By J E. HAILSTONE Computer Group Atomic Energy
Research Establishment Harwell

Published, with permission of A.E.R.E., Harwell, by the Hollerith Group of Companies:

The British Tabulating Machine Company Limited Hollerith Machines (South Africa) (Proprietary) Limited Hollerith (India) (Private) Limited Hollerith (Central Africa) (Private) Limited Hollerith (Australia) Pty, Limited

The

use

of the
Hollerith Type 555
Electronic
Calculator
for
scientific
computation

By J. E. HAILSTONE

Computer Group
Atomic Energy
Research Establishment
Harwell

Contents

Page
Introduction 5
General Description of the Machine 7
Programming and Plugging 11
Reviewing and explaining a number of Typical Applications 12
The Use of Rational Approximations for the Elementary Functions 15
Monte Carlo Calculations in Nuclear Reactor Design 17
Data Processing 23
Nuclear Structure Theory - a Combinatorial Problem 27
Heat Flow Equations 31
Evaluations of Determinants and the Solution of Simultaneous Equations 35
General Comments 37
Legend 38
Appendix 'A' $-\left|\log _{e} x\right|$ Routine
Appendix 'B' - Monte Carlo Example

The reactor ZEUS (Zero Energy Uranium System) at Harwell. ZEUS has a highly enriched uranium core surrounded by a natural uranium breeding blanket.

The Cockroft - Walton high voltage generator with the injector of the proton - linear accelerator in the centre-background.

HERMES - the heavy element radio active material - electromagnetic separator which began operation in January 1957.

Introduction

(i) The Hollerith Type 555 Electronic Calculator is manufactured by The British Tabulating Machine Co. Ltd., and is a development of their Types 542 and 550 Electronic Calculators. The " 555 " was designed primarily for commercial and accounting work, but it has now proved to be also a machine which can be used usefully and efficiently in scientific computation.

The following account is intended to show, by means of some examples, the powers of the Type 555 Electronic Calculator in various types of scientific work. These examples have been chosen from problems dealt with by the Computer Group at A.E.R.E. Harwell, which has a Ferranti Mercury electronic digital computer and a Hollerith punched card machine installation including two Type 555 Electronic Calculators. The latter installation which is complementary to, and not in competition with, the Mercury computer is used in general for two types of work; Monte Carlo calculations in connection with reactor studies, and the processing of experimental data.
(ii) Although the Type 555 Electronic Calculator has been chosen primarily to carry out this work at Harwell, various other problems have been dealt with and this account includes a selection of such problems. It is intended to show what order of cemplexity and size of problem can be conveniently handled within the capacity of the machine, and to give information about the time required to program such problems.

The installation of two Hollerith Type 555 Electronic Calculators at A.E.R.E., Harwell

General description of the machine

The Type 555 is an Electronic Calculator with card input and output, controlled by means of manually plugged control panels; the machine reads information from a punched card, performs a sequence of arithmetical or logical operations on this information (as defined by a program), and punches the results into the same or following cards. The program comprises a maximum of 150 steps but any group of these can be repeated, either a fixed number of times or until some desired result is achieved. The machine operates at a maximum speed of 6,000 card passages per hour. At this speed of input a fixed time of 600 milliseconds is allowed for reading in the numerical data and carrying out the calculation regardless of the complexity of the program. Should a calculation on a job call for more than this standard time allowance, then card feeding will be held up until the calculation is completed. Experience here ranges down to the feeding of one card every 50 minutes.

The machine uses decimal arithmetic with "words" or numbers of 10 digits; the internal representation is in binary coded decimal, each digit being represented by four binary digits which in all operations are dealt with in parallel. There is a magnetic drum store for 105 words of numerical data arranged in five channels each of 21 words. In a program step a number is withdrawn along either or both of two highways, put through functional units (e.g. adder, divider) according to the operation to be performed by that step, and the result returned to store. All operations take place in multiples of a word time or cycle ($13 / 14$ ths milliseconds) during which, for example, the sum of two numbers can be formed and stored. Some operations, including multiplication, although constituting only one program step, occupy a varying number of word times depending on the size of the numbers involved.

Among features which make the Type 555 Electronic Calculator a powerful and efficient tool for scientific computation are:-
(1) Fast input and output.
(2) High arithmetic speeds.
(3) Fairly large storage capacity.
(4) A number of program steps much larger than usual in punched card calculators.

The key to the calculating capacity of the 555 lies in this magnetic drum store, which revolves at 3,000 r.p.m.

These emitters are used for automatic punching of designations identifying specific conditions in the punched card

To summarise, the important features are:-
(a) Parallel input and output. Reading available from all 80 columns of a card and punching into 60 columns of a card together with emitted information at a maximum speed of 6,000 cards per hour.
(b) Three Address system. The basic addition function (Source one plus or minus Source two to Destination) can be carried out in one basic time unit $=$ a word time - so that the machine uses a three-address system of instructions, although more than one Destination may be addressed at any time.
(c) Three registers, of 10 decimal digits each, provide the immediate access store, but in 1 word time all 5 words one in each of the 5 channels also become available.
(d) As well as addition, subtraction and multiplication, division and square root are built in and use only one program step.
(e) Comprehensive facilities for testing a number. T.C.O. (true, complement or zero) units may be set up to record whether a number passing through the adder is positive, non negative, negative or zero and may be used to vary the course of the program. These enable elaborate iterative and logical operations to be performed. "Jumping" instructions are available from calculated quantities and also from card designation.
(f) Table Look-up. A numerical table can be stored on the drum and consulted during the calculation using a "table look-up" programming facility in conjunction with "repeat" and "special repeat" functions.
(g) Sub-routines. The logical design enables one to treat sections of a program in much the same way as sub-routines in a stored program computer, entering these from different points in the main program.
(h) Proving and testing programs. The facilities for testing and monitoring a program are very comprehensive; the machine can be taken manually through a calculation step by step, the state after each step being shown on a display panel.

Programming and plugging

The general logical design of the machine is straightforward, and apart from a few special operations the instruction code is quickly acquired. The limit of 150 program steps and some slight restrictions on other facilities is countered by the fact that there is scope for considerable ingenuity in programming, especially when the program as first written exceeds capacity. This has frequently happened at Harwell, but it can be said that some means has always been found to overcome this apparent difficulty.

The actual plugging of a program by means of the control panel might seem at first sight to involve difficulties because of the closely packed plugs; plugging, however, can be reduced to an almost faultless operation if it is carefully planned at the outset. A simple code and routine is used, which enables even a stranger to a program to follow a calculation when checking through all its stages of plugging and operation; this greatly assists in fault-finding.

The design of the control panels is such that the number of times a particular function may be used is variable; there is an upper limit to the total number of functions of all kinds which may be called, but experience so far shows that this limit is unlikely to be reached and it is therefore not a factor which has to be taken into account by the programmer.

Reviewing and explaining a number of
 typical applications

[^0]| The use of rational approximations for the elementary functions.

2 Monte Carlo calculations in nuclear reactor design.
3 Data processing.
4 Nuclear Structure Theory - a Combinatorial Problem.
5 Heat Flow Equations.
6 Evaluation of determinants and the solution of simultaneous linear equations.

ERROR CURVE (APPROXIMATION - FUNCTION)/(FUNCTION)

	0	1	2	3	4	5	6	7	8	9	Δ
1.00	0.000000	01000	-1 998	02996	03992	04988	05982	06976	07968	08960	990
- 01	0.009950	10940	I I 929	12916	13903	14889	15873	16857	17840	18822	981
-02	0.019803	20783	21761	22739	23717	24693	25668	26642	27615	28587	972
.03	$0 \cdot 029559$	30529	31499	32467	33435	34401	35367	36332	37296	38259	962
. 04	0.039221	40182	41142	42 roI	43059	44017	44973	45929	46884	47837	953
1.05	0.048790	49742	50693	51643	52592	53541	54488	55435	56380	57325	944
-06	$0 \cdot 058269$	59212	60154	61095	62035	62975	63913	64851	65788	66724	935
$\cdot 07$	0.067659	68593	69526	70458	71390	72321	73250	74179	75107	76035	926
-08	0.076961	77887	788 Ir	79735	80658	81580	82501	83422	84341	85260	918
$\cdot 09$	0.086178	87095	88 OII	88926	89841	90754	91 667	92579	93490	94401	909

1.40	0.336472	37186	37900	38613	39325	40037	40749	41460	42170	42880	710
-41	0.343590	44299	45007	45715	46423	47130	47836	48542	49247	49952	705
$\cdot 42$	0.350657	51361	52064	52.767	53470	54172	54873	55574	56275	56975	699
-43	0.357674	58374	59072	59770	60468	61165	61861	62558	63253	63948	695
-44	$0 \cdot 364643$	65337	66031	66724	67417	68109	68801	69492	70183	70874	690
$1 \cdot 45$	0.371564	72253	72942	73630	74318	75006	75693	76380	77066	77751	685
-46	$0 \cdot 378436$	79121	79805	80489	81172	81 855	82.538	83219	83901	84582	680
-47	0.385262	85942	86622	87301	87980	88658	89336	90013	90690	91366	676
$\cdot 48$	$0 \cdot 392042$	92718	93393	94067	94741	95415	96088	96761	97433	98105	671
-49	$0 \cdot 398776$	99447	00118	00788	01457	02126	02795	03463	04131	04798	667
1.50	0.405465	06132	06798	07463	-8128	08793	09457	10121	10784	I 1447	663
n	1		2	3		4	5		6	7	
$\ln 10^{n}$	$2 \cdot 302585$	54.60	5170	6.90775	$55 \quad 9.210$	- 340	11.51292	25×3	8.5511	16.118	096

The use of rational approximations for the elementary functions

It is almost always necessary in mathematical work to use one of the elementary functions, e.g. $\log _{e} x, \sin 2 \pi x$ etc.; it is therefore important to have available routines which will evaluate these functions since the storage of tables is seldom desirable or even possible. Much work has been done in the last few years on finding approximations to the elementary functions using rational functions (i.e. ratios of polynomials which are sometimes obtained by means of continuedfractions). There are a number of rational approximations which can be used ${ }^{(1)}$, and when a specified accuracy is required it is imperative that an efficient routine is chosen for the Type 555 Calculator which uses only the minimum number of program steps consistent with the required accuracy. The fact that the division and square root routines are built in is, of course, instrumental in making the machine a powerful computing tool, for without these being available immediately and occupying only one program step much of the work which can be done would be impossible if sub-routines for these had to be programmed.

Experience with the Type 555 shows that between 20 and 30 steps are needed to evaluate such functions with maximum relative errors in the range 0.001 to 0.0001 . For example, one such routine for evaluating $\left|\log _{e} x\right|$, $0<x \leqslant 1$, takes 28 steps for a maximum relative error of 0.0004 .

The rational function taken is:
$y=\left|\log _{e} x\right|=(1-x) \frac{1.06535+.31774 x}{.38308+x}, \frac{1}{2} \leqslant x \leqslant 1$.
x which may initially be 9 decimals, is scaled first by powers of 10 to obtain significant digits in the first five decimal places, and then by powers of 2 to bring it within the range $\frac{1}{2} \leqslant x \leqslant 1$. This scaling and the subsequent correction by adding multiples of $\log _{\mathrm{e}} 2$ and $\log _{\mathrm{e}} 10$ takes 18 of the 28 steps, the remaining 10 steps being used to evaluate y above.

Where two functions e.g. $\left|\log _{e} x\right|$ and $\sin 2 \pi x$, are required in the same program it is possible to obtain rational functions which differ only in the numerical coefficients, thus allowing the same routine to be entered to evaluate both functions. (The $\left|\log _{e} x\right|$ routine is given in Appendix A).

[^1]
DIAGRAMMATIC ILLUSTRATION OF CHAIN REACTION IN A NUCLEAR REACTOR

 Monte Carlo calculations in nuclear reactor design

The active agents in a nuclear reactor are the neutrons, and the essential purpose of all reactor calculations is to find out something about the neutron population. This population is discrete, that is, it is made up of individual neutrons whose behaviour is governed by known physical laws which involve the nuclear properties of the materials of the reactor. The number of neutrons is so great ($10^{10} /$ c.c. is a low value for this) that no accuracy is lost if the population is assumed to be continuous, and an analytical mathematical treatment of the problem developed as is done in hydrodynamics; a vast amount of reactor calculation has been, and will continue to be, done onthis basis. However, problems have arisen in which the analytical treatment leads to mathematical difficulties insuperable even with the most powerful computing machinery, and in such cases, the only method of attack is one which takes into account the discrete nature of the neutron population. The laws describing this neutrons' behaviour are all expressions of probability: for example, the probability of travelling the distance x before making a collision with a nucleus is proportional to $e^{-p x}$ where p depends on the medium. This collision can result in absorption or scattering of the neutron, or fission of the nucleus, with given relative probabilities. One can therefore study the behaviour of the system by computing theoretical life histories of sample batches of neutrons, using "random" numbers having suitable distributions to decide the course of each history; this is the mathematical equivalent of throwing dice or spinning a roulette wheel. Standard statistical theory can then be used to infer from the results of the sample calculation the properties of the population as a whole. This type of approach, called the Monte Carlo method, from an obvious analogy, has the great advantage of side-stepping all formal mathematical difficulties, but the disadvantage of giving a result subject to statistical error. This error can be estimated, and can be reduced by increasing the sample size(apart from using more refined techniques), but for high accuracy a very large sample may be needed. It is common practice to use samples of a few thousand neutrons from which one may usually expect to obtain final results correct to about 1%. This result is

Z=0
a generalisation, however, and is not necessarily reliable for particular applications. The basic operation in this process is the tracking of a neutron from one collision to the next; the 150 program steps of the Type 555 will often accommodate this even in systems which seem complicated, so that a collision is accounted for in a single card passage. (1) (2)

The following is a simple problem of reactor design, in which subject the application of Monte Carlo methods has received considerable impetus. A sample of neutrons is to be tracked through a system consisting of a series of plane parallel-sided cells. A specified number of these cells, which may be of different materials and widths, make up one block, and the system consists of an infinite series of such blocks. Each neutron having a given starting position, $\mathrm{Z}=\mathrm{Z}_{\mathrm{o}}$, and a random direction θ, may travel acertain distance, η, before collision with a nucleus. This distance depends upon the material through which the neutron passes and its magnitude is the result of sampling from a known probability distribution. A neutron having a collision will be absorbed or scattered with given probabilities, ($1-P_{i}$), P_{i}, according to the material in which the collision occurs. The proportion of neutrons absorbed in each cell of a block is required, together with the neutron collision distribution for a block, each neutron being tracked until finally absorbed.

The program written for the Type 555 deals with a maximum of 10 cells per block, so that any system of 10 or less cells can be studied. for the purpose of calculation only the distribution and proportion of neutrons absorbed across any one block is of interest. Therefore, neutrons having collisions outside block 0 are considered as having their collisions in block 0 .

The following information is given:
(a) H, block width.
(b) $\mathrm{h}_{\mathrm{i}}, \mathrm{i}^{\text {th }}$ cell width, $\mathrm{i}=1$ to 10 .
(c) P_{i}, probability of scattering in the $i^{\text {th }}$ cell, $i=1$ to 10 .
(d) $\mathrm{Z}=\mathrm{Z}_{\mathrm{o}}$, a starting position for each neutron in the sample.

The card sequence:-
Master Card A contains $h_{i} P_{i}, i=1$ to 6.
Master Card B contains $h_{i} P_{i}, i=7$ to 10.
Master Card C contains H, constants for generating random numbers, and constants for evaluating $\log _{e} x$.

Detail Card D contains $Z=Z_{o}$, different for each of say 20,000 sample neutrons.

Summary Card E1 contains the number of neutrons absorbed in each of the 10 cells.

Summary Cards E2 to E11 contain the distribution of collisions across the $\mathrm{i}^{\text {th }}$ cell, $\mathrm{i}=1$ to 10 .

The Master Cards supply the constant information to be placed in the drum store, all calculation is performed on card D as below, and the Summary Cards cause the transfer of information from the working section to the output locations of the drum:
(a) Generate ${ }^{(1)} 3$ random numbers $\xi_{1}, \xi_{2}, \xi_{3}$
(b) $\mu=\cos \theta=1-2 \xi$, i.e. $\cos \theta$ is uniformly distributed between $-1 \leqslant \cos \theta \leqslant+1$.
(c) $\eta=\left|\log _{\mathrm{e}} \xi_{2}\right|$ i.e. the distance travelled to the next collision is distributed as the negative exponential $\mathrm{e}^{-\mathrm{x}}$. The $\log _{\mathrm{e}} \xi_{2}$ is calculated from the rational approximation given above. (1)
(d) $Z^{\prime}=Z+\mu \eta$ i.e. the horizontal distance to the next collision.
(e) $Z^{\prime \prime}=Z^{\prime}(\bmod H)$ i.e. the positive fractional part of Z^{\prime} / H which scales Z^{\prime} so that it lies in block 0 .
(f) Repeatedly subtract $h_{1}, h_{2}, h_{3}, h_{4} \ldots . h_{i}$ from $Z^{\prime \prime}$ until the sum is negative at the subtraction of h_{i}.

$$
\text { i.e. } z^{\prime \prime}-\sum_{r=1}^{i} h_{r}<0
$$

(g) Put $\mathrm{i}=\mathrm{S} . \mathrm{S}$ now indicates that the collision occurred in the $\mathrm{S}^{\text {th }}$ cell. In order to obtain a distribution of collisions, each cell is dividedinto 10 equal intervals.
 The position of collision in cell S is the $j^{\text {th }}$ interval.
(i) Score 1 in the appropriate counter for the $S^{\text {th }}$ cell and the $j^{\text {th }}$ interval. For 10 cells and 10 intervals per cell there are thus 100 counters.
(j) Test:

If $\xi_{3}<\mathrm{P}_{\mathrm{S}}$, repeat the calculation from (a).
If $\xi_{3} \geqslant \mathrm{P}_{\mathrm{S}}$, the neutron has been absorbed and the tracking is complete.
(k) Score 1 in one of ten counters, for the last collision in cell S , to obtain the number absorbed in each of the ten cells.

Since a sample neutron may have a random number of collisions before being absorbed, it is not possible to give an exact calculator speed, but, where the average number of collisions per neutron was ten, the rate was approximately 1,000 cards per hour.

It should be noted that apart from the initial preparation of the starting values, no card handling is necessary. The results are punched in eleven cards which have only to be listed to provide the record of the run. No exact figures are available for the time required to prepare this program, but it was certainly less then 10 days from its conception.

The program takes 130 steps and it is of interest to note how much the program depends upon the "Repeat" and "Special Repeat" functions. Clearly, in the sequence of calculations above there is a good deal of searching through the drum store, not only to locate the h_{S} and P_{S} values, but also to find the correct counter to store the number of collisions.

In the space available it is not possible to give a detailed program for each problem treated, but for this calculation the complete program is given in Appendix B, together with an explanation of certain abbreviations of the function codes which have been found convenient.

References:

(1) Symposium on Monte Carlo Methods. Wiley \& Sons, New York̄, London.
(2) Symposium on Monte Carlo Methods. Journal of Royal Statistical Society, Series B, Vol. XVI, No. 1, 1954.

3 Data processing

There is an increasing demand from physicists and chemists who require to summarise and transform results from large scale scientific experiments. The automatic output of data on to punched cards or tapes, which are then processed by a computer or calculator, saves great manual effort and also allows results to be inspected soon after an experiment has been completed. In many cases the calculation required is only of moderate size, but it may have to be repeated a great many times. It is therefore important to have a computer which can readily cater for a steady stream of such data.

In the design of nuclear reactors the nuclear properties of the materials to be used are of great importance; these properties are the fission, absorption and scattering cross sections of the fuel, the moderators and coolants, which in general vary also for the different energies of the free neutrons. These cross sections are simply the probability of any one of the three events ocurring when a free neutron of a particular energy has a collision with a nucleus. There are several methods for determining these cross sections; the neutron velocity selector or "chopper", the neutron crystal spectrometer, the Van de Graaff electrostatic generator, the linear accelerator, and the reactor itself. In almost all methods the behaviour over wide ranges of energy must be observed, so that for each material examined a large amount of data may be obtained, usually in the form of counts of neutrons as indirect functions of energy. The experimental physicist using these machines cannot make use of this information as it is obtained, because of its volume and because it is not in the form he requires, i.e. cross sections as a function of energy.

The Type 555 is an efficient machine for this kind of work, and an illustration, dealing with cross section data from the linear accelerator, as carried out on the machine, is discussed. Although the calculation is small it will be seen that the amount of input and output data is considerable.

Information obtained from 1,000 sources, gives rise to 1,000 numbers n_{i}. Several runs of the experiment are made giving input data of, say r sets, each of 1,000 numbers ${ }_{j} n_{i}, i=1$ to $1,000 . j=1 \ldots . r$.

It is required to calculate:
(1) $N_{i}={ }_{1} n_{i}+{ }_{2} \mathrm{n}_{\mathrm{i}}+{ }_{3} \mathrm{n}_{\mathrm{i}}+\ldots{ }_{r} \mathrm{n}_{\mathrm{i}}$. Output N_{i}.
(2) $A_{i}={\underset{S N}{ }=0}_{i-1}^{N_{S}}$.
(3) $\delta N_{i}=\frac{A_{i} \times N_{i}}{T \times C} \quad$ Where T and C are given constants.
(4) $N_{i}{ }^{\prime}=N_{i}+\alpha \delta N_{i}$. Where α is a given constant.
(5) $B_{i}{ }^{\prime}=A+R K C_{i}$. Where A, R, K are given constants, and C_{i} is given for each i.
(6) $N_{i}{ }^{\prime \prime}=N_{i}{ }^{\prime}-B_{i}{ }^{\prime}$. Output $N_{i}{ }^{\prime \prime}$
(7) $T_{i}=\frac{N_{i} "}{M S_{i}} . \quad$ Output T_{i}
M is a given constant. S_{i} is given for each i.
(8) $\frac{1}{\mathrm{n}}\left|\log _{\mathrm{e}} \mathrm{T}_{\mathrm{i}}\right|=\sigma_{\mathrm{i}} \quad$ Output σ_{i}. $\frac{1}{\mathrm{n}}$ given constant.
(This is the value of the cross section, which is what the physicist is searching for).
(9) $\delta^{\delta} \mathrm{T}_{\mathrm{i}}=\sqrt{\mathrm{N}_{\mathrm{i}} \mathrm{K}_{\mathrm{N}}}{ }_{\mathrm{i}}$ ".
(10) $\mathrm{T}_{\mathrm{i}} \pm \delta \mathrm{T}_{\mathrm{i}}$. Output .

The calculation in (8) of the $\left|\log _{e} T_{i}\right|$ makes use of the rational approximation discussed above in (1) and, in order to deal with a very wide
range of the numbers which can arise during the calculation, double length arithmetic has been used in steps (3), (5), (7) and (8).

The card sequence is as follows:
Master Card - containing constants T, C, R, K, etc., and constants for calculating $\log _{e} T i$.

The time taken to calculate 4 sets of 1,000 such numbers followed by 1,000 summary cards is 50 minutes; i.e. the calculator is running at full speed. The program, and the job itself, were dealt with entirely by junior staff.

There are other similar processes at Harwell and the demand for schemes such as that described above is increasing as the potentialities of automatic recording and processing are realised.

Nuclear structure theory
-a combinatorial problem
The following calculation is again one of nuclear physics and is unusual because very little arithmetic is required. For each stage of the problem numerous decisions must be taken, following a set of given rules, to determine which of a group of numbers on the drum store is to be operated upon. The "Table Look Up" feature, one of the facilities of the Type 555, is at the heart of the problem, and the following notes explain its essential points and the program instructions.

A table is in channels 1 and 2 having 42 entries assumed to be at equal intervals of the argument, e.g. $F(E)$ for $.01 \leqslant E(.01) \leqslant .42$.

As the result of a calculation of E we have, say E_{o}, and we wish to find $F\left(E_{o}\right)$. With the value E_{o} in the product register P, the following routine is entered.

Program Step

(1) Set T.C.O. $1>0$ by the transfer of a positive number and reset the channel selector.
(2) From the product register (P) on path A.

Emit 21, on the path B (Complement if T.C.O. $1>0$).
To the Product register.
Set T.C.O.1. and move channel selector.
Repeat Program Step if T.C.O. $1>0$.
Word time, instantaneous.
(3) From P on path A.

Emit 1 position 1 on path B. Complement.
To P.
Set T.C.O.1.
Special Repeat step if T.C.O.1. $\geqslant 0$.
Word time 19.
(4) From Channel 1, path A, if Channel Selector - 2

2 path A, if Channel Selector $=3$
To Multiplicand register.
Word time, instantaneous
N.B.There is an important difference between the "repeat" and "special repeat" functions. "Repeat" will repeat a program step, under the control of a T.C.O., either consistently at a specified word time, or, "instantaneously" to progress through successive word time in sequence. "Special repeat" must have a specific starting word time and will then use, in sequence, subsequent word times. Both functions are controlled by numbers passing through the adder and when a control condition no longer exists, that is T.C.O.1 $\leqslant 0$, in (2), the "repeat" automatically causes one more operation before passing on to the next program step. Program sted (2) illustrates this, 21 being subtracted until the result in the product is zero or negative; the complement function is then cut off and the further operation restores the fractional part of 21 to the product register. The channel selector can then indicate which channel holds the number, the fractional part selects the appropriate word time by means of program step (3). Program step (4) then performs the required operation on the selected number

This routine can be used also for placing constants on the drum andalso when convenient for selecting numbers for output.

Example:
We are given a function $T(1)$ of 1 and two values, $j=j_{1}$ and j_{2}.

1	$\mathrm{~T}(1)$
0	-
1	-
2	-
3	-
4	-
5	-
6	-

 j^{\prime} has two values $\mathrm{j}_{1}{ }^{\prime} \mathrm{j}_{2}{ }^{\prime}$.

	$\mathrm{i}=0$	$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$
l^{\prime}	$\mathrm{T}^{\mathrm{o}}\left(1^{\prime}\right)$	$\mathrm{T}^{1}\left(1^{\prime}\right)$	$\mathrm{T}^{2}\left(1^{\prime}\right)$	$\mathrm{T}^{3}\left(1^{\prime}\right)$
0	-	-	-	-
1	-	-	-	-
2	-	-	-	-
3	-	-	-	-
4	-	-	-	-
5	-	-	-	-
6	-	-	-	-

For 1 and $l^{\prime}>6, T(1)$ and $T^{i}\left(1^{\prime}\right)=0 . \quad i=0,1,2,3$.

It is required to calculate the following sum and to record the individual sums for $1=0$ to 6 separately.

$$
\sigma=\sum_{1=0}^{6} T(1) \quad \underset{J\left(\mathrm{j}_{1} \mathrm{j}_{2}\right)}{\sum} \quad(2 \mathrm{~J}+1) \quad\left[\begin{array}{cc}
\Sigma & \mathrm{T}^{\mathrm{p}}\left(\mathrm{l}^{\prime}\right) \\
\frac{l^{\prime}\left(\mathrm{j}^{\prime} \mathrm{j}^{\prime}{ }_{2}\right)}{} \\
\sum \sum \sum \mathrm{i}^{\prime}=01^{\prime}\left(\mathrm{j}^{\prime}{ }_{1} \mathrm{j}^{\prime}{ }_{2}\right)
\end{array} \mathrm{T}^{\mathrm{i}\left(l^{\prime}\right)}\right]
$$

For a given $1, \mathrm{~J}$ takes integral values given by $|j-1| \leqslant J \leqslant(j+1) . \quad j$ takes the values $j_{1} j_{2}$ in turn

For a $\mathrm{J}, \mathrm{l}^{\prime}$ is given by
$\left|j^{\prime}-J\right| \leqslant l^{\prime} \leqslant\left(j^{\prime}+J\right) . \quad j^{\prime}$ takes the values $j_{1}{ }^{\prime} j_{2}{ }^{\prime}$ in turn for each i.

An l' is only admissible when it is of the same parity as the 1 from which it is derived, i.e. l^{\prime} can only be even if 1 is even, or odd if 1 is odd. Otherwise it makes no contribution to the sum.

The suffix P takes a particular value of i, e.g. $P=2$, and this is specified at the start.

To illustrate the layout of the program the block diagram shows more clearly the operations involved, in particular the number of loops which are necessary.

The card sequence is:
Master Card A $1^{\prime}, T^{0}\left(l^{\prime}\right) 0 \leqslant l^{\prime} \leqslant 6, j_{1}{ }^{\prime} \mathrm{j}_{2}{ }^{\prime}, \mathrm{j}_{1} \mathrm{j}_{2}$
Master Card B $l^{\prime}, T^{1}\left(1^{\prime}\right) 0 \leqslant l^{\prime} \leqslant 6, j_{1}{ }^{\prime} j_{2}{ }^{\prime}$
Master Card C $l^{\prime}, T^{2}\left(l^{\prime}\right) 0 \leqslant l^{\prime} \leqslant 6, j_{1}{ }^{\prime} \mathrm{j}_{2}^{\prime}(\mathrm{i}=2=P)$
Master Card D $1^{\prime}, T^{3}\left(1^{\prime}\right) 0 \leqslant l^{\prime} \leqslant 6, j_{1}{ }^{\prime} j_{2}{ }^{\prime}$
Detail Cards $1=0 T(0)$. Punch contribution of $1=0$.
$1=1 \mathrm{~T}(1)$. Punch contribution of $\mathrm{l}=1$.
$1=6 T(6)$ Punch contribution of $1=6$.
Card E Punch σ.
Cards A to D enable the tables to be assembled on the drum, all calculation is performed on the detail cards, and the final sum is punched on Card E.

The present number of program steps required is 73 , but it is possible that with greater experience this could be reduced. The whole program was suggested, planned, set-up, and tested, and production started within one working week, according to the following schedule:
(a) $1 \frac{1}{2}$ days in writing program.
(b) 1 day in planning the plugging.
(c) 1 day in setting up the panels.
(d) 1-1 $\frac{1}{2}$ days for testing, and the calculation of the examples by hand.

The time to evaluate one sum σ was 4 mins.
No discussion of the physical problem is entered into since it would involve a lengthy and very elaborate account of a difficult theory. For those who wish to enquire further, it is that of the calculation of Excitation Functions for neutron inelastic scattering and (p, n) reactions on the theory of Hauser and Feshbach ${ }^{(1)}$,
(1) Hauser W., Feshbach *H. Phys. Rev. 87. Page 366

Heat flow equations

Many of the problems of mathematical physics involve the solution of differential equations. Analytical difficulties are however often encountered, and it is frequently necessary to obtain numerical solutions for which various numerical methods have been devised. An approximate method is to replace the differential equation by a finite difference equation which for many cases leads to an adequate approximate solution. Such a situation arises in heat flow equations, and the following account is concerned with the solution of the finite difference equations which approximate to the differential equation.

In this type of problem, an initial state \mathbf{j} is given for a series of positions $i, i=1,2 \ldots n$, and it is required to compute values for each position at state $j+1$. where the relationship between the $j^{\text {th }}$ and $(j+1)^{\text {th }}$ state is given by a finite difference equation of the form.

$$
A_{i}^{j+1}=\alpha A_{i}^{j}+\beta A_{i-1}^{j} \quad \alpha, \beta \text { given, }
$$

together with boundary conditions which deal with the cases $1=0$ and $\mathrm{i}=\mathrm{n}$.

The example deals with the following equation and boundary conditions:

$$
\begin{aligned}
V_{i}^{j+1} & =a V_{i}^{j}+b\left(V_{i-1}^{j}+V_{i+1}^{j}\right) \cdot a, b, \text { given. } \\
& i-1,2 \ldots \ldots \ldots n .
\end{aligned}
$$

Boundary Conditions:

$$
\begin{aligned}
\mathrm{v}_{\mathrm{n}+1}^{\mathrm{j}} & =\alpha \mathrm{v}_{\mathrm{n}-1}^{\mathrm{j}}+\beta \mathrm{v}_{\mathrm{n}}^{\mathrm{j}} . & & \alpha, \beta \text { given. } \\
\mathrm{v}_{\mathrm{o}}^{\mathrm{j}} & =\mathrm{k}_{\mathrm{j} \cdot} & & \mathrm{k}_{\mathrm{j}} \text { given. }
\end{aligned}
$$

Starting Values:

$$
v_{i}^{0}=a_{i} \cdot \quad \begin{aligned}
& i=1,2 \ldots n \\
& j=0
\end{aligned}
$$

Calder Hall Heat Exchanger. Looking down into the Heat Exchanger shell, where banks of boiler tubes are being placed in position.

One of Calder Hall's sixteen Heat Exchanger Shells being lifted into position on its plinth. Each shell is approximately 80 feet high.

A program has been written for the Type 555 which deals with $\mathrm{n} \leqslant 10$; 63 steps are required in the calculation of all 10 positions of the $j^{\text {th }}$ state. Because one card cannot contain all values for the $j^{\text {th }}$ state, a second card to be punched is inserted. The card sequence is simple, the constants and starting values are read in from two master cards and all subsequent values are punched on the blank cards. The speed is such that 1,000 values of $\mathrm{V}_{\mathbf{i}}^{\mathrm{j}}(1=1$ to $10, \mathrm{j}=1$ to 100$)$ can be obtained in approximately 3 minutes, further illustrating the advantage of the Type 555 for the output of a large amount of data. The programming time required only a few hours, the possible value of n having been decided previously. In common with the Monte Carlo and Combinatorial problems, the ability to select numbersfrom the drum store according to given rules is vital; without it the solution of many problems would not be possible on the Type 555 and it is this ability which brings the machine into the borderline class between electronic calculators and general purpose digital computers.

Plugging up a Control Panel for one of the jobs described in this booklet.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}+a_{15} x_{5}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}+a_{25} x_{5}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}+a_{35} x_{5}=b_{3}
\end{aligned}
$$

$\begin{array}{lllll}a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\end{array}$
$\begin{array}{lllll}a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\end{array}$
$\begin{array}{lllll}a_{51} & a_{52} & a_{53} & a_{54} & a_{55}\end{array}$

© Evaluation of determinants and the solution of simultaneous equations

Since the Type 555 is restricted to 150 program steps, and a relatively small numerical store for this kind of work, matrix operations would not, at first sight, appear to be convenient, but it is of interest to consider what can be done in this field.

A nother inherent difficulty when the equations are ill-conditioned, is that of scaling; the Type 555 is not easily programmed to deal with floating point arithmetic, because the shifting operations are not simple. However, this can be overcome to some extent by careful attention to the basic logic of the machine and by ingenuity in programming.

For operating on large size matrices a large fast general-purpose digital computer is essential, but, for matrices of a small order r say, $3 \leqslant r \leqslant 12$, the Type 555 can be used to solve a set of equations and evaluate the determinant; the inversion of a matrix and the evaluation of its latent roots seem to be unsuitable because of the difficulty of storing all the elements of the matrix, together with the subsidiary matrices which are needed.

From the many methods for the solution of simultaneous linear equations, a choice has been made of the Choleski method. Sofar only symmetric matrices have been considered, and the following discussion is exclusively concerned with them. The Choleski ${ }^{(1)}$ method is based on the fundamental theorem that $A=L L^{\prime} A$ is a square symmetric matrix.

L is a lower triangular matrix.
L^{\prime} is the transpose of L .
Writing a matrix equation
$A x=b($ where x is an unknown vector and y a
known vector)
we have
LL'x $=\mathrm{b}$.
Put
$L^{\prime} x=y$,
then $\mathrm{Ly}=\mathrm{b}$,
$L^{\prime} \mathrm{x}=\mathrm{y}$, and by back substitution x may be found.

There are two reasons for considering this method to be suitable for the Type 555. First, it is not necessary to keep all elements of L^{\prime} in the drum store, so that matrices of order $\leqslant 12$ may be considered; second, the method of solution allows one element of L^{\prime} to be computed for each input of an element of A, thus allowing the cards to be used as a temporary store of L^{\prime}.

A program has been written for the Type 555 based on this, and experience will show how successful it is in dealing with ill-conditioned sets.

The general scheme adopted is as follows:
(a) The upper triangle of the symmetric matrix A is fed in, in row order, together with the vector b, with one element $a_{i j}$ per card.
(b) $L_{i j}$ is punched on card of element $a_{i j}$, the vector b being treated as an extra column of A.
(c) If the determinant only is required a special final card is inserted on which is punched $D^{\frac{1}{2}}$,
(d) To obtain the solution the cards are put through the machine a second time in reverse order to complete the back substitution.
(e) Special cards are punched containing the vector x .

Reference:

(1) Practical Methods for the solution of linear equations and the inversion of matrices. L. Fox. Journal of Royal Statistical Society, Series B. Vol. XII, No. 1. 1950.

General comments

Although the Hollerith Type 555 Electronic Calculator cannot be considered in the same class as a stored program computer it is nevertheless a powerful machine for many problems. The facilities of a computer are available; although a program has to be written within 150 steps, these steps are however very powerful, and in some cases can be set up to operate as sub-routines.

The basic circuitry of the Type 555 is similar to that which has been successfully employed in the Hollerith Type 542 and 550 Calculators. Many hundreds of these machines are in operation throughout the United Kingdom and overseas; the " 555 " has the same proven reliability as these machines, from which it has been developed. An incidental point is that no special installation facilities are needed apart from some means of dispersing the heat generated by the 8 KW . which is the normal running load.

The problems described form only a selection from those already programmed, and as time goes by it is confidently expected that the Type 555 Electronic Calculator will be employed on further new projects.

Legend

P	: Product
M/D	: Multiplicand
M/R	: Multiplier
INST.	Instantaneous
COMP.	Complement
N.R.G.	Non Ring
W. (1)	- Word time 1
C.S.	Channel Selector
$\mathrm{ZA}_{\mathrm{x}}^{\mathrm{y}}$: Zeroise digits x to y on Highway A
$\mathrm{ZB}_{\mathrm{u}}^{\mathrm{v}}$	- Zeroise digits u to v on Highway B
LSR. 1.	Long Skip Start Number 1
LSP. 1.	Long Skip Stop Number 1
LSR. 2.	Long Skip Start Number 2
LSP. 2.	Long Skip Stop Number 2
SSR	Short Skip Start
SSP	Short Skip Stop
E. (x). P. (y).	Emit number x in position y on to Highway B.
(Stop) Skip if "P"	(Stop) or Start a skip if present card is designated " P ".
(Stop) Skip unless "P"	(Stop) or Start a Skip if present card is not designated " P ".
Set TC0. (a)	Sets unit (a) to take up the state of the number which last passed through the adder on which Set TC0 (a) was called. States of (a), $\geqslant 0,>0,=0,<0$.
as (16)	Programme step is same as step (16). Instruction wires for step (16) are used for all subsequent steps, e.g. 19, 22, which do not have to be separately instructed.

TYPE 555
PROGRAM SHEET
X IN THE MULTIPLICAND $X=7$ DECIMALS
$\operatorname{LoG}_{e} \mathbf{X}$

PROG STEP	FROM		TO	MPY. DIV. S.Q.	$\begin{aligned} & \text { COL. } \\ & \text { SHIFT } \end{aligned}$	ZEROISE		WORD	CYC	REMARKS
	A	B								
1	4/		P					1		Count (d) for p of 10^{p}
2	M/D	$\begin{aligned} & \text { Comp } \\ & \mathrm{M} / \mathrm{D} \end{aligned}$					Set TC02	Inst		Set TC02 $=0$
3		M/D					Set TC03	Inst		Test $\mathrm{X}=0$
4	M/D				$\begin{gathered} \text { M/D9 } \\ \text { P9 } \end{gathered}$	ZA_{1}^{7}	$\begin{aligned} & \text { SSR }(\mathrm{TCO3}=0) \\ & \text { Set TC02 } \\ & \text { Repeat }(\mathrm{TC} 02=0) \\ & \text { LSP1 }(\mathrm{TC} 01<0) \end{aligned}$	Inst		Shift and count until $X \geqslant .1$
5	M/D	Comp E5 p9					Set TC01	Inst		Test for $\mathbf{X}^{\mathbf{1}} \mathbf{>}$. 5
6	M/R	E1 P1	M/R				$\mathrm{X} 2(\mathrm{TC} 01<0)$	Inst		Add 1 to count for S of 2^{s} Double $\mathrm{X}^{\prime}\left(\mathrm{X}^{\prime}<.5\right)$
7	M/R	Comp E1 P1	M/R				LSR1 ($\mathrm{TC} 01<0$)	Inst		Loop
8		M/R	3/					15		Store S of $2^{\text {s }}$
9	P		3/			$\mathrm{ZA}_{2} \text { end }$		19		Store P of 10^{p}
10		4/	M/R.					2		A_{2}
11					M/D4	ZM/D		Inst		Shift x to 5 dec .
12	M/D		3/					4		Store x
13				Mult						
14					P5	ZP				
15	4/	P	M/D			ZP		3		$\mathrm{A}_{1}+\mathrm{A}_{2} \mathrm{X}$
16	4/	3/	M/R					4		$\mathrm{A}_{3}+\mathrm{x}$
17				Div			Div Shift 5. 10 cycles			
18		Comp $3 /$	M/R			ZP		4		- x
19	M/R	E1 P6	M/R					Inst		1-x
20				Mult						
21					P4	ZP				
22	4/		M/D					5		$\log _{e} 2$
23		3/	M/R					15		S of $2^{\text {S }}$
24				Mult						
25	4/		M/D					6		$\log _{e} 10$
26		3/	M/R					19		P of 10^{p}
27				Mult			SSP $(\operatorname{TC03}=0)$			
28	4/		P				$\begin{aligned} & \operatorname{SSR}(\mathrm{TC03}>0) \\ & \operatorname{SSP} \end{aligned}$	7		$\begin{aligned} & \text { If } X=0 \text { put } \log _{e} X \\ & =\log _{e} 5 \times 10^{8} e^{2} \end{aligned}$

NOTE: Program Step 4 - X (i.e. X shifted such that $X \geqslant .1$) is left in positions 3-9

| $\underset{\substack{\text { PROGG } \\ \text { STEP }}}{ }$ | From | | то | MPY. | \|l|l | zeroise | | woro | crc. | ass. cre. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | | | | | | | | |
| 1 | | E9 P1 | M/R | | | | ${ }^{\text {LsppI.Skip unless 'C' }}$ | 12 | | |
| 2 | | E1 P1 | | | | | Set TC01 | Inst. | | |
| ${ }^{3}$ | M/R | $\begin{aligned} & \text { E1 P1 } \\ & \text { Comp } \\ & \hline \end{aligned}$ | M/R | | | | $\begin{aligned} & \text { Set TC01 } \\ & \text { Sp. Repeat }(\mathrm{TC} 01 \geqslant 0) \end{aligned}$ | 20 | | |
| 4 | 1/ | | M/D | | | | | Inst | | |
| 5 | | E7 P1 | M/R | | | | Set Tcoi. | Inst | | |
| 6 | M/R | $\begin{aligned} & \text { E1 P1 } \\ & \text { Comp } \end{aligned}$ | M/R | | | | $\begin{aligned} & \text { Set TC01. } \\ & \text { Repeat }(\mathrm{TC} 01 \geqslant 0) \end{aligned}$ | Inst | | |
| 7 | M/D | | $1 /$ | | | | | Inst | | |
| 8 | 5/ | $\begin{aligned} & \hline \text { E1 P1 } 1 \\ & \text { Comp } \\ & \hline \end{aligned}$ | $\begin{gathered} M / R \\ 5 / \end{gathered}$ | | | | Set Tcos | 12 | | |
| 9 | | | | | | M/R | LSR1 (TC03 $\geqslant 0$) | ${ }_{\text {Inst }}$ | | |
| 10 | | $\begin{array}{\|l\|} \hline \text { E9 P1 } \\ \text { Comp } \\ \hline \end{array}$ | m/R | | | | | Inst | | |
| 11 | M/R | ${ }_{\text {E1 P1 }}$ | $\begin{gathered} 4 / \\ M / R \end{gathered}$ | | | | Set TC01. Sp. Repeat (TC01 < 0) Stop skip if ' A ' Stop skip if 'B' | 11 | | |
| 12 | | | | | | | As 2 | | | |
| 13 | 5/ | | 1/ | | | | | | | |
| 14 | 1/ | | M/R | | | | Skip unless 'D' | 1 | | |
| 15 | 1/ | | M/D | | | P | | 2 | | |
| 16 | | | | $\begin{aligned} & \text { Mult } \\ & \text { NRG } \end{aligned}$ | | | | | | |
| 17 | ${ }^{\text {p }}$ | | $\underset{\text { M/D }}{ }$ | | | ${ }^{\text {P }}$ | | 10 | | |
| 18 | $1 /$ | | M/R | | | | | 1 | | |
| 19 | | | | | | | As 16 | | | |
| 20 | ${ }^{\text {P }}$ | | $\begin{gathered} 5 / \\ M / D \end{gathered}$ | | | ${ }^{\text {P }}$ | | 7 | | |
| 21 | | | | | | | As 18 | | | |
| 22 | | | | | | | As 16 | | | |
| 23 | P | | 1/ | | | | | 2 | | |
| 24 | | | | | ${ }^{\text {p6 }}$ | ${ }^{\text {P }}$ | | | | |
| 25 | | $\underset{\text { Pomp }}{ }$ | m/D | | | | | Inst | | |
| 26 | | | | $\underset{\text { NRG }}{\substack{\text { X2 }}}$ | | | | | | |
| 27 | M/D | E1 P5 | 4/ | . | | | | \because | | |
| 28 | 5/ | | m/D | | | | | 7 | | |
| 29 | | | | | M/D3 | m/D | | | | |
| 30 | 1/ | | $\underset{\mathrm{P} / \mathrm{R}}{ }$ | | | | | ${ }^{3}$ | | |
| ${ }^{31}$ | M/D | $\begin{aligned} & \text { M/D } \\ & \text { Comp } \end{aligned}$ | | | | | Set TC01. Set TC02. | Inst | | |
| 32 | M/D | | | | | | Set Tco3. | Inst | | |
| ${ }^{33}$ | | m/D | | | $\begin{gathered} \mathrm{p9} \\ \mathrm{M} / \mathrm{D} 9 \end{gathered}$ | $\mathrm{z}_{1}^{T}{ }^{\text {P }}$ | $\begin{aligned} & \hline \text { SSR (TC02 = 0) } \\ & \text { Set TC02 } \\ & \text { Repeat (TC02 = 0) } \end{aligned}$ | Inst | | |
| 34 | | | | | M/D4 | m/D | Set TCO2. Reset C.S. | | | |
| ${ }^{35}$ | | m/D | | x2 | M/R9 | ${ }_{1}^{z_{1}^{6}}$ | $\begin{aligned} & \text { Set TC02. Move C.S. } \\ & \text { Repeat }(\text { TC02 }=0) \end{aligned}$ | | | |
| ${ }_{3}$ | | | 5/ | | | | $\begin{aligned} & \text { C.S. }=4 \mathrm{E} 1 \mathrm{P} 1 \\ & \text { C.S. }=5 \mathrm{E} 2 \mathrm{P} 1 \\ & \text { C.S. }=0 \mathrm{E} 3 \mathrm{P} 1 \end{aligned}$ | ${ }^{1}$ | | |
| 37 | m/D | | m/R | | | | | Inst | | |
| ${ }_{38}$ | | ${ }^{\text {P }}$ | 5/ | -2 | | $\underset{p}{\mathrm{z}_{2}^{\text {end }_{\mathrm{P}}}}$ | | 3 | | |
| 39 | $1 /$ | | m/D | -2 | | | | 4 | | |
| 40 | | | | -2 | | | | Inst | | |
| 41 | M/R | | $5 /$ | | | | | 6 | | |
| 42 | | | | Mult | | | | | | |
| 43 | | | | | p. 5 | p | | | | |
| 44 | $1 /$ | P | m/D | | | P | | 5 | | |
| 45 | 1/ | $5 /$ | M/R | | | | | 6 | | |
| 46 | | | | Div. | | | Div. Shift 510 cycles | | | |
| ${ }^{47}$ | | $\begin{gathered} 5 / \\ \text { Comp } \end{gathered}$ | M/R | | | ${ }^{\text {P }}$ | | ${ }^{6}$ | | |
| ${ }^{48}$ | M/R | ${ }_{\text {E1 }} \mathrm{P}^{6}$ | m / R | | | | | Inst | | |
| 49 | | | | | | | As 42 | | | |
| 50 | | | | | P. 4 | P | | | | |
| 51 | 1/ | | m/D | | | | | 7 | | |
| 52 | $5 /$ | | M/R | | | | | 1 | | |
| 53 | | | | | | | As 42 | | | |
| 54 | $1 /$ | | m/D | | | | | 8 | | |
| 55 | $5 /$ | | M/R | | | | | 3 | | |
| 56 | | | | Mult | | | Ssp | | | |
| 57 | 1/ | | $\underset{\text { (TC03 }}{\substack{\text { a }}}$ | | | | | ${ }^{9}$ | | |
| 58 | P | | M/R | | | P | | Inst | | |
| 59 | $4 /$ | | | | | | Set TC04 | 9 | | |
| ${ }_{60}$ | | $\left\|\begin{array}{c} \mathrm{M} / \mathrm{D} \\ \operatorname{Comp} \\ (\mathrm{TC} 04<0) \end{array}\right\|$ | m/D | | | | | Inst | | |
| 61 | | | | | M/R1 | M/R | | | | |
| 62 | | | | | | | As 42 | | | |
| ${ }^{63}$ | | | | | | | As 50 | | | |
| 64 | $1 /$ | | M/D | | | | | 11 | | |
| ${ }^{65}$ | $5 /$ | $\left.\begin{array}{c} \mathrm{P} \\ \mathrm{Comp} \\ \mathrm{TCO4}<0 \end{array}\right)$ | ${ }^{\text {P }}$ | | | | (Set Troz. | 13 | | |
| ${ }^{66}$ | ${ }^{\text {P }}$ | $\begin{gathered} \mathrm{M} / \mathrm{D} \\ \text { Comp } \\ (\mathrm{TC05} \geqslant 0) \end{gathered}$ | ${ }^{\text {P }}$ | | | | $\begin{aligned} & \text { Set TCO2 } \\ & \text { Repeat }(\text { TC02 } \geqslant 0) \\ & \text { TC05 } \geqslant 0) \\ & \text { Repeat }(\text { TC02 }<0) \\ & \text { TC05 }<0) \end{aligned}$ | Inst | | |
| ${ }^{67}$ | | | | $\begin{gathered} (\mathrm{TC} 05 \geqslant 0) \\ \mathrm{x} 2 \end{gathered}$ | | | | | | |
| ${ }^{68}$ | P | $\begin{array}{\|c\|} \hline \mathrm{M} / \mathrm{D} \\ \mathrm{Comp} \\ (\mathrm{TC} 05<0) \\ \hline \end{array}$ | ${ }^{\text {P }}$ | | | | Set TC01 | Inst | | |
| 69 | P | | 5/ | | | | | 13 | | |
| 70 | ${ }^{\text {P }}$ | ${ }_{\text {comp }}^{1 /}$ | ${ }^{\text {P }}$ | | | $z_{6}^{\text {end }}{ }_{\text {en }}$ | $\begin{aligned} & \text { Set TC01. } \\ & \text { Sp.Repeat }(\mathrm{TCO1} \geqslant 0) \end{aligned}$ | 12 | | |
| 71 | | ${ }^{\text {E16 }}$ | M/R | | | | Set TC01 | Inst | | |
| 72 | m/R | $\begin{aligned} & \text { E1 P1 } \\ & \text { Comp } \end{aligned}$ | m/R | | | | Set TC01. Repeat ($\mathrm{TC} 01 \geqslant 0$) | Inst | | |
| ${ }^{73}$ | P | $1 /$ | P | | | $z_{6}^{\text {end }}{ }_{\text {B }}$ | | Inst | | |
| 74 | | | | | | | As 73 | | | |
| 75 | | E15 | M/R | | | | Set TCO1 | Inst | | |
| 76 | | | | | | | As 72 | | | |

TYPE 555
PROGRAM SHEET
MONTE CARLO EXAMPLE

$\begin{array}{\|l\|} \hline \text { PROG } \\ \hline \text { STEPP } \\ \hline \end{array}$	FROM		то	$\begin{aligned} & \text { MPY. } \\ & \text { DPV. } \\ & \text { S.Q. } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { col. } \\ \text { sHIFT } \\ \hline \end{array}$	zeroise	WORD	cyc		Ass.
	A	B								
77	4/	E9 P1	M/D					Inst		
78	1/		M/R					Inst		
79	M/D		5/					8		
80		M/R	5/			$\mathrm{z}_{1}^{6} \mathrm{~B}$		10		
81	M/R		M/R		P. 9	$\begin{aligned} & \mathrm{z}_{6}^{\text {end }_{A}} \\ & \mathrm{M} / \mathrm{D} \\ & \hline \end{aligned}$				
82				Div.			1 cycle			
83	5/	$\begin{aligned} & \text { E1 P1 } \\ & \text { Comp } \end{aligned}$	M/R					8		
84	M/D		5/			P		9		
85		E5 P1	m/D					Inst		
86				Mult						
87	5/		M/R					9		
88					M/R9					
89				$\div 2$						
90		M/R				$\mathrm{z}_{2}^{\text {end }}{ }_{\text {B }}$	Set TC05	Inst		
91					M/R1	M/R				
92	M/R	E1 P1	M/R					Inst		
93	P	M/R	M/R				Set TC01. Reset C.S.	Inst		
94	M/R	$\begin{array}{\|c} \mathrm{E} 21 \\ \text { Comp } \\ \text { (TC01 } \end{array}$	M/R				Set TC01. Move C.S. Repeat ($\mathrm{TC01} \geqslant 0$)	Inst		
95		E1 P1					Set TC01	Inst		
96	M/R	$\begin{aligned} & \mathrm{E} 1 \mathrm{P} 1 \\ & \text { Comp } \end{aligned}$	M/R				Set TC01. Sp. Repeat. (TC01 $\geqslant 0$)	19		
97	$\begin{aligned} & 2 / \mathrm{CS}=2 \\ & 3 / \mathrm{CS}=3 \\ & 4 / \mathrm{CS}=4 \end{aligned}$	$\left.\begin{array}{\|c\|} \text { E1 P1 } \\ \text { TC05 }>0 \\ \text { E1 P6 } \\ \text { TC05 }=0 \end{array} \right\rvert\,$	$\begin{gathered} 2 / \mathrm{CS}=2 \\ 3 / \mathrm{CS}=3 \\ 4 / \mathrm{CS}=4 \\ \mathrm{P} \\ \hline \end{gathered}$	-				Inst		
98	5/		M/D					10		
99	4/		M/R					10		
100					$\begin{array}{\|l\|l} \hline M / R 5 \\ M / D 5 \end{array}$	M / R				
101	M/R	$\begin{aligned} & \mathrm{M} / \mathrm{D} \\ & \text { Comp } \end{aligned}$					Set TC05	Inst		
102							LSR2 ($\mathrm{TCO5}>0$)	Inst		
103							As 83			
104							As 88			
105							As 89			
106							As 90			
107							As 95			
108							As 91			
109	M/R	$\begin{aligned} & \text { E1 P1 } \\ & \text { Comp } \end{aligned}$	M/R				Set TC01. Repeat ($\mathrm{TC} 01 \geqslant 0$)	Inst		
110	5/	$\begin{array}{\|c\|} \hline \mathrm{E} 1 \mathrm{P} 1 \\ \mathrm{TC} 05>0 \\ \mathrm{E} 1 \mathrm{P} 6 \\ \mathrm{TC} 05=0 \\ \hline \end{array}$	5/					Inst		
111							S.S.R.Stop Skip if ' E'	Inst		
112	5/		M/R			P		14		
113							As 85			
114							As 86			
115	P		5/			P	LSP2 (TC03<0)	21		
116	5/	E1 P1	$\begin{gathered} M / R \\ 5 / \end{gathered}$				Set TC01. Reset C.S.	21		
117							As 94			
118							As 95			
119							As 96			
120	$\begin{aligned} & \text { 2/CS=2 } \\ & 3 / \mathrm{CS}=3 \\ & 4 / \mathrm{C}=4 \end{aligned}$	\square	M/D					Inst		
121							As 95			
122	5/		M/R					2		
123	M/R	$\begin{aligned} & \hline \text { E1 P1 } \\ & \text { Comp } \\ & \hline \end{aligned}$	M/R				Set TC01. Sp.Repeat (TC01 $\geqslant 0$)	4		
124	M/D		5/					Inst		
125	5/	E1 P1	5/					2		
126	P	E1 P1	P					Inst		
127	P	E5 P1					Set TC03	Inst		
128							$\begin{gathered} \hline \text { LSR2 }(\mathrm{TC} 03<0) \text { S.S.R. } \\ \text { Stop Skip if ' } \mathrm{F}^{\prime} \end{gathered}$	Inst ${ }^{\text {P }}$		
129	1/		M/D					2		
130	M/D		5/				$\begin{aligned} & \text { Stop Skip unless 'C' } \\ & \text { Stop Skip unless 'D' } \end{aligned}$	21		
131							s.S.R.	Inst		

TYPE 555 STORAGE CHART

WORD	CHANNEL 5	CHANNEL 4.	CHANNEL 3	CHANNEL	CHANNEL I
1	${ }^{\mathrm{r}} / 2 \mathrm{Sof} 2^{\text {s }}$			$0^{h_{1}}$	$P^{10 \text { figs }}$
2	к				$\mathrm{P}_{0}{ }^{10 \mathrm{figs}}$
3	P of 10^{p}			4	$\underset{\alpha}{0012345670}$
4		${ }^{\mathrm{h}} 10$		6	$\begin{gathered} .31774 \\ \mathrm{~A}_{2} \end{gathered}$
5			h_{6}	8	$\begin{gathered} 1.06535 \\ \mathrm{~A}_{1} \end{gathered}$
6				${ }^{\text {h }}$	$\stackrel{.38308}{A_{3}}$
7	ξ_{2}				$\begin{aligned} & \hline .69315 \\ & \log _{\mathrm{e}} 2 \end{aligned}$
8	s				$\begin{aligned} & 2.30259 \\ & \log _{e} 10 \end{aligned}$
9	r	$\mu_{4 \mathrm{D}}$			$\log _{e} 5 \times 10^{8}$
10	P_{1}	ξ_{1}	h_{7}		
11		-8		h_{3}	$\mathrm{H}^{1+5 \mathrm{D}}$
12	transfer (count)	-7			$\begin{array}{\|cc} \hline 1+4 \mathrm{D} & 1+4 \mathrm{D} \\ \mathrm{P}_{1} & \mathrm{~h}_{1} \\ \hline \end{array}$
13	子 4D	-6			$\mathrm{P}_{2} \quad \mathrm{~h}_{2}$
14	R 0, 1.... 9	-5			$\mathrm{P}_{3} \quad \mathrm{~h}_{3}$
15	\cdots	-4	h_{8}		$\mathrm{P}_{4} \quad \mathrm{~h}_{4}$
16	$\begin{aligned} & \text { No. absorbed } \\ & \mathrm{h}_{1} \quad \mathrm{~h}_{2} \end{aligned}$	-3		h_{4}	$\mathrm{P}_{5} \quad \mathrm{~h}_{5}$
17	$\mathrm{h}_{3} \quad \mathrm{~h}_{4}$	-2			$\mathrm{P}_{6} \quad \mathrm{~h}_{6}$
18	$\mathrm{h}_{5} \quad \mathrm{~h}_{6}$	-1			$\mathrm{P}_{7} \quad \mathrm{~h}_{7}$
19	$\mathrm{h}_{7} \quad \mathrm{~h}_{8}$	0			$\mathrm{P}_{8} \quad \mathrm{~h}_{8}$
20	$\mathrm{h}_{9} \quad \mathrm{~h}_{10}$	1	h_{9}		$\mathrm{P}_{9} \quad \mathrm{~h}_{9}$
21	5R			h_{5}	$\mathrm{P}_{10} \quad \mathrm{~h}_{10}$

ACKNOWLEDGEMENTS

Photographs on pages 4 and 32 are published by kind permission of the United Kingdom Atomic Energy Authority.

The table published on page 14 is reprinted from Chambers Six-Figure Mathematical Tables.

The publisher and author gratefully acknowledge the assistance of personnel at A.E.R.E., Harwell in the compilation of this publication.

THE BRITISH TABULATING MACHINE CO. LTD

Head Office: 17 PARK LANE LONDON W.I Telephone: HYDe Park 8155

district sales offices
 LONDON:

North London, Kent, | Victoria House, Southampton Row, Lon-
Surrey, Chilterns
City
West End
BIRMINGHAM :
West Midlands
Wolverhampton and Stafford
BRISTOL
CARDIFF
COVENTRY
EDINBURGH
GLASGOW
HITCHIN:
South Midlands and
East Anglia
LEEDS

LIVERPOOL

MANCHESTER :
North, South
NEWCASTLE UPON TYNE
NOTTINGHAM

SHEFFIELD

SOUTHAMPTON
don, W.C.1. (Holborn 7866)
City Wall House, 84/90 Chiswell Street, E.C.1. (Monarch 1596/7/8)

33 Sackville Street, W.1. (Regent 2021)
Wolverley House, 18 Digbeth, Birmingham, 5. (Midland 1812)

King Edward House, New Street, Birmingham, 2. (Midland 1812)
12 Waterloo Road, Wolverhampton. (23440 and 23449)
Warriner's Building, Warriner's Wharf, Bathurst Basin, Bristol, 1. (26395/6)
40 Windsor Place, Cardiff. (27260)
28-34 Whitefriars Street, Coventry. (40261/2)
6a Rutland Square, Edinburgh, 1. (Foutainbridge 6201/2)
13/17 Renfield Street, Glasgow, C.2. (City 6626)

2 Walsworth Road, Hitchin, Herts. (Hitchin (2241/2)
Provincial House, 26 Albion Street, Leeds, 1. (32381)

164 Sefton House, Exchange Street, Liverpool, 2. (Central 5561)
Century Insurance Building, St. Peter's Square, Manchester. (Central 3524/5)
Neville Hall, Westgate Road, Newcastle upon Tyne, 1. (29786/7)
Westminster Buildings, Theatre Square, Nottingham. (46421/2)
54-56 Fargate, Sheffield, 1. (27186/7/8/9)
7 Cumberland Place, Southampton. (24659)

gOVERNMENT SECTION

Victoria House, Southampton Row, London, W.C.1. (Holborn 7866)

AGENTS FOR NORTHERN IRELAND

Calculating and Statistical Service : 7 Bedford Street, Belfast. (24635)
hollerith computer centre
36 Hertford Street, London, W.1. (Grosvenor 1765)
educational and training centres
Moor Hall, Cookham, Berks. (Bourne End 810/1)
Bradenham Manor, High Wycombe, Bucks. (Nap Hill 2191/2/3)
FIELD ENGINEERING HEADQUARTERS
Oxen Road, Luton, Bedfordshire. (Luton 6530/1)
special services hollerith dividend service bureau: Victoria House, Southampton Row, W.C.1. (Holborn 7866). lectures and films: 70 North Row, W.1. (Hyde Park 1881). service bureaux : Aberdeen, Birmingham, Glasgow, Leeds, Liverpool, London, Manchester, Molesey (Surrey), Newcastle upon Tyne, Nottingham and Southampton.

WORKS

Alderley Edge, Cheshire. Castlereagh, near Belfast. Letchworth Garden City, Hertfordshire; Stevenage, Hertfordshire. Stockport, Cheshire.
research and design
Letchworth Garden City, Hertfordshire.
Stevenage, Hertfordshire.

OVERSEA BRANCHES

Alexandria, Auckland, Cairo, Colombo, Karachi,
Port of Spain, Rangoon and Wellington
also service representatives in
Abadan, Accra, Chittagong, Hong Kong, Kuwait, Lahore, Masjid-i-Sulaiman (Iran),
Mauritius, Rawalpindi, Singapore and Valletta
OVERSEA SERYICE BUREAUX
Alexandria, Cairo, Karachi
OVERSEA WORKS
Alexandria, Egypt
OVERSEA COMPANIES
INDIA: Hollerith (India) (Private) Ltd., Bombay Branches at Bangalore, Calcutta, Lucknow, Madras and New Delhi
Service Representatives in Ajmer, Asansol, Baroda, Chittaranjan, Digboi (Assam), Giridih
(Bihar), Jamshedpur, Jealgora (Bihar),
Jubbulpore, Kanpur, Meerut, Poona, Satara, Secunderabad and Sindri (Bihar)
Service Bureaux in Bombay, Calcutta, Madras and New Delhi
Works: Bombay
south africa: Hollerith Machines (South Africa) (Proprietary) Ltd., Johannesburg
Branches at Cape Town, Durban, Johannesburg, Nairobi, Port Elizabeth and Pretoria
Service Representatives in Bloemfontein, Dar-es-Salaam, East London, Kimberley, Vereeniging and Windhoek
Service Bureaux in Cape Town, Durban, Johannesburg, Nairobi, Port Elizabeth and Pretoria
Works: Johannesburg
central africa: Hollerith (Central Africa) (Private) Limited, Salisbury
Service Representatives: in Bancroft, Bulawayo, Chingola, Kitwe, Luanshya, Mufulira, Ndola and Que Que
Service Bureau in Salisbury
australia: Hollerith (Australia) Pty. Ltd., Sydney
Branches at Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney
Service Bureaux in Adelaide, Brisbane, Melbourne, Perth and Sydney

Works: Melbourne
mexico: British Tabulating Machines (Mexico) S.A. de C.V., Edificio Jena 604, Lieja, 8, Mexico, 6, D.F.

OVERSEA AGENT
republic of ireland: Calculating and Statistical Service, Hollerith House, 15 Harcourt Street, Dublin (55411/2/3)

[^0]: Examples of current problems have been chosen to show the use of the various features of the Type 555 Electronic Calculator: these have been presented to the Harwell Computing Group by scientists who have a practical need for large scale calculations. Some of these applications have become standard routines on which already hundreds of hours of machine time have been used.

[^1]: (1) Rational Approximations of Functions. B.Carlson and M.Goldstein. Report LA-193 Los Alamos Scientific Laboratory. University of California.

