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CPL (Combined Programming Language, Cambridge Plus London or Christopher’s 
Private Language — according to taste) was a project developed jointly by the 

Universities of Cambridge and London in the mid-1960s. The main participants in 
the definition of the language were: 

David Barron Cambridge 
John Buxton London 
David Hartley Cambridge 

Eric Nixon London 
Christopher Strachey Cambridge 

Although a compiler for the London University Atlas computer was developed by 
George Coulouris it saw very little use. The importance of CPL, however, is that it 
begat a series of programming languages in widespread use over half a century 

later: 

Firstly, Martin Richard’s BCPL (Basic CPL) a “typeless” language 

with a particularly rich set of control facilities derived from CPL 
which saw significant use in the 1970s for compiler development 

and similar applications. 

Dennis Richie took BCPL as a starting point, restoring a limited set 
of types to become B and then C which latter was the 

implementation language for Unix from the late 1960s onwards. C 
remains popular, particularly in the Unix community. 

Bjrane Stroustrup added object orientation (classes) to the C 
language in the 1980s to become C++ — widely used on Windows 
platforms. 

Derived from C++ are a number of languages, notably Java and 
C# 

So CPL can be viewed as a bridge between Algol 60 and almost all programming 
languages used in new software development in the first decades of the 21st 
century. 

Today CPL is little-known — a relic of long ago. But its progeny live on. That is the 
historical significance of the missing link which is CPL. 

[DL] 
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1. Introduction. 

 CPL is a programming language which has been produced as a joint undertaking 

by the Institute and the University Mathematical Laboratory, Cambridge. It owes much 

to Algol 60 but it is intended to be wider in scope. 

 This description of the language assumes some knowledge of programming in 

languages such as one of the Autocodes or Fortran. It does not constitute a formal or 

complete description, but will be supplemented by a Reference Manual and an Advanced 

Programming Manual in due course. 

 The manual contains a description of the central part of CPL. Peripheral matters 

such as input-output systems, magnetic tape use, program preparation, the operating 

system, program error checking and the appendices describing the basic functions and 

character codes will be issued as local users manuals by the establishments using CPL. 

2. THE CPL ALPHABET AND BASIC SYMBOLS. 

 The following is a list of permitted CPL characters, which may occupy single print 

positions in a printed CPL program: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 3 6 7 9 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

+ - × / = < > 

( ) [ ] ⋀ ⋁ ~ 

' ; : , . * ⭢ § | _ 

≃ ≡ =| ≠ ≡| ≢ ≤ ≥ ⋀|  §| §/ 

CPL programs are made up of those characters alone. 
An underlined word is called a BASIC SYMBOL, and should be regarded as a self-

contained entity. It may be written in upper or lower case, or a mixture of the two. An 

underlined space is ignored. Thus then may be written T h eN. The basic symbol if has 

nothing to do with the letters i and f, and has a completely separate meaning from the 

combination 'if' appearing without underlining in a program. Basic symbols are 

introduced as they arise in subsequent sections. 
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3. ITEMS, TYPES AND NAMES. 

 A CPL program specifies processes to be carried out on ITEMS of information. 

Those items. may be numerical (variables and constants) or non-numerical (e.g. bit-

strings and character strings), and if they are numerical they may be real or complex 

and may be stored to more (or sometimes less) than the standard precision. Every item 

must, therefore, have both a NAME and a TYPE. (Constants are an exception: they have 

a type but not a name.) 

 The most common type of number is the real number. (Note the underlining: 

real is a basic symbol.) A real variable is held in floating-point: (in Atlas this means 

that it has a range of the order 

+10113 to -10113 

with a precision of about 12 decimal digits). Other numerical types are: 

double A floating point number with a precision about twice that of 

a real number. (On Atlas, about 24 decimal digits). 

complex An ordered pair of real variables 

double 

complex 
An ordered pair of double variables 

index An integer used in subscripting operations 

A type integer can also be used; integer arithmetic is carried out in floating-point and 

the result rounded off when a value is assigned to an integer variable. 

 Complex and double precision working are not further described as they will not 

initially be implemented. 

 Among the non-numerical types of item on which CPL operates are: 

Boolean a truth value which is true or false 

logical a string of binary digits, of standard length (On Atlas, 24 

bits). 

long logical a string of binary digits, of twice the standard length 

string a character. string 

All items (except constants) appearing in a program are identified by NAMES, which are 

of two sorts, SMALL and LARGE. 

 A SMALL name consists of a single lower case letter, optionally followed by one 

or more primes, e.g. a, b, y, y', y''. 
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 A LARGE name consists of an upper case letter, optionally followed by a string of 

letters (upper and lower ,case) and/or digits, decimal points and primes, e.g.- A, Xyz, 

ALPHA, Beta, Time. It may not include spaces. 

 Large names are entirely the programmer's affair and he can invent them to suit 

his own taste: they may be short alphanumeric sequences or they may be the actual 

names of the quantities which they represent, or they may be mnemonics. Some large 

names, however, are reserved for standard functions, e.g. LShift, Mask, and if used by 

the programmer with another meaning the standard function will temporarily lose its 

standard meaning. 

 There is no restriction on the number of characters in a name. 

 Sometimes a name can stand for different items in different parts of a program. 

The important concept of the SCOPE of a name, that is the region over which a name 

retains its meaning, is discussed under 'Block Structure'. 

4. EXPRESSIONS AND ARITHMETIC EXPRESSIONS. 

4.1 References to items of information, which may be either variables or names or 

written constants, can be combined together with operators and standard library 

function names to form EXPRESSIONS. Each expression can be assigned a type, which 

depends on the types of the component variables and constants. For the moment we will 

consider simple arithmetic expressions, i.e. expressions involving variables and 

constants of numerical type real, index, complex, etc. 

4.2 Arithmetic expressions are made up by combining numerical variables and 

constants with the arithmetic operators and round brackets. Brackets may be used to 

any degree of complexity. The arithmetic operators are 

+ - × / ⋀| 

The use of the multiplication sign is optional, and it is usually omitted, unless by 

including it the expression can be made easier to read. In particular it. is included 

between two, large names or between a large name and a constant or a small name. 

Solidus indicates floating-point division (rounded quotient and no remainder) the 

remainder is obtained by a standard function. Up-arrow (⋀| ) indicates exponentiation. 

 Normally, sufficient brackets should be included in an expression to make its 

meaning unambiguous. However, if brackets are omitted the priority of dealing with 

arithmetic operators is as follows: 

 first: multiplication, division and exponentiation 

 second: addition and subtraction. 
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Multiplication, division and exponentiation are of equal precedence and associate to the 

right; that is to say, in the case of any ambiguity they behave as if brackets were 

inserted so that all the closing brackets are grouped at the right. 

Addition and subtraction associate to the left; that is brackets are inserted so that 

opening brackets are grouped to the left. Some examples will make these rules clear: 

a + b + c 

a / b c 

a ⋀| b + c 
a + b c + d e / f 

is equivalent to 
     ''' 

     ''' 

     ' ' 

((a+b)+c) 

(a/(bc)) 

((a ⋀| b)+c) 
((a+(bc))+(d(e/f))) 

Prefixed + and - are treated as (+1) and (-1) respectively so that -a⋀| b is equivalent to 

(-1)(a⋀| b), NOT (-a⋀| b). 

4.3 Arithmetic constants are usually written as decimal constants. * is used to indicate 

that a decimal exponent follows. Binary exponents are not allowed. 

Some examples are: 

153, 10.47, 2.108*8, 27.0, 0.34*-8 

4.4 An arithmetic expression may also include calls to standard library functions (or 

the programmer's own defined functions) in place of variables or constants. 

Some standard library functions are: 

Sqrt[x] 

Exp[x] 

Log[x] 

Sin[x] 

Cos[x] 

Tan[x] 

Arctan[x] 

Mod[x] 

Intpt[x] 

Rem[x,y] 

the square root of x 

the exponential function 

 

 

 

 

the modulus of x 

integer part of x 

the remainder of x/y; i.e. x-yIntpt[x/y] 

Note that each function call has the form of a function name followed in square brackets, 

by a list of arguments separated by commas. The written arguments are themselves 

arithmetic expressions, and may include further function calls. 

4.5 Subscripted variables may also occur in arithmetic expression these have the 

same form as function calls, with the function name replaced by an array name. Arrays 

will be introduced in Section 14 

4.6 Other forms of arithmetic expression are: conditional expressions (Section 11) 

and result of expressions (Section 22). These can also be used in arithmetic 

expressions in any position where a variable might otherwise occur. If used in this way, 

they should be bracketed in such a manner as to avoid ambiguities. 
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5. DEFINITIONS AND COMMANDS. 

 A CPL program is made up of DEFINITIONS and COMMANDS. The commands 

specify the arithmetic and logical operations to be performed by the computer: they also 

control the execution of the program. The definitions provide the information that is 

necessary for the computer to understand the commands. For example, since the 

programmer can invent names for variables to suit himself, the program must include 

definitions associating these names with specific data items. These definitions must also 

specify the types of variables since there is no implicit association of certain names with 

particular types. Other sorts of definitions will be introduced later. 

A definition must be prefixed by the word let. The simplest form of definition attaches a 

type to a list of names, e.g. 

   let a,b,c, be real 

Definitions of this type can appear on successive lines, or they can appear on the same 

line, separated by semicolons: 

let a,b,c, be real; let w,z be complex; let i,f be integer; 

A command sequence preceded by definitions is called a BLOCK. This is an important 

concept, and is dealt with in section 6. 

5.1 Assignment Commands. 

The assignment command causes a value to be calculated and assigned to a particular 

variable. Examples of assignment commands are: 

x := x + 1 

POWER := VOLTS × AMPS 

The symbol ':=' is read 'becomes'. 

N.B. we do not use the '=' sign, as this is reserved for conditions (Boolean expressions) 

and definitions. Assignments between variables of differing types are permitted. A 

transfer function is invoked to transform the value of the right hand side to the type of 

the left hand variable. This may result in a run-time error, if the right hand side has a 

value which is out of range, or cannot be transformed in this way. 

5.2 A simple assignment command has the form 

<variable> := <expression> 

( <variable > should be read as 'some particular variable' ) 

 Usually commands are written on separate lines, and the end of the command is 

implied by the end of the line. However, commands may be written on the same line, 

separated by semi-colons, thus: 

x := y+x; x' := y; x'' := 0 

but this form is not recommended, since it is difficult to read. The symbol c is used at 

the end of a line to indicate that the command continues onto the next line. 
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5.3 Multiple assignments, are allowed, for example 

X,x',x'' := y+x, y, 0 

This is not quite the same as the previous example as it counts as one assignment and 

the former counts as three separate assignments. 

The items on the left-hand side are names of variables, and those on the right-hand side 

can be variables, constants or expressions. The items in a multiple assignment need not 

all be of the same type. For example, if a,b,c are real variables, and d is a boolean 

variable, the following command is valid. 

a,b,c,d := 0, 0, a+b, true 

Multiple assignments are effectively carried out in parallel, so that  

x,y := y,x 

actually exchanges x and y, i.e. it is NOT treated as 

x = y; y := x. 

which would assign to both x and y the previous value of y. 

5.4 A COMPOUND COMMAND consists of a sequence of commands enclosed in 

section brackets §...............§|  

§.....x := y + X 

      X' := y 

      X'' := 0 §| 

Both this form and the multiple assignment are treated as one command by the 

compiler. 

5.5 Section Brackets. 

A feature of pairs of section brackets, used in forming compound commands and blocks, 

is that they may be labelled: 

§2.1 

Moreover, section bracket pairs may be nested inside other pairs, and the insertion of 

the closing section bracket is performed automatically for each opening § which lacks a 
§|  

E.G. §2............................. 

       §2.1........................ 

          §2.2..................... 

             ......................      §|2 

Closing section brackets §|2.1 and §|2.2 are inserted automatically before §|2. 

Any sequence of letters, digits and dots, optionally terminated by primes, may be used 

for a section bracket label. It is recommended that each label be followed by a space. An 

unlabelled section bracket should also be followed by a space. 
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6. BLOCK STRUCTURE. 

 A BLOCK in CPL is an extension of the idea of the compound command. It is 

defined as a command sequence, preceded by definitions, THE WHOLE ENCLOSED IN 

SECTION BRACKETS. 

Wherever we could have a compound command in CPL we can insert a block, and thus a 

CPL program will usually include blocks nested inside other blocks. The importance of 

this concept arises from the fact that the names defined at the head of a block are valid 

within that block and any block it encloses, but not outside. 

The variables defined at its head are said to be LOCAL to the block; variables defined in 

enclosing blocks are said to be GLOBAL to the inner block. The whole program is 

theoretically enclosed in a block containing definitions of the standard functions Log, 

Exp, etc. (Labels, however, are local to the smallest surrounding routine or result of 

clause; this is discussed more fully later). It is important to note that a particular name 

may not have the same meaning throughout a program. 

The use of nesting blocks economises on storage space, since space is obtained for the 

local variables of a block when a block is entered, and it is relinquished when the block is 

left. 

7. INITIALISED DEFINITIONS. 

 When a name is included in a definition at the head of a block this indicates that 

we intend to use a variable of the specified type and name in the subsequent program, 

but it does not assign any value to the variable. It is often convenient to assign initial 

values at the same time as we define variables, and this can be done as part of the 

definitions, for example: 

let s, t, n = 1, 0, 1 

let Pi = 22/7 

NOTE particularly the use of =, NOT, := when setting initial values. 

 The type of, the defined variable is deduced by the compiler from the expression 

used to define it. It should be noted in this context at the compiler has a preferred type 

and if possible it will represent items such as decimal constants in the preferred type. 

For example, 

let a, b = 1, 50 

defines two real variables in an implementation with the preferred type set to ''real''. 

 A variable can be initialised in terms of variables defined in surrounding blocks, 

for example: 

§ 1 let a be real 

     a := ......... 

         § 2 let b = 2a(a-1) 

                ........ 

 When a variable is initialised in a blockhead, then the initial value is assigned 

every time the block is entered. 
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8. DEFINITIONS BY 'and' and 'where'. 

 The full definition system in CPL gives the programmer considerable control over 

defining his terms. They may be defined 'sequentially' or 'simultaneously', simply or 

recursively, qualified by other definitions or not to an indefinite degree of complexity. 

 The simplest forms of definition have already been described; 

let a, b be real ; let c, d = 1, 2 

A sequence of definitions may be activated in parallel and treated as one definition if 

they are joined by and, as shown below. 

A. §1 let a = 5 

   §2 let a = 10; let b = a 

----------------------   §|2 

B. §1 let a = 5 

   §2 let a = 10 and b = a 

----------------------   §|2 

The scope of variables defined in definitions (non-recursive) is the body of the block in 

whose head they occur, and the right-hand sides of any subsequent definitions in the 

block head. In case A the initial value of 'b' is 10, as the scope of the newly-defined 'a' 

includes the definition of 'b'. 

In case B, the initial value of 'b' is 5, since the definition of 'b' is not within the scope of 

the second definition of 'a'. 

 The where clause enables us to introduce definitions which apply only to a 

particular expression, command or definition. It is of particular use in qualifying 

initialised or function definitions. For example, 

    p := (a x ⋀| 2 + b x + c / x) where x = 2 a + b 

let p ≡ f[3 a + b] / f[3 b + a] where f[x] ≡ a x ⋀| 2 + b x + c / x 
let p ≡ F [2 a + b] where F [x] ≡ G [x , y] 

A where clause qualifies a single definition and it is therefore convenient to be able to 

group definitions into compound definitions as with commands. This is done by section 

brackets; one may write, for example, 

let § f[a] ≡ x + y and g = x – y §| where 

        § x = 3 z ⋀| 3 and y = 3 z ⋀|  -3 §| 

Note that the let symbol is placed outside the section brackets: also that in this case a 

newline does NOT act as a terminator, as the first line alone does not make sense. 
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9. BOOLEAN VARIABLES AND EXPRESSICNS. 

9.1 Variables and expressions of type Boolean can take one of just two values, 

when evaluated; the constants true and false. 

 It is convenient to regard conditions as Boolean expressions. A condition holds if 

and only if it has the value true when evaluated as a Boolean expression. It fails if it has 

the value false. 

The simplest form of condition is 

<expression><relation><expression> 

where <relation> denotes one of the following: 

= =| ≠ > ≥ < ≤ << >> 

 '=','=|' are equality, inequality signs and are interpreted in the standard manner. 

They are applicable to all types of expression. 

 '>','≥','<', '≤' have the obvious meanings, and are applicable to expressions of 

types real, double and index (not complex). 

 '<<','>>' are applicable only to real, double expressions. a << b is interpreted 

as a = b + a, in floating point arithmetic. (On Atlas this implies that a is of order 10 ⋀|  

12 smaller than b, if a , b are real.) 

 In keeping with accepted mathematical notation, conditions may be extended; 

thus 

A≤b = c>d 

is an acceptable condition, which holds if 

a≤b    b=c    c>d 

all hold, and fails otherwise. 

(Note that (a<b)=(c<d) is also acceptable, but holds under completely different 

circumstances, when a<b , c<d have the same truth values). 

A condition can be assigned to a Boolean variable, e.g. 

let x, y be real; let b be Boolean 

    .................... 

    b := x > y 

    .................... 

9.2 The general form of Boolean expression consists of Boolean variables and 

conditions combined with the operators: 

~ 

⋀ 
⋁ 
≡ 

≡| 

(not) 

(and) 

(or) 

(if and only if) 

(exclusive or) 

the operators are given in descending order of precedence: the infixed operators 

associate from the left. Examples-are: 

let x, y, z be real; 

let p be integer 

let b, b', Converging be Boolean 

......... 

b := x ≥ y ≥ z 

b' := (x < y) ⋁ (p > 10) 

Converging := b ⋁ b' 



–   10   – 
 

The main use of Boolean variables is to record the result of a test for later or repeated 

use. In a conditional expression or conditional command we can write the name of a 

Boolean variable in place of an expression: thus if b is a Boolean variable, 

if b then do C 

is read as 

'if b has the value true then do C'. 

10. LABELS, JUMPS AND CONDITIONAL COMMANDS. 

10.1 Any command can be labelled, the label being written before the command and 

separated from it by a colon. Any name (large or small) can be used as a label, 

provided, that it is not at the same time being used for any other purpose. (Note that 

numerical labels are not allowed, and section bracket labels are NOT command labels) 

Examples of labelled commands are: 

L1:     Xyz := P + Q 

SOLVE:  a := 2 

Repeat: a := b + 5 

The basic form of transfer command (or jump) is go to <label>, e.g. 

go to SOLVE 

Alternative forms for go to and goto and go  to. 

The scope of a label is defined as the smallest surrounding routine or result of clause, 

(q.v.) and it is apparent that transfers may be written to labels within blocks nested 

deeper than the position of the transfer command; thus 

Routine R 

§1 --------- 

   go to LB 

§2 let a be real 

   ------------- 

LB : ---------   §|1 

 The execution of a transfer which leads into new blocks is understood to cause 

the activation of all the definitions in the block heads through which it leads. 

10.2 It is often required that a jump be conditional on some relation holding, or 

ceasing to hold; this facility of conditional commands, together with conditional 

expressions, removes to some extent the need for explicit labels in a program. 
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10.3 The first form of conditional command is:- 

if b then do C 

b represents a Boolean condition which may be true or false: if it has the value true 

the command C is obeyed, otherwise it is omitted and the next command obeyed. 

An alternative form whose meaning is obvious is: 

unless b then do C 

In both cases then or do are accepted as synonyms for then do; indeed the purist will 

probably prefer. to write 'unless ........ do .........' as being nearer to normal 

English. 

Here are some examples of conditional commands: 

if a < 0 then do a := 0 

if (a + b) ≥ (c + d) then do X := Y 

unless a >> 1*-7 goto END 

(An asterisk indicates a decimal exponent). 

Note that for a conditional jump we normally write 

'if b goto L', not 'if b then do goto L',.. (although the latter form would be 

correctly interpreted by the compiler) as 'then do' may be omitted when followed 

immediately by 'goto'. 

10.4 Another form of conditional command. enables us to choose one of two 

alternatives, depending on some condition. The basic form is:. 

test b then do Cl or do C2 

If b has. the. value true command C1 is executed, otherwise command C2 is executed. 

For example, 

test (a + b) =| (c + d) then do X := 0 or do Y := 0 

Again, then or do are. accepted in place of then do and or is accepted in place of or do. 

10.5 We. can construct multi-level conditional commands,  

for example 

test b1 then do Cl or test b2 then do C2 or C3 

If b1 is true the command C1 is obeyed, otherwise b2 is tested and command C2 or C3 is 

obeyed according as b2 is true or false. 

This may also be written: 

   test b1 then C1 

or test b2 then C2 

   or C3 

10.6 Sometimes it may be desired to skip a whole section of a program if a certain 

condition holds: this is a situation in which a compound command is useful. A compound 

command is regarded as a single unit for purposes of conditional commands, so we can 

have constructions like: 

if p > 65 then do § a := 0 

                    b := c + d / c 

                    f := g ⋀| b §| 
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11 CONDITIONAL EXPRESSIONS. 

 We have, in conditional commands, a powerful mechanism for performing 

conditional operations. Conditionally expression offer an alternative way. 

 The simplest form of a conditional expression is: 

b ⭢ E1 , E2 

Here b is a Boolean condition and E1 and E2 are expressions 

(which may of course be variables or constants). If condition b has the value true ; the 

value of the expression is E1, otherwise it is E2. A conditional expression could be the 

entire right-hand side of a command, for example:- 

a := a < 0 ⭢ 0 , a 

This is equivalent to 

if a < 0 then do a := 0 

However, we can include the conditional expression in a more complicated right-hand 

side; in this case it must be enclosed in brackets, for, example, 

a := a + (c =| 0 ⭢ b / c , d) 

Similarly, we can use it as the argument of a function, thus 

a := b + FN[a < b + c ⭢ X[1] , X[2]] 

More elaborate possibilities are introduced by the fact that E1 and E2 are themselves 

allowed to be conditional. This permits the writing of extremely complex conditional 

expressions; for example, 

b1 ⭢ b2 ⭢ El, E2, b3 ⭢ E3 , E4 

If such an expression seems unclear, its constituent sub-expressions should be 

bracketed. The completely bracketed expression whose effect is identical to the example 

above is written 

(b1 ⭢ (b2 ⭢ El, E2), (b3 ⭢ E3, E4)) 

 Conditional expressions can be applied to expressions of any type permitted in 

CPL. For example, with label expressions 

go to (a < 0 ⭢ Ll, a = 0 ⭢ L2 , L3) 

 A conditional expression can also appear on the LEFT of an assignment 

command, e.g. 

(x > 0 ⭢ a , b) := p + q 

 Here, if x > 0 a is set equal to p + q, otherwise b is set equal to p + q. 
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12 LABEL EXPRESSIONS. 

 The full form of a transfer command is 

go to <label expression > 

where a label expression has as its value a command label. In the simplest case it is in 

fact just such a label, but it can be a label variable. Variables of type label hold as their 

values command labels. Assignments may be made to them in the usual way. As an 

example of their use, consider the program 

§ let b be Boolean and L be label 

---------------------- 

L1: ------------------ 

L2: ------------------ 

L := (b ⭢ L1, L2) 

go to L                 §| 

In this instance, L is used as a link which may be set to hold different command labels 

under different conditions and may later be used in transfer commands. 

More complex linking mechanisms can be set up by defining label arrays, and using 

variable subscripts to transfer to different labels, depending on circumstances. 
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13. CYCLES AND REPETITIONS. 

13.1 Various facilities are provided in CPL to cope with cycles and repetitions. If C is a 

command or compound command, and b is a Boolean condition, then the instruction 

C repeat while b 

causes C to be obeyed and to be repeated as long as b is true. Alternatively we may 

write 

while b do C 

In this case, if b is false initially, C is omitted and control is transferred to the next 

command in sequence.  

Variants on these with obvious meanings are: 

C repeat until b 

until b do C 

If several commands are to be repeated, they MUST be enclosed in section brackets. 

13.2 Modified repetition of a command, simple or compound. 

is done by using the for command. One form of this is 

for <variable> = Step El , E2 , E3 do C 

where El , E2 , E3 are expressions or constants and C is a command. 

For example, 

for x = Step 0, 0.1, 1 do C 

C is executed n+1 times, where n is the value of (E3 - E1) / E2, rounded to the 

nearest integer; the controlled variable takes the values El, El + E2, E1 + 2E2, etc., 

in turn. Note that the expressions El , E2 , E3 are evaluated once and for all before 

the cycle is started; it is not possible for the cycle to change the increment or the end 

condition. If more than one command is to be repeated, it must be cast in the form of a 

compound command. 

A for has a similar structure to a BLOCK (see section 6) 

The controlled variable is local to the repeated command, and its TYPE is deduced by the 

compiler from the types of El , E2 , E3. 

Note that this means that when the repetition has finished the controlled variable ceases 

to exist and it is not possible to use the final value directly. If the programmer wishes an 

external variable to be used, the for symbol is followed by ext, thus: 

for ext x = step 1 , 2 , 11 do 
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13.3 A frequent use of the step form is in specifying unit steps, thus: 

for v = step E1,1, E2 

This may be replaced by the form E1 to E2, thus: 

for v = 1 to 20 do C 

Another similar form is written : 

for v = 1, 2, ...,.20 do C 

where the meaning is self-explanatory.      The commas are mandatory, and at least two 

dots must be used. 

13.4 Another form for specifying repetition is the explicit list of values, for example: 

for X = 0, 1.7, 2.51 do C 

As many values as desired can be included in the list: the command C is obeyed with the 

controlled variable taking each value in turn. 

13.5 With all forms of the for command, the strict definition is that the controlled 

variable is set before each repetition to the next value in the control sequence, which 

cannot be altered from within the loop. 

13.6 Any of the forms of repeated command in this section may be terminated either 

by a transfer to a label outside the command, or by obeying the basic command break, 

which effectively transfers to the command following the smallest repeated command in 

which it occurs. 

14. ARRAYS AND INDICES. 

In CPL we have arrays of any number of dimensions, that is to say, subscripted variables 

with any number of subscripts, though 1- and 2-dimensional arrays are probably the 

most likely. An array is given a name like any other variable, and must be defined at the 

head of a block along with the other variables used in the block. 

The definition must specify the dimensionality of the array, and the type of its elements, 

for example: 

let A , XYZ be real 1 array , index 3 array; 

The symbols vector and matrix are synonymous with 1 array and 2 array respectively. 

However, it does NOT follow that variables defined in this way obey the rules of matrix 

algebra. With a few exceptions (detailed later) array operations must be carried out on 

the individual elements (as in the example at the end of this section). 

 It is also necessary to define the type of the elements of the array, and the 

range of subscripts. The way in which this is done is described in the next section. 
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An element of an array is referred to by writing the name, followed by the subscripts in 

SQUARE brackets, separated by commas, thus: 

A[10] , XYZ[i,j,k] 

The subscripts can be expressions if required, for example: 

XYZ[i(i + 1),j(j + 1),k(k + 1)] 

It is sufficient to use real or integer variables in these expressions, but index variables 

may always be used. 

The use of index variables in subscripts sometimes speeds up a program. 

As an example in the use of arrays, suppose we have three two dimensional square 

arrays A, B, C, whose subscripts go from 1 to n, then the following program sets C 

equal to the matrix product AB: 

for i = step 1 , 1 , n do 

    § 1.1 for j = step 1 , 1 , n do 

        § 1.2 let a = 0 

             for k = 1 to n do 

                § 1.3 a := a + A[i , k] B[k , j] §| 1.3 

         C[i , j] := a §| 1.1 

Note that the section brackets 1.3 are included for purposes of clarity only: the variable 

a is local to block 1.2 

15. ARRAY DEFINITIONS. 

 Arrays must have their bounds specified when they are defined. This is done by 

setting as the initial value of the array the value of a special function, as illustrated in 

the following examples: 

let A = Newarray [real, (1 , 10)] 

let B = Newarray [integer, (-4 , 4), (-1, 5)] 

let C = Newarray [real, (1 , n), (1 , n), (1 , n)] 

A is a one-dimensional array of real elements, with subscripts running from 1 to 10. 

B is a 9 by 7 rectangular array of integer elements: the first subscript runs from -4 to 

+4 and the second from -1 to +5. 

 

C is a dynamic array, that is to say that its dimensions depend on some previously 

computed quantity, and may be different on the several occasions on which the relevant 

block is entered. As in any other initialised definition, the array bounds may be 

expressions involving variables global to the block. More complex uses of arrays are 

described in the next section. 

16. ARRAY EXPRESSIONS. 

 Arrays are regarded as being variables in their own right; the dimensionality and 

the type of its elements is fixed on definition of an array, but the bounds may be 

changed by commands. They may be defined by type only, as in 

let Work, Place be real 3 array, real 3 array 
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they may be initialised thus 

let Work = Newarray [real , (1 , 10) , (1 , 10) , (1 , 10)] 

The right hand side of the initialised definition is an expression of the relevant type; in 

this case, an array expression. Such an expression consists of either an array name or a 

function call which produces an array or space for an array. 

Array assignment commands may be written thus 

Place := Work 

Work := Newarray [real , (1 , 5) , (1 , 5) , (1 , 5)] 

By the use of such commands the bounds of an array may be changed during operation 

of the program at any stage. When a command such as the first example above is 

obeyed, the value of the right hand side is taken, in this case an element-by-element 

copy of the array 'Work', and this now copy is assigned to the array variable 'Place'. 

 NOTE the distinction between an array expression whose value is an array, and 

a reference to an array element whose value is a data item, for example, a real number. 

 Another basic function is Formarray. This is used to obtain space for an array 

and to insert values into the array. It is used as follows: for example, the definition 

let M = Formarray [real, (1 , 2) , (1 , 2)][3 , 10 , -15.4 , 3.1] 

both defines M as a 2 X 2 array and also initialises its values. The second argument list to 

Formarray enumerates the elements row by row. Thus 

M[1 , 1] = 3 M[1 , 2] = 10 

M[2 , 1] = -15.4 M[2 , 2] = 3.1 

17. FUNCTIONS AND ROUTINES. 

 Of central importance in CPL are the concepts of FUNCTION and ROUTINE. A 

FUNCTION, e.g. f[x] = ax ⋀|  2 + bx + C is a named EXPRESSION, (or rule for 

obtaining a single value) and on evaluation produces a RESULT, which has then to be 

assigned. A ROUTINE on the other hand is a complicated command sequence, which may 

require the evaluation of expressions but also performs the assignment of their results: 

after execution of a routine, the state of the machine will be altered to the extent that 

the values of certain variables will be changed but no new entities will have been 

created. (A function does produce something new namely its result.) The importance of 

these concepts lies in the fact that functions and routines are written in terms of dummy 

variables (or FORMAL PARAMETERS) and have names; they can thus be called at 

different places in the same program, usually with different values for their arguments. 

We consider functions and routines, and the way in which they may be defined, in the 

next two sections. 
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18. FUNCTIONS. 

 A function is a complicated rule for specifying a single value: let us take a 

specific example. Suppose we wish to evaluate the function 

f[x] = 3x ⋀|  2+ 4x + 1 

We give this a name, say F and at the head of some appropriate block, when we define it 

along with the other definitions, we write a FUNCTION DEFINITION 

let F[x] ≡ 3x ⋀| 2 + 4x + 1 

Note that the argument is enclosed in SQUARE BRACKETS and that an equivalence sign 

is used. x is a dummy variable, called a FORMAL PARAMETER: when we wish to evaluate 

the function we write a FUNCTION CALL with the desired argument as an ACTUAL 

PARAMETER, thus 

y := F[z] 

a := b + cF[d] 

The actual parameter can be an expression, e.g. 

g := F[ax + b] / F[cx + d] 

and a function can have more than one argument, e.g. 

let Quadform [x, y] ≡ ax ⋀| 2 + 2bxy + cy ⋀|  2 

 The functions so far defined have taken real arguments and produced real 

results. If the arguments are of any other type than the preferred type of the compiler 

then this must be indicated in the definition: 

let P[matrix Alpha , index n] ≡ Alpha[n, n] 

let Q[index i , j] ≡ i(i + 1) + j 

In the second example, i , j are both taken to be index. 

The type of the result is deduced from the definition by the compiler. If at the function 

call the actual parameters of a function do not correspond in type to the formal 

parameters, transfer functions are inserted automatically 

For example, if we have 

§ let a , b be real; 

  let k be index 

    let Q [index i , j] ≡ i(i + 1) + j 

      ...........  

      ...........  

        a = Q[b , k] 

    ........... §| 

 

then b will be converted to type index before the function is evaluated. 

 The definition of a function is in terms of an expression. By using a result of 

clause (q.v.) as the expression, the function may be effectively defined in terms of a 

command sequence. 
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19. FREE VARIABLES IN FUNCTION DEFINITIONS. 

A function is defined by an expression, which may include two sorts of variables those 

which appear in the formal parameter list and those which are 'free', i.e. which are 

global to the function definition and are either defined in an enclosing block, or are 

formal parameters of some enclosing function or routine definition. 

 Formal parameters are always called by value, but there are two possible ways 

of treating free variables. In the form of function definition so far introduced, free 

variables are used directly when evaluating the function. However, if the function is 

defined using = instead of ≡ free variables are evaluated at time of definition and their 

values are 'frozen'. This is illustrated in the following example, 

§1 let a , b , c be real 

   a , b , c := 2 , 3 , 4 

      --------------- 

      §2 let w , z be real 

         f[x] ≡ ax ⋀| 2 + bx + c 

         g[x] = ax ⋀| 2 + bx + c 
      --------------- 

         a , c , b, := 5 , 6 , 7 

      L1 : w , z := f[w], g[z] 

      --------------- 

                 §|1 

When the command labelled L1 is obeyed, w is set equal to (5w ⋀|  2 + .6w + 7) and z is 

set equal .to 2z ⋀| 2 + 3z + 4. 

Another way of expressing this difference is to say that the free variables of a '≡' 

function are called by REFERENCE, whereas free variables of a '=' function are called by 

VALUE. 

20. ROUTINES. 

20.1 A function in a self-contained subsection of the program which produces a single 

result and is essentially a complicated expression. Sometimes we require more 

complicated processes, possibly with several results, i.e. a complicated command: for 

this we use a ROUTINE Suppose we wish at various points in a program to solve the 

equations: 

ax by = c 

a'x + b'y = c 

with a jump to a specified label if there is no solution. We give the routine a name, say 

LINEQ, and at the head of the routine we write the ROUTINE DEFINITION as follows: 

routine LINEQ [real a , b , c , a' , b' , c' , x ,y, label L] 

ref x , y 

§ let DET- ab' - a'b 

  if Mod[DET] < 1*-6 go to L 

  x := (bc' - c'b) / DET 

  y := (ac' - a'c) / DET   §| 
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The first two lines are the ROUTINE HEADING; the remainder is the ROUTINE BODY, and 

consists of a block with, in this case, one local variable DET. The routine heading gives 

the name of the routine and the list of FORMAL PARAMETERS; when we wish to use the 

routine we call it by writing the name followed by the list of ACTUAL PARAMETERS which 

are to be substituted for the formal parameters. 

Thus the command 

LINE [P , Q , R , S , T , U , V , W , ERROR] 

will solve. the equations 

PV + QW =R 

SV + TW = U 

and will send control to the label ERROR if there is no solution. The formal parameters are 

therefore dummies, like the argument(s) in a function definition. 

Note that a routine call is a COMMAND, whereas a function call is an EXPRESSION. 

20.2 In this routine, x and y differ from the other formal parameters in that 

assignments are made to them. A variable to which a value is assigned corresponds to 

an address in the computer where that value is stored; x and y are therefore 

distinguished in the routine heading by the line ref x , y : this means that they are 

called by REFERENCE. It has the effect that for the duration of the routine they will be 

regarded as 'address-like'. 

The other parameters are called by VALUE; that is, their actual values will be handed 

over.(Parameters are assumed to be called by value unless it is explicitly stated 

otherwise.) 

If an assignment is made in the routine body to a parameter called by value, a local 

parameter of the same name is created temporarily and the original value restored when 

the routine is left. 

Free variables of a routine are called by reference, in exactly the same way as the free 

variables of a ≡ function. 

20.3 The formal parameters of a routine may themselves be routine functions. 

The end of a routine may be indicated by the end of the command which is its body, and 

after obeying the command, control returns to the command following the routine call. It 

may be convenient for the dynamic end of the routine not to be at this point: for this 

purpose there is a built-in command return, which causes a return to the command 

following the routine call, e.g. 

...... 

if b then return 

...... 

Note that return is a command, so that we write ... then return, NOT  

....then go to return. 
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21. EXAMPLES OF ROUTINES. 

a) routine Scalarproduct [real x, vector A., B, index n, label L] 

    ref x 

    §   x := 0 

        for i = 1 to n do x := x + A[i] B[i] 

        if x << 1 go to L §| 

                                                       §| 

The routine call 

Scalarproduct [X , CAT, DOG , 10 , ORTH] 

Will set X equal to the scalar product of two vectors CAT and DOG each of which has 10 

elements subscripted from 1 to 10. 

If the vectors are orthogonal control goes to the command labelled ORTH. 

b) routine Gaussquad [real a , b , I , function f] 

    ref I 

    §   let s = (b – a) 

           I := s (.27778 f[a + .11270s] + 

                   .44444 f[a + .50000s] + 

                   .27778 f[a + .88730s]) 

                                                    §| 

This routine sets I = f(x) dx, using a Gaussian 3-point formula, 

22 'RESULT OF', EXPRESSIONS. 

 Throughout CPL there is a sharp distinction between commands and 

expressions. 'result of' is a construction which allows us to obey several commands, 

which perform some calculation, and to treat the result as an expression. To be 

incorporated in a larger expression. This is particularly useful in function definitions; the 

form of a function definition requires the body to be an expression and it may well 

happen that it requires several commands to evaluate the function. For example, 

suppose we wish to define the function: 

f(x) = a[n]x ⋀| n. 

Let us suppose that the coefficients are available as an array A with subscripts running 

from 0 to 10. Then given x, the series is evaluated by the following block: 

§   let Sum = 0 

        for i = step 10, -1, 0 do 

            Sum := Sum + A[i]         §| 

We have here a block which sets the local variable Sum to the required value. To convert 

this to an expression we precede it by ' result of' and insert at the end of the 

command 'result is Sum'. The function definition this becomes: 

S[x] ≡ result of § let Sum = 0 

          for i = Step [10, -1, 0] do 

          Sum := x Sup + a[i] 

          result is Sum §| 
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 Although we have used a function definition as an example result of can be 

used anywhere to convert a compound command or block into an expression, which can 

then be used wherever any other expression could be used. 

A 'result of' expression may include more than one instance of the command form 

result is, and the first such command met during execution causes termination of the 

result of clause. 

23. OTHER FORMS OF INITIALISATION. 

 We have already met the concept of initialised definitions. By analogy with the 

calling of actual parameters for routines, we can say that a definition such as 

let x = 3A - 2 

initialises x 'BY VALUE'. Two other forms of initialisation are possible, initialisation 'BY 

SUBSTITUTION' and 'BY REFERENCE'. 

(a) Initialisation by substitution is specified by ≡ e.g. 

let Abc ≡ a 

let A ≡ b + c 

Loosely speaking, the expression on the right hand side, enclosed, in round brackets if 

required, is formally substituted for the left-hand variable wherever it occurs. 

Strictly, the left hand variable is to be regarded, as replaced by a call to a function 

without parameters,- defined by '≡'. 

(b) Initialisation by reference is indicated by ≃ , e.g. 

let a ≃ X[i , j} 

 Its main use is when the right hand variable is an array element: every 

reference to the left hand variable is treated as a reference to the right hand variable 

with any subscripts evaluated ('frozen') AT THE TIME OF DEFINITION. For example, 

consider the following: 

§1 let A be real and i be index 

   --------------------- 

   i := 3; A[3] := 10 

   §2 let a = A[i] 

      and b ≃ A[i] 
      and c ≡ A[i] 

       -------- 

       i := 7 

      L: ------- 

                           §|1 

Let us determine what the values of a , b , c are when the command labelled L is 

reached. 

 a was initialised by value, and therefore has the value 10 (the value of A[i] with 

i = 3 at the beginning of block 2). 
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 b was initialised by reference, and is therefore equivalent to A[3], having the 

current value of A[3]. 

 c was initialised by substitution, and is therefore equivalent to A[i]. It thus has 

the value of A[7]. 

24. RECURSION. 

A recursive function or routine is one which explicitly calls itself. Thus 

f[x] = (x = 0 ⭢ 1 , xf[x - 1]) 

is a recursive function. If 'f' on the right hand side is interpreted as the function under 

definition; it computes x!, the factorial function. Special facilities must be provided for 

the definition of recursive functions, since apparently the rule which determines the 

scope of 'f' would be violated if the necessary interpretation were made. 

 Incidentally, it should be pointed out that a function may be used recursively, 

without being recursive. As an example of recursive use, consider the following function 

which evaluates the double integral 

             f(x, y) dx dy 

Doubleintegral[a , b , c , d , function f] ≡ result of 

    §1 let f'[y].≡.f [x , y] 

       let g[x] ≡ Gaussquad [c , d , f'] 

       result is Gaussquad[a , b , g] §|l 

 We have assumed a previously defined function Gaussquad which evaluates a 

single definite integral. This function effectively uses itself as an auxiliary. This sort of 

recursive use of functions is dealt with automatically, and the programmer need not be 

aware that recursive use is made of such a function or routine. 

 If we wish to define a recursive function or routine, this must be indicated by 

preceding the definition with the symbol rec. As an example of this technique, take the 

Euclidean algorithm for finding the HCF of two integers: 

let rec HCF[integer n , m] = 

        (m > n ⭢ HCF [m, n] , 

         m = 0 ⭢ n , 

         HCF[m , Rem[n , m]]) 

Recursion is only meaningful in the case of functions and routines. For example: 

let rec f[x] ≡ (x < q ⭢ f[x - a]) 

let rec routine R x , y] 

      § --------------- 

         R[x = 1 , a – x] 

         -------------- §| 

let rec routine R[x] 

      §2 ---------- 

         R[a + x] ; S[a – x] 

         -------------------§|2 

and routine ; S[y] 

      §2 ---------- 

         R[y - b] ; S[y + a] 

         -------------------§|2  §|1 
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NOTE the use of section brackets in the last example to force treatment of the two 

definitions as single in order to specify mutually recursive routines. 

 If the symbol rec is omitted from the definition of a recursive function, the 

occurrences of the recursive function name in its own definition are taken as referring to 

a global variable of that name, and not to the function being defined. 

25. LOGICAL VARIABLES AND EXPRESSIONS. 

25.1 A variable of type logical is a string of bits, of some standard length (24 in 

Atlas); each bit is processed independently. A variable of type long logical is a string 

with twice the standard number of bits, also processed independently of each other. 

 In the remainder of this section we talk about logical variables; everything 

that is said applies to long logical variables, the only difference being that in general, 

operations on logicals are faster than the corresponding operations on long logicals, 

25.2 Operations on logical variables. 

 Logical variables provide the means whereby most non-numerical work is 

carried out in CPL, and it is therefore necessary to have more complicated operations 

than those so far described. For this purpose there is provided a basic set of built-in 

functions, in terms of which the more complex operations can be programmed. It is 

necessary first to define a convention for the numbering of the digits in a logical 

variable. This is done by numbering the digits upwards from the right-hand-end starting 

from 0. 

Unless otherwise stated, the functions described below operate on logical or long 

logical variables, and produce a result of the same type as the logical operand. We use 

logical without underlining when we do not wish to distinguish logical and long 

logical variables. 

25.3 Functions for logical operations. 

(a) Shifts. 

LShift[p , j] 

RShift[p , j] 

Rotate[p , j] 

p is a logical variable, and j is an index variable which defines the number of places 

shifted. LShift and RShift are logical left and right shifts; Rotate is a circular left shift. 

In all cases if j is negative the direction of the shift is reversed, so that 

LShift[p , j] 

is equivalent to 

Rshift[p , -j] 

With Lshift and Rshift the bits moved in to fill the gaps are zeroes. 
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(b) Masking operations. 

Ones[j , k] 

Here j and k are index variables, Ones[j , k] produces a mask in which bits j to k 

inclusive are ones and all other bits are zeroes; the order of j and k is immaterial. 

(c) Other bit-manipulations 

Field[p , j , k] 

Bit[p , j] 

p is a logical variable, j and k are index variables; as usual, the order of k and j does 

not matter. The function Field[p , j , k] masks off bits j to k inclusive, and then 

right justifies the group, so that if j > k, bit k of the argument becomes bit 0 of the 

result, and bit j becomes bit (j - k). For example, the effect of Field [p,6,10] is 

shown in the diagram. 

     P  |              |   |     | 

                       10  6 

Result  |    Zeroes          |   | 

                                  4   0 

Bit[p , j] is equivalent to Field[p , j , j] the effect has the effect of specifying 

and right justifying a single bit. The functions Bit and Field may be used on the left-

hand side of assignment commands; their results, therefore are effectively "the 

addresses" of the bit or area specified. 

25.4 Logical Constants. 

 Logical constants can be written in binary or octal, being preceded by the 

symbols 2 or 8 respectively.(As 7=111 in binary, an octal string is equivalent to a binary 

string grouped in threes from the left. Thus, 2010111011 = 8273.) They are normally 

assumed to be positioned at the least significant end of a logical variable, thus 8 77 is 

understood to mean 8 00000077. However, positioning at the more significant end can 

he indicated by a bar, and in this case zeroes at the less significant end can be omitted: 

thus 8|273 is understood to mean 8 27300000 (assuming, in these examples, that 24 is 

the standard length.). 

 Logical variables can be combined to form logical expressions using the same 

operators as for Boolean expressions, i.e. ~ ⋀ ⋁ ≡ ≡|  

(The basic logical operations on bits are : 

1 ⋀ 1 = 1 1 ⋁ 1 = 1 ~1 = 0 

1 ⋀ 0 = 0 1 ⋁ 0 = 1 ~0 = 1 

0 ⋀ 0 = 0 0 ⋁ 0 = 0  

1 ≡ 1 = 1 1 ≢ 1 = 0  

1 ≡ 0 = 0 1 ≢ 0 = 1  

0 ≡ 0 = 1 0 ≢ 0 = 0 ) 

The specified operation is carried out on all bits independently. Thus if a, b, c, are 

logical variables, 

a := c ⋀ 8|77 

masks off the top six bits of c and sets a equal to this, while 

c := (c ⋀ ~ b) ⋁ (b ⋀ a) 

replaces the field in c specified by the ones in b. by the corresponding field of s.  
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26. STRING EXPRESSIONS. 

26.1 A string variable is a string of characters with possible local limits on maximum 

length; The characters must be those of the CPL alphabet. 

A string constant consists of the characters of the string  

enclosed in STRING QUOTES, '.....', for example, 

'this is a string'       '123/AB/6' 

with the exception that the characters 

|     ' 

do not signify themselves. 

 A special mechanism is required for specifying as part of a string a character, 

other than a space, which does not print, or cannot be represented as a CPL character. 

For this the vertical bar is given special significance: whenever a vertical bar occurs in a 

string constant it is interpreted together with the following character according to some 

local convention concerning such characters, the precise nature of which depends on the 

machine and output device used. (For Atlas Flexowriters, these conventions are that: 

       || 

       |' 

|N and |n 

|S and |s 

|T and |t 

|B and |b 

|E and |e 

|Z and |z 

|U and |u 

|L and |l 

stands for | 

stands for ' 

stand for newline 

stand for space 

stand for tab 

stand for backspace 

stand for erase 

stand for stopcode 

stand for upper case 

stand for lower case 

For example, the string constant 

'123|n456||' 

is a representation of 

          123 

456| 

One infixed operator may be used in forming string expressions, the concatenating 

operator <=>. Other operations on strings are carried out by a set of basic functions, 

which are described in section 26.2 below, Relational expressions may be written using 

strings and the operators 

≤  < = ≠ > ≥ 

These have the same form as arithmetic relational expressions and they form a subset of 

Boolean expressions. 

 NOTE that a longer string is 'greater' in relational expressions than a shorter 

string identical to its starting characters; thus 

'ATLAS' > 'AT' 

is true. The relations between CPL characters which determine the precise lexicographic 

ordering on strings is subject to local convention, and may be altered to suit individual 

programs. 
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26.2 STRING MANIPULATION FUNCTIONS 

In the following descriptions, s is a string constant and an index parameter. Unless 

otherwise stated, the result is of type string. 

Length[s] 

The result is of type index and is the number of characters in s. 

First[s] , Last[s] 

The result is the first or last character of s, respectively. 

Character[i , s] 

The result is the ith character of s. 

Initials[i , s] , Finals[i , s] 

The result is the first or last i characters of s respectively. 

27. LIST PROCESSING OPERATIONS. 

These are carried out in CPL by using logical variables and basic functions. NOTE 

that a storage word on Atlas or Titan can be split into two half-words, each of which 

corresponds in length to a logical variable and can hold in this length the address of any 

half-word. The basic functions are as follows:- 

In the description x, y and z are logical variables or parameters. 

Head[z] , Tail[z] 

The value of z is assumed to be the address of a word in the store. The functions 

produce as their results the 'addresses' of the first and second half-words of the word 

whose address is given by z. They may be used on the LH sides of assignment 

commands. 

Join[x , y] 

This function obtains a word from the list free space area, stores in the first and second 

halves the values given as its parameters, and provides as the values of its result the 

logical pattern representing the address of this word. Note that if one performs the 

operation 

z := Join[x , y] 

then the function calls 

Head[z] , Tail[z] 

give access to the values obtained from x and y. 

No automatic garbage disposal can be provided by the system, as it is not 

possible for the system to detect whether a logical variable holds the address of a list or 

not. The programmer is advised to return space to the free space list by the following 

process. The basic logical variable named 'Freespace' is defined within the system 

similarly to the basic functions and is used to hold the address of the first member on 

the free space list. To free the word whose address is held in x, obey the commands 

Tail [x] := Freespace 

Freespace := x 

Using these basic functions, the programmer can construct and manipulate list 

Structures. He may. for example. write CPL functions and routines to manipulate list 

structures of some particular nature, such as threaded lists. 
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28. COMMENTS. 

It is sometimes required to include in a program explanatory notes, which are 

intended for the human reader only, and must be ignored by the computer when reading 

the program. In CPL such comments are introduced by two vertical bars and continue to 

the end of that line, e.g. || 

|| x is the mean value 

|| if p is zero this is dealt with in §1.2 

29. COMPLETE PROGRAM LAYOUT. 

A complete CPL program consists, basically, of a sequence of commands. It will 

usually begin with definitions of programmers variables. The program is to be thought of 

as embedded in a global system block which contains all built-in definitions. 

The basic command 'Finish' may be used anywhere in the program and 

terminates execution of the program. It would normally occur as the final command in a 

program, and if not present as the final command, the compiler will insert it. 

More information on program layout and preparation is given in the local 

operating manuals. 
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