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PREFACE

Compilers have been developed to enable the I.C.T. Atlas and Orion computers to accept
programs written in the automatic programming language FORTRAN. This primer is intended to
serve as an introduction to the language and should be of use both to the newcomer to pro-
gramming and to the programmer wishing to obtain an understanding of FORTRAN in particular.
The text covers in a progressive manner most aspects of FORTRAN and is illustrated with
examples and exercises for which solutions are suggested.

The dialects of FORTRAN described are derived from FORTRAN II, and are very largely
compatible with it and with other dialects currently in use. It is anticipated, for instance,
that the majority of FORTRAN II routines will require no alteration at all: details of such
differences as do exist are to be found in the following document.

CS318B  Making a FORTRAN II program suitable for use with the Atlas FORTRAN compiler.

Certain advanced aspects of FORTRAN programming are not covered in this primer and the
reader should consult the reference manuals to be provided for full details and formal
definitions of the language; these manuals will contain also information concerning the
systems of operating FORTRAN on each computer.
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A PRIMER OF FORTRAN PROGRAMMING
FOR USE ON ATLAS AND ORION COMPUTERS

1. INTRODUCTION

FORTRAN (a name derived from FORmula TRANslation) is an automatic programming language for digital
computers. It is a complete language in that, as well as providing for the evaluation of formulae and
computation of a mathematical nature generally, it includes also facilities of great generality for the
input and output of data using many types of peripheral equipment. Dialects of FORTRAN, each embodying
the same basic principles although differing in details, have been developed for many computers: it is
the purpose of this primer to introduce those available on the Ferranti Atlas and Orion computers. These
dialects incorporate a number of features which are either new or included on only a few of the modern
large computers.

The programming of solutions to problems in the field of science and engineering is greatly
simplified by the use of FORTRAN because it is not necessary to be familiar with details of the internal
working of any particular computer. The aim of this primer is to serve as an introduction to programming
as well as an introduction to FORTRAN - to this end Section 2 deals with a number of programming concepts
in general terms, while in the remaining sections the language is progressively introduced to a sufficiently
high level to enable the casual programmer to write successfully fairly complex programs. Numerous
examples are included in the text, and exercises and suggested solutions provided; the primer should
therefore be suitable for private study or for use on programming courses. The reader should understand
that details of finer points of the language and formal definitions, together with information concerning
the system of operating FORTRAN on each computer, must be sought from the appropriate reference manual.

The greater power of Atlas, compared with Orion, and the differences between the hardware and the
operating systems, lead to a few differences in the implementation of FORTRAN. 1In general, Orion FORTRAN
is a subset of Atlas FORTRAN, in that certain features of the language may not be available on the
smaller computer. FPFurthermore, some features which are to be provided in due course are not included in
the first versions of the compilers. Wherever possible, differences have been explicitly stated in the
text, or mentioned in a note at the end of a Section.

2. PROGRAMMING CONCEPTS AND TOOLS

2.1 The organisation of a computer

A digital electronic computer is a machine, or a linked set of machines, capable of handling
information which can be represented or coded in a numerical form. It can perform at high speed a
selection of elementary arithmetic and logical operations on this information in a desired sequence
under automatic control.

The computing system may be considered as made up of units each with a different function to perform.
An internal central store holds the information received into the machine, as groups of binary digits,
and holds also other information generated during computation. The actual computing operations are
performed in the arithmetic untt; this is capable of operations such as addition, subtraction, multipli-
cation and division and of certain logical operations such as comparison and shifting of groups of
digits. A control unit serves to specify which operations are required, to fetch items from store into
the arithmetic unit and to store back the results of the operations.

In order to get information into and out of the computer a variety of peripheral devices is
available. Information is represented outside the machine on some external medium. For example,
patterns of punched holes in cards or paper tape can represent alphabetic and numeric information, and
a card- or paper-tape reader is used to read the patterns of holes and to convert the signals received
into the internal form required by the computer. Similarly for the output of useful information, devices
are used which receive signals from the computer and use these to produce either punched cards or paper
tape, or to operate an electric typewriter or a high speed printer.

Information can also be recorded on and read from reels of magnetic tape mounted on tape handling
units connected to the computer. Because magnetic tapes have a high capacity for information and are
comparatively inexpensive, they may be used as an extension of the internal store of the machine; they
have the advantage that individual reels of tape may be removed from the handling units and stored away.
The information on them is available for subsequent use and may be read back into the computer rapidly
when required.

Automatic control of all computer operations is possible because the steps required to perform a
particular computation can be worked out in advance and a set of corresponding instructions to the
computer can be held in the internal store. This set of instructions is referred to as a program. The
control unit accepts and calls for instructions from store in sequence, interpreting each one and initia-
ting the appropriate operations. Certain machine instructions are available to call for instructions out
of the normal sequence, possibly as a result of some logical comparison of quantities in store, and a



versatile program is thus possible. The complete set of instructions which a particular computer can
obey is referred to as its basic order code Or instruction repertory.

2.2 Characteristics of computing tasks

The operating speed of a computer is such that many thousands of instructions can be obeyed every
second. Clearly a program to run for any length of time must be of a repetitive nature, so that the
number of instructions required in store, as distinct from the number obeyed, is not excessive; tasks
suitable for automatic computation have therefore certain characteristics. These are perhaps best
illustrated by a few examples.

(a) Matrix manipulation. Matrix operations involve a large amount of computation, but this consists of
many repetitions of identical calculations on rows and columns in a systematic manner. Provided only
that the actual elements of the matrices are themselves stored systematically, a program can be arranged
which consists of loops of instructions obeyed repeatedly, referring to the elements in turn in an
orderly manner.

(b) Engineering design. If the performance of some item of equipment can be represented by a set of
equations involving a number of variables, the solution of these for even one case may take some time,
To use the computer will save effort, but of greater importance is the fact that the calculation can be
repeated automatically for various sets of values qf certain of the variables, to permit proper evalua-
tion of the design.

(c) Analysis of test results. Experimental work frequently produces large quantities of test data,
which requires processing of a tedious and complex kind. Using a computer may be the only way to take
full advantage of all the information produced by the test, and to perform adequate statistical analysis.

Numerous other examples could be taken from commercial, mathematical, scientific and engineering
fields: construction of tables, payroll, stock control, analysis of structures, solution of sets of
differential equations and so on. These various problems have characteristics coming under one or more
of the following headings, They may involve:

(i) repetitive and iterative calculation,

(ii) a volume of calculation large in relation to the volume of input data,
(iii) a large volume of input data previously automatically recorded,

(iv) large “files” of data to be maintained and updated for periodic analysis.

Many of the so-called commercial applications have characteristics covered by the last heading.

Because input data must be in a form acceptable to existing input devices, certain problems would
not normally be programmed for automatic computation. For example, if several thousand test results
were recorded in written form, and the amount of processing required was small, it would not be
justifiable to undertake the work of punching the data on to cards or tape in order to occupy a computer
for a few seconds. When it is desirable to use a computer for otherwise tedious and time consuming
elementary processing some method must normally be found to record the data automatically when it is
first obtained.

2.3 Automatic programming languages

In order to write a program to solve a particular problem, a procedure must be devised which can be
written in terms of the operations for which instructions exist in the basic order code. Instructions
are held in the internal store of the machine as groups of binary digits just as are all other quantities;
different combinations of digits denote different operations, and part of the function of the control
unit is to decode these combinations and initiate the corresponding operations. Because of its
specialised form the order code is not quickly learned and its effective use requires a detailed
knowledge of the internal workings of the computer; furthermore, to carry out quite simple calculations
the machine may have to obey a whole sequence of instructions, so that writing a program in basic order
code is a lengthy task. Generally speaking, such a program will be written by a specialist programmer.

To allow a non-specialist to write programs a number of automatic programming languages, such as
FORTRAN, have been developed. A problem-solving procedure is written as a series of statements and
declarations having a general resemblance to algebraic formulae and English sentences, and a special
program used to translate these statements into basic order code. In effect the computer is transformed
into a machine with which communication is made in a simpler language than basic order code. The program
written in the original language is referred to as a source program; the program which performs the
translation is the compiler or translator; the set of machine instructions resulting from the translation
is referred to as the object program. In the FORTRAN system the translation process is carried out
essentially once only: when it is desired to run the program it is the object program which is fed
into the computer and which actually reads data and executes the computation.

Among the advantages of using an automatic programming language may be mentioned the following.
Firstly, the individual statements in the source program represent quite powerful sections of
computation - they may be translated into dozens of machine instructions. Secondly, quantities involved
are referred to by convenient names. Thirdly, the forms of statement allowed are easily learned. There
is consequently a considerable saving in the time taken to write a program; as a whole the program is a
fairly readable document, and alterations in the program are easily and conveniently made. Lastly, the
user need know very little of the method of working of the computer, except to have some idea of the
merits of the various forms of input and output, and so need not be a computer specialist.

29 =



It must be realised that solving a problem using a computer is not simply a matter of writing a
program. The problem must be defined and the objectives of the program decided upon; the mathematical
methods to solve the problem must be chosen and expressed in terms of the simple operations of which the
computer is capable. This is the field of numerical analysis. Furthermore, the computer obeys only
the instructions with which it is supplied, and is not capable of exercising judgment unless given
explicit instructions to make certain comparisons and decisions. Consequently the procedure devised for
solving a problem must be sufficiently detailed to cope with all forseeable circumstances. Finally, it
is worth remarking that even when a program is finally written, it is unlikely to contain no mistakes
and to work correctly when first tried. The process of translation may show up errors, and the transla-
ted program must be thoroughly tested before it is used for regular production work.

2.4 Block diagrams

Regardless of the language used to express a problem-solving procedure, the steps of the procedure
must be clearly thought out before the program is written. The next few sections indicate ways in which
procedures may be devised which are suitable for automatic computation. No reference is made at this
stage to FORTRAN.

An aid to visualising a problem of any complexity is the block diagram. This is a diagram made
up of a set of boxes of various shapes, each containing a description of some operation, linked by
arrows showing the flow of control between operations.

A rectangular box is used to indicate a processing operation and an oval box an input or output

operation. A series of such boxes linked one following another indicates a straightforward sequence of
operations.

Example 1
A section of program is to read in six numbers a,b,c,d,p,q and evaluate the quantities
pd ~ gb ga — pc
r = ——— and s = —
ad - be ad - bc

A block diagram outlining the necessary steps is shown in Fig.1.

\

(Read apbicHasD, q)

D = ad - be
Y
pd - gb
r =
D
Y
qa - pc
S =
D
J275

Note that the expression (ad — bc) is calculated once only.

2.5 Programming Techniques

2.5.1 Decisions. At certain points inall programs it will be necessary to follow different paths of
computation according to the results of comparisons or decisions. A diamond-shaped box is used to
indicate a decision.

Example 2

In example 1 the calculation will break down if ad - bc = 0. Suppose that the program is intended
to check this value, and to branch to a part of the program termed Error if it is zero. Then the block
diagram can be enlarged as in Fig.2.

The paths leaving the decision box are labelled to indicate the nature of the decision. A
circular box is used to indicate a connection to another part of the diagram.



Cﬂead a,b,c,d,p, QD

gqa - pcC

+

Eyg?

Example 3
At a point in a program it is required to evaluate

’ [2 sinf - tﬂn@]2
" L1 + sinf tanf]

for some previously calculated value of & lying between ~77/2 and +77/2. The programmer will be satisfied
with the accuracy obtained by assuming sinf = tan@ = 6 if € < .05 radians, and small values of & are
expected to occur sufficiently often to make the time saved by using this approximation significant.

2sinf - tanf
1 + sinftanf

1P &

The colon in & : .05 is used to indicate a comparison, and again the result of the decision is
shown by labelling the exit paths.

Example 4
A program is to follow one of three different paths according to the value of (b2 - 4ac), which may
be negative, zero or positive.



Fig. 4

2.5.2 Loops. A sequence of instructions obeyed repeatedly is termed a loop.

Example 5

A program is to read a set of three numbers b,c,A (A # 0) and to calculate and print the values
of a = V(b2 + ¢? — 2bc cosA) and A\ = # bc sinA; it is to repeat these operations for further sets of
three numbers,

Read b, c,A )

a = /{b2 + ¢? = 2be cosA}

Y 4

A= %be sinA

Y

Print a,0

Fig.5

Clearly this program will never leave the loop, and will come to a stop when no further sets of
three numbers are available for reading at the input device. This form of program is not recommended,
since a program in general should always follow through particular paths from the start to some
recognised and definite end.

Example 6

One method of leaving this particular loop is to read a set of three numbers which are all zero,
after the required sets have been dealt with. The program can test for A = 0 and terminate when this
value appears.

START

Yes

N
\o/

(e \/{b2 + ¢2 - 2bc cosA}

| END I b

[A = %he sinAJ
4

}

( Print a,A )

Fig.6

= 5



In this diagram square boxes have been used to indicate starting and stopping points of the program.

2.5.3 Counters. Another method of leaving a loop is by testing and incrementing a counter each time
round the loop.
Example 7
80 numbers x,, Xy, ..., Xgq are to be read and the means
= ) ) .
X e (R X S e Y
80 1 2 80
and
1 3
N e 2 2 )
X V%O (G2 e 25 = o o Xgo )

calculated. A possible block diagram is shown in Fig.7.

Two quantities, called here SUM and SUMSQ, are accumulated; these are zero at the start and as
each number is read in, its contribution to these sums is added. The program sets up a counter i which
runs from 1 to 80; when i reaches 80 the loopis left and X and X are calculated.

START

7/]
[
Gt
i n
o

A

Add x; to SUM

Y

Add x? to SUMSQ

No

Add 1 to i >

y




Phrases such as “Add 1 to i” are clumsy to write. It is customary to write *“i = i + 1” having the

meaning “set a new value of i equal to the old value of i plus 1”. Similarly, it is usual to write
“SUM = SUM + x;” and “SUMSQ = SUMSQ + x;°”.
Example 8

It is required to print a table of values of n and the corresponding values of m = 100 nk, for the
integral values of n running from 1 to N, N being read in by the program. k is to be determined from a
value M (< 100) also read in, so that m = M for n = 2.

START

( Print n,m

Is n = N? S n=n#+i1l

Yes

END

Fig.8

In this example there is no need for a separate counter, since the variable n itself fulfils
this function. The number of repetitions of the loop is not fixed, but is specified in the input data
to the program.

2.5.4 Iteration. A loop may be an iterative loop, in which a calculation is repeated until
sufficient accuracy has been achieved according to some criterion; the loop is then left and the program
proceeds to the next section.

Example 9
Part of a program is to calculate e from the series

1
G ERUIL 82 o p et 3 RN AR
1! 2! 3!
by direct summation of successive terms up to and including the first term to have magnitude < 10'8.

all subsequent terms being dropped.
The sum of the first two terms is obviously 2 and each subsequent term is derived from the

previous one simply by dividing by a counter n.



Set e = 2
Y
Set TERM =1
Y
Set n = 2
Y
TERM = TERM/n
Y

Fig.9

2.5.5 Arrays and subscripts. The power of automatic programming languages is increased by facilities
provided for using subscripts; these allow the use of one name to represent a set of quantities, an
individual member of the set being referred to by the use of a subscript or subscripts. The entire set
of quantities is called an array; each member of the array is an element. Arrays may have 1, 2, 3 or
perhaps more dimensions. A
For example, a vector (X,,X,...,Xgy) may be thought of as a one-dimensional array called x, having
80 elements. To select one element x; requires a single subscript i. A rectangular matrix B having
m rows and n columns is a two-dimensional array, with a total of m x n elements. To select an

element requires two subscripts; the element in the i th row and j th column may be referred to as
Bzl i1

'" The great advantage of using subscripted variables is that programmed loops may be set up to
perform operations on the elements of an array in a systematic manner; at each repetition of a loop
different elements may be selected simply by increasing the value of a subscript or subscripts in a

systematic manner, the actual name used to refer to the elements remaining unchanged.

Example 10
The scalar product P of two vectors A and B, each with N elements, is required. In
N

mathematical notation, P = 2 A, B
=i

i

Fig. 10



Example 11
Operations are to be performed on elements of a square array A, size n by n , in which all
elements in the upper triangular half are zero, that is Ai,j =0 when j > i . Obviously the elements

of A could be stored as a two-dimensional array and referred to straightforwardly by two subscripts,
but this is a waste of storage space if the program takes advantage of the known zeros and avoids
referring to them. To save space the non-zero elements only can be stored as a one-dimensional array
in the order

A A A

A A

1 e O [ i O O Xt 13 0 | A A T1 I TT

This has in(n + 1) elements and an element Ai'J(i < j) occupies the kth position where
k = %(i - 1) +3j . Thus element Aj j may be referred to simply as Ay ; this is an example of the
use of a subscript which is supplied as an arithmetic expression rather than as a single integer.

2.5.6 Nested loops. Loops within loops are referred to as nested loops, and are of frequent use.

Example 12

The moment of inertia of a certain angle section about a particular axis is given by the approximate
formula

4 4
1 = ;d% - 2d%2 + — 4t® inches"
3

where d,t are dimensions in inches.
It is required to vary t from .05 to .15 in steps of .01 and to vary d from 1.00 to 4.00 in
steps of .05, calculating I for all possible combinations of t and d . The answers are to be

stored as an array having 61 rows corresponding to the values of d , and 11 columns corresponding
to the values of ¢t .

Set d = 1.00
il
Set t = .05
g =it
\

CRERLIR 0]

JR=foR

Fig. 11



From Figure 11 it can be seen that the initial values d = 1,00 and i =1 are first set up, and
held unchanged while the inner loop is repeated 11 times with t taking the required values .05, .06,
...... , .15 successively. When the inner loop is left for the first time, as determined by the counter
j , the elements of the first row of the array have been calculated and stored. The outer loop is then
traversed to obtain the next value of d , and to increase the row counter i by 1 ; starting values
of t and j for the inner loop are reset and the inner loop traversed again 11 times. This process
is repeated until the outer loop has been traversed the required 61 times.

Example 13

Given a rectangular matrix W, size m by n , it is required to form the vector MAX with n elements,
the i th element being equal to the element of largest modulus in the i th column of W .

There are two loops: an inner loop to scan a column and find the required element, and an outer
loop which arranges for the inner loop to deal with each column in turn. A quantity t has been
introduced in the inner loop to make the logic clear; it holds the element of largest modulus found
so far during the scan of one column, and at the end of the scan the number t is transferred to the
appropriate position in the vector MAX.

Set j =1
el
Y
Set t =0
il =4l

Fig. 12

Note that the logic of the flow of control does not break down if W has only one row or one
column, or if all elements in one column are zero.

2.5.7 Subroutines. In large programs, it may be necessary to perform the same section of computation
at various points; writing the required instructions at length at each required point will obviously
waste both the programmer’s time and machine storage space. It is possible to define the required
computing procedure once only as a self-contained section of program, known as & subroutine, subprogram
or procedure, and to arrange to call this procedure into use whenever desired. Generally speaking, the
calling program will have to provide the subprogram with a list of the quantities on which it is to
operate at each occurrence, and the subprogram will return to the calling program with one or more
computed results., There are, however, many variations in the way subroutines are written and used, and
detailed consideration will be left to later sections.

- 10 -




Example 14
P(Z) and Q(Z) are defined by the equations

2000 - z\*
g((EEE= 7 < 2000
P = { 500
11 Z 2 2000
and (.0045Z — 0.5 x 10-22 Z < 1000
Q =3
. 00352 + 0.5 Z > 1000

A self-contained subroutine may be written which evaluates P and Q , given Z . Then if P and
Q are required at several points in one program, this subroutine may be called into use at each point
to return to the main program the values of P and Q as determined from the current values of 2Z .

START
< >
Y i
P=1+(4-.002)" P=1
| ]
< >
Y \
Q = .0045Z - 0.5 x 10~ 2% Q= .0035Z + 0.5
1 ]
\
RETURN
Fig. 13

2.6 Integers and real variables

Although the user of an automatic programming language is not generally concerned with the method
of storing a number inside the computer, the fact that it is represented by a group of binary digits
of finite length leads to certain restrictions on size and precision which must be understood.

Two types or modes of numbers are considered here - integer and real, sometimes referred to as
fixed-point and floating-point respectively. Integers are represented in the computer exactly; they
can take on only integral values, and arithmetic operations on integers lead to integer answers. The
maximum size of integers allowed depends on the machine and language being used, but for Atlas and Orion
is in excess of 101°,

The majority of numbers used in computation will be stored in real form. These are represented
in a manner similar to the mathematical notation in which a number is treated as a fraction between 0.1
and 1.0 times a power of ten (the mantissa and exponent respectively). The mantissa is restricted to
a precision of about 11 decimal digits, and the exponent has sufficient range to represent numbers much
larger than those which will normally occur. Floating-point arithmetic as carried out by the computer
automatically handles the position of the decimal point.

It should be appreciated that most fractions have neither a? exact decimal nor an exact binary
representation. For instance, if the decimal representation of 5 to eight significant digits is added
to itself 3 times, the answer is .99999999 and not 1.00000000, and a computer performing this operation
would not arrive at the answer 1 exactly; for most practical purposes this lack of exact equality is
unimportant, the answer being accurate enough. It can be important under some circumstances. In
examples 7, 10, 12 and 13 above, for instance, the counters 1,j involved would be stored as integers.
In example 12, the program would be theoretically quite satisfactory if the tests “Is j = 11?” and
“Is i = 61?" were replaced by “Is t = .15?” and “Is d = 4,00?". But t and d would be real
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variables, and the increments .01 and .05 are not exact binary fractions. Consequently t would never
exactly equal .15 and the program would repeat the inner loop indefinitely.

As another illustration, the equality ad — bc = 0 in example 2 is unlikely to be satisfied
exactly, and in practice the test would probably be replaced by something like “Is |D < 107797,

Exercises 2
Draw block diagrams for the following:

I Part of a program to form from the two-dimensional array Z (size p by q) the array S defined by

q

S T e T T T, e B L
k=j
s A program to read the number b(2 1) and calculate and print out successively the first seven
positive roots of the equation
becosx = 1- 3%

correct to 6 decimal places. The program is to repeat this calculation for other values of b , until
a value b =0 is read indicating the end of the problem.

Hints: Determine the approximate location of the roots.
Let the program make a first guess at each root, and refine this guess using Newton' s method.

3 A subroutine to perform linear interpolation as follows.

A graph y = f(x) 1is represented by storing a vector of ordinates x;, X, ..., X, in ascending
monotonic order and a vector yi, Y2, ..., ¥p of corresponding values of f(x) . Given a value of x,
the subroutine is to calculate a corresponding y by searching the list of ordinates and interpolating
linearly between the two values y,; , and y; where xj_; <xSx3. If x<xjo0rx>x the

program is to go to an error routine.

3. FORTRAN ARITHMETIC

3.1 Statements

A FORTRAN program or self-contained section of program may be termed a routine, and takes the form
of a series of statements having a general resemblance to algebraic formulae and English sentences.
Some of these call for the execution of particular steps in the computation and are termed executable
statements; others are non-executable and declare certain information about the quantities and procedures

involved in the program. These are termed declarations and will frequently be placed at the head of a
routine.

3.2 Assignment of values
A simple executable statement is

A = 4.5 +X

This is an example of an arithmetic replacement statement, having the meaning ‘“Assign to the variable
called A a value equal to 4.5 plus the value of the variable called X ” . Before the statement is
executed, X must already possess a value (probably assigned by some previous statement); on the other
hand, A may be undefined until the execution of this statement. Thereafter, A will hold its value
until later execution of some statement replaces it by a new value. The value of X is unchanged
after the statement has been obeyed, since no new value has been assigned to it.

Note particularly that the = symbol denotes assignment or replacement rather than equality. The
value of the expression on the right-hand side of this symbol is computed and an assignment of this value
is then made to the variable on the left-hand side. For instance, the statement

I =G|

has the meaning ‘“Assign to the variable called 1 a new value equal to its old value plus 1”. Other
simple examples are:

P = -P equivalent to changing the sign of P
P =4Q which sets P equal to Q
PI = 3.14159 which sets the value of the variable called PI equal to 3.14159

Simultaneous or multiple assignment with more than one variable on the left-hand side is allowed.
For example, the statement
LA 20

assigns the value 2 to both I and J .

A, X, I, J, PI and so on above are vartables referred to by names, their actual values being
determined during the course of execution of the object program. The numbers 4.5 and 3.14159 on the
other hand, are constants appearing in explicit numerical form in the source program.

3.3 Identifiers

The names chosen for variables are termed identifiers. An identifier is a string of not more than
six characters, the first of which is alphabetic and the remainder either alphabetic or numeric. The
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alphabetic characters may be any of the 26 upper case letters of the alphabet A to Z. In general,
identifiers may be freely chosen, but a few are used for purposes such as naming special functions and
these should be avoided.

Examples of acceptable identifiers are

Z XX MASS JOBNO M2K ROOTI  ROOT2

Note that the numbers 1 and 2 are specifically parts of the last two identifiers; they are not subscripts
but merely serve to distinguish between two variables for which it is convenient to choose similar names.

One of the functions of the compiler is to assign storage locations for each identifier occurring in
a program; actual machine instructions compiled in the object program refer to these storage locations.

3.4 Mode declarations
Arithmetic variables in a FORTRAN program may be in one of two modes, INTEGER or REAL. The
compiler may be informed of the modes of variables by declarations of the form

REAL  MASS, KAPPA
INTEGER  TIME, COUNT, A200

These declarations are made at the beginning of a routine and apply throughout. A variable whose mode
is not declared in this way is assumed to be of mode INTEGER if its identifier begins with I,J,K,L,M or N
and of mode REAL if its identifier begins with any other letter.

For instance, identifiers such as I, JOBNO, ICOUNT denote variables of mode INTEGER and identifiers
such as A, THETA, P2 denote variables of mode REAL without specific declaration. (Two other types of
arithmetic variable are possible, namely COMPLEX and DOUBLE PRECISION. These will not be further
discussed in this primer.) Declarations serve to provide the compiler with necessary information; they
are not statements which are acted upon when the compiled object program is actually obeyed.

3.4.1 Precision and size. Quantities of mode INTEGER may assume values within the range:
for Atlas  -812 <1 < 8'? (-10%° <1 < 10'° approximately)
for Orion 287 <1 < 947 (-10'% <1 < 10" approximately)

Quantities of mode REAL may be zero or have absolute magnitude lying between approximately:
for Atlas 10"115 apd 10**°
for Orion 10°%% and 10°°

The precision of REAL numbers is about 11 significant decimal digits.

3.5 Constants

An unsigned constant may be written in a FORTRAN program as a string of decimal digits, with
possibly a decimal point before all digits, between two digits or after all digits, and possibly
followed by an exponent part consisting of the character E followed by an optional + or - sign and a
decimal integer. The exponent part gives the power of 10 to be applied as a scale factor.

Only if there is neither an exponent part nor a decimal point will the constant be taken as an
INTEGER; it will otherwise be stored in REAL form.

Examples
INTEGER constants 0
12
54796
REAL constants 0.
2.0
.5E+6  having the value 0.5 x 10°

0.4516E1 having the value 0.4516 x 10!
45.16E-1  having the value 45.16 x 10”1

3.6 Arithmetic expressions

The right-hand sides of the replacement statements in paragraph 3.2 are simple examples of
arithmetic expressions. FORTRAN provides for five arithmetic operations, denoted by the following
symbols.

exponentiation ** e.g. A ** 2 means A®

multiplication * e.g. A * B means A multiplied by B
division // e.g. A/B means A divided by B
addition +

subtraction -

- 13 -



Variables and constants may be combined using these symbols to form arithmetic expresstons, using
parentheses where necessary to group quantities together to indicate the order of evaluation, as in
ordinary mathematical notation. The following simple rules must be observed to avoid ambiguities.

(a) The multiplication symbol must be used when multiplication is intended. (For instance, the
compiler will assume AB to be a single variable called AB and not the product of two variables
A and B.)

(b) Two operation symbols must not appear in sequence. (For instance, one must write A * (-B)
or -A*B and not A * -B.)

(c) The hierarchy of operations within an expression is as follows:
exponentiation
multiplication and division
addition and subtraction

That is, all exponentiations are performed first, then all multiplications and divisions and
then all additions and subtractions. Parentheses are used to override this natural order. A
set of constituents linked by operation symbols at one level of this hierarchy is termed a
segment; the segments of an expression are evaluated one by one in the correct order.

Examples

A + B*C + D, meaning the same as A + (B*C) + D, is an expression with two segments.
The segment B*C (= Bl, say) is evaluated first and then the segment A + Bl + D .

(A + B)*(C + D) is an expression with three segments. (A + B) and (C + D) are
evaluated first and then the product is evaluated.

(A + B)**4 meaning (A + B)u and A + B**4 meaning A + B® are expressions each
consisting of two segments.

(d) Within one segment, the meaning of a sequence of operations is that obtained by evaluation from
left to right.

Examples
A/B*C means the same as (A/B)*C
A/B/C means the same as (A/B)/C and may be written alternatively as A/(B*C)
A -B-C means the same as (A - B) - C

(e) A sequence of exponentiations is an ill-defined notation; the compilers will indicate a trivial
error, but apply rule (d). However, (A**B)**C is better written as A**(B*C) and
parentheses must be used if A**(B**C) is required. Note that a REAL base may be raised
to a non-integer power (provided that the value of the base is never negative). Thus A**B,
where A and B are of mode REAL, is a legal expression.

3.7 Mode of expressions

Generally all the constituents of an expression will be of the same mode. If all are REAL, the
compiler will produce instructions to evaluate the expression using floating point arithmetic throughout
and the complete expression is of mode REAL. Similarly if all constituents are INTEGER, then integer
arithmetic is used throughout and the complete expression is of mode INTEGER,

Note that integer division is rounded towards zero. For instance, I/J will have the value zero if
1 =43 and J =14 .

If some constituents of an expression are REAL and some INTEGER, then the value depends upon the
mode of its segments. If all constituents of a segment are INTEGER then the segment is treated as an
INTEGER sub-expression and its mode is INTEGER. Otherwise any INTEGER constituents are converted to
REAL form except when a REAL constituent is raised to an INTEGER power, and the segment treated as a
REAL segment. Typical uses of mixed mode occur in the following expressions, where A,B,C are REAL
variables.

A+B-2 is a REAL segment. The integer 2 is converted to REAL
form before evaluating the segment.

B**2 — 4*A*C is a valid expression with three segments. The integer 4
is converted to REAL form before evaluating the product
4*A*C.

(A+2) * (B+3) The integers 2 and 3 are converted to REAL form before

evaluating the segments (A+2) and (B+3).

Error is most likely to occur in a situation such as the following. If it is required to form the value
A - % , the expression A - 5/3 will give the wrong answer, because 5/3 is an INTEGER segment having
the value 1 when rounded towards zero. The expression may conveniently be written as A - 5.0/3.0 or
A -5/3. or even A -5/3 * 1.0

3.8 Functions

Certain common mathematical functions are provided in the FORTRAN language, and are given standard
names. These are listed at the end of this chapter. Typical functions are square root (SQRTF), natural
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logarithm (LOGF) and sine (SINF). (Functions may also be defined by the programmer; rules for
constructing these are given in section 8.)

The name of a function it is desired to use is followed, in parentheses, by an expression whose
value is to be determined and used as the actual argument of the function. Certain functions operate
on two or more arguments: the expressions supplied as actual arguments are then listed separated by
commas. A function computes a single value and may be used as a constituent of an expression wherever
a variable or constant may appear. An argument of a function, being an expression, may well involve
references to other functions or to the same function.

Some examples of expressions involving functions follow.

1 + LOGF(A + B)
(-B + SQRTF(B**2 — 4*A*C))/(2*A)
LOGF(SINF(X) + COSF(X))

SQRTF(SQRTF(Y))
AMAXF(2*A, 3*B, C/2)

3.9 Arithmetic statements

As indicated in paragraph 3.2, an arithmetic replacement statement is an instruction to compute
the value of the arithmetic expression written on the right-hand side of the symbol =, and to assign
the value to the variable (or variables) on the left-hand side.

If the mode of the expression is INTEGER, but the variable is of mode REAL, the necessary
conversion is made automatically. Thus the statement A = I 1is treated as A = FLOATF(I) .

The programmer is advised to avoid statements requiring the assignment of the value of a REAL
expression to an INTEGER variable, unless the form of truncation required is specified by using one of
the standard functions INTF, NINTF or IFIXF. Thus the statement I = NINTF(A) is quite acceptable and
unambiguous. (The reference manuals give details of the behaviour of the compiler in ambiguous situations
created by statements such as I = A.)

In Orion FORTRAN the variables appearing on the left-hand side of a multiple replacement statement
must be all of the same mode, either all REAL or all INTEGER. This restriction does not apply to Atlas
FORTRAN, subject to the qualifications of the previous paragraph. Thus the statement SUIM, I =0 is
valid on Atlas but not on Orion.

3.10 Lists of standard functions
The tables overleaf list the principal standard functions.
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FUNCTIONS WITH ONE ARGUMENT
X denotes a REAL argument;

I denotes an INTEGER argument.

Mode Mode
Name of of Definition Notes and examples
result argument
SQRTF R R Positive square root of X
SINF R R Sine of X Argument in radians
COSF R R Cosine of X = b 4
TANF R R Tangent of X : 'l 4
LOGF R R Natural logarithm of X
EXPF R R Exponential of X
TANHF R R Hyperbolic tangent of X Not available in Orion FORTRAN
ASINF R R Arcsine of X i.e. sin™’X Result in radians -7/2 < result < 77/2
ACOSF R R Arccosine of X i.e. cos™!X Result in radians 0 < result <7
ATANF R R Arctangent of X i.e. tan™'X Result in radians -77/2 £ result < 77/2
FLOATF R I Convert I to floating form (real form)
IABSF I I Absolute value of I i.e. |I]
ABSF R R Absolute value of X i.e. |X|
INTF I R Largest integer < X Mathematical integral part e.g. INTF(3.7) = 3
AINTF R R Largest integral real value < X Equivalent to FLOATF(INTF(X))  INTF(-3.7) = -4
IFIXF I R Sign of X times largest integer < |X| Equivalent to INTF for positive X e.g. IFIXF(3.7) = 3
FIXF R R Sign of X times largest integral real Equivalent to FLOATF(IFIXF(X)) IFIXF(-3.7) = -3
value < |X|
NINTF 10 R Nearest integer to X e.g. NINTF(3.7) = 4 NINTF(3.2) = 3 NINTF(-3.7) = -4
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FUNCTIONS WITH TWO ARGUMENTS

X1, X2 denote two REAL arguments; I1, I2 denote two INTEGER arguments

Mode Mode
Name of of Definition Notes and examples
result arguments
ISIGNF I I Sign of 12 times IABSF(I1) e.g. ISIGNF(10, -4) = -10 ISIGNF(-10, -4) = -10
SIGNF R R Sign of X2 times ABSF(X1)
IDIMF I I I1 - 12 if I1 > 12, otherwise 0 e.g. IDIMF (5, 3) = 2 IDIMF(3,5) = 0
DIMF R R X1 - X2 if X1 > X2, otherwise 0 IDIMF(-7, -8) =1
MODF I i I1 - I2 * IFIXF(11/12) e.g. MODF(7, 3) = 1 MODF(-7, 3) = -1
AMODF R R X1 - X2 * FIXF(X1/X2)

FUNCTIONS WITH TWO OR MORE ARGUMENTS

.l B Gl denote REAL arguments; I1, I2, I3 .... denote INTEGER arguments
MAXF ) I Largest of I1, I2, 13 .. i.e. algebraically largest
AMAXF R R Largest of X1, X2, X3 .. " ul r
MINF I ] Leastrof el ET2 a5 i.e. algebraically least
AMINF R R Least of X1, X2, X3 ... " " g




Exercises 3

1. Which of the following are unacceptable identifiers? If no specific declarations are made, what
is the mode of each acceptable identifier?

B(1) TEMP JCOUNT
A2.4 3K A
WEIGHT T~STEP U2

BBB DISTANCE SUM

2o Express the following numbers without writing an exponent part.
12E2 1.473E + 2 0.0321E - 6 125.67E4

35 Write FORTRAN expressions corresponding to the following expressions written in conventional
mathematical notation.

A+a (A +B) (C+D
(G1%) (vi) —me—————
2B E+F
1A oy _—
(Gl B +~— (vii) AX + BX® + —
i 7 D
A Bl S
(iii) 3(A + B) (viii) ( )
A+1.5
%
A
(iv) (B? + 2DxE)? (ix) 1og(———)
B(C + D)
) AJ+1

4, Write arithmetic statements to perform the following steps of computation. Use the names of the
variables in the formulae as identifiers, changing to upper case letters where necessary.

1
(i) SUM = 9 N2 (N +1)2 (N is an integer)
27 a%d ~ 9abc + 2b°
(ii) = 3
27a
b-c A
(F1SIEI0) BT = cot —
o) S 2
’(s—b) (s—¢)
(iv) T=|——
s(s-a)
(v) S = log[l + \/(1+x2)J - log x

(vi) INT =% sec x tan x + % log (sec x + tan x)
(vii) Area = 77(R + S) vh? + (R-S)2

_h (4R - h)
4 (3R - h)

(viii)

(ix) z =y = e* cos 2x

(x) z = log
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5. Indicate the error in each of the following would-be arithmetic statements.

(@HENASSIBEEN G0N
(ii) A =B/ - 2*C
(iii) A = (B+1) (C-1)
(iv) A = 4 LOGF (A + 0,2)
(v) A = SQRTF (B + 2*(C+D)

(vi) A+2 = (B+C) / (-B+C)
(vii) A = 4/3 * 77 * R**3

63 A=4,0, B=-6,0, C=2,0and D= 5,0 are real variables. I = -4, J =1 and K = 3 are integer
variables.

Evaluate the results of the following statements, where X, Y are real variables and N is an integer
variable.

(i) X = (A**1.5+2) /B* D
(i1) X = C* (D-C) / (2*A)
(ii1) N=1 +J/K + I/K
(iv) N=K +1/ (J-3)
(V) Y, X = -B + C**(K+1)
(vi) X = (B+C/I)** 2
(vii) N = INTF((B + 2 * K/I)/D)

4. THE WRITTEN FORM OF A" FORTRAN PROGRAM

4.1 Standard programming form

The statements of a FORTRAN program are written on a standard programming form: the program is
presented to the computer in some representation of its written form, for example as punched cards or
paper tape, for translation by the compiler into the object program which will actually carry out the
processes specified in the source program. Besides performing the translation, the compiler will print
out a listing of the source program exactly as input; this considerably eases the problem of
documentation.

A typical programming form is shown in Figure 14. Each line of the form accommodates 80 character
positions, corresponding to the columns of a punched card. (The meaning of some of the statements in the
example written on the form will be explained in later sections.)

PROGRAM TITLE: DATE: SHEET:
FORTRAN CODING FORM
Fig.14 : EXAMPLE AUTHOR:
G ol ganliye FORTRAN STATEMENT ghaediLed LARLy - i
w PROGRAM FOR EXAMPLE 6, SECTION 2
1 READ 100, 4, B, C
100 FORMAT (3F10.0)
IF (A),EXIT, 77 DETECT END OF DATA
Al = SQRTF (B**2 + C**2 — 2*B*C*COSF(A))
DELTA = 0.5*B*C*SINF(A)
PRINT 101, A1, DELTA
101 FORMAT (2E20.8)
GO TO 1
END

Fig. 14
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4.2 Statements

Each statement is started on a new line, and may be continued on as many lines as necessary. It is
confined topositions 7 to 72 of each line. In the first (or only) line of any statement position 6
must be zero or blank; continuation lines are indicated by writing in position 6 some character other
than zero or blank. (They may, for instance, be serially numbered in position 6.)

The nature of a statement must be completely defined by its first line, which places slight
restrictions on the use of continuation lines. For instance, in a multiple replacement statement
the = symbol must appear on the first line.

4.3 Statement numbers

Some statements in a FORTRAN program require labelling with a statement number, which may have any
value up to 99999; it is written anywhere in positions 1 to 5 of the first (or only) line of the
statement. No particular significance is attached to the order or size of statement numbers; they
provide simply a convenient means of labelling.

4.4 Comments

Comments may be used to improve the intelligibility of a program to anyone who may have to read it.
They are ignored during compilation and make no contribution to the resulting object program. A comment
may be a complete line introduced by the character 77 (or C) in position 1, or that part of a line
including and following the character 77 in any of the positions 7 to 72. Comments will normally be
written between statements, but the occurrence of comment does not in fact indicate the end of a statement,
which may continue on the following line.

4.5 Blanks

Blank spaces are ignored by the compiler (except in position 6 and in certain situations using
constant TEXT which will be mentioned later); they may be freely used to improve legibility by insetting
lines, leaving blank lines and separating symbols and names, at the programmer’s discretion.

4.6 Serial numbers

Positions 73 to 80 of each line are ignored by the compiler and may be used for labelling routines
and serially numbering lines as desired.

4.7 Characters
The complete set of characters necessary to write the full FORTRAN source language is:-

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
(OFM=SVA=

To avoid ambiguities and punching errors care should be taken to write legibly and to distinguish
between similar characters such as 1 and I, 2 and Z, 5 and S and the letter O and zero. It is suggested
that letter O be written as O and letter Z as & Every symbol required by the prescribed rules for
writing particular types of statement must be inserted, including commas and other separating symbols.

5. INPUT, OUTPUT AND FORMAT STATEMENTS

In order to read in data and output results, a FORTRAN program will include certain input and
output statements such as READ and PRINT. These are executable statements which will call for data to
be read in or output via some peripheral device. It should be appreciated that apart from those
constants which are peculiar to a program and are the same whenever it is executed, the data on which a
program operates will vary from one execution to another and so cannot be ‘““built in” to the source
program by writing constants in statements. The FORTRAN language provides very comprehensive and
flexible facilities for dealing with data in a variety of forms presented on any of the peripheral

devices. This section introduces the simpler uses of three statements only, namely READ, PRINT and
PUNCH.

5.1 Documents

A program or a set of data recorded on one particular input or output medium may be referred to as
a document. On both Atlas and Orion use of the statement PRINT will produce a document consisting
of printed results from the line printer. Use of the statement PUNCH will normally produce results as
a pack of punched cards, on Atlas, or as punched paper tape, on Orion. The term system output documents
is frequently used to describe these media. The statement READ, used in its simplest form, makes no
reference to any input device; it is then assumed to refer to the system input document, that is the
data is assumed to be found on the same input device as that on which the program is presented to the
computer, which will normally be a punched card reader on Atlas or a punched paper tape reader on Orion.
For convenience further description will be confined to cards.

The operating systems on both Atlas and Orion are very flexible, and variations in the use of
peripheral devices are quite simply catered for; these are usually matters of operating convenience and
do not affect the programmer. The interested reader should consult the reference manuals for details,
and for information regarding the use of magnetic tape and drums to provide large amounts of working
storage.
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5.1.1 Records. Documents are made up of records; one record may be, for instance, a punched card
(length of record 80 characters) or a line of printed matter (length of record 120 characters, preceded
by a special carriage control character which is not printed) or the equivalent of one line of printed
matter on paper tape. Information about the layout of items within records is provided by FORMAT
statements. Such information includes the number of values in one record, whether they are integer or
real values, the number of characters occupied by each value, whether a floating point representation
with an exponent is used, whether a decimal point is explicitly included or its position is assumed, and
so on. FORMAT statements are labelled with statement numbers, and an input/output statement must refer
to an associated FORMAT statement by its number.

5.2 Output Formats
PUNCH 137, A, N, TIME, LINE
137 FORMAT (E16.8, I4, F8.3, I2)

Any input/output statement starts a new record. 1In this example, the PUNCH statement calls for
the current values of the variables called A, N, TIME and LINE to be punched on a new card, according
to the format given in the statement which has been numbered 137. Note that the PUNCH statement quotes
the FORMAT statement number first, followed by an output list of variable names separated by commas.

The punching starts in the first column of the card and proceeds from left to right in consecutive
columns. The values are punched in the order obtained by scanning the output list from left to right -
in this example in the order A, N, TIME, LINE. This scanning process applies also to the FORMAT
statement; each time a new value from the output list is to be punched, the next field specification in
the FORMAT statement is associated with it. Thus the first specification E16.8 is associated with the
value of A, the second specification I4 with N and so on. Note that the list of field specifications,
separated by commas, is enclosed in parentheses. The FORMAT statement is a declaration: it is
frequently but not necessarily written immediately following the input/output statement which refers
to it.

The meaning of the field specifications may be illustrated using the above example; by the term
field width is meant the number of consecutive character positions to be occupied by a number.

(a) The E-type specification indicates that the value of A is to be punched in a floating form with
a mantissa and an exponent. The figure 16 indicates that the field width is to be 16
characters and the figure 8 indicates that there are to be 8 places to the right of the decimal
point in the mantissa.

Typical output: (on Atlas)

value of A actual punching
0.5 bb5. 00000000E-01
-12.12345678 b-1. 21234568Eb01
. 00753261234 bb7.53261234E-03

(The letter b has been used to denote those positions which will contain a blank character).
Features of E - type specification:

(i) The characters are right-justified within the field, that is, they are punched as far
to the right as possible.
(ii) The number is in a standardised form. On Atlas the mantissa lies in the range
1 € mantissa < 10 as indicated in the example above; on Orion it lies in the range
0.1 € mantissa < 1.
(iii) Only minus signs are punched.
(iv) The characters E and decimal point are explicitly punched, and must be included in the
count of characters in the field width.
(v) Numbers are correctly rounded off.

(b) The I - type specification indicates that the value of N is to be punched as an integer.
The field width is to be 4 characters.
Typical output:

value of N actual punching
2 bbb2
-40 b-40

Features of I - type specification:

(i) The characters are right - justified within the field.
(ii) Only minus, signs are punched.

(c) The F - type specification indicates that the value of TIME, a real variable, is to be
punched in a form without an exponent. The field width is to be 8 characters, and there are
to be 3 places to the right of the decimal point.

Typical output:

value of TIME actual punching
14.5 bb14. 500
-373.4567 -373.457
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Features of F - type specification:

(i) The characters are right-justified within the field.

(ii) Only minus signs are punched.
(iii) The decimal point is explicitly punched and must be included in the count of characters.
(iv) Numbers are correctly rounded off.

5.2.1 Incorrect field widths. If the value of a number to be ocutput is such that it cannot be
represented within the field width given in the FORMAT specification, any adjacent field to the left is
not interfered with. On Atlas the value will be partially output with its most significant character or
characters missing. For example, using an I4 specification a value of -1234 will be output as 1234,
losing the minus sign, and a value of 56789 will be output as 6783. On Orion no digits will be printed,
but the field will be filled with + or - signs according to the sign of the number.

5.2.2 Printed output. In the above example the numbers are closely packed on a punched card.

Legibility of printed results is improved by extending field widths so as to include blank spaces
before each number, The upper limit of 121 characters, of which the first is not printed, must be
remembered.

PRINT 12, I, A, B, X
12 FORMAT (16, E20.6, E20.6, F12.3)

A typical line printed by this statement is as follows. (In this and other examples of printed

output in this section and in section 10 a vertical bar will be used to denote the start of a printed
line, which will be aligned with the left hand margin.)

109 -2.456167E 02 2.571663E-01 247.158

5.3 Repetition of field specifications

A useful “shorthand” is available which may be illustrated by rewriting the above FORMAT statement
as

12 FORMAT (16, 2E20.6, F12.3)

The integer 2 signifies that the specification E20.6 is to be used twice in succession during the scan
of the FORMAT statement before passing to the next specification F12. 3.

A group of specifications may be repeated by enclosing the group in parentheses and preceding it
by an integer: such a repeated group may be part of a longer list of specifications.

PRINT 10, K, I, A, J, B
10 FORMAT (15, 2 (I8, E20.8))

Typical output:
| 100 12 -9, 21376254E 02 132 1. 57399897E-04

5.4 Input formats

Input formats are essentially the same as those used for output. However, whereas the field
specifications are rigidly adhered to on output considerable deviation is allowed on input.

The rules may be summarised as follows: -

(a) The field width must be adhered to.

(b) Embedded blanks are illegal in Atlas FORTRAN and treated as zeros in Orion FORTRAN.
Consequently integers and the exponents of floating form numbers must be right-adjusted within
the field.

(c) Plus signs may be punched., If there is no sign a number is taken as positive.

(d) A floating form number is recognised by the presence of an exponent part which must be
separated from the mantissa by either the character E, or by a sign, or by E and a sign.

(e) Numbers in floating form must be input using an E - type specification; numbers without an
exponent must be input using an F - type specification.

(f) The decimal point need not be punched, in which case the field specification gives the number
of decimal places. If the decimal point is punched, its position overrides that given in the
field specification.

Examples
Field specification Input data Value
16 bbb123 +123
bb+123 +123
-56789 -56789
E12.6 bbb12345E+02 +1., 2345
+123. 456Eb01 +1234. 56
bbbb-1234-~02 -. 00001234
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Field specification Input data Value

F10. 4 bbbb456789 +45.6789
bb+4. 56789 +4, 56789
bbbbbbb470 +.0470

5.5 Simple programs

For general use when the size of input data and results is not known in advance, specifications
such as F10.0 for input, and E20.8 for printed output are recommended. The data is punched with an
explicit decimal point to override the F specification, and the results will be correctly printed
regardless of the actual size of the numbers involved, with eight or nine significant figures and
adequate space to provide legibility.

5.5.1 G-Type specification. In Atlas FORTRAN only a useful additional field specification is
provided, namely the G-type field specification, which has the form Gw where w is an integer
specifying the field width. The characteristics of this specification make it particularly suitable for
general output; it calls for output of either REAL or INTEGER numbers within a field width of w
characters. Six character positions in the field are required for the decimal point which is always
included, a minus sign where necessary and an exponent part when appropriate. Consequently w-6
characters remain, and any number will be output with w-6 significant figures (up to a maximum of 12),
the exponent part being required only if the number is of such a magnitude that a decimal point cannot
otherwise appear or is less than 1 so that loss of significant figures otherwise occurs.

Typical output of numbers printed according to the specification G13 is:

value actual printing
463 463. 0000
-4.6372156 -4.637216
0.463721569 4.637216E-01
-463721569 -4.637216E 08
4637215 4637215.

So long as an exponent part is not required the decimal point is allowed to float within the field.
Otherwise the number is output in standard floating form. If w 1is greater than 18, 12 significant
figures are printed and preceding blanks inserted.

Numbers input from a G-type field may be with or without an exponent, and are taken to be REAL.

The number of decimal places is assumed zero if an explicit decimal point is not included in the data.

5.5.2 Fommat-free input

Also in Atlas FORTRAN only, a format statement may be omitted altogether. On input the data is then
format-free, numbers being separated by one or more blanks; all will be treated as REAL. When required,
decimal points must of course be explicitly included. (If no format statement is given on output, then

FORMAT (6G20)

is assumed.)

5.6 EXIT and END

The exercises at the end of this section may be made complete programs by finishing with the two
statements

GO TO EXIT (Atlas) or CALL EXIT (Atlas or Orion)
and END

The first of these is dealt with in the next section. The END statement does not form part of the

program itself, but is a signal to the compiler that the physical end of all the program statements has
been reached.

Exercises 5

Write complete programs to carry out the following simple calculations. The variables involved
are real variables unless otherwise stated. Make suitable choices of identifiers and include any
necessary mode declarations.

1t Read the values of C, E, f, L and R from one card; print out on one line these values and the value
of

E

2 TR
R + (277 fL - ———
( 277fc>

No input quantity will be given to more than 6 significant figures.

I =
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28 Read a positive integer p (< 103) and print out on one line the values of

b

Y i1
p, = n = %p(p+tl) and 2 n? = _p(p+l) (2p+1)
n=1 n=1 6

3% Read the lengths b and c¢ of the two sides of a plane triangle and the included angle A in
radians. Punch on one card a,b and ¢, and on a second card 4, where

a = V(b2 + c? - 2bc cos A)
and 9\ = be sin A.

4, Read the three angles A, B, and C of a spherical triangle and compute the three ‘sides’ a, b
and c¢ from the formula

tan %a =

q/ sin %E sin (A - %E)
sin (B ~ ¥E) sin (C - ¥E)

and the two similar formulae for tan %b and tan %c, where E =A + B + C - 77 (radians).
A, B and C are given in degrees to three decimal places and are to be read from one card. a, b, and
c are to be printed on one line, also in degrees to three decimal places.

6. CONTROL STATEMENTS

6.1 Transfer of control

Execution of a FORTRAN routine starts with its first executable statement, and thereafter
executable statements are taken in the order in which they are written until a specific break in this
order is called for. Just as input/output statements may refer to FORMAT statements by their numbers,
S0 various control statements may specify their successors out of normal sequence by referring to
statement numbers.

The simplest control statement is the unconditional GO TO. For example, the statement GO TO 12
when executed causes control to be transferred to the statement numbered 12.

6.2 Arithmetic IF statements

The most useful control statement is the arithmetic IF statement, which gives a conditional transfer
of control: that is, a transfer which depends upon a computed result. This statement takes the general
form

IF (A) n,, n, n,

A may be any arithmetic expression (a single variable being merely a special case of an expression)

and is enclosed in parentheses. n,, n, and n, are the three possible successors to this statement, not
necessarily all different; control is transferred to statement n; if A <0 , to statement n, if

A =0 and to statement nz if A > 0 . By convention, the next executable statement may be specified as
a successor, if it has no statement number associated with it, by simply omitting nj;, n, or nj as
appropriate: the two commas must nevertheless still appear.

Examples
(a) The statement
1050 (O:0) J1S Slssiols

transfers control to statement 12 if X < 0, to statement 13 if X = 0 and to statement 16 if
X > 0.
(b) The statement
MES(BE¥2] —Vd*AYC)S100°%

transfers control to statement 100 if B? < 4AC and to the next executable statement if B2 2 4AC.

(c) The statement
IF (THETA - 0.5),,10

transfers control to the next executable statement if THETA < 0.5 and to statement 10 if
THETA > 0. 5.

(d) The following section of program is one possible way of solving example 9 of section 2. It
illustrates the use of an arithmetic IF statement and an unconditional GO TO to program a loop.

E=2
TERM = 1
NE=0)
21 TERM = TERM/N
E = E + TERM
IF (TERM - 1E-8) 20, 20,
N=N+1
GO TO 21
20 (next statement of program)

............



6.3 Logical IF statements

Two arithmetic expressions A and B may be compared by using a relation which may have one of
six forms.

A.GT.B meaning A > B
A.GE.B meaning A 2 B
A.LE.B meaning A < B
A.LT.B meaning A < B
A.EQ.B meaning A =B
A.NE.B meaning A # B

A relation is said to have a logical value, either .TRUE. or .FALSE.
A logical IF statement takes the general form

IF (A) n,, n,

where A 'is a logical expression. (See section 9) In particular, A may be any relation; control is
transferred to statement n; if A has the value .TRUE. and to statement n, if A has the value
.FALSE. The next executable statement may be specified as a successor by omitting either n; or n;

as with arithmetic IF statements.

Examples
(a) IF (A.EQ.0) 9, 15
transfers control to statement 9 if A = 0 and to statement 15 otherwise.
(b) IF ((B**2).LE.4*A*C) 100,

transfers control to statement 100 if B2 € 4AC and to the next executable statement if
B2 > 4AC. In this case parentheses are required round the expression B**2 to avoid ambiguity
which would otherwise arise from a decimal point following the integer 2.

6.4 Named successors

So far in this section a successor of a control statement has been identified by a number. Certain
control statements may also be written with the name of a successor in place of a statement number under
two circumstances.

Firstly, the successor may be a named routine with no arguments and from which no return to this
routine is expected. This is allowed only in Atlas FORTRAN. Routines are dealt with more fully in
section 8. At this stage it is sufficient to point out that EXIT is the name of a standard routine
which is entered at the end of any program. Hence statements such as

GO TO EXIT

used in the previous section, and
IF (A) EXIT, 10, 10

are meaningful in Atlas FORTRAN. In the second example, control will be transferred to the routine
EXIT if A <0 and otherwise to statement 10.

Secondly, an identifier may be used to denote a variable label and may occur in control statements
wherever a statement number may appear; before a jump to such a named successor can be meaningful, a

statement number (or a routine name in Atlas FORTRAN) must have been assigned to the variable label by a
previously executed ASSIGN statement.

Examples ASSIGN 5 TO CNTROL (Atlas or Orion)

ASSIGN (EXIT) TO CNTROL (Atlas only)

The presence of the ASSIGN statement in the routine is sufficient to define the identifier as the name
of a label. If a statement number (or a routine name) has not been previously assigned to a name before
a control statement requires the use of that name during execution, a failure routine is entered and

the program halted.

Examples
(a) If the statements ASSIGN 5 TO CNTROL
and later GO TO CNTROL
are executed in that order, then GO TO CNTROL is equivalent to GO TO 5.
(b) If the statements ASSIGN 4 TO LINK

ASSIGN (LINK) TO CNTROL
GO TO CNTROL
are executed in that order then GO TO CNTROL is equivalent to GO TO 4.

DN =



It is not permitted to use an arithmetic expression in an ASSIGN statement; an assigned GO TO is
used to follow various branches of computation in a preset manner; (the statement numbers have no
numerical significance). For compatibility with other versions of FORTRAN, a list of possible values
of the statement numbers which may be assigned may follow the assigned GO TO, thus:

GO TO JUMP, (5, 6, T, 12, 15)

6.5 Computed GO TO
To follow different branches according to a computed value, the computed GO TO statement may be
used. This takes the general form

GO TO (ny, ny, ..., Dy),I

where n,, n, ..., n, are the possible successors of this statement (either statement numbers or names),
and I is an expression whose value determines which successor is taken at any particular execution: I
should be an INTEGER expression or variable., If the value of I is 1 them n; is the successor, if
the value is 2 then nz is the successor and so on. The programmer is responsible for ensuring that
the values of I which occur during execution lie between 1 and m . The next statement may be named
as a successor by omitting any of nj in the usual way, for instance

GO TO (10, CNTROL,, 104, 53),I

Example
A variable Y is defined by different formulae in a series of intervals of X as follows.
Y = -2 if X < -2
= -1+ 3% if -2 <X<-1
=gx+x2 if -1<x<0
= % X ifo<x<1
=i -.§.2 i <
2 + 5X o X i1 SX <2
= ”
= i9 >
Y E X > 2

A section of program to compute the value of Y , given a value of X, could be as follows.

IF (ABSF(X) - 2), 101, 101
GO TO (102,103,104,105), INTF(X) + 3
102 Y = -1+ X/2
GO TO 107
103 Y = (2.5 + X)*X
GO TO 107
104 Y = 2.5*X
GO TO 107
105 Y = -1.25 + X*(5 - 1.25*X)
GO TO 107
101 IF (X) 106,,
ENE N3N
GO TO 107
106 Y = -2
107 CONTINUE

The first statement checks whether X < -2 or 2 + 2. If so, statement 101 is taken as the successor;
this checks whether X is negative or not. If X is negative (and so X < -2) statement 106 is executed
toset Y=-2, If X 1is positive, on the other hand (and so X 2 2), the next statement after 101 is
executed since no successor is explicitly named, and this sets Y = 3.75 . The following statement,
namely GO TO 107, is required to skip over the statement 106 in this case.

Reverting to the first statement, if ABSF(X) ~ 2 is negative, then X lies in the range -2 < X <2
and the next statement is executed and computes INTF(X) + 3. This expression will have one of the four
values 1, 2, 3 or 4 corresponding to the four possible ranges -2 <X < -1, -1 <X<0, 0<X<1 and
1 <X <2, The computed GO TO statement thus directs control to one of four possible statements for
computing Y , according to the value of I .

6.6 The dummy statement
The statement CONTINUE is a dummy statement which executes no operation. It may be useful for
setting a label as in the above example. (See also section 6.7.1.)

6.7 DO statements

The IF and GO TO statements introduced in the preceding sections are sufficient to control a
program loop. Example 9 of section 2 has been illustrated; the following program is a possible solution
to example 8 of the same section.
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REAL M, M2, K
READ 20, NLIMIT, M2
20 FORMAT (I4, F6.3)
K = LOGF (M2/100)/LOGF (2)
N=1
22 M = 100 * N ** K
PRINT 21, N, M
21 FORMAT (16, F10.3)
IF (NLIMIT - N) 23, 23,
N=N+1
GO TO 22
23 CALL EXIT
END

(The identifiers N, NLIMIT, M, M2 and K have been used to denote the variables n, N, m, M and k
respectively.)

Control of a loop by a counter or index, as in this example, occurs so frequently that two
comprehensive statements, the DO statement and the FOR statement, are introduced into the FORTRAN
language for this special purpose.

The general form of the DO statement is

DO n I = Kl' sz K3

Here n is a statement number and I is the index; K,, K, and K, are indexing parameters. In broad
terms, this statement calls for repeated execution of the group of statements following it, up to and
including the statement numbered n (termed the range of the DO statement), with the index assuming
first the value given by K, and then successive values in the sequence K; + K3, K; + 2K3, K; + 3Kg3,
.......... as long as the value K, is not passed. After the final execution control passes to the
first executable statement after the statement numbered n .

As an illustration, the above example may be rewritten using a DO statement as follows.

REAL M, M2,K
READ 20, NLIMIT, M2
20 FORMAT (14, F6.3)
K = LOGF (M2/100)/LOGF (2)
DO 22 N = 1, NLIMIT, 1
M =100 * N ** K
22 PRINT 21, N, M
21 FORMAT (16, F10.3)
CALL EXIT
END

6.7.1 Rules for constructing DO loops. The action of a DO statement requires stating more precisely
than in the above description.

(a) n must be a statement number; it may not be the name of a label.

(b) The index must be an INTEGER unsubscripted variable. The indexing parameters should be INTEGER
expressions.

(¢) If the increment K3 is 1 then it may be omitted, together with the preceding comma, and the
value 1 will be assumed by the compiler. Thus the DO statement in the above example may in fact
be written

DO 22 N = 1, NLIMIT

(d) The increment may be positive or negative.

(e) The values of the indexing parameters are worked out once only on first entry to the loop. The
loop is always executed at least once with I = K;. The last execution of the loop is when I

has its greatest value <Kz, if K3 20 or when I has its least value 2> K,, if K3 <0.
Thus

(i) DONn1I-=10 6, -1
calls for execution of a loop with I taking the values 10, 9, 8, 7, 6 in turn.
(ii) DOn I = 2, 11, 4

calls for execution of a loop with I taking the values 2, 6, 10 in turn.

(f) No statement in the loop should change the value of the index. Statements in the loop may change
the values of variables appearing in the indexing parameters, but these have no effect on the
number of executions by virtue of (e).

(g) The last statement in the loop must be an executable statement; it must not be, for instance,
a mode declaration or a FORMAT statement,

(h) A DO loop which is left after execution with all possible values of the index is said to be
satisfied. A loop may also be left before it is satisfied by a transfer of control to some
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statement outside the loop. The final statement in the loop may not however be a transfer
statement of any type, and the dummy statement CONTINUE, should be used when such a situation
would otherwise occur.

An example is provided by rewriting example 9 of section 2 using a DO statement as follows.

DO 21 N =2, 20

TERM = TERM/N

E = E + TERM

IF (TERM - 1E-8) 20, 20, 21
21 CONTINUE
20 (next statement of program)

The loop will be left when a term has been calculated whose value is € 10’8. Rather
than work out precisely how many terms are required, it is sufficient merely to specify a
larger number of repetitions of the loop, say 20, than are necessary.

It is recommended that a programmer always uses a separate CONTINUE statement to mark the
end of each DO loop, to avoid inadvertently contravening the above rule and to make the program
structure clearer.

(1) A jump into the range of a DO statement is never permitted. (In this context, however, a call
of a subroutine with subsequent return is allowed. See section 8.)

(j) DO loops may be nested; this situation is considered in the next section on subscripted
variables.

6.8 FOR statements
A more powerful statement for controlling loops is the FOR statement. This has the general form

FOR n X = Ay, Ay, Ag

and calls for a set of statements to be executed with the index X assuming a range of values: it
differs from the DO statement in the following ways: -

(a) The last statement in the range may be indicated by a matching statement REPEAT instead of a
numbered statement. 1In this case n is omitted. This procedure is recommended.

(b) The index may be an INTEGER variable and the indexing parameters INTEGER expressions, or the
index may be a REAL variable and the parameters REAL expressions.

(c) The number of executions of the loop is determined as follows. For INTEGER index and
parameters, if A - A; is of opposite sign to A, then the only effect is to set the value of
X = A, and the range is not executed at all, tbat is, it is skipped. If A, - Ay is zero or
has the same sign as A,; then the range is executed with the index having the values
A, Ay + Ay, A; + 24,5, ....... successively, so long as A2 — X is zero or has the same sign as
Az. For REAL index and parameters, the procedure is similar, but execution continues until
[(Az = X)/Aal < 0.5. The essential point here is that slight round-off error in the binary
representation of real numbers is accounted for, so that for instance the statement

FOR X = 1.0, 2.0, 0.2

ensures execution with X having in turn the values 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, there
being no possibility of execution with X = 2.0 being omitted.

As with the DO statement, if the increment A3 is 1 or 1.0 it may be omitted from the
FOR statement.

6.9 Further examples
(a) DO and FOR statements are probably most powerful when used in connection with arrays and
subscripted variables. Example 7 of section 2, however, although expressed using subscript
notation, does not involve the use of subscripted variables if the numbers x; are read in one
at a time using a read instruction inside a loop, as in the block diagram in Figure 7.
Possible sections of program are:

SUM, SUMsQ = O or SUM, SUMSQ = O

D0O1I=1, 80 FOR I =1, 80

READ 2, X READ 2, X
2 FORMAT (F 10.0) 2 FORMAT (F 10.0)

SUM = SUM + X SUM = SUM + X

SUMSQ = SUMSQ + X**2 SUMsSQ = SUMSQ + X**2
1 CONTINUE REPEAT

XBAR = SUM/80 XBAR = SUM/80

X = SQRTF (SUMSQ/80) X = SQRTF (SUMSQ/80)

Notice that, in contrast to the previous example, the loop index is used only to control
the number of repetitions and is not used by any statement in the loop.
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(b) As a second example, consider a program to produce the following table of values. A function
f(x) is defined by

£ = Lxv(v? - x?) - Jb? log (x + V(b? - 1))

It is required to read from one card a value of a parameter b and an integer n and to
tabulate f(x) for a range of values of x from 0 to b in steps of b/n . After each
tabulation the program is to loop back to read new values of b and n , and to terminate
when a value b = 0 1is encountered.

A possible program using a DO loop is as follows.

5 READ 1, B, N
1 FORMAT (F10.0, I3)
TEN (B 2:
BSQ=B"2
FB = BSQ/2 * LOGF(B) 77 F(0) = F(B)
X=0
PRINT 3, X, FB
DO4I=1, N-1
X=X+B/N
ROOT = SQRTF (BSQ — X ** 2)
FX = X/2 * ROOT - BSQ/2 * LGGF (X + ROOT)
PRINT 3, X, FX
4 CONTINUE
PRINT 3, B, FB
3 FORMAT (2E 20.8)
GO TO 5
2 CALL EXIT
END

It may be noted that in the (unlikely!) event that n = 1 the above program will give one
too many printed lines of output, the DO loop being executed once unnecessarily. In the
following program using a FOR statement, even this contingency is catered for.

5 READ 1, B, N
1 FORMAT (F10.0, 13)
IF (B), EXIT,
BSQ = B*** 2
FB = BSQ/2 * LOGF (B)
X=0
PRINT 3, X, FB
FOR X = B/N,(N-1) * B/N, B/N
ROOT = SQRTF (BSQ - X ** 2)
FX = X/2 * ROOT - BSQ/2 * LOGF (X + ROOT)
PRINT 3, X, FX
REPEAT
PRINT 3, B, FB
3 FORMAT (2 E 20.8)
G0 TO 5
END

Notes (a) The use of subroutine names as successors described in paragraph 6.4 may be
available in later versions of Orion FORTRAN.
(b) In the first versions of Orion FORTRAN only the DO statement is available for loop
control, with the restriction that if the increment is negative, it must be a
negative constant. In later versions this restriction will be removed, and the
FOR statement provided.
Exercises 6

Some of the following exercises involve writing a few statements only, which would form part of some

larger program. Others require complete programs which should be written as such with the necessary
declarations and END statements.

1% Write statements to perform the following steps:
(i) to transfer to statement number 5 if QNEW - QOLD 2> 10'8; otherwise to proceed to statement
number 50.
(ii) to transfer to statement number 1 if J < 0 , to proceed to the next statement if J =0
and to transfer to statement number 2 if J > 0 .
(iii) to place the smallest (in absolute value) of Y and Z in LOW.
(iv) to place the algebraically largest of W, X, Y, Z in TOP using (a) three IF statements (b) any
desired standard function.
(v) to transfer to statement 9 if Al < A2 < A3; otherwise to transfer to statement 10.
(vi) if I =0, to transfer to statement 12; if I =1, 3 or 5 to transfer to statement 13; if I = 2
or 4 to transfer to statement 14; if I =6, 7 or 8 to transfer to statement 15; if I < 0 or
I > 8 to transfer to statement 1000.
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2 Write a program to read the three coefficients of a quadratic equation ax? +bx + ¢ =0 and
print out the roots on one line. The program is to loop back to read another set of coefficients and
print the roots on the next line continuing until a value a = 0 is encountered indicating the end of
the data. If the roots are complex, two zeros are to be printed in place of the roots.

3% Write a program to tabulate the values of the integral

i
I =fzsin"xdx
0

using the formulae below, for values of n from 1 to 100 inclusive, printing the pairs n, I on
successive lines.

5 seee Bl T

3 = > if n is even
S venn=l o

7 5 if n is odd.

WN o] =

4. Write statements to sum the following series.
3 5
()N Z —-%% + %T ~ up to and including the first term to bave absolute magnitude < 1072 .
20 2n-1
(11) ;gl (-1)"! (2 sin (2n-1) O
n=

5. Tabulate the function ,

T(x) = tan x + é tan °x
for values of x from O to 89° in steps of one degree, printing pairs of values x, T on
successive lines.

7. ARRAYS. NESTS OF DO AND FOR STATEMENTS

7.1 Subscripted variables

In section 2, paragraph 2.5.5 the use of arrays and subscripts was introduced. The name of an
array in FORTRAN may be any identifier chosen in the usual way. A particular element of an array is
referred to by writing the name of the array, followed by a list of subscripts separated by commas and
enclosed in parentheses. Such an element is termed a subscripted variable.

Examples
(a) X(20) refers to the 20th element of a one-dimensional array (a vector) called X.
(b) If a two-dimensional array B is considered as a matrix, the first subscript may refer to
the rows of B and the second subscript to the columns of B. Thus B(3,7) is the element
in the third row and seventh column.

Arrays may have any number of dimensions; in each dimension the subscripts are numbered from one
upwards.

Subscripted variables may be used, with very few exceptions, wherever simple variable names may be
written: in particular, in input/output lists and arithmetic expressions.

Examples
READ 10, A(1), A(2), A(3), TIME, BETA (4, 3)

W = (TEMP(2)+TEMP(1))/2

The power of the subscript notation arises from the fact that in each subscript position may be
written any INTEGER arithmetic expression (with no restrictions, so that the subscript expressions may
themselves use subscripted variables); with the aid of DO or FOR statements, program loops may be
written to operate on array elements in a systematic manner.

Example 1
Calculate the mean of 100 numbers A;, Ap, ... Ajpo stored as a one-dimensional array.
SUM = 0
DO 121 =1, 100
SUM = SUM + A(I)
12 CONTINUE
MEAN = SUM/100
Example 2
Given a vector X,, X, ... X, form the vector Y with 20 elements defined by:
it
X B2 X=X
py = =122 4’ El 98t <'m
Y0 = Xp0
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Y(1) = X(1)

FORI =2, 19
Y(I) = (X(I-1) + 2*X(1) + X(I+1))/4
REPEAT

Y(20) = X(20)

Example 3

A square matrix of REAL elements called MASS has dimensions 10 by 10. Put the element of largest
modulus on the principal diagonal in MAX. (The principal diagonal of a matrix consists of those elements
having the same row and column numbers.)

MAX = 0
FORI =1, 10
IF(ABSF(MASS(I,I)) - ABSF(MAX)) 99,99,
MAX = MASS (I,I)
99 REPEAT
(next statement of program)

7.2 Modes and dimensions of arrays

All the elements of an array must have the same mode; for instance either all INTEGER or all REAL.
As with simple variables, the mode is defined by the initial letter of the identifier unless a specific
mode declaration is made.

Thus in example 3 above, if the elements of MASS were real variables the declaration

REAL MASS, MAX

would be required.
The dimensions of an array must be declared by a DIMENSION statement, so that the compiler can

distinguish the name from that of a function and reserve storage space for all elements of the array.
For the examples above the statements

DIMENSION A(100)
DIMENSION X(20), Y(20)
DIMENSION MASS (10, 10)

would be required. Note that several arrays may be dimensioned in one statement. Like mode
declarations, dimension declarations will usually be placed at the head of a routine. The subscripts
appended to array names in a DIMENSION statement give the maximum sizes of subscript which will be
expected during execution. No subscript which is zero or negative, or exceeds the limit given in a
DIMENSION statement, should occur during execution, and the number of subscripts attached to a subscripted
variable should be the same as the number given in the DIMENSION statement.

It is permissible and preferable to include dimension information in a mode declaration when one
is made. Thus in example 3 the single statement

REAL MASS (10, 10), MAX

will serve to declare both modes and dimensions. The presence of a dimension declaration in one or
other form is the only indication to the compiler that an identifier refers to an array.

7.3 Nested loop statements

The range of a DO or FOR statement may contain another DO or FOR statement controlling an inner
loop. Such loops are said to be nested.

Example 4

Form the vector S, length 6, whose elements are the means of the columns of the matrix T, size
8 by 6.

D0O3J=1, 6
SUM = 0
DO4TI-=1,8
SUM = SIM + T(I,J)
4 CONTINUE
5(J) = SUM/8
3 CONTINUE

The same index cannot be used to control two loops when one is nested inside the other, but the
index of one DO or FOR statement may appear in the indexing parameters of an inner DO or FOR statement.
Example 5

An array ALPHA, size 10 by 10, is to be modified by changing the sign of all elements ALPHA1 1 for
which i > j , and making ALPHA; ¢ zero. ,

= gl



FORET=" 1510

FORJ =1, I-1

ALPHA (I,J) = -ALPHA(I,J)
REPEAT

ALPHA(I,I) = 0

REPEAT

(This example illustrates rule (c¢) of paragraph 6.8 concerning FOR statements: during the first
execution of the outer loop with I = 1, the FOR statement for the inner loop is equivalent to FOR
J =1,0,1 which is executed zero times. Therefore control passes direct to ALPHA(I,I) = 0.

At the next execution of the outer loop with I = 2, the inner loop is executed once with J = 1 to
change the sign of ALPHA (2,1) and so on.)

There is no theoretical limit to the ‘“‘depth” of nesting allowed. 1In practice, the only
restrictions are due to limited working space in the compiler. The rules for single DO and FOR
statements apply, with two additions. Firstly, the range of an inner statement must be completely
contained within the range of an outer statement, and two FOR statements must have two distinct REPEAT
statements. (It is recommended also that DO statements have distinct CONTINUE statements.)

Example 6
An array THETA has size 5 by 9. Form the array TAN whose elements are the tangents of the
corresponding elements of THETA.

FOR I 5
FORJ = 1,9
TAN(I,J) = TANF(THETA(I,J))
REPEAT
REPEAT

Secondly, the rule that a jump into the range of a DO or FOR statement from outside is not
permitted does not preclude leaving an inner loop by an IF or GO TO statement leading to a statement in
an outer loop. This is possible, of course, because from the standpoint of the outer loop, the transfer
is entirely within its range.

Example 7
Taking x =0, 0.1, 0.2, ..., 1.0 in turn, print out values of the expression

/2 il exy2

for y =0, 0.2, 0.4, ... (For each value of x , there is a value of y which, if exceeded, makes
2 - e"y2 negative; calculation may then cease for that value of x . An upper limit of y = 1.4 is
sufficient even for x = 0)

1,
1

FOR X = 0, 1.0, 0.1
E = EXPF(X)
RORBYC=R05 5455072
RESEIE=RRYE 0
IF(R) 91 ,,
ROOT = SQRTF(R)
PRINT 10, X, Y, ROOT
REPEAT

91 REPEAT

10 FORMAT (3F14.6)
GO TO EXIT
END

The block diagram (Figure 15) illustrates how control passes from the inner to the outer loop if
R 1is negative before the inner loop has been executed the full number of times.

7.4 Input and output of arrays
The elements of an array may be input or output by naming each element individually, using
subscripts. For example, the statement

READ 20, A(1), A(2), A(3)

will read the three elements Aj, A2, A3 of the array A according to FORMAT statement 20. Such a
method is tedious in all but the simplest cases; it may be useful if a few elements of an array are
required, perhaps in some odd order. For example,

READ 18, A(I), W(100), W(400)

By quoting an array name in an input/output list without subscripts the entire array may be
called. The order in which the elements are dealt with is the order in which they are actually stored,
which is such that the first subscript varies most rapidly, the second subscript next most rapidly
and so on. For example, if Z is an array of size 5 by 3, the statement

READ 9, 2
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Y
Set x =0

Y

E = eX

Y

Set y = 0
= \

R=2-Ey’

Print Vﬁ

@ L Add 0.2 to y |

Add 0.1 to x

END
Fig. 15
will call for the elements in the order
Zl,P Z2'1.... Zs,r Zl,? zz,r ........... : sty

This is equivalent to obeying the following nested FOR statements:

FORJ = 1,3
FORI =1,5
READ 11, Z(I,J)
REPEAT

REPEAT

with one important difference. Since each execution of an input statement starts a new record, use of
these nested statements would require each element to be contained in a separate record; for example,
each element would have to be punched on a separate card for punched card input. Using the simple
statement READ 9, Z allows more than one element to be in one record, if the FORMAT statement 9 is
suitably specified, as discussed in section 10.

7.5 Parametric dimensions

In this section is has so far been assumed that the dimensions of arrays are stated in the source
program as constants, and thus fixed at time of compilation. It is possible to declare dimensions using
parameters, whose values are not fixed until each occasion when the compiled program is loaded prior to
execution; this may make it simpler to write some programs.
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Identifiers intended to represent parameters are listed in a declaration such as
PARAMETER I, J1, J2

An array dimension declaration may then use these parameters in place of constant dimensions; for
example,

DIMENSION ARRAYB (J1, J2, I)
and other statements in the program will refer to the parameters where necessary, as for instance
10,0) 2 el faal

It must be stressed that a parameter is essentially a constant whose value is declared not in the
source program but at load time; it is not a variable, in the sense that no assignment of value may be
made to it by statements in the source program.

Note: PARAMETERS are not available in the first versions of Orion FORTRAN.

Exercises 7
Include any necessary mode and dimension statements, and choose suitable identifiers as necessary.

ilo A vector BETA has 50 elements, each of which is an angle expressed in degrees. Write statements
to form the vector SN, each element of which is the sine of the corresponding element of BETA.

2. A vector k has a maximum of 100 real elements. The actual number of elements during execution
is given by the value of an integer variable N . Write statements to “split” k into two vectors
k1l and k2 each of length N ; k1 contains those elements of k which are 2d, and zeros elsewhere;
k2 contains those elements of k which are <d and zeros elsewhere.

8 T and U are vectors each of dimension 30. Write statements to form the vector S =T -U i.e.
§; =Ty -U; 1 =1, 2, .. 30).

4. Acurve y = f(x) 1is represented by its ordinates y,, ¥, ...... Yan+y at (3N+1) equally
spaced points X, Xp, .. X3n+i. The interval between the values of x is h . Write statements to
compute the area under the curve from the approximation

3h
Area = ~;— (y1 + 3y2 & 3y3 + 2%y t 3y5 i 3y6 <) 2y7 i

s pEIP 3y35_1 + 3y3N i y3N+1)
(1 <N < 100)

of Write statements to form the matrix ASQ whose elements are the squares of the corresponding
elements of the matrix A. Both matrices have dimensions 40 by 50.

6. The array of real numbers MASS has 20 rows and 15 columns. Write statements to put the element
of largest modulus in MMAX and the row and column numbers of the element in ROWNO and COLNO respectively.

s A vector X has a maximum of 200 elements. Write statements to check whether the first N
elements are in strict ascending order of magnitude and if not to go to statement number 99.

8. The value of the expression

I .y € tcosx

= c0s @ ———
V(1 - e2) 1 + ecos x

is to be evaluated for all combinations of e and x, e taking the values -0.9, -0.8, -0.7, ... 0.9
and x taking the values 0, 0.1, 0.2, ... 3.0. Write statements to store the values as an array with
31 rows corresponding to the values of x and 19 columns corresponding to the values of e .

9, A and B are matrices with dimensions I by J and J by K respectively, the maximum
dimensions being 50 by 50. Write statements to form the matrix C, dimensions I by K , obtained by
multiplying A and B . Matrix multiplication may be defined by

J SRl
C =a SSNVARSSR
L pefls S I e I B

8. FUNCTIONS AND SUBROUTINES

8.1 Program structure

In the previous sections emphasis has been placed on the structure of single routines. The only
functions considered have been those provided by the system (section 3). Whenever such a function is
called for by its appearance in an expression, followed by an argument or arguments, the compiler
includes in the object program the necessary links to a set of machine instructions for evaluating the
function, without further specification from the programmer. FORTRAN has facilities which enable a
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programmer to name and define his own functions; such functions must be similar to the system functions
in so far as they operate on one or more arguments to provide a single value for use in expressions.
More generally, the programmer may write sections of program in the form of subroutines to perform
computations more powerful than the evaluation of a single function value, and may link up these
subroutines in various ways. Consequently, only the simplest FORTRAN programs will be written as
single routines, the usual procedure being to write a linked set.

There are three types of routine distinguished in FORTRAN, namely the main routine, functions and
subroutines. Routines are separately compiled, into a form of machine language together with symbolic
information required for communication between routines. At execution time, all routines are loaded by
a special program which sets up the intercommunications and enters the main routine at its first
executable statement. The main routine is always unnamed; other routines are named, by identifiers
chosen in the usual way, and may call each other and be called by the main routine by name in an
arbitrarily complicated manner, so long as a routine does not call itself, either directly or
indirectly via another routine call. Obviously no two routines used in the same program may have the
same name.

Several important advantages arise from the division of a program into routines. If a change is
required to a program for any reason, only the routines directly affected need to be re-compiled. Short
routines are acceptable and may indeed lead to a shorter total compilation time than long routines;
programmers are therefore encouraged to make alterations and corrections to the original FORTRAN state-
ments and not to tamper with the compiled routines in machine language. The routine becomes a natural
unit of programming and the division of a large program into routines can reflect the logical structure
of the flow chart; routines may be developed, written and tested independently of each other, possibly
by different programmers. The main routine may itself perform a sizeable amount of computation, or may
be merely a skeleton or controlling program linking together other routines, at the programmer’s

convenience. It is suggested that up to 100 statements is a suitable routine length, although no upper
limit is set.

8.2 Properties of routines

The names of variables and labels used within a routine are normally local or private to that
routine; that is, they have no meaning outside the routine (and so may be used for completely different
purposes in another routine) unless specific arrangements are made to the contrary using the PUBLIC
declaration (section 8.6.1). Certain fairly obvious rules apply within a single routine: for instance,
the same identifier may not be used to denote two different quantities, statement numbers must be all
distinct and the mode of a. particular variable applies throughout.

When any routine is called, it is entered at its first executable statement; mode, dimension and
other declarations will normally appear before this at the head of the routine. All paths of control
should terminate at statements which cause a proper exit. 1In the main routine these are usually CALL
EXIT or GO TO EXIT, or possibly control statements using EXIT as a successor name. After a function
or subroutine has been executed control is normally returned to the calling routine. This is the
effect of the statement RETURN introduced in the following paragraphs.

8.3 Function routines

A routine written as a FUNCTION consists of a set of statements defining the way in which the value
of a function is to be computed. The definition will frequently be in terms of dummy (formal) arguments,
for which actual arguments are substituted when the function is invoked. This is the approach adopted
when using the standard functions, for which definition is automatically supplied; for instance, the
function SINF(X) will compute the value of the sine of any arithmetic expression substituted as an
actual argument in place of the formal argument X. Thus the appearance of SINF(2*PI*OMEGA*T) in an
expression in one routine requires the value of 2*PI*OMEGA*T to be computed and transmitted to the SINF
routine, which will evaluate the sine and return the necessary value to the calling routine.

The form of a function is illustrated by the following example.

Example 1

It is required to evaluate, at several points in a program, the area of a plane triangle from the
lengths of its three sides. Calling the sides A, B, C the formula is

AREA = V/(S(S-A)(8-B)(S-C))
where 28 = A+ B + C.
The following routine defines the function to compute the area

FUNCTION AREA (A, B, C)

S = (A+B+C)/2

AREA = SQRTF(S*(S-A)*(S-B)*(S-C))
RETURN

END.

The following features should be noted. A function routine is always introduced by a statement of
the form

FUNCTION NAME (A1, A2, A3, ...)
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where NAME is the particular name of the function and Al, A2, A3, ... are the dummy arguments. 1In the
example there are three dummy arguments A, B, C; there must always be at least one. After the FUNCTION
statement are written any necessary declarations of mode, dimensions and so on, followed by the state-
ments actually defining the computation. At some point in the routine a value must be given to the
scalar variable having the same name as the function. In the example, the third statement assigns a
value to AREA. (The mode of the result of the function is determined by the first letter of the
function name in the usual way, unless a mode declaration to the contrary appears. If the above
function were named LAMDA, for example, the routine would read

FUNCTION LAMDA (A, B,C)

REAL LAMDA

S=(A+B+ ()2

LAMDA = SQRTF (S*(S-A)*(S-B)*(S-0))
RETURN

END.

and in any routine calling this function the declaration
REAL LAMDA

would also be required.) The statement RETURN causes transfer of control back to the point at which the
calling routine is left; in the case of a function routine this is back into the evaluation of some
expression. The END statement as always indicates to the compiler the physical end of the routine. The
RETURN statement need not be immediately before the END statement and may be labelled; there may be more
than one RETURN statement.

An example of use of the above function is

P = AREA (2*B, R(2), 10.0) + AREA (S, B, R(1))

This causes the sum of the areas of two triangles, whose sides are of lengths 2B, R,, 10.0 and S, B, R;
respectively, to be assigned to P, the function AREA being called twice. The variables B and S
appearing in this statement are variables in the calling routine, and have no connection with B in the
function routine, which is simply a dummy argument, nor with S which is a local working variable.

8.4 Subroutines

A SUBROUTINE is a more general purpose routine which differs from a FUNCTION in three ways. Firstly,
a subroutine is not restricted to producing a single value, or to having at least one argument. It
may be a section of program to perform any desired computation: it may, for instance, set its results
in arrays. Secondly, whereas a function is invoked by its appearance in an expression in the calling
routine, a subroutine is invoked by a specific statement of the form

CALL NAME (A1, A2, A3, ..)

where NAME is the name of the subroutine and A1, A2, A3, .. are actual arguments. If a subroutine has
no arguments then the list (and the parentheses) are omitted. Thus EXIT is a library routine which
expects no arguments and may be called by the statement CALL EXIT. As previously noted, in Atlas
FORTRAN if a routine has no arguments and no return to the calling routine is required, a statement
such as GO TO EXIT may equally well be used. Thirdly, the statements of a subroutine are introduced
by a statement having the general form

SUBROUTINE NAME (B1, B2, B3, ...)
where B1, B2, B3, ... are the dummy arguments, if any.

Example 2
The following is a subroutine to compute the formulae of example 14 of section 2.

SUBROUTINE PQ (P, Q, Z)

IF (Z - 2000)1,,

RYEE

GO TO 2
1P =1+ SQRTF (4 - .002*Z)
2 IF (Z - 1000)3,,

Q = .0035*Z + 0.5

RETU

3 Q = .0045*Z ~ S5E-T*Z**2

RETURN

END

This subroutine has one input argument Z ; the arguments P and Q are referred to as output
arguments. When the subroutine is called, actual variable names will be supplied corresponding to P
and Q to indicate where the computed results are to be stored. For example, a possible call is

CALL PQ (T, P, H + N*DELTA)

which requires the value of H + N*DELTA to be transmitted to the subroutine; the two results will be
assigned to the variables T and P in the calling routine.
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A point to be noted concerns dummy arguments which appear many times within a function or
subroutine, When this situation arises the compiled routine will generally be faster if a single
assignment of the value is made to a local variable of the routine, and this local variable used
wherever necessary in subsequent statements. The above routine, for instance, may be better written as
follows:

SUBROUTINE PQ (P, Q, ZZ)
Z =727
IF (Z - 2000) 1,,

etc.

8.5 Correspondence between dummy and actual arguments

There must be a close correspondence between the dummy arguments used in a routine definition and
the actual arguments supplied by a calling routine, summarised in the following paragraphs. Recalling
that individual routines are compiled independently, it is evident that violation of the rules cannot be
checked by the compiler, and may cause chaos when the program is executed.

Actual arguments and dummy arguments should be the same in number, presented in the same order and
be of the same type and mode.

An actual input argument, corresponding to a dummy argument which is a simple variable, may be a
constant, a variable - simple or subscripted - or any general expression of the same mode, but clearly
if the actual argument is an output argument it may be only a variable - simple or subscripted.

Arrays may be used as arguments. The dimensions of actual and dummy arrays must be in agreement;
if they are constant dimensions then they must be the same in both the called and the calling routine.

Example 3
SUBROUTINE TRANSP (A)
DIMENSION A (100, 100)

FORI =1, 99

FORJ =1+ 1, 100
= A (L,J)

AR = NAN sy

AT =W

REPEAT

REPEAT

RETURN

END.

This might be called by a routine containing the statements

DIMENSION BETA (100, 100)
CALL TRANSP (BETA)

which would have the effect of transposing the array BETA.

It is possible for the dimensions of dummy arrays to be adjustable; at each call they must be
adjusted to agree with the actual arguments. Using adjustable dimensions, the above subroutine may be
written thus:

SUBROUTINE TRANSP (A,N)
DIMENSION A (N,N)
FOR I = 1 V==
FOR J 1, N

= +

A (1,3)

A (I J)y = A (3, 1)
AJ,I)=W
REPEAT

REPEAT

RETURN

END.
This might be called by a routine containing the statements

DIMENSION BETA (60, 60)
CALL TRANSP (BETA, 60)

It may be noted here that because no storage needs to be assigned for a dummy array, a declaration of
dimensions in a subroutine or function, apart from indicating that an identifier is the name of a dummy
array, is required by the compiler only for the purpose of assembling instructions to locate the position
of an element of an array in storage relative to the first element. A little thought should convince the
reader that, since array elements are stored in the order obtained by varying the first subscript fastest,
the last (or only) dimension of a wummy array may be any number, conveniently 1.
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Example 4

FUNCTION XBAR (X,N)
DIMENSION X(1)

SUM = 0

FOR I = 1,N

SUM = X(I) + SUM
REPEAT

XBAR = SUM/N
RETURN

END

A dummy argument may be a dummy subroutine name or a dummy function name, the corresponding actual
argument being a subroutine name, or a function which is not the name of one of the ‘“‘open’”” standard
functions. The reader is referred to the manuals for further details.

8.6 Communication between routines
Besides the use of arguments, two other methods exist in FORTRAN for communicating values from one

routine to another; their purpose is to make the location of certain variables directly available to more
than one routine.

8.6.1 PUBLIC variables. As previously stated, the names of variables are normally private to
individual routines; however, by declaring certain variables to be PUBLIC their names can be made
available outside the scope of a single routine.

Thus the declaration

PUBLIC X,Y

will enable any routine in which it appears to refer to the same variables X and Y . Dimensions may
be included in a PUBLIC declaration; for instance

PUBLIC X, Y, Z (100), ARRAYB (5, 5, 10)

There is no significance in the order of appearance of variables in a PUBLIC declaration.

It should be realised that a routine not declaring, say, Z to be PUBLIC may use the identifier 2Z
for any private purpose without causing confusion of names.

A PUBLIC array may have parametric dimensions; a dummy array may not of course be declared PUBLIC.

8.6.2 COMMON storage. A certain area of storage is considered COMMON to all routines of a program.
Variables stored in this area will be available to all routines because they occupy a known storage
position, not because of any identity of names.

For instance, if one routine contains the declaration

COMMON X, Y(100), Z(10), 2A, YB(2,5,3)

then these variables will be stored in the COMMON area starting from a fixed location, in the order
X, WG, BYC2), ., GROOY, . .. A(1O), ZA,

YIB (15 LMD SYB C2PNE), o2, TB(2,,8,:3)

If in another routine the declaration
COMMON AW(3), AZ(20), AY(40)
appears, then the same storage is occupied by the variables
AW(1), AW(2), AW(3), AZ(1), ... AZ(20), AY(1l), ..., AY(40)

in that order. Thus X and AW(1) are references to the same variable, as are Y(1) and AW(2) and so
on. Consequently, a value of X left by the first routine may be referred to by the second routine
by the name AW(1) and so on. As will be appreciated, changes to COMMON storage between routines must
be carefully handled, or chaos may result, In practice variables, particularly arrays, required in
several routines are usually assigned to COMMON in the same order in each routine, so that the COMMON
statements are identical in all routines; it then appears that variables are being communicated by name,
although this is not in fact so.

Arrays assigned to COMMON storage must have constant dimensions; a dummy array is never declared
COMMON.
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Example 5
SUBROUTINE MATMPY
COMMON DUMMY (25), I,J,K,U(30,30), V(30,30), W(30,30)
BORRNIE= ST
FOR N2 =1,J
=0
1,K
W(N1,N2) = U
REPEAT
REPEAT
REPEAT
RETURN
END

(N1,N3)*V(N3,N2) + W(N1,6N2)

to be used within a routine containing the statements

COMMON A, B, IN1, IN2, IN3,MATA, MATB, MATC
DIMENSION A(20), B(5), MATA(30,30), MATB(30,30), MATC(30, 30)

MNIN=TY)
IN2 = 25
IN3 = 15
CALL MATMPY

The arrays A and B together occupy 25 storage locations, accounted for in the subroutine by
the dummy array DUMMY. The scalars IN1, IN2, IN3 are in the same storage as I, J, K of the subroutine,
and so on.

8.7 EQUIVALENCE

The placing of variables in COMMON storage not only provides one means of communication of values
between routines, but also enables data storage area to be shared between routines. When the logical
structure of a program allows, this can result in a large saving of storage space.

An analogous method allowing storage to be shared within a routine is provided by the EQUIVALENCE
statement. For instance, the statement

EQUIVALENCE (A, B,C), (D,E,F,G)

causes A, B and C to share one storage location and D, E, F and G to share another. Both simple
variables and arrays may be equivalenced; any number of variables may appear within one pair of
parentheses and there may be any number of parentheses. Private variables not mentioned in an
EQUIVALENCE statement will be assigned separate, unique storage locations. Dummy variables may not
appear in an EQUIVALENCE statement. At most one PUBLIC variable or variable assigned to COMMON
storage may appear in each pair of parentheses.

The reference manuals give full details of the possible use of this statement. An incidental
advantage is that it allows one variable to be referred to by more than one name, which is occasionally
a convenience.

8.8 Local functions
If a function, which can be defined by a single FORTRAN statement, is required only in one

particular routine, it may if desired be defined at the head of that routine rather than as a separate
function routine.

Examples
YOURF(X) = LOGF(1 + SQRTF(1 ~ X**2))
FNDL (X0 Y0) = (XY e (AL N6

The name of the function determines the mode of the function in the usual way. The right-hand side
defining the function in terms of dummy arguments may be any arithmetic expression not involving sub-
scripted variables, but involving perhaps standard functions, function routines or local functions
previously defined. Any variables appearing on the right-hand side which are not dummy arguments are
assumed to be variables appearing in the routine itself.

When the function is called, these variables take their current values and actual arguments are
supplied in place of dummy arguments. The use of local functions is thus very similar to the use of
standard functions. Possible calls of the above functions are, for instance

A
C

B + YOURF(B - 1)
SINF(FN1(2*D, E))

Note: PUBLIC variables and local functions are not available in the first version of Orion FORTRAN.
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Exercises 8

s (i) Write a function routine to define the function
) X_e-X
tanh (x) = -
eX + 7%

assuming the library function TANHF is not available.

(ii) Write a FORTRAN statement using this function to evaluate

y (b2 & c2)

2. (i) Write a function routine to define the function

2 b
a = b® + 2 tanh{ ————x

sech (x) =
(ii) The maximum shearing stress T;,, in a twisted bar, whose cross-section is a rectangle of
dimensions a and b, is given by
Thax = k X 2G@a
where G is the modulus of rigidity and © the twist per unit length. k is defined by the

series
8§ @ 1
k=1——22 -
77° n=1,3,5,.. n° cosh(n7b/2a)

Write a section of program to calculate k to an accuracy of 6 decimal places, for values of
the ratio b/a from 0.05 to 1.00 in steps of 0.05 storing the results as a one-dimensional
array k with 20 elements. Use the function sech defimed in (i).

& Write a function routine to evaluate the function
k (x) = (sin x - x cos x)/x°

accurate to at least 8 significant figures for all x . Himt: if x is small then sin x and x cos x
are approximately equal and excessive cancellation will lead to a serious loss of accuracy when the
subtraction is performed.

4. (i) Write a local function definition to compute the expression
y _—

e’ - V1 - y?

(ii) Use this function in statements to compute

AN e V1 - 4t% + sin pt
and il
B = tan (V1 - n° -e™®
52 Write a subroutine to normalise a vector x;(1 = 1,2,..n); that is, to find the element xp of

the vector having the largest absolute value and to divide every element of the vector by X, - The
length n of the vector is to be one of the arguments of the subroutine.

B A program consists of several routines operating upon symmetric matrices with dimensions up to 100
by 100. Write one routine to determine the largest off-diagonal element of a matrix; this element

and its subscripts are to be output arguments of the routine. The actual dimension (n by n) is to be
an input argument.

e Write a subroutine to check a square array for symmetry; that is, given [Ai .](i =L 2

j =1,2,..n) to call another subroutine ERROR if any pair of elements Ai ; and Aj:i (i # j) are not
equal to within 10"% in absolute magnitude. The array is to have adjustégle dimensions and the ERROR
routine is to be a formal argument of the subroutine.

8. A program is to consist of five routines -~ a main routine linking four subroutines named R1, R2,
R3, R4. The following variables are operated upon or calculated by more than one routine: three
simple variables M, X, Y and four arrays A, B, C, D of dimensions (100), (10,10), (100,50) and (10, 50)
respectively. Rl uses M, X, Y and A; R2 uses M, X, A and C; R3 uses X, C and D and R4 uses M, B and D.

Assuming that none of these variables are communicated as arguments, indicate the declarations
required in each routine (i) to place and use these variables in COMMON storage or alternatively (ii)
to refer to the variables by PUBLIC names.

9. LOGICAL VARIABLES AND TEXT

The facilities introduced in previous sections are sufficient for writing many FORTRAN programs.
However, in this section the means for performing simple logical operations on appropriate elements, and
for handling TEXT, are outlined; in section 10 input/output facilities are considered in greater detail.
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9.1 Logical values
A logical value is stored in both Atlas and Orion FORTRAN as a string of independent bits,
each bit being either 1 or O representing a truth value true or false respectively; suitably declared

variables may assume logical values and logical operators are provided to manipulate these bit-strings
according to certain rules.

By convention a string of 1-bits is said to represent the value .TRUE. and a string of 0O-bits
to represent the value .FALSE. This primer is not concerned with operations on other bit-strings, but
details may be found in the reference manuals.

9.2 Constituents of logical expressions

There is a close similarity between arithmetic expressions constructed from arithmetic constituents
and operators, and logical expressions constructed from logical constituents and operators. Logical
constituents may be logical variables, arrays and functions, logical constants and relations.

9.2.1 Logical variables, arrays and functions. These are named by identifiers chosen in the usual
manner: a LOGICAL mode declaration is required. For instance, the declaration

LOGICAL MARK, Z (4)
declares the simple variable MARK and the elements of the array Z (dimension 4) to be LOGICAL quantities.

9,2.2 Logical constants. The symbols .TRUE. and .FALSE. are available as two standard logical
constants.
9.2.3 Relations. Simple relations were introduced in section 6. The most general form of relation
is

(AYIPSBHORCI S )
where A, B, C, ... are arithmetic expressions and @ is one of the six relational operators .GT. .GE. .EQ.

.LE. .LT. .NE. Note that a relation is enclosed in parentheses.

Examples:
(A .LT. B) This relation has the value .TRUE, if A < B and the value .FALSE. otherwise.

(W .6T. X .GT. Y .GT. Z) This relation has the value .TRUE. if W, X, Y, Z are in strictly
decreasing order of magnitude and the value .FALSE. otherwise.

9.3 Logical operators

Four logical operators are provided, denoted by .NOT. .AND. .ER. (alternatively .NONEQ.) and .OR.
The third operator is a contraction for ‘exclusive or’ or ‘nonequivalence’.

These operators have the following effect. .NOT. B is .FALSE. if B is .TRUE. and .TRUE. if
B is .FALSE.

A .AND. B is .TRUE. if both A and B are .TRUE. and .FALSE. otherwise

A .ER. B is .TRUE. if A and B have opposite truth values and .FALSE. otherwise

A .OR., B is .TRUE. if at least one of A and B is .TRUE. and .FALSE. otherwise.
The operations are summarised in the following table.

A . FALSE. . FALSE, . TRUE. . TRUE.
B . FALSE. . TRUE. . FALSE. . TRUE.
.NOT. B . TRUE. .FALSE. . TRUE. . FALSE.
A JAND.: =B .FALSE, .FALSE. . FALSE. . TRUE.
A .ER. B .FALSE. . TRUE. . TRUE. . FALSE.
A .OR. B . FALSE. . TRUE. . TRUE, . TRUE.

Within a logical expression, the hierarchy of operations is understood to be

. NOT.
. AND.
.ER.
.OR.

unless overridden by parentheses. Two operators must not appear in sequence: thus the parentheses
are required in the expression A .AND. (.NOT. B)

9.4 Assignment of logical values
The value of a logical expression is assigned to a logical variable by a logical replacement
statement analogous to an arithmetic replacement statement.

Examples:
MARK = (A .LT. B)
MARK assumes the value .TRUE. if A < B and the value .FALSE. otherwise.
Z(1) = (X.GT.Y) .AND. (Y.LE.Z)

7 (1) becomes .TRUE. only if both relations are .TRUE. when this statement is executed.
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9.5 The logical IF statement

It was stated in section 6 that the logical IF statement may be used to test any logical
expression L and has the general form

INEN(P)NntTs e

Control is transferred to statement n; if L is .TRUE. and to statement n, if L is .FALSE.
If L 1is a relation it need not be enclosed in extra parentheses.

Examples:
IF (A .LT. B) 5,6

IS QY G X G Y G 7)) W10 820
IF (MARK) 1,
IF ((I .EQ. 0) .OR. (J .EQ. 0)) 7,12

9.6 An example of a logical function

The following routine defines a logical function QUERY, which has the value .TRUE. if the first N
elements of a real vector are less than unity in absolute value, and .FALSE. otherwise.

FUNCTION QUERY (A, N)
LOGICAL QUERY
DIMENSION A (N)
QUERY = .TRUE.
FOR M = 1. N
IF (ABSF (A (ID) . LT. 1) 10,
QUERY = .FALSE.
RETURN

10 REPEAT
RETURN
END

This function might be called in another routine by the statement
IF (QUERY (BETA, 15)) 7, 77
to test the first 15 elements of a vector BETA. This routine must comtain the declaration LOGICAL QUERY.

9.7 TEXT

Sequences of characters, known as TEXT, are stored in the computer using 6-bit binary code to
represent each character, 8 characters per word. In single word lengths TEXT may be manipulated using
logical-type operations. Most commonly, however, TEXT is simply imput, or included in the program, and
output with no intermediate manipulation.

Variables and arrays may be named for holding TEXT by an appropriate mode declaration; for instance

TEXT TITLE (4), WORD

declares that the array named TITLE (length 4 words) and the simple variable WORD will be used to hold
TEXT. The array will accommodate not more than 32 characters and WORD not more than 8 characters.

9.7.1 Constant TEXT. This may be included in a program in several ways. A TEXT constant can be
written as nH , followed by n characters, where n 1is a positive integer. Any required blank spaces
must be included in the count of characters. Such a constant may be specified for output by including
it directly in a FORMAT statement - see paragraph 10.5.3 of the next section - or assigned to a TEXT
variable e.g.

WORD S8HALPHABET
TITLE (1) SHGAMMA

In the second example the characters GAMMA will be left adjusted and the word TITLE (1) filled out with
three blanks.

An alternative method of writing TEXT constants which is available and to be preferred in Atlas
FORTRAN only, uses a special FORMAT statement. The constant is referred to by writing simply n A,
where n is the number of a FORMAT statement having the form

N EORMAT 778 0 s 77

All the characters, including blanks, between the two characters 77 constitute the constant. For
instance,

WORD = 98A

98 FORMAT 77ALPHABET7T
TITLE(1) = 99A

99 FORMAT 7TTGAMMATT
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9.7.2 Imput amd output of TEXT. Values of TEXT variables are input and output using an A-type
field specification.
Exa=ple:

TEXT TITLE (4)

READ 10, TITLE
10 FORMAT (4A8)

These statements will call for 4 groups of 8 consecutive characters each from the beginning of a record
to be read and stored in the locations TITLE (1), TITLE (2), TITLE (3) and TITLE (4). Further examples
are to be found in section 10.

Exercises 9
15 Write logical IF statements to have the following effects.
(i) To transfer to statement 9 if Al < A2 <A3 and I # 1 and to statement 10 otherwise.

(ii) To transfer to statement 99 if Y 1lies outside the range - 3 <Y < 5 and to proceed to the
next statement otherwise.

25 The first record of an output document is to be one of the four phrases CASE A, CASE B, CASE C and
NORESULT; the choice is determined by the value of an integer variable K computed during execution
(K = 15 2, 8 or 4),

Write statements to set up the phrases as items in a TEXT array, and PUNCH and FORMAT statements
to output the correct phrase.

10. FURTHER INPUT AND OUTPUT

In section 5 simple methods of using input/output statements in conjunction with FORMAT statements
were introduced. This section indicates how certain straightforward extensions of the concepts of the
input/output list and field specifications allow much more powerful methods to be used.

10.1 Choice of input/output medium
The most gemeral forms of input/output statements are
READ (a,f) list
WRITE (b, f£) list

These specify not only the number (f) of the associated FORMAT statement, but also the logical number (a)
of the input document or the logical number (b) of the output document. The choice of suitable numbers
allows the use of magnetic tape and paper tape devices and other peripherals. If f is omitted then
input or output using binary tapes is intended. Further details must be sought from the reference manuals:
this primer is concerned only with the use of system documents by means of the special forms of statement

READ f, list
PUNCH £, list
PRINT f, list
introduced in section 5.
10.2 Input/output lists
A list consists of a series of items separated by commas. So far, these items have been simple

items - that is simple variables, individual subscripted variables or array names without subscripts.
Compound items are also permissible, of the form

(list, i = my, mp, mg)
or (list, 1 = my, m,)

where unity is implied for m3 . A compound item is a shorthand notation, analogous to the DO statement,
calling for the list to be repeated with the index i taking in turn the values in the sequence
my, m *+m, m + 2m3,....; the rules are similar to those for DO statements,

3
Example 1
(ACDY, I8 = 15:10)

This item is equivalent to the list

A(1), A(2), A(3),....,A(10)
Example 2

(G DO L5 il LE

This item is equivalent to the list

A ACE) s BIEL ), 35 A (BN B3NS e Bt w1 A B G1)
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Since a compound item may be a member of a list, and a compound item calls for the repetition of a list,
it is possible to nest compound items to virtually unlimited depth. Statements may thus call for the
input or output of a large number of values: it is the function of the field specifications within the
associated FORMAT statement to control the arrangement of these values on the external medium.

Example 3
(A, )5 JEISNYGI=1,M)

This item is equivalent to the list
AL FANCIR 20 FATEl B e stesey A (TN
A2 A (22N < v w's o +A(2;N)
A NI eorte Ol e e L ity JA(M,N)
Example 4
M (T (W, ) 551 5 X(E) . E= 1, M)
This list is equivalent to the list

M,

L WK 10 W 2D st sW(E, 3),X(1),
2, W2, )W (252w sne ,W(2,5),X(2),
M, WM, 1),%(M,2),..... » W(M, 5), X(M)

Notes: (a) In section 7.4 it was stated that when an array name appears in a list without subscripts
i.e. as a simple item, the whole array is being mamed for input or output in “natural order”.
This order is in fact equivalent to that specified by the compound item:

as o5 COCRRRALLL T Ky e v vien b I'=Ldy), 3= 1.4,), K = 1,d,)....
where d;, d,, d3 are the relevant dimensions.

(b) For input statements, elements to the left of bracketed elements in the list assume their new
values before the bracketed elements are dealt with.
Thus K, (A(I),I=1,K) reads one number into K and them, using this value of K , reads
A(1) to A(K).
To read values of I and J , and then an element A (I,J) requires an apparently
superfluous pair of brackets thus:

1,3, (A(L,J))

10.3 FORMAT statements

An input/output list is scanned in conjunction with a list of field specifications given in the
associated FORMAT statement in order to determine the mode of conversion of each item to or from its
internal binary representation; such conversion specifications are termed class 1 field specifications.
The FORMAT statement may also contain specifications, known as class 2 field specifications, which do
not relate directly to items in a list: when these are encountered during the scan of the FORMAT
statement they are acted upon without reference to the list, to control such features as constant text,
horizontal or vertical spacing, zero suppression and scaling.f

10.4 Class 1 field specifications
Some of these have been introduced at appropriate points in previous sections, and are summarised
in the following table: w denotes a field width, and d the number of decimal places where applicable.

Specifications MOQe 0? e External form

in list
Ew.d REAL Floating decimal
Fw.d REAL Fixed point decimal
Iw INTEGER Decimal integer
Gw (Atlas) REAL Dependent on number
Aw TEXT Text

Other specifications are available for the input and output of octal integers and logical quantities:
these are not dealt with in this primer.

t Class 1 and class 2 field specifications are alternatively referred to as conversion specifications
and controls respectively.
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10.5 (lass 2 field specifications

10.5.1 Repetition of class 1 specifications. Any of the class 1 specifications may be preceded by
2 positive integer n , to signify n repetitions of that specification. This feature was introduced
in section 5. Furthermore, a group of field specifications may be enclosed in parentheses and preceded
by =n integer to signify repetition of the group. If n 1is not given it is assumed to be unity.

10.5.2 Scale factors. An E- or P-type specification may be preceded by sP, where s 1is a positive,
negative or unsigned integer.
The effect on an E-type specification is to cause the mantissa to be brought into the range

105! < |mantissa| < 10%

and the exponent adjusted accordingly.
The effect on an F-type specification is defined by

External value = Internal value x 10°

In other words, there is an implied decimal exponent of -s.
Note that if no scale factor is given, the presumed settings are as follows:

On Atlas : 1P for E-type, OP for P-type.
On Orion : OP for E-type, OP for F-type.

Example 5
Typical output using the specification 3PE20.5:
Value Printed output
2.4075 240, 75000E-02
-473. 567812 -473. 56781E~00
0.1 -100. 00000E-03

A scale factor affects all E- and F-type specifications which follow it; if more than one scale
factor is given, each applies until the next one is reached. The ordering referred to here is the order
of scan of the FORMAT statement (see paragraph 10.6). The presumed settings are restored when a new
input /output statement is commenced.

10.5.3 Constant text. The specification nH , followed by n characters (possibly including blanks)
calls for the output of these n characters exactly as written. A comma is not essential to separate
these from the next specification. If this is the only specification in a FORMAT statement, no list is
attached to the output statement.

Example 6
PRINT 14

14 FORMAT (24H THIS IS A PROGRAM TITLE)
Execution of the print statement causes the printing of the string of characters
THIS IS A PROGRAM TITLE
on a new line. The blank first character is not printed - see paragraph 10.5.6.

Example 7
PRINT 15, A

15 FORMAT (7H ALPHA=F10.4)
A typical output would be, when A has the value 59.32567
ALPHA=  59.3257

10.5.4 Blank fields. The specification nX specifies on output that n blanks are required, and
on input that the next n characters are to be ignored. This need not be followed by a comma.

10.5.5 Separation of records. It has been stated previously that each input or output statement
starts a new record e.g. a new card, or a new line of printed matter. The character / used in a FORMAT
statement specifies the end of a record, and that what follows is to start a new record; (n+1)
consecutive repetitions of the character / will produce n blank records.

10.5.6 Carriage control. For printed output, control of layout on the printed page is available

using the first character of each record; provided this is one of a number of special control characters,
it is not printed, but controls the vertical spacing as follows:
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blank single spacing before printing

0 double spacing before printing

& no spacing i.e. two records printed on
same line - available on Atlas only

it record to be printed as the first on
a new page.

The required character is frequently set using the nH specification; other characters are
available in Atlas FORTRAN but are not considered here.

Example 8
PRINT 100, SUMSQ

100 FORMAT (22H1 THE SUM OF SQUARES = F15.3)
would cause the printing of (say)
THE SUM OF SQUARES = 2791637. 415
at the top of a new page.

10.6 Scanning of lists and FORMAT specifications

The scanning process may be summarised as follows. During execution of an input/output statement
the associated FORMAT specification is scanned. Class 2 specifications are dealt with without
reference to the input/output list. When a class 1 specification is encountered the list is referred
to and if items remain to be transmitted the next is transmitted, according to the specification, and
scanning of the FORMAT statement resumed. If the list is exhausted, then execution of the input/output
statement ceases.

If the end of the FORMAT statement is reached before the list is exhausted, then the FORMAT
statement is rescanned. The opening and closing parentheses of groups are thought of as paired at a
certain level of depth: the parentheses enclosing the full format specification are paired at the zero
level of depth and any groups within them at the first or deeper levels.

Rescan of a FORMAT statement starts a new record, and begins at the integer, if any, preceding the
last opening bracket at the first level of depth, or at the beginning of the FORMAT specification if
there are no brackets at the first level.

Example 9
A possible FORMAT specification to print the list

M, (I,(W(1,3).J=1,8):X(T)1=1,M)

starting on a new page according to the layout given in section 10.2, with a blank line between the value
of M and the first row of array values, and a blank line after every 6 rows thereafter, would be

FORMAT (1H1,12//6(13,5E20.8,F15.8/))

Example 10
READ 90,(5TEXT(I.J),J=1,9).K(I),I=1,M)

90 FORMAT (9A8, 4X, 14)

These statements call for the characters from columns 1 to 72 of a set of cards to be read into
an array TEXT, ignoring columns 73 to 76, and an integer to be read from columns 77 to 80 of each card.

Example 11
PRINT 417, (TITLE(I),I=1,16), (RESULT(I),I=1,K)

417 PORMAT (2(1X,8A8/)/(0P4F8. 2, 2P2E10.2))

These statements print two lines of title, followed by a blank line, followed by lines each containing
6 numbers, the first four in a fixed-point decimal form and the last two in floating point form, scaled
up so that the mantissae lie in the range 10 to 100.

Exercises 10 g

15 A one-dimensional array ZZZ has N real elements (N < 10). Write statements to read the integer
N from one card, and the elements of ZZZ punched in order on subsequent cards, 10 elements per card

in adjacent 8-column fields.

2 The results of a program consist of two vectors P and Q, having 40 elements each. Values of P are
less than one in absolute magnitude, and values of Q 1less than 1000. Write statements to print three
columns: the first column a row number running from 1 to 40, the second column P and the third

column Q . Print no more than 8 significant figures.

o Non-zero elements only of an array BETA, dimensions 100 by 100, are punched four per card with
integers identifying the row and column numbers. Write a loop of instructions to read all cards, specify-

ing a suitable punching layout; devise a means of indicating the end of the pack of cards in order to
terminate the loop.



4, ¥rite statements to print out the elements of an array A, dimensions 30 by 20, as floating
point numbers with a mantissa in the range 10 to 100 (i) printing 6 numbers per line (ii) printing 6
nmmbers per line, but starting each row of A on a new line (that is, starting a new line after
eyery 20 elements). Retain 9 significant decimal figures.

3. 4n array PHI, dimensions 60 by 8, is considered as having 60 rows of 8 columns each. Write
statements to output the elements of PHI as fixed point numbers, with two figures before the decimal
point and five after, on 60 punched cards, each containing the elements of one row.

6. A program loop is to include the printing of two lines of results, preceded by one blank line, at
each repetition of the loop, a typical output reading as follows:

ELEMENT 20, 31 LENGTH = 12.47 IN. TYPE 3
STRESS =  400.7 LB/SQ.IN.

Write suitable output statements assuming that the values of length (< 100 inches), the type
integer (0 to 9) and stress (< 10° 1b/sq.in.) are to be found in the variables L, TYPE and STRESS
respectively, and that two integers (each < 1000) identifying the element are to be found in N1, N2.

s A program stores a case number (< 100) as the integer variable JOBNO and a title in a text array
TITLE(8). Write statements to read the case number and title from one card.

The results of the program consist of values of WEIGHT (< 10° 1b), HEIGHT (< 10° ft.), TIME
(< 500 min.) and SPEED (< 2000 f.p.s.) stored as vectors each with N elements.

A page of printed results is to have at the top the word CASE, followed by the case number,
followed by the title on the same line. Leaving two blank lines, the column headings WEIGHT (LB),
HEIGHT (FT), TIME (MIN), SPEED (F.P.S.) are to be printed on the next line, followed by a further blank
line before tabulating four parallel columns of actual values. These values are to be given to one
decimal place in each case, with a blank line after every block of five lines. N 1is not so large
that the results occupy more than one page altoghther. Write statements to output the printed page.
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SUGGESTED SOLUTIONS TO EXERCISES

Exercises 2
1 By forming elements of S in reverse, that is in the order Si q° S. s e unnecessary

) 15.q=
summation may be avoided.

Set i =1
Y

Set j = q

SUM = 0

Fig. 1
s A sketch of the graphs of bcosx and 1 - 3e™* indicates that f(x) = bcosx - 1 - 3e”*) has
roots between O and 77/2, 37/2 and 277, 27 and 57/2 and so on.
b bcosx
- E - >

Fig2
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Take as a first approximation to these roots the values 77/4 , 777/4 , 97/4 and so on.

an approximation to a root, then a better approximation is X + JAV' , where

In this case,

Ax =

bcosX — (1 - 3e™%)

bsinX + 3e~%

£(X)
£1(X)

AX = -

START

JAY'¢

X = Gy
4
_ beosX - (1 - 3e7Y)
bsinX + 3e~%
+ \
X =X +AX
2
N
2> —Ji=1+1

A 4

If X

is



START

@ No Yes

(X=X _ ) (¥¥i.4)
y = yi-l 7 ol IO Y
(xy=%;_))

l

Y

RETURN

Fig. 4

This method of representing a graph is too simple for many applications. Repeated searching of a long
list of ordinates is a time-consuming operation, which can be reduced by more sophisticated search
procedures. It may also save time to store fewer ordinates for a graph and to use a more complicated
interpolation formula to achieve comparable accuracy.
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Exercises 3

10 B(1) Unacceptable T-STEP Unacceptable
A2.4 Unacceptable DISTANCE Unacceptable
WEIGHT Real JCOUNT Integer
BBB Real A Unacceptable
TEMP Real U2 Real
3K Unacceptable SUM Real

2. 1200.0 147.3  0.0000000321 1256700.0

84 (1) (A+4)/(2*B) or (A+4)/2/B
(ii) SQRIF(B+1.0/7.0)/7
(iii) 3*(A+B)
(iv) (B**2+2*D*E)**2
(v) A**(J+1)
(vi) (A+B)*(C+D)/(E+F)
Gy AR RS> E /DX =3
or more economically
X* (A+X*(B+C/D*X))
(viii) (A/(A+1.5))**3.5
(ix) 0.5*LOGF(A/(B*(C+D)))
(x) SQRTF((A+B/(C+1))/D)

4. (1) SUM = (N**2 * (N + 1)**2)/4
(ii) = (27*A**2*D — 9*A*B*C + 2*B**3)/(27*A**3)
(iii) = (B - C)/(B + C)/TANF(A/2)
(iv) = SQRTF((S-B)/S*(8-C)/(8-A))
(v) S = LOGF(1 + SQRTF(1 + X**2)) -~ LOGF(X)

(vi) INT = SINF(X)/(2*COSF(X)**2) + LOGF(1/COSF(X)+TANF(X))/2
(vii) AREA = 3.14159*(R+S)*SQRTF(H**2+(R-5)**2)

(viii) CG = H/4*(4*R-H)/(3*R-H)
(ix) Z,Y = EXPF(X)*COSF(2*X)

(x) Z = LOGF(ABSF(1/TANF(Y)))
(xi) U = SQRTF(X/3*TANF(3*X))
5. CIYIRVANB RSN CEX2 ] Multiple assignment: variables should be separated by commas.
(ii) A = -B/(2*0) Two operators cannot be adjacent.
(TG0 A =H(BET)FI(CEL) Multiplication sign must be inserted.
(iv) A = 4*LOGF(A+0.2) Ditto.
(v) A = SQRTF(B+2*(C+D)) Parenthesis missing.

(vi) Illegal and meaningless. An expression cannot appear on the left-hand side of an
assignment statement.

(vii) 77 must appear in numerical form 3.14159... to the number of figures desired. The symbol 77
is not used with this meaning in the FORTRAN language.

6. (1) X = -8.3333.. T
(11) X = 0.75 o9 Pt 255
(A = (vii) N = -2
(iv) N =3
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Exercises 5
1. REAL I,L
READ 10,C,E,F,L,R
10 FORMAT (5F10.0)
P = 2*3.141593*F
I = E/SQRTF(R**2+(P*L — 1/P/C)**2)
PRINT 11, C,E,F,L,R,I
11 FORMAT (6E18.5)
CALL EXIT
END

28 INTEGER P, SUM, SUMSQ

READ 98,P

98 FORMAT (I3)
SUM = (P*(P+1))/2
SUMSQ = (SUM*(2*P+1))/3
PRINT 99, P, SUM, SUMSQ

99 FORMAT (I16,19,112)
CALL EXIT
END

3. READ 12, B,C, ANGLEA

12 FORMAT (3F10.0)
A = SQRTF(B**2+C**2-2*B*C*COSF(ANGLEA))
DELTA = B*C*SINF(ANGLEA)/2
PUNCH 13, A,B,C
PUNCH 13, DELTA

13 FORMAT (3E20.8)
CALL EXIT
END

4, FAC = 3.141593/180
READ 4, A,B,C
A = A*FAC
B = B*FAC
C = C*FAC 7/CONVERT A, B,C TO RADIANS
EE = (A+B+C-3.141593)/2
SINEE = SINF(EE)

SA = SINF(A-EE)

SB = SINF(B-EE)

SC = SINF(C-EE)

P = SQRTF(SINEE/(SA*SB*SC))
AA = 2*ATANF(SA*P) /FAC

BB = 2*ATANF(SB*P)/FAC
CC = 2*ATANF(SC*P)/FAC
PRINT 5, AA, BB, CC

4 FORMAT (3F6.3)

5 FORMAT (3F10.3)
CALL EXIT
END

Note: 1In Atlas FORTRAN the statement GO TO EXIT may be used in every case instead of CALL EXIT.

Exercises 6
1. (i) IF(QNEW-QOLD-1E-8)50,5,5

(ii) IF(N1,,2
(ii1) IF(ABSF(Y)-ABSF(2))9,,

Low = Z
GO TO 10
9 LOW =Y

10 CONTINUE

(iv) (a) TOP =W
IF(TOP.GE.X)1,
TOP = X
1 IF(TOP.GE.Y)2,
™OP =Y
2 IF(TOP.GE.Z)3,
TOP = Z
3 CONTINUE

(b) TOP = AMAXF(W,X,Y,Z)
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(v) IF(A1.LT.A2)11,10
11 IF(A2.LT.A3) 9,10

Note: a single IF statement may be used, testing a relation of the form (A1.LT.A2.LT.A3). See section 9.

(vi) IF (I)1000,,
IF (8-1)1000,,
GO TO (12,13,14,13,14,13,15,15,15),1I+1

READ 1,A,B,C
1 FORMAT (3F10.0)
IF (A),EXIT,
D = B**2 ~ 4*A*C
IF (D) 2,3,4
2 R1,R2 = 0 7ICOMPLEX ROOTS
GO TO 5
3 R1,R2 =
GO T0 5
4 D = SQRTF(D)
R1 = (-B+D)/2/A
R2 = (-B-D)/2/A 7DISTINCT REAL ROOTS
5 PRINT 6,R1,R2
6 FORMAT (2E20.8)
GO TO 7
END

3. REAL IODD, IEVEN
I0DD = 1.0
IEVEN = 3.14159265/4
M=1
N =2
4 PRINT 200, M, I0ODD

PRINT 200, N, IEVEN
IF (N - 100),EXIT,
M= M+2
N = N+2
I0DD = IODD * (M-1)/M
IEVEN = IEVEN * (N-1)/N
GO TO 4

200 FORMAT (16, F10.6)
END

4, (1) Z8Q = 2**2
INg=—S
SUM, TERM = 2
98 IF (ABSF(TERM) - 1E-8)99,,
TERM = -TERM * ZSQ/N/(N-1)
SUM = SUM + TERM

[V
-3

-B/2/A TIEQUAL ROOTS

N = N+2
GO TO 98
99 CONTINUE
(ii) W1 =H
W2 = H**2
W3 = THETA
W4 = 2*THETA

SUM = H*SINF(THETA) 7/FIRST TERM

DO 100 N = 3,39, 2

W1 = -W1*w2

W3 = W3 + W4

SUM = SUM + W1 * SINF(W3)/N**2
100 CONTINUE

5. INTEGER X
FOR X = 0,89,1
TAN = TANF(X*.0174532925)
T = TAN + TAN**3/3
PRINTGEXS ST
1 FORMAT (I4,F15.5)
REPEAT
GO TO EXIT
END
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Exercises 7

il

12

DIMENSION BETA (50), SN(50)

FOR I =1,50

SN (1) = SINF (BETA(I) *.017453292)
REPEAT

REAL K(100), K1(100), K2(100)
pDo3I-=1,N

IF (K(I) ~D),2,2

K1(I) = 0

K2(1)
GO TO
K1(I)
K2(I)
CONTINUE

K(I)

K(I)
0

B new nn

DIMENSION S(30), T(30), U(30)
DO 2I=1,30
S(I) = T(I) - U(I)

DIMENSION Y(301)

SUM = 0

FOR I = 1,3°N~2,3

SUM = SUM+Y (I)+3*Y(I+1)+3*Y(I+2)+Y(1+3)
REPEAT

AREA = 0.375*H*SUM

DIMENSION A(40,50), ASQ(40,50)
FOR I = 1,40

FOR J = 1,50

ASQ(I,J) = A(I,J)**2

REPEAT

REPEAT

REAL MASS (20,15), MMAX
INTEGER ROWNO, COLNO

MMAX = -1
FOR I = 1,20
FOR J = 1,15

IF(ABSF(MASS(I,J)) - ABSF(MMAX))12,12,
MMAX = MASS(I,J)

ROWNO = I

COLNO = J

REPEAT

REPEAT

DIMENSION X(200)

FOR I = 1,N-1

IP(X(I) — X(I+1)),99,99
REPEAT

DIMENSION EXPR(31,19), CS(31)

FOR I = 1,31

EXPR(I, 10),W=0.1*(I-1)

CS(I) = COSF(W)

REPEAT

FOR J = 1,9'

E = 0.1*J

ROOT = 1/SQRTF(1 - E**2)

FORI = 1,31

EXPR(I,10-J) = ROOT*ACOSF((~E+CS(I))/(1-E*CS(I)))
EXPR(I, 10+J) = ROOT*ACOSF( (E+CS(I))/(1+E*CS(I)))
REPEAT

REPEAT

DIMENSION A(50,50), B(50,50), C(50,50)
I
K
0
J
c

(I1,K1) + A(I1,J1)*B(J1,K1)

AN



Exercises 8 3
1 (i) FUNCTION TANH(X)
E = EXPF(-2*ABSF(X))
E = (1-E)/(1+E)
3 0C:0) IS
1 TANH - -E
RETURN
2 TANH = E
RETURN
END

Note: Evaluation of tanh(x) in this way avoids any possibility of overflow which might otherwise
occur when evaluating e* for large values of x.

(i1) A = B**2 + 2*TANH(B/SQRTF(B**2 + C**2))

2 (i)  FUNCTION SECH(X)
SECH = 2*EXPF(-ABSF(X))/(1+EXPF(-ABSF(X))**2)
RETURN
END

(ii) REAL K(20)
FORI = 1,20
W = 3.1415927*1/40 7VALUE OF 7/B/2A
SUM = SECH(W)
FOR N = 3,1000, 2
TERM = SECH(N*W)/N**2
SUM = SUM+TERM
IF(TERM - 1E-6)99,,
REPEAT
99 K(I) = 1-8*SUM/3.1415927**2
REPEAT

Note: Within one statement, the FORTRAN compilers recognise and treat efficiently “common sub-expressions”.
Thus in the definition of SECH, the sub-expression EXPF (-ABSF (X)) will be recognised as
appearing twice and instructions compiled in such a way as to call for its evaluation once only.

3. An outline of the analysis is as follows.
Expand K(x) as a series
(sin x - X cos X)

K(x) =
(x) 3
x° i 5 x2 N oL
=T U ey S e
x3
1 x2 x* x®
= S Sl T
S5 1o Bl 9.7
For small x , sinx = x cos x = x . Consequently, excessive cancellation occurs if the numerator of the
original expression is formed by subtraction.
] 0.001
Consider x=0.1 sin X = — ——— = 0,9998333..
6
3 0.001
Xxcos x = 0.1 - = 0.9995
2

Upon subtraction, approximately 3 significant decimal figures are lost compared with the 11 significant
figures to which x 1is expressed in an Atlas word. Consequently, for |x| < 0.1 use the series expansion.
For x = 0.1 the term in x® has the value

16 1

45360 2

This and subsequent terms may be dropped.
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A possible function routine is thus

FUNCTION K(XX)
REAL K
X = XX
IF(ABSF(X) - 0.1)1,1,
K = (SINF(X)-X*COSF(X))/X**3
RETURN
1 K= (1 - X**2/10*(1-X**2/28))/3
RETURN
END

4, (i) SPECF(Y) = EXPF(Y) -~ SQRTF (1 - Y **2)

(ii) A = SPECF (2 * T) + SINF (P * T)
B = TANF(~-SPECF(-N))

5. SUBROUTINE NORM (X, N)

DIMENSION X(1)
REAL MAX
MAX = 0
RORSIG= R, SN
IF (ABSF (X (I)) - ABSF (MAX))1,1,
MAX = X(I)

1 REPEAT
FORI =1, N
X(I) = X(I)/MAX
REPEAT
RETURN
END

Notes: (a) It is assumed that at least one element of X is non-zero.
(b) The second statement could read DIMENSION X(N), N being an adjustable dimension.
However, since X 1is a vector, the compiler makes no use of this statement except to note
that X 1is the name of an array. The conventional dimension 1 is therefore permissible.

6. SUBROUTINE WHICH (ARRAY, N, MAX, I, J)

DIMENSION ARRAY (100, 100)
REAL MAX
MAX = 0
FORSIIC =1, LN =
FOR JJ = II + 1, N
IF (ABSF (ARRAY (II, JJ)) - ABSF (MAX)) 99,,
MAX = ARRAY (II, JJ)
3 =0
J=JJ

99 REPEAT
REPEAT
RETURN
END

Note: 1In any routine calling this routine, the name of an actual array substituted for the formal
argument ARRAY must be declared in a dimension statement DIMENSION NAME (100, 100).

7 SUBROUTINE CHKSYM (A, N, ERROR)
DIMENSION A(N, N)
DO 98I =1, N-1
D099 J =I+1, N
IF (ABSF (A (I, J) - A (J, I) - 1E - 8),100,100
98 CONTINUE
99 CONTINUE
RETURN
100 CALL ERROR
RETURN
END



(i) either, in every routine
COMMON M, X, Y, A(100), B(10, 10), C(100, 50), D(10, 50)

or, in R1 COMMON M, X, Y, A(100)
in R2 COMMON M, X, Y, A(100), DUM(100), C(100, 50)
in R3 COMMON M, X, DUM(201), C(100, 50), D(10, 50)
in R4 COMMON M, DUM1(102), B(10, 10), DUM2(5000), D(10, 50)
(ii) in R1 PUBLIC M, X, Y, A(100)
in R2 PUBLIC M, X, A(100), C(100, 50)
in R3 PUBLIC X, C(100, 50), D(10, 50)
in R4 PUBLIC M, B(10, 10), D(10, 50)

Exercises 9

1.

(1) IF ((A1 .LT. A2 .LT. A3) .AND. (I .NE. 1)) 9,10
(ii) either

IF ((Y .LT. - 3) .OR. (Y .GE. 5)) 99,

or

IF ((Y .GE. -3) .AND. (Y .LT. 5)),99

TEXT TITLE (4)

TITLE (1) = 6HCASE A
TITLE (2) = 6HCASE B
TITLE (3) = 6HCASE C
TITLE (4) = 8HNORESULT

PUNCH 1, TITLE (K)
1 FORMAT (A8)

Exercises 10

b

[ ]

s

o

Assuming the input document to be on punched cards.

READ 99, N, (2ZZ (I), I =1, N)
99 FORMAT (I3/(10F8.0))

The integer N is assumed to be punched (right adjusted) in the first three columns of the first
card, and explicit decimal points punched in the data.

PRINT 100, (I, P(I), QI), I =1, 40)
100 FORMAT (I4, F15.8, F15.5)

7 READ 101, (I, J, (BETA (I, J)), K = 1, 4), MARK
101 FORMAT (4(2I3, F10.0), 15X, I1)
IF (MARK), 17,

The last card of the pack has 1 punched in the last column. On other cards this column is
blank (or zero). If the number of non~zero elements is not a multiple of 4, the last element
must be repeated to make up the last card.

(1) PRINT 102, A
102 FORMAT (2P6E20.7)
(ii) PRINT 102, A

102 FORMAT (2P3(6E20.7/), 2E20.7)

PUNCH 103, ((PHI(I,J), J = 1,8), I = 1,60)
103 FORMAT (8F10.5)

PRINT 104, N1, N2, L, TYPE, STRESS
104 FORMAT (8HOELEMENT I4, 1H, I3, 3X8HLENGTH = F6.2, 4H IN. 3X4HTYPE I2/9H STRESS = F8.1, 10H LB/SQ.IN.)

o Gifeo



s READ 105, JOBNO, (TITLE(I), I = 1,8)
105 FORMAT(I2, 8A8)

PRINT 106, JOBNO, (TITLE(I), I = 1,8)
106 FORMAT(5HICASE I3, 5X, 8A8///
45H WEIGHT(LB) HEIGHT(FT) TIME(MIN) SPEED(F.P.S)/)
PRINT 107, (WEIGHT(I),HEIGHT(I), TIME(I),SPEED(I), 1 = 1,N)
107 FORMAT(5(F10.1, F11.1, F10.1, F12.1/))

MTD/dmh
31.10.63
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