6* form when two opposite vertices are substituted as 1). Unfortu-
nately the use of such equivalences means that the user might at first fail
to locate his knot in our table. He should in these circumstances apply some
reasonable transformation and try again — success comes easily after
a little experience.

These remarks have probably convinced the reader that our notation
has little structural significance, athough it might be convenient in prac-
tice. The following remarks show that at least it has some structure. Let
us call the knot I*t a rational knot whenever t is a rationa tangle. Then
the double branched covering space of the rational knot obtained from
the rational number p/q is just the lens space with parameters p and g,
and in fact the rational knots are precisely the Viergeflechte, long recog-
nized as an interesting class. More generally, if p and g are the determi-
nants of the knots 1 *z and I1*tO, we cdl p/g the determinant fraction of the
(arbitrary) tangle t. Then the determinant fraction of a+ b is (ps+ gr)/gs =
= (p/g)+(r/s) and that of (ab) is (gs+pr)/ps = (p/g)~'+ (r/s), if those
of a and b are p/q and r/s, which explains the continued fraction process.
Under more restricted circumstances similar identities hold for the frac-
tions obtained from Alexander polynomials, as we shall see later.

5. Orientation and string-labelling. An oriented knot will mean a proper
knot with a preferred orientation (arrowhead) on its string. From any such
knot we can obtain 3 others by simple geometric operations. Reflecting
in a mirror gives us the enantiomorph, or obverse, 7K of K, reversing
string orientation the reverse, K,, of K, and doing both the inverse, —1K,,
of K. A knot equivaent to its obverse is amphicheiral, one equivaent to its
reverse is reversible, and one ‘equivaent to its inverse is involutory.
(Our notation is more mnemonic than the usual one — the inverse in
our sense is dso the inverse in the cobordism group.) For links of more than
one component the situation is more complicated, and we need a con-
vention for labelling and orienting strings. The convention we adopt is
easy to remember and apply, athough it leads occasionally to unexpected
[abdllings.

We orient the leading string of the tangle named a in Fig. 6 so as to
point into that tangle, and label this string r,. We now move aong r,
in the direction of its orientation, labelling the other strings r,, #3, .. . in
the order of their first crossing with r;, either over or under, and orient
these strings so that their first crossing with r is positive in the sense of
Fig. 11. If any strings remain, we proceed along r, in the direction of its
orientation, labelling the unlabelled strings crossing r; in the same way.
Repeating this process with r;, etc., if necessary, we eventually obtain a
complete system of labels and orientations. This convention tends to
ensure that the homological linking is positive, since the linking number
of two strings is half the sum of the E's of Fig. 11 over al crossings in
which both those strings appear.
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For the purposes of polynomia calculation, we replace the labels
ry re,rs, ... by st .... We aso need to describe links obtained by
relabelling a given one in various ways. Let @ be any function from the
string labels r, s, ¢,. . . to the symbols r, r=1, s, s71,¢,¢71, . . .. Then for
any labdled link K we define K, to be the link obtained from K by re-
labelling all the r strings of K as s stringsin K, if n(r) = s, and as reverse-
ly oriented s strings in K, if a(r) = 571, and so on. We define |z| as the
total number of strings whose orientation is reversed in this process, and
|K] to be the total number of strings in K. Note that two distinct strings

can have the same labdl.

Fic. 1L A postive crossing (e = + 1) and a negative crossing

In the table, we give only one knot from each enantiomorphic pair,
and only one from each labelling and orientation class. We indicate the
symmetries of proper knots in the column § by writing a for amphicheiral
knots, r for reversible knots, i for involutory knots, T for knots with full
symmetry (all of these properties), and n for knots for which no symmetry
has been observed. For links of 2 components we give the generators of
the (observed) symmetry group, r and s being the operations of reversing
the r and s strings respectively, ¢ the operation of transposing these strings,
and ¢ the operation of reflection in a mirror. The column S is left empty
for links of 3 or more components.

6. Polynomials and potentials. Each labelled and oriented knot K has a
potential function Fx = Pk(r, s,. . .) Whichis a rational function with one
variable for each string label appearing in K. We shall see in a moment that
Iy is just a disguised and normalized form of the Alexander polynomial
Ak, but it is in fact completely defined by the properties given below.
We first have the symmetry properties

VK(r, S,.. )= Vr(—r L, —571 .. )= (—)!K{.VK(—r’__s, o)
Ve r,s,...)= (=) Vx@(r), ns), .. )
V—IK(r’ S9 v ') = (_)[KH-I'VK(", S, ' -),

the first of which makes it appropriate to use the abbreviation {f(r, s, . . .)}

for fir,s,...)+f(—r~%, —s7%,.. ) in our table of potentias and else-

where. If L is obtained from K by deleting a string labelled r in K, then
Vel s, t, .. )= (%% ... —s~%~b . ) Vils,t,..).

where a, b,. .. are the tota homological linking numbers of the deleted
r string of K with the strings labelled s, ¢,. . . respectively. Finaly, if
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K % ,L isa product of K and L, obtained by tying each of them sepa-
rately in a string labelled r, then

Vix,e = Ve {r}-Vi.

Our tables list only knots which are prime in the sense of such products,
and the assumption of primality is implicit elsewhere in this paper.
Our potential function is related to the Alexander polynomia Ag
by the identity
Ag(r?) = {r}-Fx(r)

if Kis a proper knot, and by
Ag(r?, 52, .. )= Vkl(r, s, - . .)

otherwise, but it is important to realize that A, is defined to within mul-
tiplication by powers of the variables and - 1, while [/ is defined abso-
lutely.

The most important and valuable properties of the potential function
are for this reason not shared by the polynomial. Let K, yidd K+ and
K_ on replacement of the tangle

~—ar ~ A .
S, by /;,r and ,\_, respectively,

the labellings and orientations being significant. Then we have

Vi, =Vk_ + {r}-Vx,

called the first identity, which enables us to compute any one of the three
potentials from the other two.
The second identity relates knots Ky, K++, K__, defined as above, but

)I‘
now using the tangles ~" \/9/{ and N,
Vg s
. -~ r \ r k’ 7‘r
or aternatively , ,_/C/\ and ¥ N\
SL/\ S S

The second identity asserts that
VK++ + VK-- = {rS}’VKoo
in the first case, and

VK+++ Vk__ = {r—ls}'VKoo
in the second case.
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The third identity involves possibly three distinct string labels. If Kj vyidds
K,, K3, and K, on the replacement of

b w2 T me A

v Ve
then we have
Vi, +Vk, = Vi, +Vk,

where now the labellings are immaterial.

These identities have many conseguences which we cannot explore in
detail here, dthough we shdl give a few examples. Let ¢ be a tangle whose 4
emerging strings are oriented and labelled as in Fig. 12. Define the poly-
nomial fraction Oft as the formal fraction

{r}Ve
Ty

where K and L are the knots 1 * ¢ and 1 * ¢0. Then the identities which we
asserted for determinant fractions in Section 4 hold aso for polynomial

fractions.
Jo

Frc. 12

If we consider generalized tangles with 2n emerging arcs instead of 4
(such as, for 2n = 6, those of the third identity), then we can determine
the potentia of any knot obtained by joining the emergent arcs of two such
tangles in terms of n! potential functions associated with each tangle sepa-
rately, provided that all the emerging strings have the same label. In the
case n = 2 the 2! potentials are the numerator and denominator of the
polynomial fraction. It becomes natural to think of such tangles as being
-to within a certain equivalence relation-elements of a certain vector
space in which our identities become linear relations, and there are many
natural questions we can ask about this space. However, when the emerg-
ing arcs may have distinct labels, it is not even known whether the dimen-
sion of the tangle space is finite.

We have not found a satisfactory explanation of these identities, athough
we have verified them by reference to a “normalized” form of the ‘L-matrix
definition of the Alexander polynomial, obtained by associating the rows
and columns in a natural way. This normalization is useful in other ways
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-thus our symmetry formulae show that a 2-component link can only be
amphicheira if its polynomial vanishes identically. It seems plain -that
much work remains to be done in this field.

7. Determinants and signature. We define the reduced polynomial Dg(x)
by the equation
Dx(x) = {x}- Vk(x, X, . . ),

and the determinant § = dx as the number Dg(i). Our determinant differs
from the usual one only by a power of ;. The potential identities of the last
section yield determinant identities when we put ; for each variable.

Murasugi [7] has defined invariants called the signature, o, and nullity,
ng, and described some of their properties. These invariants depend on the
string orientations of X, but not on its labelling. We shall describe enough
of their properties to enable their calculation to proceed in much the same
way as that of the potential function.

For any knot K we have the identity

61( = 6(}(-j<’x,
where 6% = |8/, and the condition
ng>1 if and only if 8¢ = O,

the first of which determines o, modulo 4 provided ¢y = 0. But one of
Murasugi’s results is that

!0K+~GK0 I + inK+_—nKo! =1,

whenever K+ and K, are related as in the first identity. These two results
determine o completely in almost al cases, and make its calculation very
swift indeed. Of course it should be remembered that o5 and n; are inte-
gers, and 1 = ng<|K|.

We have the relations

O0qg = —06x and ogx,. = Og+0L,

concening obverses and products, and if we define ¢% @ oy = Ag, Where Ag
is the total linking of K (the sum of the linking numbers of each pair of

distinct strings of K), then the reorienting identity is that ¢%, like 6%, is an
invariant of the unoriented knot K. In the tables, we give only these residual
invariants, 60 being the numerator of the rational fraction which we give
for rational knots.

8. Slice knots and the cobordism group. A proper knot which can arise
as the central 3-dimensional section of a (possibly knotted) locally flat
2-sphere in 4-space we call a slice knot. A natural application of our tables
is to the discovery of interesting slice knots, since for slice knots there are
simple conditions on the polynomial, signature, and Minkowski units. In
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particular, we might hope to find a slice knot which is not a ribbon knot
[3], since severa published proofs that all slice knots are ribbon have been
found to be falacious.

The dice knots with 10 crossings or less were found to be

,42,3113,2312,(3,21,2-),212112,20:20:20,(3,3,21—),
64, 3313,2422,2211112,@1,3,2),21,21,21+),.22:20,
2:2:20:20,10%,(32,21,24,(22,211,2~),(4, 3, 21-),
((3,2-(21,2),3:2:2

together with the composite knots 3 s 3,22 % 2 2,5 % 5,32 % 3 2. The granny
knot 3 3% 3 and the knot -2-2-2-2 0 satisfy the polynomial condition but
not the signature condition, and so are not slice knots.

Now suppose that in the slab of 4-space bounded by two paralel 3-gpaces
we have an annulus (S'X7) whose boundary circles lie in the two 3-spaces.
Then the two knots defined by these circles we cal cobordant. Cobordism is
an equivalence relation, and the cobordism classes form a group under the
product operation, the unit class being the class of dlice knots, and the in-
verse of any class is the class of inverse knots to the knots of that class.

A search was made for cobordances between knots of a most 10 crossings
and knots of at most 6 crossings, which in addition to the cobordances
between dice knots, found only
323212=3,21, 22222112222, 211, 231, 3, 21211, 3, 21—,
22 =2=3,21,21=3 21, 2+
5=234122=4 321
32 =31,3,21=3,3,21 4 =321, 2++
3%3x=.2.2220,

all of these being to within sign and orientation.

All dice knots given were found to be ribbon knots. However, the pres-
ence of the particular knot 10* = (2 X 5)* leads us to examine the more
genera a strand b bight Turk’s Head knot ((a - 1) x b)*. Andrew Tristram
has proved that if a and b are odd and coprime this knot obeys all known
algebraic conditions for dlice knots, but despite a prolonged attack the only
cases definitely known to be dlice are the trivial cases with aor b =1, and
thecasesa=3,b=5,and a=5, b = 3. Since most of our methods for
proving knots slice would also prove them ribbon, the way is left open for
a conjecture that some of least of these are dice knots which are not ribbon
knots.

9. Notes on the tables. Acknowledgments. The tables (pp. 343-357) list
all proper knots of at most 11 crossings, and all links of at most 10 cross-
ings, with various invariants tabulated over parts of this range. Knots
listed separately are believed to be distinct, and the symmetries listed
under S are believed to be a complete set. (The evidence is very strong—
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each knot has been subjected to a reduction procedure which in every
known case has been shown to yield all forms with minimal crossing
number.) By the same token, al knots listed are believed to be prime.

The columns headed [, &0, ¢¢ give the invariants of §§ 6 and 7, and for
proper knots the column headed 4 gives a coded form of the polynomial or
equally of the potentia, [a+ b+¢ abbreviating the polynomia a + b(r + r=1)
+ «(r*+r=?) or the potentia (a+ d{r2}+ c{r4h)/{r}. The column *“units’
gives the Minkowski units (for definition see [8], but beware errorsl)
of K and its obverse, +p meaning that C, = + 1 for both K and - K, T p
that C, is~ 1 for Kand 1 for 5 K, and so on. The units have been recom-
puted even in range of the existing tables, since these do not distinguish
between a knot and its obverse. Under “1” we give the linking numbers of
pairs of strings, in the order 4., 4., 1.,, ;l.., |,,, 4, but omitting linking
numbers of non-existent strings.

The tables have been collated with the published tables of Tait (T in the
tables) , Littlet (L), Alexander and Briggs (A&B) [1], and Reidemeister [8],
and with some unpublished polynomial tables computed by Anger [2] and
Seiverson of the Princeton knot theory group. | thank Professor H. F. Trot-
ter for making these available-they have enabled me to correct a number
of (related) errorsin the 10 crossing knot polynomials. Much of the mate-
ri of §§ 7 and § of this paper arose as the result of some stimulating
conversations with Andrew Tristram, whose assistance | gratefully
acknowledge here.

Note added in proof.

An idea of Professor Trotter has led me to the discovery of an identity

for the Minkowski units like those of the text for the other invariants. In
fact we have, if K=K, L = K+, that

Co(K)-Cy(L) = [idx/01(P)]5,
X)x, and X(p) = (— 1)*X whenp® || X, andog is the

-X

where {X], =(p >

Legendre symbol.

T The 11 -crossing knot numbered 400 in the table is the knot which appeared twice in
Little’s table, as numbers 141 and 142, and the knots 401-411 are those omitted by
Little.
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Knots to 8 crossings
A&B T/L knot S gOunits ¢o A
0, 1 o f 0+ yr n
3, 13 r+2 +3 31 [-1+1
4 1 2 f 0 5 512 [3-1
5, 25 r+4 +5 5/ [1-1+1
52 1 32 r+2 37 73 [-3+2
6, 3 42 r 043 94 [5-2
6, 2 312 Ft2 ill 11/4  [-343-1
65 1 2112 f 0 13 13/5 [5-3+1
7, 77 r+6 +7 71 r-1+1-1+1
Ts 6 52 r+2 11 11/5  [-5+3
g 5 43 r-4 +13 13/4 [3-3+2
Ts 3 322 p+4 -17 17/7  [5—-4+2
To 4 313 r2  F3-5 15/4 [-74+4
7 2 212 p42  E19 19/7  [-7+5-1
1, 1 21112 r 0 F3FT 28 [9-5+1

8 18 62 r 0-13 13/6 [7-3

8 15 512 r+d4 17 17/6 [3-3+3-1
8 17 a f 0417 174 P-4

8 16 413  r+2 119 19/5 [-5+5-2

8, 13 4112 2 423 239  [—5+5-3+1
8 11 332 ri+2  £23 23/10 [—T+6-2
8,, 10 3212 r4+2 43 27/10 [-9+7-2

8 12 33 f 045 25/7  [1-5+3-1

8,, 8§ 31112 r 0 -29 29/11 [11-7+2

8s 6 2312 r 0 +5 25/9 [9-6+2

8, 5 22 f o -2 29/12 [13-7+1

814 2 22112 r+2 %3 31/12 [—11+8-2
8 14 3,32 r4 4337 2 [5—4+3-1
8y 9 3,21,2 r2 3 27 [-7+6-3+1
8, 3 21,2 1,2 r+4 F3F11 33 [11-8+3
8., 122 0-37 37 [11-8+4-1
85 4 220 r+2 -—-5%7 35 [—9+8—-4+1
8, 7 & f 0 345 45 [13—-1045-1
8y MM 3 3,2- r6 t3 3 [1+0-1+1

I

3,21,2—- r 0 +3 9 [3-2+1
8 M 21,21,2— r+2 F3+5 15 [-5+4-1

CFA 23
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2 string links to 8 crossings

Link A s 0% units 50 A

0 0qg,r, 5t 0 + (o]]] 0

2 +1 grgs,t 0 + 21 1

4 +2 s, t +1 + 41 {rs}

212 or, st +1 + 83  —{r}{s}

6 +3 st i-2 ¥3 6/1  {ris}+1

33 +3 qr,gs,t 0 +5 10/3  {r24s2)—1

222 +2 s, t +1 F3 12/5 {rs}+{r} {s}
412 Flrs t +2 F7 14/5  1—{r}{s}{rs}
3112 + 17rs, t 4 +3 i6/7 1={r}{s}{r1s}
232 or, s, t =2{r}{s}

3,2,2 0 rs -3 + 16 {r}{s} {*}
21,2,2 +2 1 +1- 5 20 {r%}+2rP{s)
2 0 7 +1 +3 24 {r} {s}+{rP {5}
3,2,2- +2 13 -3 + 4 {r3)

21,22~ 0o s +1 4+ b —{r} {s}

B +4 rs, t +3 + 8/1  {r3%+rs}

53 +4 5t 4+ 16/5  {r}{s}+{rs}{rs™2}
422 +3 rs,2 +2 ¥l 22/9  {2r%*—r2—s2}4-3
323 +4 rs,t +1 F3 247 {rs}{r*+s*~1}
3122 +3 rs, t 0 +13 26/11  {2r%+2s%+r2—g2) -3
242 + rs, t +1 +5 20/9  {rs}+2{r}{s}
21212 +1rs, t +2 F3+5 30/11 I-{rP{s}
211112 +1 ros,t +2 +17 34/13 1+{r}{sP
22,2,2 +1 18 -1 +7 28 {4rts—2rs—r=3s}
211,22 0 rs -1 + 32 —{r¥{s}
3,2,2+ $2 s -3 x7 28 {ris}—2{r} {5} {r?}
21,2, 2+ 0 rs +1 + 32 {r¥{s}
.21 0 14 +1- 5 40 {r¥{sy={r}{s}
202 +2 s 21 -3 36 {rs}—4{r} {5}
22,2,2- 0 rs 1+ 8 {r}{s}
211,2,2— +2 g 1 43 12 {2r-1s—r~3s}

Enumeration of knots and links
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9 crossing knots

A&B T/L knot s gt A

9, 41 9 roo91 [-14+1-1+41
9, 38 72 r 15/7 [-7+4

9, 40 63 r 19/6 [-3+3-3+2
9, 39 54 ro21/5 [5-5+3

9, 33 522 r 27/5 [-5+5-4+2
9, 37 513 r 23/6 [-11+6

9, 34 423 r 319 [-7+6—4+2
9, 3t 4212 r35/13 [~13+49-2
9, 30 4122 r 33/14 [7-74+5-1

9,, 28 41112 r 37/14 [15-9+2

9, 26 342 r 29/13 [9-7+3

T 32 333 r 33/10 [9-8+4

9,5 25 3222 r 41/17 [13-10+4

9,5 39 3213 ro37/10 [11-9+4

8, 21 31212 r 41/15 [11—-9+45—1
9,, 18 31122 r 43/18 [—-17+4+11-2
9, 17 311112 r 47/18 [—13+11-5+1
9, 16 2412 ro3/11 [-1148-2
95 15 2322 r 39/16 [-15+10-2
By 14 23112 r 41/16 [17-10+2

9,5 12 22122 r 45/19 [I15-11+4

i, 22 21312 r 39/14 [-949-5+1
9, 8 212112 r 49/19 [15-11+5-1
9, 2 2111112 r 55/21 [-17+13-5+1
9, 24 11,3,1 ro 37 [9—8+5-1
9,; 13 22,21,2 ro4 [(—17+12-3
940 23 211,3,2 ro43 [-114+10-5+1
9,; 36 3,3,3 ro27 [~13+7

95, 19 3,21,21 r 45 [19-11+2

915 27 3,3,2+ r 39 [—9+8-5+2
9, 20 3,212+ ro45 [13-10+5-1
9, 6 2 1,21,2+ ro5t [—15+12—5+1
933 3 .21.2 R 61 [!9—144—6—1
9, 7 21,20 n 59 [-17+14—6+1
9, 5 2.2.2 r 57 9-14+5

By 11 .2.20.2 r 51 i-15+12-5+1
9, 9 2:2:20 r 55 [—21+14-3
9,, 10 20:20:20 ro49 [19-12+3

9% 1 8720 ro69 [23-16+6-1
9,4 35 9% r 75 [—23+18—7+1
9, IV 22, 3,2- ro [-1+2-1

9, I 22,21,2—- rot7 [7—-4+1

by V21 1,3,2— ro13 [1-2+3-1
by HI 211,21,2- r 23 [-9+6—1

9, VI 3,3,21- ro 9 [5-2

b VII 21,21,21- ro27 [—11+7-1
By M —-20:-20:-20 r 25 [7—6+3

9, VIII 8%*-20 ro27 [-5+6~4+1
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9 crossing 2 string adternating links, with basic polyhedron 1*

J. H. Conway

\

link p)
612 +2
5112 +2
432 +1
414 0
4113 0
3312 +2
32112 +2
3132 +1
31113 0
252 0
22212 +1
221112 11
5,2,2 0
41,2,2 +2
32,2,2 0
311,2,2 +2
23,2,2 +2
221,2,2 0
4,3,2 +3
4,21,2 +1
31,3,2 +1
31,212 +3
3,3,21 +2
21,21,21 43
22’252+ 0
211,2,2+ 42
3,2,2++ 0
21,2,24+ + +2
(3,2 @2  +2
@L,2)2,2  +2

{ris}h={r} {s} {r*s?}
{rs}=1{r} (s} {rsp
1=2{r}{s} {rs}
~{r} {s} Gr*+s+1)
ir {s} {7
{rs}(X ={r} {s} {r~1sh
{rs}+ {1} s} = {2 + 57
L=2{r} {s}{r—2s}
{r} s} §r2+s3-1)
=3{r}{s}
L= {rHs} (frs} + {} 5D
L+ {Hs)({r} (s} = {r~sh)
{r} s} {1} +
{r=os}+-2{r} {s} {r?}
{3y -1
{2r=3s = r~is}+ d{r}{s}
{2r73s = r7ls}4 3{rH s}
A s} () =1
{s% =1+ {H s} {r 15} (57
1+ {rts=4) + 2{r} {5} {r~1s}
ESZ} ~ L+ {rH{s}H{rs} {s?}
s+ {sP(rt+ 5% - 1)
e i b 6 e
+{r3s?} + {rs} {r } (s} + {125)2
RS
Y= b () {sh (Y- 3
fr b 6=
{r=5s}+{r} {SJ B~
{r=2sh+2{r} {s} {r*}
s} +H{P sy = {1} 65D

Enumeration of knots and links

9 crossing 2 string links, otherwise
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link A
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00NN
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wRrhhL TN S
e SR SN A
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N
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+

(V2]

WWWWEARNNWWAO
N =
mwi;® Nw
- W
ShNT
[N
N'T)' w
'V
+ +
o =

N
&
~~

1,2) 2,
2-)2,2 +2
21,2-)2,2 42
21,2)-2,2) +2
2:-20:-20 +4

o~~~
}»Nw
-

{rH{spdrt =3} + 1)
{rH{sy2fr’} = 3)
{rHs}3 = 2{r%})
L= {r} {sHrs} ((r5} = 1)
1+{r) {sHrs} (r} =1
A 5} (3 =1

= s A =1
{rs} + 2{r¥¥{s}
{s%— DA+ {r} {s} {rsD
1-+{r2st}— 3{r}{s {rs}
{rH{s)B + {r}{rs*)
1= {r}{s}{rs}
{rs}

= {r} {s}{r*}
{2r3s ~r~1s}

—2{r} {s}

- {r} {s}
{rs}+2{r 3s—r"1s}
1+{r=2s4

1+{sH{r %}
I+{s'}+{r}{r*}
{s*}—=1~{r}{s}{rs}
{r=3s%+ rs}
{ri{s}{risp—1

P

Fi i85+ ¥is

{rs} =1 38 {s}
o+ )

{r} {rZs} + {r3s}

{r’s+rs~%}
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J. H.

3 and 4 string links to 9 crossings

Conway

Link

2,2,2
.1

[T
RN
+

-

N;»"\_l\)w-hm N
- —
M. D
PN, N4
N
N+

N Nt

1
uN '
el

~~

P @B
I :

NN PN

LI N NN
L
r—A'I\)_I\')“N‘!Q

o RN
N o BN
'

! N
NN LN

Nw o

L) bred.
+ N+p'~w~
HES ST
+ N

-

2,24)(2,2)
2,21@2,2
211

.21:2
(2,2)
212,2,2-
21 11,2,2—
3,2,2,2-
21,2,2,2—
3,2,2,2— -
2,2+)(2,2-)
(2 2+)-(2,2
2,2,2 2+

A g
I+l {rst} - {rH{s} {t}
0 0 O ISEtIE13
g iy
+1+1- s} {1— {r~st)
$24141 (ris)rst} = {5y () = (1)
+2+1+1 {rs}({rst} sy -
+1+1+1 {rst}— 2{r}{s}{t}
+242 0 3 {rs} {r=ap + {r} (s} {2}
o ohd
- ={t}={rH {sH{e} {r
+2+41-1 — {2t e
+2+1-1 {1} = {rs} {r1s}
+2 0 0 = { {s}H{r}
+242 0 Er} {sHe + (N} {rs} {rt)
+14+1 0 O0+1+1 {rstu—rs™ 1y}~ {r} {s} {1} {1}
+1+1 0 Oft ~1 {0} {su= Y — {rs™ 1} {tu}
+141 0 O+1+1 {rstu—rs™t 'y}
0-i-1-1 {1} {s)rs=}+ {r} (s} {ED ~ {1}
0+1-1 — A {s){rs™u} + (P D - {8
+14+1-1 (= {"Dlrtst}+ {r) s} {1} )
+14+1+1 {Fist} — {r} {st} = {r¥3{s} {}
+2-+1-1 {rHs T} sy = {r%s%)
+2+1-1 {rs){r} {s} {t} = {r2st}) + {1}
+i+1-1 2ArH{s} {t}—{r~1st}
0+2 0 ~{r} {5} {1} = {rP{s} {71}
0 0 0 {r} s} {6} + PEsHB
+1 0 0 GRHLN
L241-1 — (VI ~ st
000 ~{ri¥s}
0+1-+1 {r} {s} {rst ™)+ {1}
0+1+1 {6) =@ {s} {rst 1}
+1+1+1 {3} (rsty ={r} {s}{t}) = {rst}
+14+1-1 N {r2st}—{rst} = {1} {s} {7}
+1+1-1 = {r} {s 1}~ {351}
0 0 o ) {5 4
0+2 0 = {r} {s}{r*n}
+2 0 0 — {3 s}
0 0 0 0
+1+1 0 0+1=1

{re=1 {su™) —{rs™1) {ru}+
s} {n} W)

Enumeration of knots and links

10 crossing alternating knots. Basic polyhedron 1*
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T knot s & A
120 82 r 17/8 [9-4
119 712 r 23/8 [-3+3-3+3-1
102 64 r 25/6 [13-6
122 613 r 27/7 [-7+7-3
117 61 12 r 33j13 [5-5+5-3+1
81 532 r 37/16 [7-T+6-2
78 5212 r 43/16 [—15+11-3
121 514 ro29/6  [5-5+5-2
101 5 113 ro39/11 [-74+7-5+43-1
108 51112 r 45/17 [17-11+43
80 433 r 43/13 [-13+11-4
24 4312 r 47/17 [-114+10-6+2
74 4222 ro53/22 [23-13+2
68 42112 r 57/22 [13-12+8-2
106 4132 r 43/19 [-9+9—-6+2
79 4123 r 47/14 [-15+12-4
37 4114 f 419 [9-74+5-3+1
67 41122 r 55/23 [-19+14-4
107 41113 r 5114 [—-114+11-7+4+2
77 352 r 3sji6 [-11+9-3
66 3412 r 45/16 [9-9+7-2
76 3313 r 49/13 [13-10+6-2
20 33112 r 59/23 [-15+4+13-T7+2
65 3232 r 5524 [-19+14-4
61 32212 r 6524 [17-14+4-8-2
71 32113 r 61/17 [17-13+7-2
16 321112 ro71/27 [-19+16-8+2
105 3 13 12 r 53/19 [19-13+4
62 31222 r 6326 [—-17+15-7+1
60 312112 r 67/26 [-25+17-4
21 31132 ro57/25 [21-1444
58 311122 r 69/29 [19-15+8-2
22 311113 f 65/18 [25—-16+4
104 2512 r 3713 [13-9+3
52 2422 r 49/20 [21-12+2
51 24112 r 5120 [-19+13-3
15 2332 f 53/23 [19-13+4
49 23122 r 59/25 [-21+15-4
48 22312 r 61/22 [15-13+8-2
11 222112 r 75/29 {[-21+17-8+2
41 221212 r 7126 [-21+17-7+1
3 2211112 ro 81/31 [27-19+7-1
14 212212 f 73727 [23-17+7-1
43 2121112 r 79/30 [-25+19-7+1
1 21111112 f 89/34 [31-21+7-1
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10 crossing alternating knots. Basic polyhedron 1% 10 crossing knots

Alternating, basic polyhedron not 1*

T knot S 5 A i _
1735 3,2 r 31 [—5+5-443-1 T ket 2 @ ' -
116 5,21,2 ra1 [71-7+6-3+1
36 41,3,2 ra9 [11-9+6-3+1 99 .4.2 n 63 [-134+12-8+4-1
70 41,21,2 rs9 [-13+12-8+3 54 .31.2 n 85 [25—19+9-2
75 323,2 r53 [13—-11+7-2 6 .22.2 n 87 [—-25420-9+2
18 32,21,2 re7 [—19+15-7+2 113 .4.20 n 57 [11-10+8—-4+1
109 311,32 F59 [-15+13-7+2 17 .3 1.20 n 83 [-23+19-9+2
57 311,21,2 r73 [25-18+6 46 22.20 n 81 [23—-18+9-2
103 23,32 ra7 [-11+10—-6+2 13 .21.21 {101 [35-24+8-I
50 23,21,2 re1 [21—15+5 12 .21.210 r 99 [-33+24-8+1
64 221,3,2 re5 [17-14+8-2 95 .3.3.2 n 77 [23-17+8-2
5 221,21,2 r79  [-234+18—8+2 33 .3.2.20 n 73 [17-14+9-4+1
47 22,22, res [27—16+3 4 .21.2.20 n 89 [25-20+10-2
42 22,21,1,2 r7s  [—23+18-7+1 111 .3.20.2 n 67 [-17+15-8+2
39 211,211,2 r85s [29-20+7-1 97 .3 0.2.2 p 71 [-15+14-9+4-1
118 4,3,3 r33 [71-6+5-2 8 .210.2.2 n 91 {~-27+4+21-9+2
115 4,3,21 ras [9-8+6-3+1 84 .2.21.2 r 93 [33-22+7-|
69 4,21,21 rs7 [19—-14+5 86 .2.210.2 r 87 [-33422-5
100 31,3,3 rsi  [-114+10-6+3—1 9 .2.2.2.20 n 81 [23-18+9-2
23 31,321 re3 [—17+14—-7+2 31 .2.2.20.20 f 81 [19-16+10-4+1
56 31,21,21 r’s [-19+16-9+3 112 3:2:2 r 65 [13-12+9-4+1
63 22,3,21 n63 [-23+16-4 90 21:2:2 r 85 [29-21+7
114 211,3,3 r57 [21-14+4 98 3:2:20 n 73 [21-16+8-2
2 211,21,21 r87 [—29421-7+1 34 30:2:2 r 75 [-21+17-8+2
53 22,32+ re7 [-19+16—-7+1 32 3:20:20 r 77 [19-154+9-4+1
722,21,2+ r77 [25-18+7-1 83 21:20:20 r 91 [-29+22-8+1
55 21 1,3, 2+ r73 [19-16+9-2 96 30:2:20 n 75 [-17+15-9+4-1
4 211,21,2+ r83  [-27420-7+1 10 210:2:20 n 93 [31-22+8-1
72 3,3,21+ re3 [-23+16-4 110 30:20:20 r 63 [—15+14-8+2
40 21,21,21+ rel [27-19+7-1 27 2.2.2.2 i 85 [21-17+10-4+1
73 3,3,24++ r57 [15-12+7-2 89 2.2.2.20 n 83 [—25-}-20—8-{-1
19 3,21,2++ r63 [—17414-7+2 91 2.2.20.2 ro37 [21-17+9-2
45 21,21,2++ reg [21-16+7-I 94 843 r 87 [-194+17-11+5-1
35 (3,2)(3,2) i61 [15-12+47-3+1 30 §*2 1 ro11l [—334+26—-1142
59 (3,2)(21,2) n7l [—17+15-9+3 93 §*3 0 r 93 [27-21+10-2
s 21,2212 i 75 [27-20+8-1 29 8%20.20 i 109 [37-26+9-I
88 B*2: 2 r 95 [-214+19-1245-1
25 8%2:20 n 103 [~31+24-104+2
26 8*2:.2 i 97 [23-19+12-5+1
85 8§2:.20 n 101 [31-23+10-2
g2 8%20::20 r 105 ([37-26+8
28 9%2 0 r 115 [-35+427-11+42
87 9%.20 r 105 [31-24411-2

38 10* f 121 [29-24+15-6+1
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Non-alternating

L knot S & A
61 5, 3,2- r 1 [—1+14+0—-1+1
11 52 1,2- r 11 [-1+2-2+1
31 4 1,3,2- r 19 [=5+4-2+1
41 412 1,2- r 29 [7—6+4-1
61V 32,3,2- r 1l [14+1-3+2
111 32,21, 2- r25 [9-6+2
31V 31 1,3,2— r 17 [5—-442
411 311,21,2— r st [—11+8-2
3v 23, 3, 2- r 5 [1-1+1
4111 23,21,2~ ri19 [-7+5-1
6V 221,3,2- r 23 [—-3+4-442
1V  221,21,2- r 37 [13-9+3
2v 22,22 2- r 15 [—5+4-1
21V 22,21 1,2- r 25 [11-6+1
2VI 21 1,211,2—- r 3% [—7+8-5+1
6111 4,3,3- r 3 [-3+2+0-1-+1
311 4,32 1— r 9 [3-2+1
21 4,21,21- P2l [5-443-1
611 31. 3, 3- r 15 [—-142-3+2
3111 31, 3,21- r 27 [—-7+6-3+1
2111 31,21,21— r 39 [—13+10-3
51 22,3,3- r 3 [-3+4+1+1
1n 22,21,21- r 33 [13-8+2
211 21 1,3,21~ n2r [-9+7-2
vit (3,2)(3,2-) n3l [-9+7-3+1
i 3,22 1,2-) nal [11-9+5-1
v 01,2)(3,2-) n29 [1-6+4—1
3X (21, (21,2-) n43 [—13+10—4+1
VIl (3,2)—-(3,2) r 11 [—5+4-1-1+1
VI (3,2)-(21,2) n 1 [B-1-1+1
VIl (21,2)—(21,2) r 11 [T-4+0+1
2vil —3:2:2 r 25 [7-5+3-1
3x —-3:2:20 r 35 [—9+8—-4+1
a1 —-3:20:20 r 49 [13-11+6-1
2VIIT —-30:2:2 r 45 [15-10+4-1
vl =30:2:20 r 49 [—11+9-4+1
4v -30:20:20 r 21 [3—4+4-1
511 3: -20: =20 r 5 [3-2+4+0+1
6VI 21: -20: -20 r 5 [3-240+1
21x -30: -20: -20r 3 [—-11+9-3
3ViI 8*-3 0 r 51 [—15+12-5+1
1v 8'2: -20 r 45 [17-11+3
4IV. 8*2: .-20 r 39 [—-15+10-2

Enumeration of knots and links

10 crossing 2 string links
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73
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523
5122
442
424
4213
41212
411112
343
3322
3223
32122
3142
31213
311212
3111112
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22222
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21412
213112
2112112
42, 2,2
41 1,2,2
312,2,2
31 11,2,2
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221,2 24
4, 3, 2t
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31,3 2+

(
el e 2
G20D@ 2
G 24+H) 2,2
21,2+)2 2
6B 2@ 2+)
@1 2@ 2+)
3 D1le 2
21212 2
41

J11

.23

212

2111
2112

2 11.20
J3.21

Mowwhppwew
Teow N Tew
[ T P S ;
o fae ]

< ool\)

210:2:2
210:20:20
222020
2.2 0.2.2 0
2 0222 0
g§*210
8*2.2 0
8%¥20:20
8*20:.20
8%2::20
9%2

9*.2

10%*

N PN

L SN S
=N w

N},gl—\N
PN
A

w

n

N}
)

SN W W wwWwNWWNW W
[N S R Ul Nl N

11,2 (2,2-)
(22,2222
(211 2-)@ 2
32D@ 2-)
3 3-)@ 2
21,21-)2 2
6 2+) @ 2-)
212+)(2,2-)
(2 2+)3,2-)
@2+)el,2-)
22,2)=22
211, 2)-(2,2)
G2D~-@2 12
@ 2+)-2,2)
(1, 24+)-(2, 2
@ 2+)-(3,2)
@ 2+)-212)
(2,2-).2
(2,2-).20
.—(2,2).2

-2, 20
—-210:2:2
-210:20:20

-210:-20:-20

2. -2-2 02 0
2.-20.-220
8%2.-20
8%20:-20

8% -20:-20
8¥20: .-20
9* -2
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10 crossing links with 3 or more strings

J. H. Conway

3 strings
6,2,2 6,2,2-
51,2,2 5 1,2,2-
33,22 3 3,2,2-
321,2,2 321, 2.2-
222,2,2 222,2,2—
221 1,2,2 221 1,2,2-
4, 4,2 4,4,2—
4,31,2 4,31,2-
31,31,2 31,31,2~
22,2,2,2 22,2,2,2-
211,2,2,2 21 1,2,2,2-
212,22+ 22,2,2,2--
2111,2,2+ 4,2) 2,2-)
3’ 2, 2: 2+ (3 1, 2) (2,2‘“)
21,2,2,2+ 3,3@2,2-)
4,2,2+ + (21,21)(2,2-)
31,2,24 + (G,21-)(2,2)
2,2,2+4+ 4+ 2,2++)2,2-)
(4: 2) (2, 2) (43 2)_(27 2)
61,222 BLYD-Q, 2
(3s 3) (2, 2) (39 3)"'(21 2)
@1,20Q2,2 21,21)-(2, 2
2,2++)@2,2 2,2+ +)-(2, 2)

(2,2+) (2,2+)
2,2+) 1(2,2)
(25, 2,2,(2,2)

.32
221
.3.3
.3.30
3:3
.3:30
.21:210
4:20
31:20
.22:2
.2.3.20
(2,2):2
(2,24)
20.2.20.20
8%2.2
8*2::2

(23 2)! 2’ (2’2 '-)
2,2, -2, 2,2
2,2),2, - (2, 2
(23 2_)’ 2’ (2,2_)
(2,2-):2
~2,2):2
20.-2.-20.20

4 strings 5 strings
4,2,2,2 2,2,2,2,2
31,2,2,2 2,2,2,2,2-
2,2,2,2+ + 2,2,2,2,2-

22,222
2,2)2 2,2
2,2)11(2,2)
(2,1
(2,2):20
10***

4,2, 2,2-

3 1,2,2,2-
4,2,2,2-

(25 29 2) (2,2—)
2,2,2-)(2,2)
2,2,2-) 2.2-)
2,2,2--)(2, 2
2,2,2)-2,2
(2,2-)1
(2,2-):20
.=(2,2):20
10_***

Enumeration of knots and links 355
Alternating 11 crossing knots. Basic polyhedron 1*
L knot L knot L knot L knot
ro1 278 32 123 109 24,21,2 84 3,3,21,2
5 92 324 321212 268 2 3 1,3,2 357 3,21,3,2
13 83 320 321122 307 23 1,21,2225 3,21,21,2
60 74 341 3211112 31 21 3,32 220 21,3212
23 722 37 31412 131 213,21,22 40 21,21,21,2
3 713 119 31322 290 2121,3,23 0 5,32~
187 65 135 313112 329 2121,21,29 3 521,22+
27 623 311 31232 113 2112,3,22 4 9 41,3,2+
80 6212 138 312122 330 21 12,21,2122 41,21,2+
22 6122 298 312113 130 21111,3,2300 32,3,2+
20 61112 284 31 142 345 21111,21,2321 32,21,2+
250 542 314 311312 17 5,2 2,2 124 311,3,2+
81 533 338 3112112 14 5,2 11,2 334 311,21,2+
24 524 134 311132 246 4 1,2 2,2 120 23,3,2+
105 5222 401 3111212 269 41,214,233 3 23,21,2+
232 52 13 128 3111113 282 3 2,2 2,2 319 221,32+
4 515 347 31111112 294 3 2,211,235 221,21,2+
79 5123 32 2612 116 31 1,22,2317 22,22,2+
34 51212 118 2522 133 311,211,2348 22,211,2+
90 51122 117 25112 126 2 3,2 2,2 342 211,211,2-t
104 511112 293 2432 132 23,21 1,2 19 4,3,3+
251 443 136 24122 318 221,22,29 1 4,3,21+
248 44 12 313 23312 328 221,211,2270 4,21,21+
273 43 22 335 232112 2 5 3 3 23 31,373+
272 43112 127 23132 78 52 1,2 1 299 31,3214
103 423 2 400 231212 230 41,3,21 129 31,21,21+
275 4223 346 2311112 85 3 2, 3, 3 108 22,3,3+
233 4214 310 22322 281 32,211,213 25 22,21,21+
283 42 12 2 344 222212 107 3 1 1,3,2 1 337 211,321+
94 42113 343 222122 100 2 3,3,2 1 340 22,3,2++
29 4142 349 2221112 83 221,3,3 353 22,21,2++
33 41312 351 2211212 301 221,21,21339 211,3,2++
35 41213 327 2211122 26 2 12,3, 3 35 211,21,2++
123 412112 354 22111112 114 212,3,217 7 3,3,3++
271 41 132 38 21512 287 2 12,21,21312 3,21,21++
297 411212 139 214112 82 21 11,3,3402 3,3,2+++
21 41114 336 213212 306 2111, 3,21322 3,21,2+++
274 411113 143 2131112 302 2111,21,21 140 21,21,2+++
137 4111112 352 2122112 18 4,22,3 245 (22,2) (3,2)
106 362 332 2113112 89 4,22,2 1 289 (22,2 (21,2
252 353 355 21121112 16 4,21 1,3 280 (21 1,2(3,2)
296 3 422 231 42,3,2 102 4,211,213 0 4 (211,2)(21,2)
92 3413 247 42,21,2 253 3 1,22,3 234 (3,21)(3,2)
279 3323 15 41 1,3,2 292 31,2 2,21 266 (3,21)(21,2)
316 33212 101 41 1,21,2 277 31,211,32 5 4 (3,24+)(3, 2
295 33122 36 312,3,2 309 31,211,21 2901 (3,24)(21,2)
315 351112 115 312,21,2 99 22,22,3 112 (21,24+)G,2)
121 3242 276 3111,3,2 326 22,211,21331 (21,24)(21,2)
323 32222 308 3111,21,2 111 21 1,21 1,3 25 (3,2 13,2
125 32213 28 24,32 12 3,3,3,2 96 (3,21(21,2)
238 (21,21(21,2)
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Alternating 11 crossing knots. Basic polyhedron not 1*

Enumeration of knots and links

Non-alternating 11 crossing knots

L knot L knot L knot L knot
_ . 3,2-).2 2.-21.2.2

75 .41.2 7 .3.20.2.20 53 20.3.2.2 155 9%2.2 322’23’122_ 2’223’21_ 221,2)_) 2 2.21.-2.2
229 .41.20 43 .21.20.2.20 176 2.3.20.20 44 9%2.20 41 1.3.2- 4211.3- 2.3,2-) 2.-3.2.20
264 3 11.2 50 .(3, 2).2 196 22 1.D20 149 0¥ 0.2 41 1.21 2- 421 1,21 .2.21,2-) 2.3.-2.20

98 .3 11.20 200 (2 1, 2).2 8 2032 02 39 9%2:2 312 32— 31,22 3 .(3,2-).20 20.3.-2.2
263,232 51 .2.(3, 2) 64 202 1.20.2 161 9%*2:20 312 21 2- 31,22,21— .21,2-).20 2.-3.-20.20
97 .23.20 195 2.2 1, 2) 167 2.2.2.2.2 0 168 9%20: .20 3111 .3 2- 31.211,3- 20.3,2-) 2.-21.-20.20
288 .212.2 178 .(3, 2).2 0 157 2.2.2.2 0.2 0 145 9% 2: .2 3111 21 2- 31,21 1,21- 20.21,2-) 20. -3. -20.2
110 .21220 204 .(21, 2).20 169 2.2 0.2.2.20 153 9*2: .20 243 2. 22 22 21- ~(3,2).2 20.-21.-20.2
305 .2111.2 177 .2 0.(3, 2) 212 8*2 2 147 9°:20.20 04 21 2. 22,2171, 3~ ~(21,2).2 2.2.-2.2.20
303 .2111.20 197 .20.(21,2) 191 8%2 1 1 163 9%20:: 20 231 3. 2~ 211 21’1,21_ 2.-(3,2) 2.2. -2.20.20
74 .4.21 73 22:2:2 61 84 0 148 10%*20 23 1 ’21 5. 33 3 2 2.-21,2) 2.20.-2.2.20
76 .4.2 10 65 211:2:2214 831 0 150  10**) 213 3 2 3,3,21,2- .(3,2).20 8540

265 3121 59 4:2:20 188 82 1 1 0 410 10%*20 21 321 2- 32 1 30 20.-(3,2) 8*-310

267 31210 226 3 1:2:204 8 8*3.20 151 10%*:2 9121 3 2. 321212 ~22:2:2 g*-21 10
285 2221 262 211:2 20190 82 1.2 0 144 100%*:20 2121.21.2- 2 132 12 ~220:2:20 8*-3 0.20
286 .22.210 170 40: 173 8*3 02 0 411 11* 21 12.3 2- 2121.21.2- —22:20:20 §%3 : -20

58 .4.2.2 71 31022 198 8*%2 | : 2 2112 2’1’2_ 33;3’2_’ 2292: -20: -20 8*_210:2
219 .3 122 209 2110:2:2172 8%3:2 0 21 11 1.3 2- 3321 23— 22: -20: -20 8*—30:20
256 .211.22 206 22.20.20 192 82 10 : 2 51111 21 2. 3‘2’1 32— — ~211:2:2 8%30: -20
244 .22220 205 21 1:20:2047 8*¥30:20 522 s (2,2i)(3 2-) ~2110:2:20 §—210:20
261 .21 1,220 242 220:2:20199 8210 : 20 5211 2- @ 2’2)(2’1 25) —211:20:20 g8*-210: ,20
11 .4.20.2 257 2110:2:201938%21: .2 4’122’2_ (21’1 2)(3’2_) -211:-20:-20 —-30:.20
228 ,31202 9 40:20:204 9 8%3:.20 4121 12 211 2)(2’1 2-)  —40:2:2 8*-210: .20
95 .211.20.2 227 310:20:20201 8210:.2 32 20 o (321’)(3 2__’) —4:2:20 8*30::-20
243 .220.22 63 2110:20:20174 §*¥30:.20 32'21'1'2 (3’21)(2’1 25) _40:20:20 8*3:: -20
260 .21 1022 69 3:21:2 189 §*2 10: .2 0 2 1122 0 G.2+) (3, 2-) -40: -20: -20  8%21 :: -20
186 .2.4.2 217 3:21:20171 83::20 311 211 2. (3’2+)(2’1 25) ~310:2:2 §%2. -20.2
54 .2.312 237 21 21;: 20146 8¥21::20 23 22 2 @1 2+)(3’2_) -310:20:20 8%2.-20.20
213 .2.222 86 3:210:2 46 8%3 0 : : 2 0 93 211 2. @ ! 2+)(2’1 2-) -3 1 0:-20: -20 §%2.20.-20
10 .2.40.2 259 21 210 2 403 8%¥2.2 0.2 22'122'2_ (22’2 )@ 2’ 22110:2:2 8%¥2:2:-20
184 .2.3 10.2 223 30:21:2154 §220.2 0 551211 2- (22’2_)(2’1 2) -211:2:20 §%2:20:-20
72 .2.2202 221 3:210:2016 6 §*2,20:2 A a1l 2_)(3’2) —2110:20:20 §#2:-201:20
66 .3.2 1.2 87 30:21:204 0 8%2.20:20 413 3 1 1’2_)(2’1 ") ~-2110:-20: —208%20: -20:20
224 .3.21.20 216 30:210:2404 8%20.2 : 2 41 21 21 3 306.2) ~30:21:2 8%20:20: -
255 .2 1.2 1.20 67 30:210:20405 8%20.2:20 e ('3_) '1.2) ~30:21:-20 8%2:. .-20: .2
70 .3.210.2 214 210:210:201568%2020:20 gzli’gl“ ((3’121(3)’(3 2) _30'.21;).2 8%2: .2: .-20
215,302 12 194 2 1222 164 82 02 : .2 311'21'321_ (21’21_)(2’1 ) —210:30:2 9% .3

258 .210212 56 3222 0 41 8§ 202 : .2 0 el Q2 D-G2 2210 — 30: -20 9*.-21

218 .3.2.21 181 322 02 158 8*2 02 0. .2 23,3, 3 029212 910:21:2 9%2. -2
236 21221 55 3.2 022 165 82 : 2 : 2 0 ;231’231’2211' (21’1 2)_(3’ 2) ~210:-210:-209*20. —2
222 .3.2.210 202 2 10222 162 8*2 :20:2 0 Saes 511.2)-(21,2) ‘ 9% 2

68 .3.20.2 180 30222062 820 :20:20 212, 3, 3 (217, ey o* 2% %s
239 .21.20. 207 210.2.2.20 42 §*%2:.20:.2 212,3,21- (3’211)"(;’1)2) 9% 20: .-
88 .30.2.2 6 3022 0.2 152 82:.2:.20 212,21,21- (:;g )):((3 ) 10 —20
175 .3.2.2.2 45 2 10.2.2 0.2 57 9*3 2 111.3,3- 3.2+ _(21,2) 10¥*—20
159 .2 1222 179 3 0.2 0.2.2 406 92 1 21 11,3,21- (3, 2-)~( 37
211 .2 1.2.2.20 160 2 10.20.2.2 185 9*30 21 11,2121 @1,24) ’1)2
182 .3.2.202 203 2.2 1.2.2 407 9*3 @1,24)-@L2

52 .3 0.2.2.2 183 23322 0 408 9% 2 1
210 21.2.20.20 208 2.2 1.20.2 409 9*.3 0
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1.
2.

3.

. P. G. Tarr: On knots, 11.
. P. G. Tarr: On knots, I11.

REFERENCES

J. W. ALexanper and G. B. Brigas: On types of knotted curves. Ann. of Math. 28
(1926-27), 562.

A. L. ANGer: Machine calculation of knot polynomials. Princeton Senior Thesis,
1959.

R. H. Fox: A quick trip through knot theory. Topology of 3-manifolds and related
topics (Prentice-Hall, Englewood Cliffs, N.J., 1962).

. C. N. Lmme On knots, with a census to order 10. Trans. Conn. Acad. Sci. 18 (1885),

374378.

. C. N. urrie: Alternate + knots of order 11. Trans. Roy. Soe. Edin. 36 (1890),

253-255.

. C. N. urre: Non-dternate -+ knots. Trans. Roy. Soc. Edin. 39 (1900), 771-778.
. K. Murasuci: On a certain numerical invariant of link types. Trans. Amer. Math.

Soc. 117 (1965), 387-422.
K. Reemeister: Knotentheorie (reprint) (Chelsea, New York, 1948).
P. G. Tarr: On knots, |. First published separately, but avalable togeth-
} er in Tait's Scientific Papers, Vol. I, pp. 273-
347 (C.U.P., London, 1898).

Computations in knot theory

H. F. TROTTER

1. Computer representation of knots. The commonest way of presating
a sadfic knat to the human eye is by a diagam of the type shown in Hg. 1,
which is to be interpreted as the projection of a curve in 3-dimensiona

(0)

Fie. 1

There are obviousy many ways of coding the information in such a dia-
gan for a compute. Corway's notation [2] (which | leemed of for the fird

time at the conference) seems to me much the best both for handwork and
(perhaps with some modification) for computer representation. In some
work done at Kid [3, 4, 11] under the direction of Prof. G. Weise, one
notation used is based on noting the cyclic order of vertices around the
knot, and another is related to Artin’s notation for braids. The simple nota-

tion described below is what | have actually used for computer input. It
has proved reasonably satisfactory for experimental purposes.

To each vertex of the diagram there correspond two points on the knot,
which we rde to as the uper ad love nodes Each node hes a Suooessr
arivad & by moving dong the knat in the dredion indcated by the arons
Each vertex has one of two possible orientations, as indicated in Fig. 2.
If the vertices are then numbered in an arbitrary order, a complete descrip-

XX

Fic. 2
CFA 24 359
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tion of the diagram is obtained by listing, for each vertex, its orientation
and the successors of its upper and lower nodes. The descriptions of the
diagrams in Fig. | are then

(a) 1+12 U2 b1 -r412
2+L3 U3 2—-U4 U3
3+L1 U1 3-U1 U2

4-L1 L3

where L, U stand for “lower” and “upper”.

This description is highly redundant, but the redundancy is at least in
part a virtue, since it increases the likelihood that a coded description is
correct if it is self-consistent. In practice, the notation is fairly easy to use,
athough errors in recording the orientations of vertices do crop up.

The coding just described is intended to be convenient to write down,
and does not correspond directly to a useful internal representation for a
knot. Some sort of list organization appears to be most appropriate, and
the list-processing language L6 [7] was chosen because it was available and
scemed to be well-suited to the problem. In addition to efficient mechanisms
for storage dlocation and subroutine organization, L6 has several distinc-
tive features. It deals with blocks of computer words as single objects, and
provides for declaration of fields (denoted by single letters) within blocks.
A fiedd may contain either a pointer to another block, or numerica or coded
data. Indirect referencing (up to five levels deep) is denoted simply by con-
catenation. For example, XAT refersto field T of the block pointed to by
fidd A of the block pointed to by pseudo-register X,

A program has been written which reads a knot description, making
some elementary checks for consistency, and produces a linked list of
blocks in which there is one block for each node. Each block contains fields
which point to the preceding and following nodes and to the other node at
the same vertex. Other fields contain the vertex number and indicators for
the orientation of the vertex and the type of the node (upper or lower). The
program will also handle links (i.e. knots with more than one component)
and another field contains the number of the component to which the node
belongs. In addition, each block contains two fields used to link it tempor-
arily into various lists for housekeeping purposes during computation. In

this representation it turned out to be quite easy to write a program to per-
form triviad simplifications of diagrams by application of the Reidemeister
moves Q.1, 2.2 ([12], p. 7) (see Fig. 3).

2. Computation of algebraic invariants of knots. The most straightfor-
ward application of computers to knot theory is in the computation of
known algebraic invariants. The first work of this kind that | know of
was done in 1959 at Princeton [1] on an IBM 650 computer, and consisted
of the calculation of Alexander polynomials for the aternating 10-crossing
knotsin Tait's tables [15]. Similar calculations were later made for the non-
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aternating 10-crossing knots and for the alternating 1 I-crossing knots in
the tables of Tait and Little [8, 9, 10, 15]. (Conway independently did these
calculations by hand for his own knot tables [2].) Programs for computing

the Alexander polynomial and severd other invariants are described in [3].

The most generally useful agebraic invariants of knots are connected with
the homology of cyclic coverings of the complement of the knot. Seifert
[14] showed that these invariants can be computed from an integer matrix
congtructed as follows. The first step is to find a non-self-intersecting orien-
table surface with the knot as boundary. (It is not altogether obvious that
such a surface aways exidts, but Sefert actualy indicates a method of con-
structing one for any knot diagram.) Unless the knot is trivial, the surface
has a genus h greater than 0, and its first homology group is free abelian on
2h generators. A system of 2k closed curves which represent an integral
bass for this homology group can be found on the surface. A Seifert matrix
for the knot is then obtained by taking as ijth entry the linking number
(in 3-space) of the ith basis curve with a curve obtained by lifting the jth
basis curve dlightly above the surface. (The side of the surface which is
“above’ is of course determined by the orientation of the surface.) Any
knot has infinitely many different Seifert matrices belonging to it (and any
Seifert matrix belongs to infinitely many distinct knots).

Programming an algorithm to find a Seifert matrix from a knot descrip-
tion is an interesting problem. An especialy noteworthy program in [3]
actually finds a Seffert surface and transforms it into the canonica form of a
disk with atached bands, from which a Seifert matrix is then easly obtained.
| have written an L6 program which finds a set of basis curves and com-
putes the matrix without first atering the surface.

Let us say that two Seifert matrices are s-equivalent if they are the first
and last members of some finite sequence of matrices such that for each
consecutive pair in the sequence there is some knot to which both matrices
of the pair belong.

No purely algebraic characterization of s-equivalence is known, but it is
closely related to the property of congruence of matrices. We say that
matrices A and B are congruent over aring R if A=PBP’ where P’ is the
transpose of P, and both P and its inverse have elements in R. It is quite
obvious that two Seifert matrices which are congruent over the integers
are s-equivalent, since any such change in the matrix can be obtained
simply by choosing a different basis for the first homology group of the
Safert surface. The converse is known to be fase, but a modified converse is
true [16].

Before stating this converse we must remark that any Seifert matrix is
s-equivalent to a non-singular one (unless it is s-equivalent to one belonging
to the trivial knot), and that if ¥ and W are s-equivalent non-singular ma-
trices then det (V) = det (W). (In fact det (V' — (V") = det (W — tW') = A(2),
the Alexander polynomia of the knot.) The statement then is that two

249
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s-equivalent non-singular Seifert matrices are congruent over the subring
of the rationals generated by the reciprocal of their common determinant,
and are a fortiori congruent over the rationals. Note that for the special
case of the determinant equal to 4 1, integral congruence and s-equivalence
coincide.

Even the question of whether two Seifert matrices are congruent over the
rationals presents some difficulty. Seifert matrices are not symmetric
(indeed ¥— V" is always non-singular, with determinant 1), so that ordinary
quadratic form theory does not apply. This problem has been studied (see
[17] and its bibliography) and it appears to reduce to questions about quad-
ratic forms in algebraic number fields for which agorithmic solutions are
(at least in principle) known.

Questions of congruence over the integers or some other subring of the
rationals are of course much more complicated. One becomes involved
with determining whether matrices are similar over the ring as an initia
step. This problem is connected with that of determining whether two
idedls in an agebraic number field are in the same class, and is in generd
even more difficult.

The prospect for completely general agorithms for determining the
congruence classes of Sefert matrices does not therefore seem very hopeful.
Something less than complete generdity, however, can dill be useful. A sys
tem of Fortran programs for manipulating integer matrices has been writ-
ten, and has been used so far for computing Alexander polynomials from
the Seifert matrices. Some calculations on individua knots have also been
carried out, and in particular the knots labelled 9-28 and 9-29 in
Reidemeister’s table [7] have been shown to have integrally congruent
Seifert matrices. This experience indicates that programs which will
automatically decide the s-equivalence of Seifert matrices in a great many
cases may be quite feasible. Such programs must combine calculation of
nivariants which potentially may distinguish the matrices with a search
(guided by the theory) for a demonstration of equivalence if the invariants
turn out not to distinguish the matrices.

3. Manipulation of knot diagrams. The major project in knot theory in
which it appears most reasonable to use a computer is to check and extend
the tables of knots and their various computable invariants. Tables which
are generally believed to be complete and accurate (except for a few errata
noted by Seifert [14]) are given in Reidemeister’s book [12] for al prime
knots of less than ten crossings. These tables include, besides diagrams of
the knots themselves, the Alexander polynomials, the torsion numbers of
degrees 2 and 3, and the Minkowski invariants of the quadratic forms of

these knots. Tables of knot diagrams for knots of up to 10 crossings, and of
alternating knots of 11 crossings, published by Tait, Kirkman, and Little
[5, 6, 8, 9,10, 15] during the 1880’s, have already been referred to. Conway
has made more extensive tables, and found a few errors in the earlier ones.
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So far as | know, no other attempts at tables of 10- or 11-crossing knots
have been made.

While it seems feasible, athough perhaps not easy, to get a program to
create all possible knot diagrams of a given complexity, a rea difficulty
(which becomes more and more serious as the complexity of the diagrams
increases) is that a given knot may appear in a number of different forms.
Within the limits of the tables that have been made so far, it is humanly
possible to recognize the equivalence of these forms, but it is not clear
how to make a computer program to do this with any reasonable degree

b 4 SHA K
0[ T/ N

Q. 52.2 51.3

If two diagrams are suspected of representing the same knot, then one
may attempt to transform one into the other by a sequence of Reide-
meister moves, which are indicated schematically in Fig. 3. It is known
that if the knots are in fact equivalent, then some sequence of moves which
will convert one into the other does exist. It is not hard to make a program
to carry out individual moves, but it appears difficult to program anything
more efficient than an exhaustive search of al possibilities. Some interest-
ing programs have been written at Kiel [4, 11] which seem to work quite
well and have been used successfully to tabulate al knots of up to 8 cross-
ings. The empirical evidence furnished by the handwork of Tait, Little,
and Conway, however, shows that the number of distinct diagrams of a
given knot rises rapidly as the number of crossings increases, and it is
not clear that these programs would be usable for classifying knots of
more than 9 crossings.

Another possible technique is that of trying to reduce given projections
of knots to a form with a minimum number of bridges or overpasses.
(A bridge is a maximal sequence of consecutive upper nodes. In Fig. 1(a)
there are 3 bridges. Figure I(b), in spite of having more vertices, has only
2 bridges.) Practically al the knots of less than 12 crossings can be put in
aform with not more than 4 bridges, and the great majority can be reduced
to2or 3.

The advantage of diagrams with only a few bridges is that even though they
may contain many vertices, they can be characterized by a comparatively
small number of integers. A knot with only 2 bridges, for example, can be
characterized by a pair of integers (a, b), with a odd and b relatively prime
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to a Schubert [13] showed that knots (a, ) and (c, &) are equivaent if
and only if a=c and either p = d (mod &) or bd = 1 (mod a). The situa-
tion with 3 and 4 bridges is certainly a good deal more complicated. It
appears to be easy enough to reduce diagrams to forms that have a good
chance of having a minimal number of bridges. The crucia (as yet un-
answered) question is whether there are criteria for the equivalence of the
corresponding knots which are powerful enough to be helpful and simple
enough to be usable. (Simple necessary and sufficient conditions are pro-
bably too much to hope for.)

Note added in proof. As his senior undergraduate thesis at Princeton in
1968, D. Lombardero wrote a Fortran program which accepts as input
the description of a knot or link in Conway’s notation and calculates a
Seifert matrix for it. In part, the program uses an agorithm due to
A. Tristran which was communicated to me by Conway a the conference.
The computation of matrices and Alexander polynomials for al the knots
listed by Conway required less than five minutes on an IBM 7094.
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Computer experiments on sequences which form
integral bases

SuEN LmNn

LET S = {51, 83, . . +, Sk . . .} be a sequence of positive integers and
consider the set P(S) consisting of all numbers which are representable as
a sum of a finite number of distinct terms from S. We say S is complete
if al sufficiently large integers belong to P(S). For a complete sequence,
we cal the largest integer not in P(S) the threshold of completeness and
dendte it by 6(S). Ne=ssay ad affidet condtions for vaious ssquences
to be complete have been studied by many authors (1, 2, 3, 4]. In particular,
R. L. Graham [4] showed by elementary methods that any sequence
generated by an integral valued polynomial f(x) is complete if f(x) satisfies
the following (obviously necessary) conditions :
(1) The polynomial f(x) has positive leading coefficient, and
(2) For any prime p, there exists an integer m such that p does not divide
S(m).
The method he used in the proof is constructive in nature, and with it he
also determined the threshold of completeness for the sequence of squares
S ={1,4,9, ...} as 128 and for the sequence of cubes S={1, 8, 27,. . .}
as 12758. A closer look at his method reveals that it is easily adaptable for
machine implementation. Indeed, it is possible to prove that some se-
quencss ae complde ad find ther thredhdds of compldeness by a compu-
ter in spite of the fact that the solution to this problem appears to require
the verification of an infinite number of cases, namely, that all numbers
larger than the threshold are indeed representable as a sum of distinct
terms from S. To be able to do this, we require that the sequence S satisfy
the following property which we shall call condition A.
Condition A. There exists an integer jg such that for all k = js we have
28 = Sky1-
All sequences which we shall consider satisfy this condition trivialy.
In addition, we may without loss of generality assume that the sequence
S = {51, 52 - 0 S - } is arranged in a nondecreasing manner, i.e.
s =g ifi<]
In the following, we shall show how one may use the computer to prove
some sequences complete and find their thresholds of completeness. The

3.5
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method was suggested to me by Dr. R. L. Graham of the Bell Telephone
Laboratories to whom | give my sincerest thanks here.

Given a sequence S = {s1, §p, . . . , &, . . .} satisfying condition 4.
Assume that the integer jg is known such that for al k = jgs, we have
28, = spia1. Let Pi(S) denote the set of all numbers which are represent-
able as a sum of distinct terms taken from the first k terms {su, 5, . . -, 5}
of S, including zero. P,(S) may be computed recursively as follows :

Py(S) = {0, 54},
Prya(S) = Pu(S) U{Pu(S)+ {sk+1}}.

where, as usual, 4+B = {x | x = atb, a ¢ A, b¢ B}.

Suppose al integers from a through b (= a) belong to P,(S) while a- 1
and b+ 1 do not. Then we call [a, b] an interval in P,(S) and define its
length as 54 1 -a. For each k = Js, S soon as P"ﬁs) is computed, we
determine the interval [x;, »] in P,(S) having the longest length /. (if
there are two or more intervals with the same length, we pick the one with
the smallest x;) and compare it with s, ;. If 7, < 5,,,, we set k to k+ 1,
and go on, repeating the above procedures. If J, = s,,,, we have proven
that § is complete and the determination of the threshold of completeness
is now a relatively simple matter. We continue to calculate P,(S) succes-
svely until s;.; = x; (x, may decrease as k increases), and when this
happens, the threshold of completeness 6(S) is then x,— 1.

The judtification for the above procedure is easily seen. When we find
an interval [xg, y]in Pu(S) such that sgyy =< i = yp—x,+ 1 with k = j,
we are guaranteed that all integers » x, belong to P(S). For Py,4(S) will
contain dl integers in the interval [x;+sz.1, YVi+sie1] a@nd hence al
integersin the interval [xi, yi+ Sxqal, SINCE xp + S 1< Ve +1 and]the inter-
vals [xg, »] and [x + Sk, 1, yi+se41] Merge into one. By condition A, this
merging will continue for ever since /.y = Yky1—Xk41+1 2= Ve+Spp1—
X+ 1= 28520 = S0 WheN 5.5 = x;, no further s, s may be used
to represent x,— 1, and since al integers = x, belong to P(S), x,— 1 is
therefore the threshold of completeness for the sequence S.

In writing a computer program to find the thresholds of completeness
for sequences using the above procedure, the most efficient way to generate
and store the P,(S)’s is of maor concern. Two representations for numbers
in P,(S) are used. First, in the characteristic function method, the set
P(S) is represented as a string of binary bits, the (i+1)th bit being a one
if and only if the integer i belongs to P,(S) and zero otherwise. Zero is
considered to be in P,(S) and hence the first bit of the string is always a 1.
P, ,.4(S) is computed from P,(S) by shifting the entire bit string for P.(S)
an amount equal to .., and logicaly or-ing it to the origina bit string
for P,(S). When the threshold of completeness is less than half a million,
this method is very fast since al computations can be done in core. When
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the numbers in P(S) get to be larger than the limit of space available, a
truncated version for P,(S) can be used effectively aslong as the threshold
is less than half the number of bits available. In the second method, P.(S)
is stored as a sequence of intervals [a;, b;] and Py.4(S) is obtained from
P(S) by constructing the new sequence of intervals [a;+sk41, b;45x.441]
and then merging the two sequences to produce the sequence of intervals
for P;,,(S). This method has the advantage that the number of intervals
becomes relatively constant after a while although it grows amost like a
power of two in the beginning. For large problems, the limit for storage is
exceeded very rapidly and auxiliary storages have to be used. Using the
interval method we have computed the threshold of completeness for the
sequence of fourth powers S = {1, 16, 81, 256, . . .} to be 5,134,240.
Note that if the characteristic function method were used, we would have
to carry dong a hit string of about 10 million bits. Various programming
devices and techniques are employed in the program to reduce the running
time but they will not be discussed here. Also, if X, =s1+s2+ ... 48 iS
the largest number in Pi(S), the intervals are symmetric about -%Ek; i.e
if [a;, b;] is an interval in P(S), then [Zy— b;, 2, — a;] is dso an interval.
Observations like this help reduce the storage requirement for P,(S) by a
substantial amount although they do make the logic for producing Py, 1(S)
from P,(S) much harder. Asiswell known to computer programmers, it is
aways a difficult problem to find the proper balance between storage
space, running time, and simplicity of programming logic, and this pro-
gram is no exception.

Having what we consider an efficient program to compute thresholds of
completeness for sequences satisfying condition A, we turn next to a related
problem. We say that a sequence S is essentially complete if all truncated
sequences S, = {s,, 5,11, - - -} are complete. It is not difficult to see that
al complete sequences generated by polynomias are essentialy complete.
A result of Roth and Szekeres [3] also guarantees that the segquence of
primes, the sequence of squares of primes, etc., are essentially complete.
Examples of complete sequences which are not essentially complete are the
squence of powers of 2, the Fibonacci sequence, and most Lucas sequences.
A study of when Lucas sequences are essentially complete is being made
by Stephen Burr, whose results will be published elsewhere. For essentially
complete sequences, 0(S,) exists for every n. Using the program, we were
able to compute the thresholds of completeness for sequences such as
the sequence of primes, the sequence of squares, the sequence of pseudo-
primes (positive integers = 2 having at most 4 positive divisors), etc., for
n up to a fairly large number. Some of the results obtained are briefly
summarized in Tables 1 through 8 in Appendix A.

From the thresholds of completeness obtained, we observe that the
ratios «, = 6(S,.1)/s, seem to settle down to a narrow region as » increases
and that for the sequence of primes, this region is very close to 3. For the
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sequence of squares, the «,’s settle down to around 5. Since we know that
al sufficiently large odd numbers can be expressed as a sum of three
or fewer primes and al sufficiently large numbers can be expressed
as a sum of five or fewer didinct squares, we are led to the following conjec-
ture and theorem :

ConJecTure. Lim sup a,, exists for all complete polynomial sequences
and the sequence of primes, sequence of squares of primes, etc. In particular,
[lim sup a] = 3 for the sequence of primes and [lim sup a,] = 5 for the
sequence generated by x2,

Note that if this conjecture is true, then the status of the Goldbach
conjecture can be settled by finite enumeration as can be seen from the
following  theorem

THEOREM: Let S = {sl, S2, - - ., S ...} be an essentially complete
sequence. Suppose there exists an N and an a such that for all n = N,

=0(Sn+1)
sﬂ

as a sum of at most [a] distinct terms from S, where [x] stands for the

largest integer = x. As a consequence thereof, S forms an integral basis

for large numbers of order at most [a]. At any rate, the conclusion is true

for all numbers y, 8(S,) <y = 0(S,.1), for which a, < a.

Proof. Let y > 6(Sy); then we may find an n= N such that §(S,) <y =<
6(S,.1). Sincey is greater than 6(S,,), y is representable as a sum of distinct
terms from S, say y = s;+s;, + . . . +s;, Where each s, = 5,. Hence
y = ts,. On the other hand, y =< 6(S,,;) < «s,. Hence t < a. Since t is
an integer, t =< [a).

While computer work cannot yet establish the validity of the assumption
needed in the above theorem, we believe that it can give us a fairly good
indication of what a may be, if it exists. It is hoped that experimental
work of this kind can help us formulate meaningful conjectures that some
one can prove a a later date.

< a. Then all sufficiently large integers can be expressed

APPENDIX A

Thresholds of completeness have been computed for many sequences,
and the behavior of the respective «,’s studied. In the following tables we
give a summary of the computed results obtained for some selected se-
quences. The generating function for each sequence (s; = f(i)) is given on
top of each table and max («,) means the largest a, in the range between the
two values of » heading the column in which the value of max(e,,) is found.

n 1
Sn 2
0(s,) 51

Op_1 :e(S'”)

Sn—1
max(a,)

n 1
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TasLe 1 f(x) = x2+1
> 3 4 s 6 100 200 300 400
5 10 17 26 37 10,001 40,001 90,001 160,001
131 255 282 360 465 54,916 196,116 415,347 726,436

655 51.0 282 212 17.7 5.602 4.952 4.645 4.562
5.673 5.328 4.880

TasLe 2 f(x) = x?

2 34 5 6 50 100 150 200 250 350

s 1 4 9 16 25 36 2500 10,000 22500 40,000 62500 122,500

6(S,) 128 192 223 384 492 636 17,072 60928 129,184 222,208 339,968 659,456

n—1

max(e,)

S

6(S.)

n—1 Sn -

max(e,)

65

65

7110 6216 5818 5611 5483 5414

7.110 6.346 5.893 5729 5621

Taele 3 P, =the sequence of primes

2 3 4 5 100 500 1000 2000
3 5 7 11 541 3571 7919 17,389
9 27 45 45 1683 10,779 23,859 52,247

3.217 3.028 3.017 3.004

3.217 3.044 3.032

Trete 4 @, =sequence of pseudo-primes

1 2 3 4 5 500 1000 2000 3000

2 3 4 5 6 1082 2307 4891 7619

1 2 8 8 12 2172 4625 9835 15,257
2.009 2.005 2011 2.003

2.049 2.037 2.025
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TaBLe 5 P2 =sequence of primes squared

n ! 2 3 4 5 10 15 20
5 4 9 25 49 121 841 2200 5041
0(S,) 17,163 35355 124395 149403 160,155 269,715 405003 573715

(S
e 509.858  219.038 132.259
»

TaBe 6 f(X) = (x24-x)/2, sequence of triangular numbers

n 12 3 4 5 100 200 300 400 500 600
5 13 6 10 15 5050 20,100 45,50 80,200 125250 180,300
6(S,) 33 50 113 118 173 24,018 90,713 196,133 341,273 532,775 753,774
g = %il 4.852 4.558 4.373 4.276 4.270 4.194
max(x,) 5.008 4.599 4.529 4.433 4.413
TagLe 7 f(x) = 3
n | 2 3 4 5 10 20 30
Sa 1 8 27 64 125 1000 8000 27,000
6(S.) 12,758 19,309 23774 26,861 34,843 80384 261517 636134
6(S,)
e S 110.266 38.127 26.082
Tiee 8 F(X) = x4+ 1
n 1 2 3 4 5 10 20 30
S, 2 9 28 65 126 1001 8001 27,001
6(S,.) 8293 10,387 14,125 17,886 22,331 58,332 222,258 554,195
0(S,)
= 79.906 32.377 22.722
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Application of computer to algebraic topology
on some bicomplex manifolds’

HARVEY COHN

1. Introductory remarks. The present calculation is part of a series
concerned with representing the (fundamental) domain of definition of
certain algebraic function fields [1], [2] by computerized geometric visual-
ization. The ultimate goal is to obtain topologica information which
perhaps can be of some value in understanding the algebraic function
fields and some of the number theoretic identities involved.

We are dealing with Hilbert modular functions of two complex variables
over certain real quadratic fields. The theory of agebraic functions of two
complex variables is involved here and the suitability of a representation
such as the Riemann surface is highly questionable in general. We restrict
ousdves to a few caduly dosn cesess whae IS B. Gundach hes reoatly
shown [4], [5] the domain of definition to be representable as a compact
manifold.

In order to visualize a bicomplex space, we must treat four (real) dimen-
sions to within the limits of three-dimensional intuition. We attempt as
an analogy the visualization of certain (ordinary) modular functions and

their fundamental domains and we show to what limited extent the anal ogy
can be pursued.

2. Modular group in one variable. Hae we condder the upper haf plae U

Imz=>0 2.1
subject to identifications under the (Klein) modular group G, namely
20 = S(z) = (az+ b)/(cz+d), ad-bc = 1 2.2)

where a, b, ¢, d are integers. Alternatively, the transformations are repre-
sented by matrices = § where

s = (‘c‘ Z) . 23

t Research supported by the U.S. National Science Foundation Grant G-6423 and
computer support contributed by the Applied Mathematics Division of the Argonne
National Laboratory of the U.S. Atomic Energy Commission.
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We dso consder Gs the subgroup (of matrices or transformations) for which
. . . S='E (mod 2) (2.4)
where E is the unit matrix.

The fundamental domain F for G is classicaly given by the region F
shown in Fig. 1. Thus F is determined by the inequalities

I Rez ‘ << —1—
2 (25)
|z]>1
with boundary identified by making e A coincide with « C according to
zo = z+ 1 while AB coincides with CB according to z, = = I/z. (We have
compactified, of course, by adjoining «.) (See [3], pp. 84, 127.)

Fa

A B C

Fie. 1. Fundamental domain for G and G,. We see F with floor ABC projected

onto segment AC on the left. We see F, assembled from six replicas of F; on the

right so as to form a 2-sphere.

In a one-dimensional world, we would see the floor of the region F or
arc ABC projected as segment ABC (see interva in Fig. 1). Also, the walls
of the region Fare trivial by comparison. They are merely the boundaries
of the fundamental region for G>= (the subgroup of G which leaves o
unchanged). Here G*= is smply

Zo = z+n (nintegral). (2.6)
To visualize the fundamental domain F, for G, we would note that G,
is a subgroup of G of index 6 with cosets determined by

10 11 0 —1
S = = =
! (0 ) 52 (o 1)’ 5 (1 0)’
0 —1 [ —1 10
S = = S = .
! (1 —1)’ S (1 0)’ ¢ (1 1)

2.7)
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Each right coset G35, in G relocates F in a well-defined manner (to
within equivalences under G3). Thus Fp consists of six replicas shown
a the left of Fig. 1. (Naturally Fs has no floor since it touches the red
axisat 0 and 1.) It is easy to see, from the diagram on the right of Fig. 1,
how the fundamental domain F» becomes a sphere under “trivial boundary
identifications’. The trivial boundary identifications are possible only
because the floor of F, namely |z| = 1, is mapped into itself under
zo= -llz, the transformation mapping F into the region (OABC)
immediately below it.

A deceptively simple intermediate stage is provided by the Picard modu-

lar group (like Klein's except that in (2.2), a, b, ¢, dare Gaussian integers).
Here the three-dimensiona representation makes for a simple analogy
to Fig. 1 and indeed the analog of G and the analog of G5 are 3-spheres
see [6]).
( W[e ]I)<now that going to four dimensions, the domain of definition of
an algebraic function field in two complex variables cannot be a 4-sphere.
Therefore, we know some degree of difficulty must be encountered in ex-
tending the construction of F, to two complex variables!

3. Hilbert modular group. We summaize the condruction of the funda
mental domain, here, only in sufficient detail to define necessary terms
and symbols. The justification appears in earlier work :([1]’ [2).

The theory is restricted to the quadratic field Q (2%). We ded with
three closdly related groups,

I, = (ordinary) Hilbert modular group,
I' = symmetrized Hilbert modular group,
i

I'; = subgroup of I" = E (mod 27) (principal congruence subgroup).

Here we have the Cartesian product UX U of two upper haf planes
written as “formal” conjugates z, 2

Imz = 0, Im z' > 0. (3Y
We define I', as the group of linear transformations (sometimes called
“hyperabelian”),
2= 2@ = (+h)pz+d), 7= 2'@)= @+ + ) (32)

1
wheea B,...,d, B, ... are conjugate algebraic integers in Q (2‘) and
ad—Py = &, @'&—fY = (e 33

1 1 .
where g = 1+2% is the fundamenta unit (s%z 3+2-2z), and ¢ is
an integer. The corresponding matrices are

5= et (“ ’3), (34)
v 6
and likewise for the conjugate.
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As a convenience we omit the mention of the conjugate when dealing
with statements where the meaning is clear. Thus when we refer to z as
a point, we mean (z, z°), etc.

The group I is the supergroup over I', formed by adjoining the gen-
erator zo = Z', or in full,

1

=7, =1 (35)
The group I', is the symmetrized subgroup of I, formed by restricting
I, to substitutions for which the matrix ' satisfies

1
2 =E (mod]?.?) (3.6)
and adjoining the generator (3.5). Clearly I'y is a subgroup of I' of index
6 with the same equivalence classes (2.7) (if we ignore symmetry opera-

tions, which we can do since every a = @ mod 2%}
The variables of Ux U ae reparametrized as follows :

We start with
2= XEh 22Xy (37)
and we introduce four new variables, namely R, R’, S, S’ as follows
L 1
x= R+2°R, x' = R-2°R (3.8)
1
==y +y), §= . (3.9)

We next consider I, Iz the subgroups of (3.2) and (3.6) which keep
the point at « fixed. Thus

I'= H(@) =e§z+a+b-2* (3.102)

¢ : R, R defined modulo 1,
0<S<1, 0< S,;} (3.10b)

and for the subgroups and superdomains,

1

I'=:H(z) = &z+2a+b-2° (3113
®=:R(mod2), R'(modl

(mod 1) (3.11b)

O0=sS=<1, 0<y.

Actually the above formulas (3.10b), (3.1 Ib) must be further modified
by a symmetry law. It is clear that the interchange (3.5) leads to the iden-
tification

RR,S =R, —-R,~S 9 (3.12)
Hence if § = 0, we have the identification (modulo 1 aways)

(S=0): R = =R (R = constant). (3.13a)
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We ectualy have an additiona one at §= 1, namely

(S =1): R+2R = —(R+2R) (R+R = constant). (3.13b)

More explicitly this is the involution
R = 3R+4R' } (314)
R’ = —2R-3R

1 1 1
derivable from (R—R’- 27) = (R+R’-2’) (3+2-2’). (This is the result
of identifying S = = 1 with §= + 1, under zo = £3z.)

These involutions are shown in the upper and lower face of the cube
in Fig. 2 for I'=. If we are interested in I';” we take another cube alongside
(zo = z+ 1); with the same involution on the two faces. The intermediate
faces are tori. Now region &= (or @5°) can be seen to be topologicaly equi-
vaent to the 3-sphere, as would be necessary to compactify I at .

Axis: of symmetry
U ARt AlbleinR S * - -

Fic. 2. Fundamenta domain for @, Here we see aunit cube with torus cross-

sections (S = const.) but symmetrieson § =0and § = 1 asexplainedin § 3. The
spindle-shaped region of norm 2 is shown in two halves which adjoin (see § 5).

4. Assembling the floor. The floor of I’ is the analogue of arc AC in
Fig. 1. It is computed as a function [1]

S’ = f(R, R, S) over O, (4.1)
Thus the fundamental domain @ consists of the values
S = f(R, R’,S) over @, (4.2)

subject to identifications on the floor (4.1). Every such point, in terms
of z, 2/, is transformed into another such point by a transformation

“zo= X(2), zp = 2'(2) (4.3)
or else, if symmetry isinvoked,
2= 2@, %= X0 (4.4

CFA =
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In the case of Fig. 1, the only transformation was z’ = -1 /z. Here,
however, there can be very many, but we set them up into a minimal num-
ber. The computer program discovers the transformation

2(@) = (ez+p)/(yz+ 9)

which maps z into its transform z, (or z;) by listing the eight rational parts
of 1 1 1 1

a = ag+a'*2% B = b+b-2% y = c+c2% 6 = d+d'-2* (4.5)
as well as ligting zg, the transformed point (with zg) for each given point
on the floor. (To keep the machine program free from symmetrization,
sometimes zq was listed and sometimes z, depending on whether (4.3) or
(4.4) happened to be theoretically correct.) The machine stored the trans-
formations as ,

a+64 a+ . . . +64%d+64%d

so that repeating transformations can be assigned the same identification
numbers on each occurrence.

For each point of the floor subject to transformation 2{(z), we have

| yz40 || =|pz4+6 2 y2Z+8' =1 (4.6)
the analogue of |z]2 = 1 in Fig. 1. There can be several such surfaces meet-
ing at lower dimensiona submanifolds of the floor but the pairing of
points is more important than the transformation which does the pairing.
(Thus, such banalities as round-off errors can change a transformation by
dightly shifting a point, but this is not important by itself.)

In the calculation pursued here, 34 different transformations 2 occurred
and the machine assigned numbers from 1 to 34 in the order of occurrence.
We group them for later purposes in accordance with congruence classes
(mod 2) asin (2.7). They are as follows:

Congruent to §;:

1 1
1 _2* 1 0 -
27=( 1 )a 231"—:( )3 28:(1 )s
2% 1 2 1 2* 1
—1 0
232=( . );
2% —1

Congruent to s3:

0 — 0 —3+2:2° 21
22=( 1), 2232( + ); 2132( )5
1 0 1 0 1 O
1 1
_12% _1 2% 1 0 -1
214=( 2 )5 212__‘( l)9 2-:'1:‘( l),
1 0 1 2° 1 2f

ol

PSR —
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2 0 —-1
1 -2° 1 =2

Congruent to Sy:

1
- 0 —342-2% 0 —1
1 1 1 1 1 —1
1,
— 22 0 -1 0 —1
2302 (O 3+2 ); 24 = ( 1), 211 = ( l);
1 -1 1 —142° 11-2°

Congruent to S;:

1
-1 —1 1 -1 1427 —1
Z‘6= )9 220=( )9 Z'28:( + )’
1 0 1 0 1 0
1,
—1-2% —1 -1 —342-2°
225= ), 233=< ),

1 —3+2.2
Iy = );

1 0
Congruent to Sg:

1

1 1
1 0 1—2% —242°F 1 —242.2°
222= )s Elﬁz( t )) 224=( »
11 1 1 1 1
3 3
-1 0 —1+42% =242
2y = ), 2:19=( ):
1 —1 1 -1
3 3
—1 —242.2¢ —1 =242
S = ¥ ) 226=( ¥ )
1 ~1 1 —1+42°
3 3
—142 0 I =242
518: l)’ 227 =( l)’
1 —~1+2° 1 1-2°

1
1-22 0
217=( l).
1 1-2°

25*
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It is significant that the norm [N(y)| = 1 except for those transfor-
mations congruent to §; (the identity), where [N(y)| = 2.

If we refer to Fig. 3, we see a cross-section S = 1, on which many re-
gions seem to be represented. We cannot be too sure of those represented
by only one point, such as “region” 1, 10, 35, 11, 3, 5. Actually “region”
35 is a complete accident of round-off error while “region” 1 joins only
at the corner point until S becomes smaller (about 0.43). To test whether
points occur as accidents we have only to test cross-sections for values
of S close to the one in question.

Kz 2 S 1500 Rz =9,50¢t r,250) RPRIME= =0.5.( §..50)

324 24 24 24 24 24 24 26 26 26 26 26 26 26 26 2
-

21 21‘24 24 24 24 24 24 2
21 21924 24 24 24 22 22 23

-
21.{4 24 24 22 22 2 26 25 26 6 #2 2 23 23 23

’
2124 24 22 22 : 26 26 26 25 6’ 2 223 23 23 23

-
10’2222222 S 25 b 2 2?3 23 23 23 2
-
4
?z 22 22 2 525 ¢ ep2 2 2 23 73 23 ;,{aza
2z 22 zseao/’zz’z:szszzé:zczc
-
25 6 6 6y 2 2 223 2z 2 220202020
-~
5 6 6 6 62 2 2 2 2 2 2 #2020 20 20 28

6 6 6 6 6,2 2 2+2 2 2%0 20 2t 20 26

]
L]
66666222?223[20202u‘?:‘2
65642223222’y2n2n202
66/2 2323 2 2 20

2 23 23 23 2 2 2’50 20

9 29 2% 29’30
z9 29 80 30

29 29 29 29'30 30

~
>3 29 25 29 €5

Fic. 3. Pieces of floor of @ lying in cross-section of § = 1. Note the consistency
with the symmetry on § = 1 in Fig. 2. (The R’ axis has inadvertently become
directed downward because of the direction of the paper in the printer!)

We can, however, cut and paste and rearrange the sections so that
the cross-section for S=1 is still a torus, but that there are the least num-
ber of different regions showing. Clearly, region 21 is connected to region
23 by letting z become z+ 1, etc. Moreover, two regions represent the
sare trandformetion &s far as @ is conoamed, if for some H in I'™= we have

H(Za) = Eb' (47)
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Thus region 23 and 2 are the same, 2»3 = g2 Ly but 255 and 53 must be
different since they have different denominators.

It can be verified that for | N(y)| = 1, two transformations with the same
denominator are identifiable under (4.7). It is similarly easy to attend to
the transformations where | N(y) | = 2. Thus in Fig. 3, the black lines set
apart regions in which (4.7) is not valid. A 1dotted line is used if the trans-
formation H satisfies H(z) = z+ 1 (mod 27), thus region 2 and region 6
are separated by a dotted line (Zy = X+ 1).

1
It is conjectured, in more genera cases of Q(ki), that a single piece
can be put together for each value of & (mod ), and this seems true from
the computation here. We call |N(y)! the norm of the piece in question.
Thus we have a “piece of norm 1" and a “piece of norm 2".
The piece of norm 2 is a spindle drawn in two halvesin Fig. 2. It shrinks
to apoint a S=0and S =1 We locate it for definiteness at an axis through

R =0, R = -4 so that transformation 31 prevails. Thus the piece is
mapped into itself (under equivalence classes in I™=) by
1
2= H 2/ 272+ 1)) (48)

(or z, is the value symmetric to it, we shall not always repeat this). These
H(z) dl belong to I3

$=0-95

5$=0-82 $=0-20

Fic. 4. Sections of the piece of the floor of @ having norm 1. The shaded portion
isexplained in $4. Note the cross-sections of the spindle of norm 2 in four equiv-
dent positions.

The piece of norm 1 is harder to draw. We show it in several cross-
sections in Fig. 4. For S=0 it is the square and for S= 1 it is the rectangle
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always dictated by the symmetries of the faces in Fig. 2. As § goes from
0 to 1 the cross-section becomes more and more oblique, attaching itself
and detaching itself from images of the spindle (of norm 2) at critical
values §=0.31 (approx.) and S=0.82 (approx.). For the piece of norm 1,
we can show every transformation joins 2, i.e. for H in I’

zg = H(-1/2). (4.9
We use shading in Fig. 4 to show the portion which belong to I3,
Thusin terms of H in I'y, we have the following:

“shaded portion” z, = H(- 1/2),

“blank portion”  z, = H(- /z+ 1).
The shading is not of topological interest as much as it shows that part of
the piece of norm 1 must match equivalent points in the neighboring rep-
lica of &= (formed by z+ 1 = z), if we were to match this piece in the
unit square by (4.9). Actuadly, it is more meaningful to match it with
itself.

The piece of norm 1, as reassembled for Fig. 4, is matched with itself under
zo = — llz(or z;= = 1 [z) without use of the equivalence operations of (4.9).
To see this consider the two-dimensional boundaries of the reassembled
piece of norm 1. They consist of the simultaneous equations

lzll=1, [ rz+d]=1 (4.10)
if yz+ ¢ is the denominator of a neighboring region. Under zo = — 1 /z,
the boundary is mapped into another boundary given by

lzll =1, JJéz—p | =1L (4.11)
The assertion now follows from the fact that the relation z, = — |/z con-

verts the piece into another piece of the same floor of norm 1, while the
boundary was determined in an invariant fashion.

Any boundary segment (4.10) determines the height of the floor uni-
guely. These correspond to the points A and C in Fig. 1 which are deter-
mined by fixed points rather than by any analysis of the arc ABC. Note
that the pair of points A, C constitutes a O-sphere just as the boundary
of the piece of norm 1 is a 2-sphere.

The critical values of S are quite interesting by themselves, namely

1
Sy = 03101 . . . ={a—6%/5
and
S, =0.8165 . ..=6%3
Actualy the points of attachment and detachment are points at which $*
takes the values believed to be the minimum for the whole floor, namely [1]

1
2

§'=1(—342.6%) = 04747 . . ..
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5. Approximate topological configuration. By using the previous infor-
mation we can give an approximate description of the topological con-
figuration.

First consider @. Here @ has a manifold point at « from which the three-
dimensiona base in Fig. 2 appears like a 3-sphere. It is divided into two
pieces of norms 1 and 2 which are 3-cells, each folded into itsdf by transfor-
mations (4.8) and (4.9). (Recal that in the simple case, Fig. 1, the floor was
one piece folded onto itself by ze = =1 /z.)

Next consider @:. If we refer again to Fig. 1, we see that there are three
replicas of the floor AC, DC, EC which transform into one another like the
representatives of G/Ge in (2.7). The fact that the reassembled piece of norm
1 is transformed into itself under zq = — 1/z, €tc., enables us to reproduce
three replicas of that piece in an analogue of Fig. 1. If we momentarily
restrict ourselves to this piece (ignoring that of norm 2), we have a smple
Stuation where the (spherical) boundaries of each of the three replicas meet
in a 2-sphere analogous to the O-sphere A, C of Fig. 1. The analogy, how-
ever, is not kept because the piece of norm 2 does not map into itself under
zo = — l/z, etc., hence it is not representable as three replicas lying in the
replicas of the floor. The boundary of this piece of norm 2 is nestled, how-
ever, in between the various boundaries of the pieces of norm 1, and the
three-dimensional piece of norm 2 bulges out of the sphericd boundary into
parts of the three-dimensional floor. The situation is therefore somewhat
more complicated than that of lower dimensional space (as it must be since
the final configuration cannot be a 4-sphere!).

We are confronted with the need to study the self-mapping of the floor
more carefully in order to make deductions concerning the topology of the
fundamentd domains @and @,. There are very few casss which are anadog-
ous [5], possibly the other two involve Q(3'/%), where the problem can be
considered as an analogous pasting of 3 (or 4) 3-spheres. In any case, the
numerical data are capable of further analysis for geometric or topological
features than attempted here.
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A real root calculus

HANS ZASSENHAUS

How cn we codruat a redly dosd dgdrac edendon over an dgdoac
aly ordered field F?

We assume that F is constructively algebraically ordered (see [1]).

A real root calculus over F consds in solving the fdlowing two tasks :

(I) To assign to each polynomial P of F[X] a non-negative integer
NR(P). This number will turn out to be the maxima number of
distinct roots of P in any algebraically ordered extension of F.

(1) To assign to each polynomial U/ of F[X]and to each index I satisfy-
ing the condition <7< NR(P) uniquely a number SIGN( U, I, P)
which is one of the three numbers1, 0, — 1. It should turn out to be
the sign of the value of U for the Ith root of P in any agebraicaly
ordered extension of F containing NR(P) distinct roots.

This task was first solved by Vandiver [4] in case the algebraic ordering of
F was archimedean. Use had to be made of factorizations of polynomials of
F[X] into irreducible factors. The task was solved again by A. Hollkott [2]
in his. 1941 thesis without taking recourse to Vandiver's additional two
assumptions. Tarski [3] solved the task independently.

The real root calculus which is expounded here is based on A. Hollkott's

thesis. For the benefit of English readers streamlined proofs of the neces-
sary theorems are given.

1. Here are the theorems to be proven later:

Treorem 1. (Between value theorem.) If P ¢ F[X], A< B, P(4)P(B)<0,
then there can be constructed an algebraically ordered extension of F contain-
ing a root R or P satisfying the inequalities

A <R < Bt D

+ As it stands, A, B denote elements of the algebraically ordered field F. We agree,
however, that A, B also are permitted to be one of the symbols e, e which are subject
to the rules: —eo <Bfor any B of F, A< o for any A of F, —co < oo; furthermore
(—0)A = oo(—A) = —oo, cod = —-(-A) = o for any positive element A of F; aso
oo 4 oo = oo == (—oo) (—oc), oo(—oo) =(— 00)00 = -—oo, finally P(oo) = Aif the
leading coefficient of Pis A and P(=cc) = P~(c0) (P~(X) = P(= X)). Weset signeo =1,
sign (-co) = = 1. It follows that sign (AB) = sign A . sign B whenever A, B, AB are
elements of Fy {eo,—oo}, that sign A = 1if and only if A> 0 and that there are elements
A, B of Fsuch that sign P( — co) = sign P(Y), if — co<¥=zA, and sign P(m) = sign
P(Y), if B=<Y=zco for Yin any algebraicaly ordered extension of F.

383
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The number of distinct roots of the non-zero polynomia P of F[X] in
ay edadon o Hs boundsd by the deyee of P. Hae thee is a madimum
NR(P) to the number of distinct roots of P in any ordered extension® of F.
Similarly, for any two elements A, B of F | {ec, = =} satisfying the inequal-
ity A < B there is a maximum NR(P, A, B) to the number of distinct roots
of Pintheinterval [A,B) ={¥|Y ¢ F & A <Y< B} in any agebraicaly
ordered extension of F. We have

NR(P) = NR(P, ~ =, <), (2a)
NR(P, A, B) = NR(P, A, C)+NR(P, C, B) (2b)
if A<C < B,
NR(P, — ==, R(I, P)) =I- 1, (Z0)
provided thet R(1, P), . . . , R(NR(P), P) are NR(P) distinct roots of P in F
ordered by their order of magnitude. We denote by P’ the derivative
P’ (X) = NAO)XV-1H(N— DA(DXN-2+ . . .+ A(N—-1) (3)
of the polynomial
P(X) = AO)XVN+ADXN-1+4 . . . + A(N) (4)
of degree
N = [P] (5)

of F{X]. Thus P’(X) = 0 if [P] = O or if P=0.

We denote by GCD (P, Q) the greatest common divisor with leading
codffidet 1 of the two pdynomids P, Q of F[X], not bath of which vanish,

There is a well-known routine for finding GCD (P, Q).

The nonzero polynomid P of F[X] is sad to be separable if it is not dvis
ible by any non-constant polynomia square. A necessary and sufficient
condition is given by GCD (P, P’) = 1. In any event, the polynomia P and
the polynomial quotient P/GCD (P, P’) have the same roots.

THEOREM 2. For the non-zero polynomial P of F[X] and for elements A, B
of F satisfying A < B, there can be constructed an ordered extension of F
that is generated by NR(P, A, B) digtinct roots of P belonging to [A, B).

THEOREM 3. Let A, BE F {J {0, —oco}, let P be a separable polynomial of
FIX] and let F contain NR(P’) distinct roots of P’, say

R(1) <« R(2) < ... < R(NR(P)) (6)

P(R(I)= 0 (1=<Z<= NRP). (7)
Then the non-negative integer NR(P, A, B) is equal to the number of
changes of sign in the chain of values

P(4), P(R(J)), . . ., P(R(K)), P(B) (J <K) (8)

T By this we mean of course an extension of F with an algebraic ordering which re-
stricts to the given algebraic ordering on F.
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where either the indices J, K are so determined that A <R(J), R(K)< B,
R(J- D<A if J>1, B<R(K+ 1) if K<NR(P'), or if that determina-
tion is impossible, then the terms P(R(J)), . . , P(R(K)) are to be dropped
altogether. A change of sign is scored for any change of the sign function
from one value to the next on the right excepting the case when zero is
on the right.

THEOREM 4. The maximal number NR(P, A, B) of “real roots’ of

P in the interval

[A,B)= {Y|Y¢cF & A<Y < B} )
depends only on the non-zero polynomial P of F]{X] and on the elements A, B
of the algebraically ordered field F subject to the condition A < B, but
not on the algebraically orderedfiedd F itself. In particular, it will not change
if F is replaced by an ordered extension.

Theorem 5. Let ¢ be an order-preserving isomorphism of F on the alge-
braically ordered fieldoF. Let E = F(R) be a finite ordered extension by a
root R of the polynomial P of F[X] and let £ = ¢F(R) be a finite ordered
extension by R. Then there is an order-preserving isomorphism of E on £
mapping R on R and restricting to ¢ on E if and only if aP(ﬁ) = 0 and
NR(P, —«, R) = NR(¢P, —<, R).f

THEOREM 6. (Theorem of Rolle.¥) If the polynomial P of F[X] vanishes
for two diginct arguments A, B of F then an ordered extension of F can be
constructively generated by a root of P between A, B.

THEOREM 7 (Mean value theorem.) For any polynomial P of F[X] and
any two digtinct dlements A, B of F an ordered extenson of F can be con-
structively generated by an element Y of F satisfying

(P(B)—P(4))/(B—A) = P'(Y). (10)

2. We are going to construct recursively on each of the degree levels
D =1,2,... ordered extensions of F of complexity 1, 2,. . . by the adjunc-
tion of root symbols R(Z, P) for polynomials P of degree not greater than

D with coefficients in ordered extensions E of complexity 0, 1,2, . . . over F.
For the root symbols it will be demanded that

P(R(I, P)) = 0, 1n

NR(P, = =, R(I, P)) = I- 1, 12)

hence the index 7 must be a natural number not greater than NR(P).

1By oP, of course, we denote the polynomial of ¢E[X] the coefficients of which are
obtained by applying ¢ to the corresponding coefficients of P.

+ It will be noted that Sturm’s theorem is not needed for our construction, though of
coure it provides a vay vauedle tool in red dgera (S eg. 121,151). Theorems 6 and 7,
though interesting in themselves, are placed at the end because they do not enter
the construction, but are used only for the purpose of proving the other five theorems.
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For this purpose we must assign to each polynomial ¢/ of E[X] a sign
function SIGN (U, I, P) assuming one of the 3 values 1, 0, ~ 1 such that
the operationa rules

U(R(I, P)) + V(RU, P)) = W(R(1, P)) (13)
U(R(I, P))V(R(1, P)) = T(R(I, P)) (14)
if UX)+ V(X) = W(X), UXWV(X) = T(X),

define an ordered extension E(R(Z, P)) consisting of al symbols U(R(Z, P)),
according to the positivity rule

U(R(I, P)) >0 (15)
if and only if SIGN (U(R(1, P)))= 1, and the equality definition
U(R(I, P)) = V(R(I, P)) (16)

if and only if SIGN ((U- ¥) (R(Z, P))) = 0 when (U- V)(X) = U(X) = V(X);
aso the conditions (11), (12) must be fulfilled.

As usual the expression 1(R(1, P)) is identified with R(7, P) when Z(X) =
X.

By definition the complexity of the ordered extension E(R(Z, P)) is1 more
than the complexity of E.

On the degree level 1 the construction with the desired properties is
simple enough.

The algebraically ordered extensions of Pto be considered are Ffor each
complexity.” If P is a constant polynomia over F, then NR(P) = 0.
If Pisthelinear polynomid AX-+B of F[X], and [/ is any polynomial of
E[X], then we have the defining equation

SIGN (U, 1, P) = sign (U(-B/A)), (17)

and the symbol U(R( 1, P)) is canonicaly identified with U( — B/A)).
Theorems 1-6 will be verified readily in case the degree of P is not
greater than 1. We assume now that D=1, that al constructions on
the degree level D- 1 of any prescribed complexity can be performed as
specified above, and that Theorems I-6 are demonstrated for polynomials
P of degree smaller than D and for any field (in place of F) that can be con-
structed on the ievel D = 1.

We begin with a proof of Rolle's theorem for polynomials of degree D.

The assumption of Theorem 6, viz.

P(A) = 0 = P(B),

leads to a factorization

P(X) = (X— )X - BMO(X)

t As A. Hollkott stresses correctly, in redity we do get new ordered fields even here in
a much as the collection of symbols to be considered expands with increasing complexity.
But in our case a canonical order-preserving isomorphism with Fis set up at each stage.
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with positive exponents L, M such that
o(4) £ 0, 2(B) * 0,

and certainly the degree of Q islessthan D — 1. By the induction assump-

tion there is an ordered extension of F generated by aroot B of P satis-

fying 4<B<Bsuchthat NR (Q, A, B) = 1. It suffices then to prove Rolle's
theorem under the additional assumption that there is no root of @ be-
tween A and B. By the between value theorem Q(A)Q(B)=0. Upon differ-
entiation we have

P9 = (X—A) 1Y~ BM-0(X),
0(X) = (L(X—B)+ M(X— ADQL)+(X— A X~ BY'(X),

O0(4) = L(4A-B)Q(4),

O(B) = M(B— 4)Q(B),

O(4)0(B) = —LM(4  BPQ(A)Q(B),

O(4)0(B) < 0.
By the between value theorem applied to g(X) there is an ordered exten-
sion of F generated by aroot of O(X) between Aand B. Thisroot also is a
root of P’'(X) between A, B.

The mean value theorem follows in the customary way by application
of Rolle's theorem to the polynomid

P(X)—P(B)(P(X)—P(4))(B— A)—P(A)(P(X)—P(B))/(4A— B).

We proceed to the proof of the between value theorem for a polynomial
P of degree D. For convenience sake let 4<B.

If at any stage of the ensuing construction we should meet an element R
in an ordered extension E of F that was obtained on the D- 1 level such
that 4< R< B, P(R)= 0, then the elements U(R) (U €F[X]) with the opera-
tiona rules as defined in E provide the required collection of symbols
forming an ordered extension of F with a root of P between A and B.
It will be assumed in the ensuing construction that this will not happen.
For example, if it should happen that there is a non-trivial factorization
P(X) = M(X)L(X) in E[X] such that both M and L are non-constant, then
either M(A)M(B) <0 or L(4)L(B) < 0 so that either M or L will have a
root in an ordered extension of E onthe D- 1 levd.

Henceforth we assume that we will not meet non-trivial factorizations
of P in E[X]. This implies that P is sgparddle becare P/GCD (P, P) canat
be a proper divisor of P.

Now let E be an ordered extension of F generated by NR(P’, A, B)
distinct roots R(J), . . . ,R(K) of P’ belonging to [A, B], according to Theo-
rems 2, 3. Let

A= A0 <Al <... <A(S =B

the set formed by the NR (P’, A, B) roots of P’ belonging to [A, B) and
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the elements A, B in order of magnitude. There is a first index J such that
P(A())P(A(J+ 1)) < 0.

By definition (and by Theorem 4) there is no root of P’ between A(J)
and A(J+ 1) either in E or in any ordered extension.

It follows from the between value theorem that the sign of P’ between
A@J) and A(J+ 1) is constant + 0.

It follows from the mean value theorem that P is strictly monotone in
E as well asin any ordered extension of E. Hence for any chain

AWJ)=B0) =B(1) <... «B([K)=A(J+ 1 (18)
there is precisely one index H such that
0= H<K, P(B(H))P(B(H+1))<O0.

For example for a given polynomial U of F[X] of degree less than [P]
according to Theorem 2 an ordered extension £ can be constructed contain-
ing NR (U, A(J), A(J+ 1)) roots of U in the interva [AQJ), A+ 1)).

The set formed by these roots of U together with A(J) and A(J+ 1) may
be ordered according to (18). It follows that [ will have no roots between
B(H) and B(H+ 1), neither in £ nor in any ordered extension of £. Hence,
according to the between value theorem, the sign of U is constant & O
between B(H) and B(H+ 1) in £ — even in any ordered extension.

Suppose we form a set consisting of B(O), B(l), . . ., B(K) and finitely
many other elements of E, say

AQ)=C(0) <C(1) <. .. <C(L) = A(J+1),

then there is precisely one index G such that 0 < G < L, P(C(G)) P(C(G+ 1))
< 0. It follows, moreover, that B(H) = C(G) < C(G+ 1) < B(H+ 1) and
therefore the sign of U between C(G) and C(G+ 1) is constant and equa
to the sign of U between B(H) and B(H+ 1). We will use this sign invariance
of U a the appropriate time.

Let R be aroot symbol. For each U we form the symbol U(R).

If U(B(H)) + O then set

SIGN (U(R)) = sign (U(B(H))).

If U(B(H)) = 0, then there holds a factorization U(X)' = (X- B(H)V(X)
in £[X] for which V(B(H)) + 0. We define SIGN (U(R)) = sign V(B(H))
and we remark that SIGN (U(R)) is equal to the sign of U/ between B(H)
and B(H+ 1).
We set SIGN (O(R)) = 0.
Note that
SIGN C(R) = sign C

if Cisa constant polynomial of F[X].
In order to establish the between value theorem it will suffice to show
that the collection of the symbols U(R) (U¢ F[X]; U = 0 or [U] < [P])
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with the operational rules

UR)+ V(R) = W(R) (19)
if U+ ¥V =W in F(X],
UR+ V(R) = Q(RP(R)+T(R) (20)
if U+V = QW-+T in F[X]
and T=0or [T] <[P},
UR) =Y(R) o« U=V,
sign (UR)) = SIGN (U(R) @

forms an ordered extension of F if we identify C(R) with C for any constant
polynomidl.
Moreover, identifying I(R) with R, we shall find that
P(R) = 0, 22
A< R<B. (23)
We note right away that
SIGN (— U(R)) = = SIGN (U(R)),
SIGN ((I -A)(R)) =1,
hence it suffices to show (22) and to show that the assumptions
SIGN (UR)) = 1 (24)

SIGN (V(R) = 1

imply that

SIGN (W(R)) = 1 (25)
and

SIGN (T(R)) = 1. (26)
To show (25) under the assumptions (24), let C(O), . . ., C(L) be the set

formed by AQ), 4(J+1) and the N(U, AQJ), A(J+ 1)) roots of U, the
NV, A(J), A(J+ 1)) roots of ¥, and the N( W, AQJ), A(J+ 1)) roots of W
in a suitable ordered extension of E ordered by magnitude. It follows that
U, V are positive between C(G), C(G+ 1) and that the sign of Wis equal to
SIGN (W(R)) between C(G), C(G+1).

The equation W(C) = U(C)+ V(C)

which holds for C = 4(C(G)+ C(G+ 1)) implies (25).
To show (26) under the assumption (25) let us firstly assume that
GCD (U, T)=GCD (¥, T) = 1 27

Now let C(0), . . ., C(L) be the set formed by A(J), A+ 1) and by the
N(U, A(J), A(J+ 1)) roots of U, the N(V, AQJ), AJ+)) roots of V¥,
the N(Q, A(J), A(J+1)) roots of Q, and the M7, AQJ), A(J+1)) roots
of Tin a suitable ordered extension of E ordered by magnitude. It follows
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that U, ¥ are positive between C(G), C(G+ 1) and that the sign of Wis
equal to SIGN (W(R)) between C(G), C(G+ 1). Furthermore Q is of
constant sign * 0 between C(G), C(G+ 1). Moreover neither U and Tnor
V and T have a root in common.

The equation
T(C) = U(C) "(C) - AC)P(C),

which holds for C = C(G) as well asfor C = C(G+ 1), implies that T(C) is
positive unless Q(C) P (C) = 0. Hence (26) holds unless

Q(C(G)P(C(G)) >0, (28)
Q(C(G+ N)P(C(G+ 1)) = 0.
But by our assumption
P(C(G)) P(C(G+ 1)) <0, O(C(G) QC(G+ 1)=0,
so that (28) cannot hold.
In the genera case we have in F[X]:

v=0b, T=70, 0=00
where SIGN (U) =1 and = +£ GCD (U, T). Furthermore
v=10b T=10 6=0¥
where SIGN (?f) =1and !IA} = + GCD( v, T). Hence
07 = gp+7,cep (6,7)= 1 = cep (7, 7).

U
v,

a
N

As was shown above, we have SIGN (T) = 1. Furthermore trivially
SIGN(D) = SIGN (F) = 1,

~
ARA

SIGN (7) = SIGN (677) = SIGN (0) SIGN (7) SIGN (7) = 1.
In order to show (22) let us assume P in the form
P(X) = MO)X®P -+ M(DXIP 1+ + M([P)
with coefficients in F. Now the equation (20) for
U(X) = MO)XFI-1+ M(1)X™I-2+ | | + M([P]-1),
V(X) = X, QX) = 1, T(X) = —M([P]

shows that
URV(R) = T(R)

which is tantamount to (22) for the specia choice of U, V, T made above.

We have to remark, of course, that for any polynomia U of F[X] of
degree less than [P] the symbol U(R) is equa to that symbol which is
obtained by substitution of Z(R) in U.

Using the same notations as before, assume that P is separable.
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Denote by A4 the number of sign changes in the chain (8).

As a consequence of the between vaue theorem there will be constructed
an ordered extension of F of complexity M in which P has M distinct
roots in [A, B). Hence NR(P, A, B) = M. On the other hand, let E be an
ordered extension of F with NR(P, A, B) distinct roots in [A, B), say the
roots

M(1) < M(2) < ... < M(NR(P, A B))
by order of magnitude when
A < M(l), M(NR(P, A B)) < B.

There is an ordered extension £ of Ewith NR(P', A, B) roots of P’ in [A, B).
These roots of P together with A, B form the chain (8). Since P is separable,
no root of Pisaroot of P’ and vice versa. Hence each root M(1) > Alies
between two consecutive members of (8) with a sign change of P between
them, as follows from the mean value theorem. If M(1) = A then by
Rolle’s theorem M(1) < R(J) < M(2) and a sign change of P from A to
R(J) is scored. Therefore there are at least NR(P, A, B) sign changes in
(8). Hence M = NR(P, A, B). Thus Theorem 3 is established.

We remark that for each non-constant polynomial P the polynomial
P/GCD(P, P) is separable and shares its roots with P. Applying Theorem 3
to this polynomia we obtain Theorem 2.

Theorem 4 is also implied,

In order to prove Theorem 5 let P/GCD (P, P’), and let E be an ordered
extension of F on thelevel D- 1 of complexity NR(Z’) which is generated
by the adjunction of the NR(Z’) roots R(l, Z') < R(2, Z') < ... <
R(NR(Z'), z) of Zz' ordered by magnitude. Let R0, Z)= ~ =,
R(NR(Z)+ 1, Z) = o, 1 = Z = NR(P). There is precisely one index J
such that the number of sign changes of P on the subchain R(0, Z") . . .
R(J, Z) isequal to |- 1 and that P changes sign from

A = R(J, Z)to B= RJ+1,2).
Using these particular values of A, B we repeat the construction performed
above in order to prove the between value theorem. We use the root symbol
R (I, P) in place of R We set

SIGN (U, I, P) = SIGN (U(R(I, P))).
In this way we construct indeed an ordered extension F(R(I, P)) of F
which is generated by the adjunction of one root R(Z, P) of P subject to the
condition (12) as envisaged in the introduction.

Another application of the induction hypothesis now will yield the proof
of Theorem 5. This is because the definition of the function SIGN (U(R))
in the proof of the between value theorem was forced upon us by the aim

of the construction.
This completes the proof of the string of Theorems I-7 by induction

over the degree of P.
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It is clear from the construction applied that the set of al polynomials
with coefficients in F of al root symbols obtained by the construction on
all degree levels and of al complexities with the previous operational rules
will yield a constructive definition of an algebraic redly closed overfidd
of F.

To do the same thing in a more direct manner we observe that algebraic
over algebraic is algebraic so that we establish constructively for any two
root symbols R(I, P), R(J, Q) with P¢ F[X], Q¢ F[X], two further root
symbols R(K, W), R(L, T) (WE F[X], T¢ F[X]) such that

R(I, P)+ R(J, Q) = R(K, W), (29)
R(I: P) R(Js Q) = R(Ls 7). (30)

In this way it is shown that the root symbols for polynomials of F[X]
with operational rules (29), (30) and positivity and equality as defined
previously form an algebraic ordered extension P of F. But in P every
polynomial of odd degree has a root constructively as follows at once
from the between value theorem. Similarly, every positive element of P
is a square element. In other words P is really closed.

Again we must emphasize the remark made in A. Hollkott’s thesis that
F is embedded into P only up to isomorphism.

In particular the question whether the root symbol R(1, P) is equal to
an element of F in standard form R(l, X-A) (4 ¢ F) may be effectively
undecidable for ill behaved groundfields (see [1]). However, for F = Q
it is clear that there is an effective procedure for finding al solutions of
P(A) = 0 in Q, the rational number field.

An ALGOL program for the real root calculus over Q has been written
which implements a reduction discovered by H. Kempfert as well as the
Sturm theorem of real algebra (see [5]). It will be discussed in a forthcom-
ing joint paper by H. Kempfert and the author.
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Some computational problems and methods related
to invariant factors and control theory’

R. E. KaLman

1. Introduction. The purpose of this modest talk is to point out some
computational problems related to invariant factors in linear algebra. Our
comments are intended as an interim progress report; full details will be
published elsewhere, later.

As is wdl known, the determination of many invariants in linear agebra
(for instance: minima polynomials of a vector or a matrix, invariant
subspaces, the rational canonical form of a matrix, the number of eigen-
values of a matrix in a half-plane or a circle) requires computation in the
polynomia rings R[z] or C[z]. These computations are rather awkward:
first, because they involve checks of divisibility which must be exact;
second, because polynomial arithmetic (especially matrix-valued poly-
nomia aithmetic) is very awkwad to program. Since the numbers desred
are often integers (for ingtance: the degree of the minima polynomia of a
matrix), these problems tend to have some of the flavor of finite agebra,
even though strictly speaking they belong to linear algebra.

The question arises: Is it possible to bypass the machinery of polynomial
algebra and relate everything to standard matrix computations, such as the
determination of rank ? This quedion is of some interes from the viewpoint
of pure mahematics, since it concerns the represantation of polynomia
algebra (in the sense analogous to group representations) via matrices.
Even more interesting perhgps ae the implications on numericd anayss
and computing art in general, since very little is known today about the
rdative numerical advantages and disadvantages of dternate  computing
procedures which are abstractly equivalent.

A very interesting and early

“functor’ : polynomials - matricest )

is tha found in Hemites famous paper [1] of 1856 (which introduced

* Thiswork wassupported in part by NASA Grant NgR 05-020-073.

1 We use the term “functor” in a nontechnical sense to mean vaguely: replace some
mathematical object by a (linear) dgebrac object.
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“hermitian forms”). Hermite's functor has the special form
{polynomia z of degree n} - (nXn symmetric matrix P} )
satisfying the property that
{number of roots of x inside the unit circle} = rank of P,. 3)

Our main object then is to try to exhibit other functors of this genera type.

The motivation for this investigation is especialy rich; in addition to
pure and applied mathematics, it stems also from the modern mathematical
theory of control and dynamical systems. For instance, a discussion of
Hermite's functor in the style of Lyapunov stability theory and control
theory was given in [2].

2. Common factors of polynomials. It is well known that the common
factor of two polynomias can be determined by the Euclidean algorithm.
If we wish to avoid (for numerical reasons) dividing polynomials, then we
can make use of a well-known “functor” of type (1) known as the Euler-
Sylvester determinant ([31, ch. 5, p. 104) which is defined as

{polynomids f, g of degree m, n} -
{determinant R, , of an mnXmn matrix}. @

Thenf, g are relatively prime (have no common factor of degree > 0) if and
only if R;, + 0.

The “functor” (4) is rather inefficient from the computational point of
view since R, is a very large determinant. Moreover, if R, , vanishes, so
that £, g have a nontrivial greatest common divisor, it is not a smple
matter to compute this common divisor.

We shall now exhibit a “functor” which is much more efficient for the
above purposes.

Notations: let z = indeterminate, K = arbitrary field, deg f = degree of
polynomia f, We assume that n = deg f > deg g (the special case
deg f = deg g causes very little extra difficulty), and define the “codes’

[1 0 —f
f=2"+fir+ . fy> F = ' . ®
{ 1 -
gn
g =82 . 4g,>G=| - (6)
81

Finally, we write, as usua, (f, g) for the monic polynomia which is the
greatest common factor off and g.
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Trecrem () [G, FG, . ... Fr1G] = ¢(f). Hence 4(g(F)) = g(g1), where
@; are the roots off.

(ii) deg (f; g = nrank [G, FG, ..., F1G].

(i) (i g) = g/hwhere h is the minimal polynomial of the vector G
relative to the matrix F, i.e.,

Fr=rG+h Fr-7-1G 4 |
with deg h = r, ¥ = minimum.
Outline of proof. Fact (i) (and therefore the fact that (f, g) = O if and

+htptG = 0

only if rank [G, FG, ..., F*—1G] = n) was first proved in [4], Lemma 7.
Note that in view of (i) (see [3], ch. 5, p. 107) the “functor”
(f, 9) = det [G, FG,..., Fr1(G] @)

is identical with the Euler-Sylvester “functor” Ry, which is now exhibited
more efficiently using an n X n (rather than mn X mn) matrix. (The number
Ry, is the classica resolvent off, g.)

The matrix

[G, FG, ..., Fr—1G],

which is to be thought of as made up of the (column) vectors G, FG, ...,
plays an important (and well-known) role in modern control theory under
the names *“controllability” and “observability”.

The proof of (ii) and (iii) is a straightforward elaboration of (i), see [5]-

The form and proof of this theorem suggests rephrasing the algebraic
situation in module-theoretic terms. Recall (this is now classical) that any
square matrix F (over the field K) induces a K[z]-module over K, = X
regarded as an abelian group. To do this, we define

scalar product: K{zIX K, -+ K
S (f,x) -~ f(F)x.
Given afixed F (and fixed n), the condition

rank [G, FG,..., F~1G]=n, 8)
which is equivalent to
f, =0 ©)
means in module language that
G generates the module X. (10)

This observation is closely related to the theory of realizations which
(especially for our present purposes) may be regarded as a generalization
of the classical theory of elementary divisors.

3. Theory of realizations. Consider the infinite sequence
Y={Yx:k=0,1,..., Y= pXm matrix over K}.
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We say that Y has a finite-dimensional realization if and only if there exist
matrices F, G, H over K such that

Y. = HF¥G, k=0,1,.... an
The matrix F is required to be »X n (then H is pXn and G is nXm). We
say that the redization is minimal if and only if n isthe smallest integer for
which (11) can be satisfied. The following theorem is fundamental:

If Fy and Fy belong to minimal realizations or the same Y, then they are
similar.

A proof may be found in [5] or [6].

It is now clear that the theory of realizations generalizes the theory of
elementary divisors. if A is some given matrix, then the set of al minimal
redlizations of the sequence {Yi} = {4*} is identica with the similarity
class of A, since al triples of the form (F, T, T-1), with T-1FT = A, are
minimal redlizations. So the following is a well-defined problem: Given
{Y%} possessing a finite-dimensional redlization, determine the similarity
invariants of F belonging to some minimal realization. A rather detailed
examination of this problem built around the classica machinery of invari-
ant factors and elementary divisors is given in [7], to which the reader is
referred also for additiona motivation and background material.

In complete generality, that is, in terms of exhibiting efficient “functors’
to linear algebra, the solution of the problem is definitely not known at
present.? Let us review briefly what is known.

The simplest invariant of F (minimal) is given by the following result,
which is new, turns out to be quite smple, and seems to be fundamental:

Let S¥ denote the blockwise NX N generalized Hankel matrix

YO Y_l e YN...l

Yi Yo. .. Yn
=11

lYN—l YN S Y2N—1_I

induced by the matrix sequence Y. Then dim F = rank S¥ for N sufficiently
large. In other words, a finite-dimensional realization exists if and only if
the rank of S¥ is eventually constant, and then

q
n(Y) = rank S]}Y = 'Z]_ deg wl (‘Pi+1 1Pi7 I = ll L q_l)!

where 1, are the invariant factors of the square matrix F belonging to any

t The computational experience of numericaly determining minimal realizations has
been summarized in [8], pp. 373-405, Four methods have been compared there: (i) clas-
sical elementary divisor theory (see [71); (ii) partial fraction expansions and rank com-
putations ([4], Section 8); (iii) direct application of elementary linear algebra ([4] Sec-
tions 7 and 8); (iv) Ho's algorithm via Hankel matrices 161.
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minimal realization of Y. In particular, rank S% = n(Y) for all r = n(Y) or
even r = deg 1.

Referring to the module language mentioned at the end of § 2, we can
rephrase the preceding statements also as follows. The module induced by
any F belonging to a minimal realization of Y is of dimension n(Y); this
module is the direct sum of precisely g cyclic pieces, each with annihilating
polynomial ;. In short, the (numerical) sequence Y may be used to deter-
mine module invariants (n, g, the ;) with exactly the same ease (or diffi-
culty) as it can be used to determine similarity invariants for F.

It is clear that q, deg v1, and even the y; could be determined by a combi-
natorial procedure examining the linear dependences of subsets of the
matrix $%. The detailed prescriptions are easily inferred from [4-8]. It is,
however, not yet clear if a “functorial” procedure can be obtained for
this purpose. The clarification of this problem, in view of the situation
sketched above, is clearly one of the outstanding present research problems
in linear agebra

This prablem is closely related also to other unsolved elementary prob-
lems of a linear-algebraic type. Let us mention the following interesting

cowecture. (“Parametrization of minimal realizations.“) Let (F, G, H)
be a minimal realization of its own sequence {¥; = HF¥G, k=0, 1, .. .}.
Let X be the corresponding K[z]-module, with ¢ cyclic pieces. Let 1, ..., %,
be the invariant factors of X, with ;. |y; and deg ¥; = »,. (Thus %1 = mi-
nimal polynomial of Xandm +... + %, = dim X.) Finally, letm=p =q
and rank G = q.

Then: For fixed q and fixed (ny, . . . , n,) the set of all such triples plus
a set of measure zero (corresponding to triples which are not minimal)
is a linear space over K whose dimension is precisely equal to

q q
_2'1 min {n;, ni~;—n}+ 21 @2j—Dn; (no = o).
i= =

The first term in the above expression represents the minimal number
of parameters necessary to specify all the invariant factors (given their
degrees).

The second term is the dimension of the linear space of transformations
leaving the rational canonica form of F invariant. (This number was
first determined by Frobenius.) It can be shown that the dimension of
the linear transformations leaving F invariant is precisely the same as the
number of parameters in G which can be fixed over the whole class. For
instance, if q= 1orif ny =...=n,al elements of G can be fixed.
This is closely related to canonical forms of completely controllable pairs
(F, G). See [7].
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