

U N I V E R S I T Y O F L O N D O N

INSTITUTE OF COMPUTER SCIENCE

A D V A N C E D M V C M A N U A L

Volume II

by

ANDREW COLIN

October 1964

Preface

This provisional version of the MVC manual, Part II, has been published in response to

a number of requests. It differs from the final version in three respects.

1) It does not incorporate any of the last-minute changes which will have to be made

as the MVC system becomes fully developed;

2) It does not contain any description of the style and format of the output generated

by the system;

3) The section on operating procedure (2.15) is highly provisional and is liable to change

from week to week. Enquiries as to its current state should be addressed to the

author.

It must be stressed that this manual does not form a complete handbook of the MVC

system by itself. It should be read in conjunction with the previously published MVC Part I,

to which it forms a continuation.

At present the author would be grateful to see all results produced by the MVC system,

whether they are judged satisfactory or not.

From a copy preserved by Bi ll Will iams and OCRed and re -

formatted by Dik Leatherdale.

Original pagination has been preserved throughout but blank

pages have been omitted. Modern fonts have been employed

in the interests of readability. The contents list, index and

internal references have been implemented as cl ickable links.

Program and data text are differentiated by font from

narrative.

Some l imited correction of obvious errors has been performed

and are shown in red, though trivial changes are not. Please

report transcription errors to dik@leatherdale.net.

mailto:dik@leatherdale.net

2-1

2.1 Some generalisations

In this section, we shall generalise some of the rules given in Part I of the manual.

2.1.1. Arithmetic Expressions.

Arithmetic expressions have a far wider field of application than that described in

ELEMENTARY MVC. They can replace numbers and numerical variables in most contexts in an

MVC specification. For example, they may be used in forming Boolean particles:-

derived binary;

BETTER AT SCIENCE:=((MATHS MARKS + PHYSICS MARKS) > (ENGLISH

MARKS + HISTORY MARKS));

Again, arithmetic expressions can be used in derived polylog definitions, e.g.,

derived polylog;

FINANCIAL STATUS:= (GROSS INCOME - TAX) <

(500+100*NUMBER OF CHILDREN),

(1500+100*NUMBER.OF CHILDREN),

(1000000):

POOR, MIDDLING, RICH;

Expressions are also useful in numerical table specification; for example:

correlation (NUMBER OF WET DAYS/LENGTH OF OBSERVATION),

(cos(LATITUDE*3.14159265/180));

The brackets immediately surrounding the expressions in these examples are included for

the sake of clarity. They are not syntactically necessary.

The one context in which the use expressions is specifically banned is that of raw

definitions.

2.1.2. Boolean Expressions

Boolean expressions may replace Boolean particles in table specifications.

2.1.3. Polylog Answer Names,

In Part I, it was implied that the definition of every polylog variable had to include an

explicit list of names for the possible answers. This is not in fact true. If the list of names is

omitted, the system will automatically supply its own set of names, of the form

X(n)

where X is the name of the polylog variable, and n, an integer, shows which answer is

meant. Thus, for the raw polylog definition (in the card convention)

2-2

IDEA,14/0,4;

the system will automatically supply the names

IDEA(1)

IDEA(2)

IDEA(3)

IDEA(4)

These names may be used as Boolean particles in just the same way as if they had been

explicitly defined. It is legitimate to write such Boolean expressions as

IDEA(2) or IDEA(3)

2.1.4. Mixing the Character and Item Conventions.

With certain types of data, the ‘character’ and ‘item’ conventions, by themselves, may not

be powerful enough to carry out a complete identification. For example, part of a record may

be punched in the ‘character’ convention, with no separators between items of information,

and another part may be punched as separate items. To cope with this eventuality, the facility

of mixing the two conventions is provided. When using mixed conventions, the specification

must start

read items;

Thereafter, ‘item’ definitions are given in their normal form; but in ‘character’ type

definitions, the position of the starting character is given as

x/y

where x is the item number in which the character occurs, and y is the position of the

character within this item. Thus, ‘5/7’ in this context would indicate the seventh character in

item 5.

To give an example: suppose that one of the items in a case record, mainly written in the

item convention, is a ‘case number’, in which the first two digits are of special interest because

they are used as a code for the subject’s home district. The raw definitions for such a format

might be:

read items;

raw numerical;

CASE NUMBER,1;

DISTRICT CODE,1/1,2;

..........

When using mixed conventions, care should be taken to ensure that any entities defined

by ‘character’ definitions are completely contained within items. Thus if item number 3 in a

record is known to contain — say — 7 characters, a definition such as

D1,3/5,4;

would always generate ‘wrong’ values for the numerical variable D1.

Sometimes it is useful to count characters not from the beginning, but from the end of

some item. This can be done by a reference of the form

x/-y

2-3

which refers to the y’th character from the end of item (x-1). Thus, if in the sample above,

the last 3 digits of the case number were a code for the subject’s profession, we could write

the definition

PROFESSION CODE, 2/-3,3;

2.1.5. Changing the ‘natural order’ of hole sites

As stated in part I, the ‘natural order’ of hole sites on a punched card is from top to bottom:

that is, U, L, 0,1,2,3,4,5,6,7,8,9 . Sometimes, particularly in the case of data which has

been punched before the method of analysis was considered, this order is not suitable. If

necessary, it can be changed by means of a special hole site order statement, of the typical

form

hole site order 0,1,2,3,4,5,6,7,8,9,L,U;

The statement must mention each hole site once, in its required order.

The hole site order may be redefined several times in the course of a set of raw definitions.

Each raw definition is governed by the nearest hole site order statement above it in the text.

2.2. Variable Data Format

One of the most difficult aspects of analysing large surveys is that of dealing with

Questionnaires of variable format.

A variable format survey is one which the set of questions put to or answered for each

subject is not invariant but changes from one subject to the next. There are two ways in which

such a contingency can arise:

1) It is possible for the asking of a group of questions to be made conditional upon a

particular answer being given to some other question. For example:

HAVE YOU A CAR?

If so, then: What is its make?

What is its year of manufacture?

What is its seating capacity?

Etc.

If not, then: Do you own any other means of transport?

Can you drive?

Etc.

2) It is possible for information on one case to include data on a variable number of ‘sub-

cases’. For example, a Questionnaire may include questions about the general

characteristics of a household (which are answered only once per case), and further set

of personal questions which must be answered once for each member of the household.

It is also, of course, possible for format variations as a result of combinations of these two

causes.

To deal with these difficulties, it is clear that. devices of considerable power and

sophistication must be used. The various facilities provided by the MVC system, when taken

together, form a close approximation to a conventional programming language, and will be

described in appropriate terms.

2-4

2.2.1. The value ‘unknown’

The basis of the way in which variable format Questionnaires are dealt with is this:-

a) A variable is defined for every possible question in. the Questionnaire.

b) Questions which are not asked in any particular case give rise to the value ‘unknown’

for their corresponding variables.

c) During the construction of tables, facilities are provided which permit the sorting out of

the known from the unknown values, and the use of the former only.

As an example of the concept, consider the transport Questionnaire given above. Three of

the variables arising from this Questionnaire might be:

a) HAS CAR (binary);

b) YEAR OF MAKE (numerical);

and c) HAS OTHER TRANSPORT (binary);

Of these three, HAS CAR would always have a value (yes or no);

 YEAR OF MAKE would only have a numerical value if a) was answered ‘yes’.

Otherwise it would have the value ‘unknown’.

 HAS OTHER TRANSPORT would have a value (true or false) if a) was answered ‘no’.

Otherwise (since its question would not be asked) it would

have the value ‘unknown’.

In the construction of tables dealing with — say — the owners of cars, steps would be taken

to include only those cases in which the relevant variables were not unknown.

The value ‘unknown’ is symbolically represented in an MVC text by the symbol ? .

There are four ways in which variables may be assigned the value ?. We list them in order

of increasing importance.

1) Derived-numerical and binary variables may be explicitly assigned the value ‘unknown’'

by definitions in which the right hand side is a ?.

2) Derived variables whose defining expressions are for some reason not computable are

also assigned the value ?.

For example, if. N2=N3, then N1 as-defined by-

N1:=1/(N2-N3);

will have the value ?

Polylog variables are assigned the value if none of the possibilities listed in their defining

expressions is true. For example, the derived polylog definition

P1:=NUMBER<1,2,3;

will set P1 =? if NUMBER > 3.

3) Incorrectly punched raw variables or those for which data is absent are given the value

? if the case containing them is not rejected by a check statement in the survey

specification.

2-5

4) Variables are automatically assigned the value ‘unknown’ if their definitions are not

invoked at all. This is most important way of producing unknown variables. The facilities

for skipping definitions are fully described in a subsequent section.

It should be noted that the specific answer ‘unknown’, actually given by a subject and

punched as one of several possibilities does not give rise to the special value ‘unknown’. for

the corresponding variable. As far as the system is concerned, the subject’s response to the

question (i.e. that he does not know what to answer) is known.

2.2.2. The value ‘unknown’ in expressions

An MVC specification designed for a variables format survey will necessarily contains

expressions in which some of the operands will sometimes have the value ?. The rules

governing the evaluation of these expressions are these:

1) If a polylog variable is unknown, then all the Boolean particles represented by its answer

names are also unknown.

2) If an arithmetical expression contains an unknown numerical variable, then. the entire

expression assumes the value ‘unknown’. This value is also assigned to uncomputable

expressions.

3) Unknown Boolean particles combine with other Boolean particles in the following way:

(F and ?) = (? and F) = F;

(T and ?) = (? and T) = ?;

(? and ?) = ?;

(F or ?) = (? or F) = ?;

(T or ?) = (? or T) = T;

(? or ?) = ?;

(not ?) = ?.

These rules are only formalisations of ‘common sense’. For example. consider the

expression

(MARRIED or (AGE > 21)).

If the particle (AGE > 21) is true, then the expression is obviously true irrespective of the

value of MARRIED. It is true even if the value of MARRIED is unknown.

Variables can be tested for the value ? by the existence operator, E. This operator is defined

by:

E (Any Boolean or arithmetical expression of known value) = T

E (any Boolean or arithmetical expression whose value is ?) = F

Thus: E(?) = E(1/0) = E(sqrt(-1)) = F;

 E(T) = E(F) = E(7) = E(E(?))= T.

2.2.1. A Simple Way of Coding Variable Format Questionnaires

One possible way of coding Questionnaires in which not all the questions are always asked

is to represent the ‘answers’ to these questions by illegal punchings. For example, non-

existent numerical answers can be represented by blank columns on punched cards or by non-

decimal characters such as ? or * on punched tape. Provided that the specification does not

2-6

contain a check statement the corresponding variables will assume the value ?.

Although this method is superficially attractive it is not recommended except for special

cases. The chief objection is that check cannot be used (otherwise all cases with illegal

punchings would be rejected from the survey); other objections are that the method is

wasteful of computer time, and that it cannot be used with binary variables on cards.

The correct way of coding variable format Questionnaires is described in the next section.

2.2.4 Definition Skipping

The preferred method of treating Questionnaires of variable format consists of skipping the

definitions of any variables to which the corresponding questions have not been asked. The

method hinges on the possibility of using the values of variables already known to deduce

which other variables are present, and which are absent. For example, consider the two

questions

ARE YOU MARRIED?

IF SO, HOW MANY CHILDREN HAVE YOU?

Here it is possible to deduce the presence (or absence) of an answer to the second question

from the answer given to the first.

2.2.4.1. Dynamic Interpretation of Definitions

The definitions of variables can be considered in two aspects; static and dynamic.

In the static aspect, which was. stressed in ELEMENTARY MVC, a definition is a statement

that the information on a certain region of each case record (or the result of a certain

computation on the values of other variables) is to be known by a specified name.: Considered

dynamically, on the other hand, a definition is essentially an instruction to the computer to

read a value from each case record (or to compute it) and to assign it to a named variable. It

is thus similar in effect to an assignment statement in a conventional programming language.

The fact that definitions are interpreted dynamically implies that they must be invoked in

some particular order. This order is normally that in which the definitions are written, but it

may be varied by the mechanisms described below.

2.2.4.2. Labels and Jump Instructions.

Both labels and jump instructions are closely analogous to their counterparts in

conventional programming languages.

Any statement in an MVC specification can be labelled by an integer in the range 0 to 255

and a colon; thus:

115: PLAYS CHESS, 51/2;

Labels are used by jump instructions, of which there are three basic forms:

2-7

1) go to <label>;

This is the unconditional jump.

2) if <Boolean expression> go to <label> ;

Control is transferred only if the Boolean expression is true.

3) unless <Boolean expression> go to <label> ;

Control is transferred if the expression is false.

The way in which labels and jump instructions are used to skip the definitions of non-

existent variables is illustrated below. It is perhaps worth repeating here that any variable

whose definition is skipped is assigned the value ?.

Consider the Questionnaire:

*Do you

or

or

a)

b)

c)

Own a television set;

Hire a television set;

Neither own nor hire a television set;

 If you either own or hire a TV set, then:

 Do you regularly watch a)

b)

c)

The news

Panorama

Coronation St

 What is the size of your screen?....

 If you neither own nor hire a TV set, then:

 Do you own a wireless set?

 If so, do you listen regularly to

 a)

b)

The news

Mrs. Dale's Diary

*Do you own a car?

In this questionnaire, the questions marked with an asterisk require answers from all

subjects; the others do not.

In the possible set of definitions which follows, the card field information is included for the

sake of completeness, but is irrelevant in this context.

It should be noted that unlike the definitions, the type declarations (such as raw binary

or derived numerical) are not dynamically interpreted. Each definition is governed by the

nearest declaration above it in the text.

2-8

read cards;

raw polylog;

TV,10/0,3: OWNS, HIRES, NO TV;

if NO TV go to 1;

raw binary;

TV NEWS,11/0;

PANORAMA,12/0;

CORONATION ST,13/0;

raw numerical;

SCREEN SIZE,14,2;

unless HIRES go to 2;

SHILLINGS,16,2;

PENCE,18,2;

derived numerical;

RENTAL:= SHILLINGS + PENCE/12;

go to 2;

raw binary;

1: WIRELESS,20/0;

unless WIRELESS go to 2;

RADIO NEWS,21/0;

MRS DALES DIARY,22/0;

2: CAR,23/0;

..........

2.3. Vectors of Variables

In Survey Analysis, one often comes across groups of variables which are identical in

structure and similar in meaning. For example, a Questionnaire may ask for each of a students'

12 weekly marks throughout a term, or the ages of each of the several persons in one

household.

In the MVC system, such groups of variables are conveniently handled as single entities

called vectors. Vectors are closely analogous to ‘arrays’ in ALGOL or Fortran, or to ‘main

variables’ in Mercury Autocode. They are not called arrays because they are restricted to one

dimension only.

A vector of variable is assigned a name in the same way as any individual (non-vector)

variable. When it is necessary to refer to any specific variable within a vector, a numerical

subscript in square brackets is affixed to the general vector name. For example, if WEEKLY

MARK and AGE were vector names, individual items within these vectors might be called

WEEKLY MARK [3] or AGE [7]

It is important to note that a vector consists of a group of variables which exist at the same

time within one case, and correspond to a group of questions answered or every. subject. The

successive values of one variable, which correspond to the different answers given to a

particular question by different subjects, do not constitute a vector.

Vectors can be made up of variables of any of the three types, but naturally all the variables

within any one vector must be of the same sort. Before a vector can be used, it must be

declared by a statement of the form

vector <Vector name> [lower bound>:<upper bound>];

2-9

Here <Vector name> is the name of the vector being declared. And <lower bound> and

<upper bound> are the lowest and highest sufficies to be used respectively. The lower bound

mist be zero or possible.

Examples of vector declarations are:

vector DAILY TEMPERATURE [1:7];

vector BEST SUBJECT [1:20];

A vector whose bounds are [n:m] will contain m-n+1 members.

Depending on the context, vector names may be used either by themselves to indicate an

entire group, or (as mentioned above) with numerical suffices to specify particular members

of the group.

When the answer names of polylog vectors are mentioned in arithmetical expressions, they

must also be followed by appropriate suffices. This rule also applies to the ‘automatic’ answers

assigned by the system for polylogs whose answer names are not specified. Thus the Boolean

particle

BEST SUBJECT (3) [6]

would be true if the value of the sixth variable in the polylog vector BEST SUBJECT was the

third possible answer.

2.4. Indices

Indices are a device introduced to facilitate the definition and manipulation of vectors.

The indices are a set of 26 ‘special’ variables, known by the names A,B,C,......Y,Z.

Indices always take integer values, and do not need to be specially declared.

The values taken by the indices are controlled by index setting statements. Each index

setting statement consists of an index, the := sign., and a list of constants or arithmetical

expressions separated by commas and terminated by a semicolon. Every time that an index

setting statement is executed, the named index is assigned the next value in the list (or the

integer nearest to this value). For example, the statement

P:= 1,3,15,46.9,3*2, sqrt(37),2,2,1;

will on successive executions, assign the nine consecutive values 1,3,15,47,6,6,2,2 and

1 to the index P.

Unlike a cycle setting in Mercury Autocode or a for statement in ALGOL, an MVC index

setting statement does not in itself define a cycle or loop. Thus when several index setting

statements follow one another, they are effectively executed in parallel.

The main use of indices is in compressing the definitions of vectors. The construction used

is this:

1) the system word for

2) one or more index setting statements, which are executed in parallel

3) a set of definitions or other MVC text in which certain numerical constants are replaced

by indices.

4) the system word end followed by a semicolon.

2-10

The effect of this construction is that the MVC text between for and end is invoked

repeatedly until the index setting statement following it runs out of values. On each execution,

the indices in the text are replaced by their current values.

To illustrate this concept, suppose that a punched card carries 12 scores, starting at column

10. The first six scores occupy two columns each, the next five 3 columns each, and the last

one, one column. It is required to treat these scores as a vector, SCORE, with 12 members.

Without indices, the vector Would have to be defined by the sequence:

vector SCORE[1:12];

raw numerical;

SCORE[1],10,2;

SCORE[2],12.2;

SCORE[3],14,2;

SCORE[4],16,2;

SCORE[5],18,2;

SCORE[6],20,2;

SCORE[7],22,3;

SCORE[8],25,3;

SCORE[9],28,3;

SCORE[10],31,3;

SCORE[11],34,3;

SCORE[12],37,1;

By using the index facilities, these definitions con be shortened considerably. In the

example below, A is used to index the members of the vector themselves; B is used to indicate

the various starting columns, and C to show the number of columns.

vector SCORED [12];

raw numerical;

for A:= 1,2,3,4,5,6,7,8,9,10,11,12;

B:= 10,12,14,16,18,20,22,25,28,31,34,37;

C:= 2,2,2,2,2,2,3,3,3,3,1;

SCORE[A],B,C;

end;

note that the index setting statements are executed in parallel. Thus, on successive execution

A,B,C and will have the values (1,10,2),(2,12,2). and so on; and the definition

SCORE[A],B,C will correspondingly be equivalent to the successive forms

SCORE[1],10,2;

SCORE[2],12,2;

etc.

Index setting statements in which the successive values are either constant or in

arithmetical progression can be condensed by the following notations:

1) a repeated b times is equivalent to a,a,a,a, a,a,

b times

2) c step d until e is equivalent to c,(c+d), (c+2d),...

The letters a,b,c,d and e may represent general expressions. It is for the user to ensure

that in these constructions they form sensible combinations. The rules which must be

observed are:

2-11

1) b must be positive

2) (e-c)/d must be a positive integer

Using these contractions, the index setting statements above may be written:

A:= 1 step 1 until 12;

B:= 10 step 2 until 22, 25 step 3 until 37;

C:= 2 repeated 6 times, 3 repeated 5 times, 1;

The format rules about. the use of indices are:

1) In raw definitions, indices may replace integers in any context except that of

indicating the number of possible answers to a polylog question. (This must always

be a constant, even for polylog vectors).

In general, negative values for indices are permitted wherever they are

meaningful. When an index is used as the row number in a card definition, the

values -2 and -1 conventionally refer to holesites U and L, respectively.

2) In expressions, indices may be used just as though they were integer constants.

3) Neither indices nor index setting statements may under any circumstances be used

inside table specifications.

4) Nesting of for-end cycles is permitted up to a depth of 6. This facility might be

used in the case when a single cycle is insufficient to define a vector compactly.

Suppose, for example, that a card contains 300 polylog answers, each with three

possibilities. Each column, starting at column 6, contains four answers, occupying

the fields U to 0, 1 to 3, 4 to 6 and 7 to 9, respectively. This example also illustrates

the use of expressions in index setting statements. A possible way of defining the

vector RESPONSE would be this:

vector RESPONSE[1:300];

for C:= 6 step 1 until 80;

for D := (4 * C - 23) step 1 until (4 * C - 20);

R:= -2 step 3 until 7;

raw polylog;

RESPONSE[D],C/R,3:YES,MAYBE,NO;

end;

end;

This sequence is, of course, equivalent to the definitions

RESPONSE[1],6/U,3;

RESPONSE[2],6/1,3;

RESPONSE[3],6/4,3;

RESPONSE[4],6/7,3;

RESPONSE[5],7/U,3;

RESPONSE[6],7/1,3;

..................

..................

RESPONSE[300],80/7,3;

2-12

5) In goto statements, indicies may be used in two ways: would be this:

a) They may be included in the Boolean expression contained in conditional

jumps. It is legitimate, for example, to write

if (J ≠ 7) go to 68;

b) They may also be used to indicate the destination label symbolically. One

may write, for example,

go to J;

This will have the effect of transferring control to the label whose numerical value is the

same as the current value of J. Thus, if J = 89, ‘go to J;’ Will have the same effect as

‘go to 89;’.

2.5. The Use of Vectors in Variable Format Data.

A considerable source of difficulty for most methods of Survey Analysis has been the

existence of Surveys in which information on each case, or ‘unit of population’, is accompanied

by data on each of a variable number of ‘subcases’. For example, in a survey in which the unit

is a household, each case record may include data on each of the children present in that

household. Again, a survey on transport may ask the subject to list details of each of the

journeys made during a particular period.

The data structure encountered in each such a survey may be diagrammatically

represented thus:

 ‘major’ questions

A B C D E F

‘minor’ questions

w

x

y

z

 w

x

y

z

 w

x

y

z

 variable number of subcases.

 1 case

Here, the ‘major’ questions refer to the case as a whole, and the ‘minor’ questions to each

of the subcases. For example, A, B and C might be

‘What is the total family income?’

‘What is the family’s type of dwelling?’'

and ‘How may children in the household?’

whereas w,x,y and z could be

‘What is the age (of this child)?’

‘What is the age (of this child)?’

‘What type of school does this child attend?’

and ‘Does this child own a bicycle?’

2-13

Each ‘subcase’ would comprise the information relating to one child.

In the MVC system this type of structure is handled by assembling corresponding variables

in the several subcases into vectors. Thus, a general vector name might be ‘OWNS BICYCLE’;

so that ‘OWNS BICYCLE[1]’ would refer to the first subcase, and so on.

In declaring these vectors, the upper bound is made sufficiently high to allow for a

reasonable maximum number of sub-cases (e.g.12 if the subcases are children in one family).

The definitions are arranged so that only those members of the vectors which correspond to

actual sub-cases of any particular case are assigned values, the other remaining unknown.

Thus, the way in which variables are imposed upon the data structure shown above is this:

 SA SB SC SD SE SF

Vector Vw Vw[1] Vw[2] Vw[n] Vw[n+1] Vw[max]

Vector Vx Vx[1] Vx[2] Vx[n] Vx[n+1] Vx[max]

Vector Vy Vy[1] Vy[2] Vy[n] Vy[n+1] Vy[max]

Vector Vz Vz[1] Vz[2] Vz[3] Vz[n+1] Vz[max]

 n sub-cases unknown values

Here, SA, SB, SC, SD, SE and SF are simple (non-vector) variables which correspond to

A,B,C,D,E, and F; and the vectors Vw, Vx, Vy and Vz correspond to the groups of questions

w,x,y and z. In a case which contains n sub-cases, only n members of each vector are known;

the remainder take the value ?. We shall illustrate this concept by considering a Questionnaire

which (we suppose) has been put to school-teachers preparing classes for ‘O’ level

examinations. The. Questionnaire requires details about each pupil, but the main subject of

investigation is the teacher himself. We shall therefore consider all the information given by

any one teacher to form a case, the data on the pupils comprising sub-cases.

Data relating to each teacher will be punched on several cards, one for the teacher himself,

and one for each of the pupils. Each card will carry a four-digit case number in columns 1 to

4 (this being the same for a teacher and all his pupils), and a two-digit ‘card-in-case’ number

in columns 5 and 6. This will .always be ‘01’ for the teacher, ‘02’ for the first pupil, ‘03’ for the

second, and so on.

2-14

The Questionnaire itself is this:

Case Number 0 7 7 6 Cols 1-4

Part 1: to be answered by the teacher himself (or herself)

 Card in case number 0 1 Cols 5-6

1) 5 1 Cols 7-8

2) What is your sex? a) MALE ✓ 9/0

 b) FEMALE 9/1

3) What group of subjects are you

teaching?

a) ENGLISH 10/0

 b) MATHEMATICS ✓ 10/1

 c) A ‘SCIENCE’ SUBJECT 10/2

 d) A FOREIGN LANGUAGE 10/3

 e) CLASSICS 10/4

 f) HISTORY OR GEOGRAPHY 10/5

 g) DIVINITY 10/6

 h) COOKING OR NEEDLEWORK 10/7

 i) ANY OTHER 10/8

4) What are your qualifications?

 a) TRAINING COLLEGE 11/0

 b) UNIVERSITY ✓ 11/1

 c) UNIVERSITY AND T.T.C. 11/2

 d) OTHER 11/3

 e) NONE 11/4

5) How many years have you taught this subject? 2 4 Cols 12-13

6) How many pupils are you preparing for ‘O’ level in 0 5 Cols 14-15

6) in this subject this year

Part 2 To be answered for each pupil On each card:

 Pupil number 1 2 3 4 5 Not

punched

 Card in case number 02 03 04 05 06 Cols 5-6

 Age of pupil Cols 7-8

 Sex of pupil: GIRL ✓ ✓ ✓ 9/0

 BOY ✓ ✓ 9/1

Was the a) OUTSTANDING ✓ 10/0

Term’s work b) GOOD ✓ ✓ 10/1

 c) AVERAGE ✓ 10/2

 d) POOR ✓ 10/3

Are this pupil’s a) ALMOST CERTAIN ✓ ✓ ✓ 11/0

Chances of gaining b) DOUBTFUL ✓ 11/1

A pass c) BAD ✓ 11/2

2-15

In writing definitions for this questionnaire, we shall make use of indices and vectors, each

corresponding to a group of similar variables taking one from each subcase.

read cards;

case number 1,4;

raw numerical;

TEACHERS AGE, 7,2;

YEARS TAUGHT,12,2;

NUMBER OF PUPILS,14,2;

raw polylog;

TEACHERS SEX,9/0,2: MALE,FEMALE;

SUBJECT,10/0,9:ENGLISH,MATHS,SCIENCE,LANGUAGE,

CLASSICS, HIST OR GEOG, DIVINITY,

DOMESTIC, OTHER SUBJECT;

QUALIFICATIONS,11/0,5: TTC,UNIVERSITY, UNIV AND TCC,

OTHER QUAL, NONE;

comment: This completes the definitions of the major variables.

Now come the definitions for the subcases;

vector AGE OF PUPIL[1:30];

vector SEX OF PUPIL[1:30];

vector WORK OF PUPIL[1:30];

vector CHANCES OF PUPIL[1:30];

comment: These vectors allow up to 30 pupils per teacher;

for X:= 1 step 1 until NUMBER OF PUPILS;

 Y:= 2 step 1 until NUMBER OF PUPILS + 1;

raw numerical;

AGE OF PUPIL[X], Y.7,2;

comment: Note use of index card number;

raw polylog;

SEX OF PUPIL[X], Y.9/0,2: GIRL,BOY;

WORK OF PUPIL[X], Y.10/0,4:OUTSTANDING,GOOD,AVERAGE,POOR;

CHANCES OF PUPIL[X], Y.11/0,3:CERTAIN,DOUBTFUL,BAD;

end;

Suppose that a particular teacher, having only 5 pupils, has answered the Questionnaire

as shown. Then only the first five elements of each vector will be known, and the remaining

25 will be unknown. The values of some individual variables for this case will be:

SEX OF TEACHER = MALE;

NUMBER OF PUPILS = 5;

AGE OF PUPIL[1] = 15;

SEX OF PUPIL[2] = GIRL;

CHANCES OF PUPIL[5] = CERTAIN;

SEX OF PUPIL[6] = ?

AGE OF. PUPIL[30] = ?

In this example, we have taken advantage of the fact that the number of pupils in each

case is explicitly given to make the index cycle repeat itself the exact number of times

required. If the number of pupils had not been given, then the index setting statements would

have had to be written as

X:= 1 step 1 until 30;

Y:= 2 step 1 until 31;

2-16

The portions of vectors which, in any one case, corresponded to non-existent sub-cases would

have been assigned the values ‘wrong’ and results could only have been used in the absence

of a ‘check’ statement. (see Sections 1.11.1 and 2.2.1.)

2.6. Vectors in Expressions

In general, vector names may be freely used in expressions. Under normal circumstances,

vector names will be accompanied by suffices in square brackets. Suffices may consist of

arithmetical expressions of any complexity, and on evaluation are interpreted as being

equivalent to the nearest integer. It is the user’s responsibility to ensure that the values of

suffix expressions remain within the range set by the bounds of the vector they refer to.

When vector names occur on the left, hand sides of definitions, then the form of suffix is

strictly limited to an integer or a single index. No form of. suffix ‘expression’ is permitted.

For example, the form

AGE OF PUPIL[NUMBER OF PUPILS]

which refers to the age of the last pupil listed by the teacher, is permissible on the right hand

side of a definition, but not on the left hand side.

To assist in the manipulation of vectors which contain an arbitrary number of unknown

elements, a number of special ‘vector functions’ are available. All the vector functions take

single unsuffixed vector names as arguments. They are listed below:

1) Functions applicable to all vectors:

number(<vector name›) = the number of known elements in the vector.

2) Functions applicable to numerical vectors: sum(<vector name›) = the

sum of the known elements.

product(<vector name›) = the product of the known elements

In addition, the functions max, min, whichmax and whichmin may take single vector names as

arguments.

3) Functions applicable: to binary vectors;-or polylog answer vectors

some(<vector name›)= T if any of the known members of the vector have

the value T; otherwise F.

all(<vector name›) = T if all the known members have the value T;

otherwise F.

All the vector functions except number generate the value ? if none of the elements in the

argument vector is known.

To illustrate these functions, we shall give some derived definitions which might be included

in the school-teacher survey.

derived numerical;

AVERAGE AGE OF CLASS: = add(AGE OF PUPIL)/NUMBER OF PUPILS;

derived binary;

TEACHER HAS OUTSTANDING PUPILS:= some(OUTSTANDING);

derived polylog;

CLASS TYPE: = some(GIRL) and some(BOY), all (GIRL), all(BOY):

MIXED, BOYS ONLY, GIRLS ONLY;

2-17

2.7. Programming in MVC

In some surveys, it may happen that the transformations to be applied to raw variables to

obtain the desired derived variables are so complicated that they cannot be specified by single

expressions. It is quite permissible to write a ‘program’ in MVC in which derived definitions

are treated as ‘statements’ in a conventional programming language. Jump statements (i.e.,

those beginning with if, unless and goto) may transfer control either forwards or backwards.

If necessary, the same variable may occur on the left of two or more definitions.

To illustrate this idea, suppose that in a survey there are two raw numerical variables, EN

and AR where AR is always a positive integer. It is required to form the derived variable DONG

according to the formula

DONG = 1 + EN + EN2/2 + EN3/3 + EN4/4 + ENAR /AR.

This formula cannot be written as a single MVC expression because the number of terms is

variable; but it can be programmed as follows:*

DONG: = 1;

for J := 1 step 1 until AR;

 DONG : = DONG + (EN|J)/J;

end;

If used in this way, MVC offers most of the facilities associated with conventional

programming languages. (Notable exceptions are block structure and recursive procedures).

A further facility, introduced primarily for test purposes in developing the system, but

useful, for example, in drawing the user’s attention to extreme, or unusual values of variables,

is the ‘print’ statement.

This takes the form:

print <variable name>;

or print <vector name> [<integer or index suffix>];

The effect of this statement is to print the name of the variable, followed by its value.

Printing is done before any tabulation takes place. The examples below refer to the school-

teacher survey:

a) print TEACHERS SEX;

This would cause the sex of each teacher to be printed in the form

TEACHERS SEX = MALE

b) if (TEACHERS AGE < 70) go to 5

print TEACHERS AGE;

5: ------

This group of statements would print the age of each teacher aged 70 or more.

* This is not an optimum program in the sense of efficiency; it was chosen. for its

relative clarity.

2-18

c) for A := 1 step 1 until NUMBER OF PUPILS;

unless OUTSTANDING[A] go to 7;

print WORK OF PUPIL[A];

7: end;

This would print, for each case, the pupils who were classed as outstanding:

WORK OF PUPIL[1] = OUTSTANDING;

WORK OF PUPIL[17] = OUTSTANDING;

etc.,

When using the print statement, there is no need to specify explicit printing of the case

number so as to identify the subject of the case; as we shall explain later, the case numbers

of all cases dealt with are printed automatically.

2.8. Further Checking Facilities.

An aspect of survey analysis which is of fundamental importance is that of ensuring that

data is presented to the computer in the right way. It is not difficult for an operator to feed in

a reel of punched tape correctly, but it is singularly easy for him to make mistakes when

putting through a stack of punched cards. A harassed and inexperienced operator can put part

of a batch of cards through a card reader twice; he can put them in backwards or upside-

down; or he may drop them so that the original order is destroyed. Any such occurrence which

took place without the user’s knowledge would have catastrophic results, since it would

completely upset the results of the survey.

The MVC system includes a number of checks to avoid. this contingency. Some of them are

automatic, and others have to be explicitly programmed in the specification.

2.8.1. Checks on Case Numbers

The system requires that the case numbers of consecutive cases be in ascending order. It

will print a warning message and reject any case whose case number is not higher than the

highest case number accepted so far. This ensures that no case is used twice, but demands

that data on paper tape be punched in the right order, and that data punched on cards be

pre-sorted on a card sorter before being used.

As each case is analysed, its case number is printed. Thus any messages about a case,

such as reasons for its rejection or information produced by ‘print’ statement, can be

identified by the case number immediately above them. When the reading of data is complete,

the list of case numbers produced can be scanned to ensure that none have been missed out.

2.8.2. Checks on Cases Each Containing Several Cards.

When reading data in which each case is represented by several cards, the system

assembles each case record from all consecutive cards which have the same case number.

The first of these is considered to be card 1, the second card 2, and so on. For the correct

identification of data, it is important that the cards within a case be in the right order; but the

system does not automatically check that this is so. (It would have been impractical to include

such a facility, because in many applications the card-in-case numbers within a case are not

consecutive and do not occupy the same positions on all the cards.

2-19

A check for correct order of cards within a case can be explicitly specified by defining raw

variables corresponding to the card-in-case numbers, and checking that they take their

expected-values. One might write for example:

CARD IN CASE NUMBER 1, 80,1;

CARD IN CASE NUMBER 2, 2.4,1;

CARD IN CASE NUMBER 3, 3.79,2;

accept (CARD IN CASE NUMBER 1 = 1);

accept (CARD IN CASE NUMBER 2 = 7);

accept (CARD IN CASE NUMBER 3 = 12);

This example assumes that the first card of each case-has a 1 in column 80; the second, a

7 in column 4; and the third, the digits 12 in columns 79 and 80. (This example, although it

seems unlikely; is representative of several instances known to the author.)

If the card-in-case numbers are regular, then one can considerably shorten the written

form of the check by using indices and vectors; in the schoolteacher survey we might have

put:

raw numerical;

vector CARD IN CASE NUMBER N[1:31];

for J: = 1 step 1 until NUMBER OF PUPILS + 1;

CARD IN CASE NUMBER N, J.5,2;

accept (CARD IN CASE NUMBER N[J] = J);

end;

Sometimes it is possible to deduce either from prior knowledge or from the values of certain

variables what the total number of cards in each case should be. Where this is so, the actual

total can be compared with the expected total means of the ‘total cards’ facility. This is

specified by the statement

total cards <arithmetical expressions>;

This statement causes rejection-of cases for which the two totals do not match. Example

of its use are:

total cards 5;

or (in the case of the teacher survey);

total cards NUMBER OF PUPILS + 1;

A total cards statement involving variables must be placed after the definitions of these

variables.

2.9. Weights

In certain types of survey it is sometimes necessary. to attach different ‘weights’, or

significances to different cases. For example, the answers given by one particular group of

subjects might be considered of greater or lesser moment than those given by other subjects.

Weights differing from 1 may be assigned to chosen groups of cases by the ‘weight’ facility,

whereby any case having a weight of x (where x is not necessarily integral) produces exactly

the same effect as x cases of weight 1.

2-20

The table headings of any tables in which cases are to have varying weights may contain

one or more statements of the following form:

weight <Boolean expression>,<arithmentical expression>

for example,

weight (AGE>50), 2;

or weight ATTENDED UNIVERSITY, (5 - CLASS GAINED) | 2;

The effect of such statements is to assign weights equal to the values of the arithmetical

expressions to any cases for which the Boolean expressions are true, leaving all other cases

with a weight of 1. Thus, the first example above would assign a weight of two to people over

50; and the second example would select those who had at attended University, and give

them weights computed from the clases they had gained, as follows:

 Class Weight

 I 16

 II 9

 III 4

 IV 1

FAIL 0

Wherever a table heading contains several statements, they are evaluated in their

sequence, and the weight actually assigned to any case is that specified by the last weight

statement found to apply, Thus, the sequence

weight MALE, 2;

weight MALE and (AGE > 40),4;

would not have the same effect as

weight MALE.and (AGE>40),4;

weight MALE, 2;

Since MALE and (AGE>40) is a subclass of MALE, the first statement in the second pair above

is effectively ‘masked’ by the second.

A weight statement is only effective in the table specification in which it is included. To give

a case a constant weight throughout a complete set of tabulations, the global weight facility

should be used. This statement is exactly similar to the weight facility, except that the

statement begins with global weight, and have effect throughout all tables, except where

they are specifically over-ridden by local weight statements. Since global weight statements

do not apply to any specific table, they are placed outside (usually before) any table

specifications.

2.10. More About Numerical Specifiers

2.10.1. The Moment Facility

In many statistical investigations, the average and the standard deviation of sets of

numerical variables are often required together. Both these statistics can be obtained

simultaneously by the moment facility.

2-21

Thus, where the table specification

mean X1, X2, X3;

stdev X1, X2, X3;

would have produced

MEAN

X1 19.7

X2 39.2

X3 4.3

STDEV

X1 1.32

X2 5.16

X3 0.87

the specification

moment X1 X2,X3;

will generate

MOMENT

X1 19.7

STDEV 1.32

X2 39.2

STDEV 5.16

X3 4.3

STDEV 0.87

2.10.2. Correlation Matrices

The set of correlation coefficients (See section 1.15) generated by a statement of the form

correlate N1, N2, N3,;

is, of course, a triangular correlation matrix, since it contains the correlation coefficients

between every possible pair of variables. Sometimes it is more convenient to specify a

rectangular matrix, which contains the correlations between each of the variables in one group

and each of the variables in another group, only. This can be done by inserting the system

word by between the two groups in the normal correlate statement.

Thus, the statement

correlate Y1,Y2,Y3,Y4,Y5,Y6;

would generate the triangular matrix

will generate

CORRELATION Y1 Y2 Y3 Y4 Y5

Y2 *

Y3 * *

Y4 * * *

Y5 * * * *

Y6 * * * * *

2-22

but the statement

correlate Y1, Y2, Y3, Y4 by Y5, Y6;

would produce the rectangular matrix

CORRELATION Y1 Y2 Y3 Y4

Y5 * * * *

Y6 * * * *

In both these illustrations, the * represents a correlation coefficient between the variables

named above it and to its left.

At this point we shall repeat the rules that expressions may be used instead of numerical

and binary variables in table specifications, but that any use of indices is barred.

2.11. Unknown Quantities in Table Specifications

In the course of analysis of a survey it may arise, either by accident or design, that certain

quantities mentioned in a table specification are unknown for some specific case. When this

happens, that case is not used to increment that table. The effect is the same as if the case

had been excluded by an entry criterion.

One consequence of the rule is that it is very easy to specify tables referring to a subset of

the survey sample for which certain ‘special’ questions have been answered. For example,

suppose that we require a tabulation of the television watching habits of the people who

answered the questionnaire on P(2-10). We could simply put:

title 'TV WATCHING HABITS';

count TV NEWS, PANORAMA, CORONATION ST;

finish;

The resultant table would only refer to those people who had TV sets and had answered

the relevant questions. Other people would automatically be excluded because the values of

the relevant variables in their cases would be ‘unknown’. It is worth noting, however, that

unless the cases to be included in such a table form a substantial majority of the survey

sample, it is more efficient, from the point of view of computer usage and cost, to include a

specific entry criterion; e.g.,

title 'TV WATCHING HABITS';

include OWNS or HIRES;

count TV NEWS, PANORAMA, CORONATION ST;

finish;

Another application of the general rule occurs when the data is known to be of poor quality,

with many randomly scattered unknown variables. To extract the maximum amount of

information from such data, the MVC text should contain a large number of very. short table

specifications, rather than a small number of large ones; this will obviously lessen the

probability of any one table specification referring to an unknown variable.

2-23

2.12. The Use of Vector Names in Table Specifications

In general, the items mentioned in table specifications are single-valued, in the same sense

that they refer to single numerical, binary or polylog quantities. Vector names may be used

freely, provided that they conform to this rule. Thus, they will normally be followed by suffices

or be the arguments of single-valued functions such as max or some. For example, one could

legally write (borrowing from the example in 2.5.)

count CHANCES OF PUPIL [1];

or mean max (AGE OF PUPIL), min(AGE OF PUPIL,

max(AGE OF PUPIL) - max(AGE OF PUPIL);.

(this statement requests the average maximum age, the average minimum age, and the

average range of ages of the pupils in each of the classes under consideration).

When specifying numerical or binary quantities by expressions, the suffices of vectors may

themselves be arithmetical expressions of any complexity. For example, the Boolean particle

GIRL[whichmin (AGE OF PUPIL)]

would be true if the youngest pupil in any class was a girl.

On the other hand, it should be remembered that polylog question names are not

expressions. The suffix attached to a polylog question vector name must always be an integer.

The form

SEX OF PUPIL[whichmin (AGE OF PUPIL)]

is barred.

This restriction should not create any real difficulty, because in nearly all contexts in table

specifications, polylog questions are synonymous to the list of their names, and may be

replaced by them.

2.12.1. The ‘list’ Construction

As stated previously, the use of indices in table specifications is barred. Nevertheless, there

is a shorthand construction by which all members of a vector may be specified. If, elsewhere

in the specification we have the declaration

vector NAME [m:n];

(where NAME is the name of some vector), then inside a table specification, the form

list NAME

is equivalent to the sequence'

NAME[m], NAME[m+1], NAME[n-1], NAME [n]

This construction is also valid for the answer names of polylog vectors.

2-24

If the list construction is applied to a vector in which not all the elements are known the

equivalent expanded list will necessarily contain references to unknown variables, and cause

that case to be passed over in tabulation. This means that the list construction is only of

practical use when all the members of a vector are known to be known.

2.12.2. Sub-case Tabulations

This facility is intended for surveys in which each case contains a variable number of

subcases, which are represented by vectors in the manner described in 2.5. It forms a means

of promoting each subcase into a complete ‘case’ on its own, while still retaining access to the

major variables referring to its parent case. The facility is powerful and requires considerable

care in its use. We shall illustrate it by referring to the scholastic survey mentioned in 2.5.

Any case which includes sub-cases contains a number of vectors, all with the same bounds.

(Our example contains the vectors AGE OF PUPIL, SEX OF PUPIL and CHANCES OF PUPIL, all

with bounds of [1:30].) The data relevant to each sub-case consists firstly of the major

variables in the main case (such as TEACHERS AGE and QUALIFICATIONS), and secondly, of all

the elements in the vectors which have the same suffix (such as AGE OF PUPIL [3], SEX OF

PUPIL [3], and so on).

To specify a table in which each sub-case is treated as a complete case, we place, in the

table heading, the statement

subcase table [m:n];

where m and n are the. bounds of the vectors characterising the subcases. Elsewhere in the

specification, we may now refer to items in two different modes; either as single-valued

quantities (such as individual items or suffixed vector names) or as unsuffixed vector names.

The effect of this is that the case is used for incrementing the table not once but (n-m+1)

times; that is, once for each possible sub-case. For the first time, all the unsuffixed vectors

(except the arguments of vector functions) are given the suffix m; for the second time the

suffix [m+1]; for the third time [m+2], and so on. For the last tabulation, the suffix is [n].

For any one case, the number of increments actually made to the table is the same as the

actual number of sub-cases; for the high values of the suffices which correspond to non-

existent subcases will yield unknown values and cause those ‘pseudocases’ to be rejected, by

virtue of the rule described in section 2.11.

As the reader will understand, the scope of this facility is so general that it cannot be fully

discussed in a few pages. We shall content ourselves with a few trivial examples and leave

the reader to discover other applications of the system for himself.

1) To tabulate the pupils’ prospects according to the sex of

each pupil In this example, note the use of unsuffixed vector names.

title 'PROSPECTS BY SEX OF PUPIL';

sub case table [1:30];

tabulate by SEX OF PUPIL;

count CHANCES OF PUPIL;

finish;

2-25

This will produce a table similar to:-

 PROSPECTS BY SEX OF PUPIL

 GIRL BOY TOTAL

 TOTAL 8600 7545 16145

 CERTAIN 4318 4530 8848

 DOUBTFUL 2113 -1907 4020

 BAD 2169 1108 3377

2) To tabulate the prospects of each pupil according to the sex of the teacher. In this

example, note the use of one of the ‘major’ variables.

title 'PROSPECTS BY SEX OF TEACHER';

sub case table [1:30];

tabulate by TEACHERS SEX

count CHANCES OF PUPIL;

finish;

 PROSPECTS BY SEX OF TEACHER

 MALE FEMALE TOTAL

 TOTAL 11457 4688 16145

 CERTAIN 7312 1536 8848

 DOUBTFUL 3127 893 4020

 BAD 1018 2259 3377

3) To tabulate the ‘term’s work’ selecting only girls taught

by women. Note the use of a simple variable and an unsuffixed vector in the same

expression (in the entry criterion).

title 'TERMS WORK OF GIRLS TAUGHT BY WOMEN';

sub case table [1:3C];

include FEMALE and GIRL;

count WORK OF PUPIL;

finish;

 TERMS WORK OF GIRLS TAUGHT BY WOMEN

 FEMALE and GIRL.

 TOTAL 3412

 OUTSTANDING 98

 GOOD 987

 AVERAGE 1816

 POOR 511

4) To tabulate the prospects of all pupils according to the prospects of the oldest pupil.

2-26

In this tabulation the vector suffix is used in referring to the oldest pupil is

[which max(AGE OF PUPIL)]. Accordingly since this is not an integer, we must replace the

polylog question name referring to the prospects of the oldest pupil by its equivalent list of

answer expressions.

title 'PROSPECTS BY PROSPECTS OF OLDEST PUPIL';

subcase table [1:30];

tabulate by CERTAIN [which max (AGE OF PUPIL)],

 DOUBTFUL [which max (AGE OF PUPIL)],

 BAD [which max (AGE OF PUPIL)];

count CHANCES OF PUPIL;

finish;

We cannot quote the entire table produced by this specification because it would be too

wide for the page, but we give a portion of it below:-

 PROSPECTS BY PROSPECTS OF OLDEST PUPIL

 CERTAIN [which max (AGE OF PUPIL)] TOTAL

 TOTAL 7235 16145

 CERTAIN 5612 8848

 DOUBTFUL 2301 4020

 BAD 2113 3377

Finally, let us repeat that great care should be exercised in using this facility, for it is only

too easy to specify tables in which the figures are meaningless.

2.13 Multi-dimensional table splits.

The table split facility described in Part I of this manual forms a simple way of defining and

tabulating several mutually exclusive classes, which correspond to the possible values of one

variable. A simple table split can be thought of as adding a second dimension to a table.

Sometimes, it is convenient to make a tabulation for a set of classes which correspond to all

possible combinations of values of two or more variables. For example, a survey may contain

the two binary variables EMPLOYED and MARRIED; and it may be necessary to make tabulations

for each of the 2 * 2 = 4 classes;

EMPLOYED and MARRIED

not EMPLOYED and MARRIED

EMPLOYED and not MARRIED

not EMPLOYED and not MARRIED

In MVC, this can easily be done by specifying a multi-dimensional table split. This takes the

form

tabulate by L1 by L2 by L3 ... Ln;

where L1, L2, etc. are each lists of mutually exclusive Boolean expressions or the names

of polylog questions. Thus, the four groups above could be specified by

2-27

tabulate by EMPLOYED, not EMPLOYED by MARRIED, not MARRIED.

Each element in the general table split above effectively adds a new dimension to the

resulting table. The restricted table split described in Part I is a special case of this more

general facility. Consider, for instance, a survey which contained the following polylog

variables:-

Variable Possible answers

CLASS UPPER, MIDDLE, LOWER

SEX MALE, FEMALE

JOB MANUAL, OTHER, NONE;

The following table specifications would give rise to tables of 1, 2 and 3 dimensions,

respectively.

title 'ONE DIMENSION';

count JOB;

finish;

title 'TWO DIMENSIONS';

tabulate by SEX;

count JOB;

finish;

title 'THREE DIMENSIONS';

tabulate by SEX by CLASS;

count JOB;

finish;

When the tables resulting from ,a split with more than one component are printed the sub-

tables resulting from permitting the first component of the split are arranged side by side,

and the groups of such tables which correspond to combinations of the second and subsequent

components are arranged below one another. Thus, a multi-dimensional table is cut into two

dimensional ‘slices’ along planes ‘parallel’ to the table body and the first component of the

table split.

MVC does not impose a limit on the number of dimensions specified in a table split

Nevertheless, it should be borne in mind that the number of cells in a table increases rapidly

with the number of dimensions, and that since the total number of cases is constant, the

average number of cases failing in each cell decreases equally rapidly. Thus, a long table split

will result in a very large, set of tables in which most of the cells are empty.

A table heading may include any number of multi-dimensional, as well as single-

dimensional table splits.

J
O
B

J
O
B

J
O
B

SEX

SEX

CLASS

2-28

To illustrate this facility we shall give a possible output produced by the third table

specification above.

 THREE DIMENSIONS

UPPER

 MALE FEMALE TOTAL

TOTAL 165 142 307

MANUAL 5 2 7

OTHER 150 50 200

NONE 10 90 130

MIDDLE

 MALE FEMALE TOTAL

TOTAL 670 591 1261

MANUAL 289 173 462

OTHER 385 231 566

NONE 46 187 233

LOWER

 MALE FEMALE TOTAL

TOTAL 1045 1123 2168

MANUAL 670 460 1130

OTHER 340 502 842

NONE 35 161 196

2.14 The χ2 Facility

One of the more advanced facilities provided by the MVC system is that of investigating

the association between two qualitative variables by means of the χ2 test. It must be stressed

that this is a very powerful test, which is liable to give misleading results unless carefully and

expertly handled. We do not, therefore, recommend its indiscriminate use on all types of data.

When the χ2 test is specified, the computer forms within itself the appropriate contingency

table. It does not normally print this table, but uses.it to compute a value of the statistic χ2

and the probability (p) that this value could have been exceeded by chance if the variables

being tested had no association. Finally, the computer prints the computed value of χ2 and

also an indication of p in the following form:-

0.05 < p

0.01 < p ≤ .05

0.001 < p ≤0.01

 p ≤ 0.001

nothing

 *

 **

The significance indicator normally appears below the coresponding value of Χ2.

2-29

Yates’ correlation is always applied when computing χ2. If, in any table, the expected value

should fall below 2, then the value of χ2 for that table is suppressed, and a ? is printed instead.

If the expected value falls between 5 and 2 then the printed value of χ2 accompanied by a ?

in brackets.

A single χ2 test, or a matrix of χ2 tests, may be specified by a statement in a format closely

analogous to that used for specifying correlations (see section 2.10.2). The statement begins

with the system word

chisquare

which is followed by a list of at least two polylog question names, separated by commas,

and terminated by a semicolon This format will normally lead to a triangular matrix which

gives the association between every possible pair of polylogs. If the list of polylogs is

separated into two parts by a by, then the matrix will be rectangular.

Whenever two variables show a high degree of association, it will often be useful to obtain

the actual contingency table itself, so that the type of association can be examined. The

printing of such tables can be specified by including 1,2, or 3 asterisks in the chisquare

statement, as in the example below. These will cause printing of any table for which p ≤ 0.05,

0.01. and 0.001 respectively

 Example 1 shows how a single test of association is specified:—

chisquare SEX OF TEACHER, QUAL;

this would give

 chisquare SEX OF TEACHER

 QUAL 16.22

 **

Example 2 shows the specification of a rectangular matrix:-

chisquare FAMILY BACKGROUND, SEX, RACE by

ACADEMIC SUCCESS SPORTS RESULTS, BEHAVIOUR;

 chisquare FAMILY BACKGROUND SEX RACE

 ACADEMIC SUCCESS 13.37 7.24 7.91

 * (?)

 SPORTS RESULTS 22.70 14.00 35.89

 ** ** ***

 BEHAVIOUR ? 8.99 12.57

 *

Example 3 refers to a triangular matrix and contains a request to print any tables in which

the variables have significant (p < 0.001) association.

chisquare SEX, AGE GROUP, MARITAL STATUS, POLITICS, ***;

 CHISQUARE SEX AGE GROUP MARITAL STATUS

 AGE GROUP 3.24

 MARITAL STATUS 8.17 645.11

 * ***

 POLITICS 11.91 47.19 12.30

 ** *

2-30

 MARITAL STATUS/AGE GROUP

 YOUNG MIDDLEAGED OLD TOTAL

SINGLE 497 314 219 1030

MARRIED 518 837 316 1471

WIDOWED 4 65 185 254

DIVORCED 25 157 42 224

TOTAL. 844 1375 762 2979

When using the test facility, several important points should be borne in mind:-

1) The chisquare statement may only refer to polylog question names. If it is desired to

form ‘two by two’ tables referring to binary variables, then it is necessary to define

corresponding derived polylogs, in a suitable manner; for example:-

derived polylog;

TYPE OF CASE := TOOTHACHE, not TOOTHACHE: EXPERIMENTAL, CONTROL;

(Here TOOTHACHE is supposed to be a binary variable.)

2) The χ2 test may sometimes yield indeterminate results because the polylogs being

compared have too many possible values, with too few cases in each. If this is thought

likely, it is possible to overcome this difficulty by defining derived polylogs in which the

smaller classes are ‘lumped’ together. For example:-

LUMPED RELIGIONS := (PROTESANT or CATHOLIC), (JEWISH or

MUSLIM or HINDU or BHUDDIST), (AGNOSTIC or ATHEIST):

CHRISTIAN, OTHER FAITH, NO FAITH;

3) Due to the idiosyncracies of the Atlas operating system, it is. necessary to separate

consecutive asterisks in chisquare statements by spaces. THIS IS VERY IMPORTANT..

Chisquare statements may be included in tables of which the heads contain weights, table

splits, entry criterions, and so on.

2-31

2.15 MVC PHASES

Provisional Description

This section describes the operating procedures to be followed in using the MVC system in

its present state. As it nears completion, various changes to the operating system will be

announced in the MVC bulletin.

The section assumes that readers are familiar with JOB DESCRIPTION and with the general

operating system on ATLAS. Those who are not acquainted with the system should read no

further, but apply to the author for advice.

The analysis of any survey by the MVC system takes place in three distinct ‘phases’, which

must normally follow one another in time. The only link between the phases is a private

magnetic tape, which must be obtained by the user.

During Phase I, the user’s survey specification (but not his data) is read and checked for

errors of form such as ambiguous definitions or mis-spelt system words. If found correct, the

specification is stored in a translated form on the user’s private magnetic tape. If any errors

are found, the specification is not stored, but a description of the errors is printed.

(At the time of writing, when the system is still under development, Phase I also prints a

complete listing of the translated specification. This listing is of no direct interest to the user,

but should be kept to show the author if the subsequent survey does not proceed as

expected.)

In Phase II, the user’s data is read. For every case supplied, all the variables are computed

according to the specification, and any checks which have been requested are carried out.

The case number of each case presented is printed. When Phase II is used in the ‘normal’

mode, then the variables which represent each satisfactory case are stored on the private

tape; the values of the variables of each cases which fail are printed in full.

When used in the ‘checking’ mode, Phase II effectively rejects every case, printing the

variables for each one presented, and not storing any on the private tape. The checking mode

has been provided so on that Phase II can be used with a few ‘sample’ cases to ensure that

the content, as well as the form, of the specification is correct. A careful examination of the

listing produced by this phase, and a comparison of the values printed against those expected

for the sample cases, will quickly show up such errors as incorrect column numbers, wrong

answer formats, or incorrect case number declarations.

All users are strongly urged to use this type of checking on their specification. A mistake

discovered at this stage may well prevent the reading of a very large amount of data to no

useful purpose.

Phase III is used to generate and print the actual tables asked for in the specification. The

phase takes the variables it needs from the private magnetic tape.

2-32

Although an ‘ideal’ survey would be analysed by the simple sequence of phases I, II and

III there are great practical advantages in allowing the phases to be used individually in a

flexible manner. For example, phase II should always be used in the checking mode before

the normal mode. Again, if the amount of data is large, it is advisable to read in several

batches, each one corresponding to a separate run of phase II.

Yet again, it may be necessary to follow up an initial ‘exploratory’ analysis by more detailed

tables of sections of the data found to be interesting. This can be done by a new run of phase

I (to read the new table specifications) and a new run of phase III (to generate the tables).

Phase II will not be needed again, since all the data will already have been stored on the

private tape.

The operation of the phases is controlled by a special program called the ‘MVC supervisor’.

The first item in any MVC job, after the job description, is a set of instructions, to this

supervisor, about what phases to carry out on this particular run. At present, these

instructions must be written in a very simple and rigid form as shown below:.

P0 Carry out Phase I

P1 Carry out Phase II in

 the checking mode.

P2 Carry out Phase_ II in

 the normal mode

P3 Carry out Phase III

Q End of instructions to

 the MVC supervisor.

These instructions can be combined together; for example

P0P1Q

implies that the (given) specification should be translated by Phase I and then phase II should

be used to check the (given) sample cases; or

P2P3Q

indicates that the data supplied should be read, stored on tape, and previously defined tables

constructed.

When typing instructions to the MVC supervisor, great care should be taken to ensure that

the P is immediately followed by the relevant decimal digit, without any spaces, erases,

backspaces, or changes. THIS IS IMPORTANT.

2.15.1. Job Descriptions and Documents.

At the time of writing, it is very difficult to assess the relationship between the constants

required in the job description and the size of any survey. The following rules, however, will

provide a rough and ready guide:

2-33

a) Storage: 60 blocks

b) Computing time:

For Phase I, 1000 instructions

For Phase II, 50 instructions per case (if on tape) or per card (if cards are

used)

For Phase III,10000 instructions. + 10 per case

c) Output: 5000 lines (on output 0)

These figures are excessive for most surveys.

2.15.2. Compiler Specification

At the time of writing, MVC has not yet been defined as a compiler. One cannot therefore

put

COMPILER MVC

Instead, the following ABL sequence is required:

COMPILER ABL

1001,0,0,1

1002,0,0,99:0

121,127,0,99:0

EA0/0

2.15.3. Specification of Private Tape

At present the job description must contain the sequence

TAPE

0 L0005

2.15.4. Input Documents

The survey specification is always read on input 0, and should follow on the same tape as

the job description.

Data on punched tape is also read on input 0, and should follow the specification (if any).

It should be terminated by ***Z. If the data is on a separate tape, then the specification

should end with ***T.

Data on punched cards is read on input 1. The cards should be preceded by two title cards,

the first punched ‘DATA’ in cols. 1-4, and the second with a suitable data title. This punching

must be in the ICT code. The data cards should be followed by a single card with holes 7 and

8 punched in column 1 and a ‘Z’ in column 80.

When cards are read, the job description must contain the statement

INPUT

1 < The data title >

2-34

2.15.5. Examples of Job Description

1) To read a specification, and to check a few cases, where the data is on punched tape.

JOB

LRC92PA1, ROAD SURFACE SURVEY

STORE 60 BLOCKS

COMPUTING 2000 INSTRUCTIONS OUTPUT

0 LINE PRINTER 5000 LINES

TAPE

0 L0005

COMPILER ABL

1001,0,0,1 ≡ COMPILER MVC

1002,0,0,99:0

121,127,0,99:0

EA0/0

P0P1Q INSTRUCTIONS TO MVC SUPERVISOR

read items; Survey Specification

..........

start;

.....

..... Sample cases

***Z

2) To read data on cards, and to tabulate it.

JOB

LRC92PA1, TYRE WEAR SURVEY, J. BLOGGS

STORE 60 BLOCKS

COMPUTING 45000 INSTRUCTIONS

OUTPUT

0 LINE PRINTER 5000 LINES

INPUT

1 J. BLOGGS TYRE DATA

TAPE

0 L0005

COMPILER ABL

1001,0,0,1

1002,0,0,99:0

121,127,0,99:0

P2P3Q

***Z

The data cards would be headed by the two cards:

DATA

J. BLOGGS TYRE DATA

Note that the survey specification is absent, and that phase I is not specified. This job could

only run if the actual specification had been read and stored on the private tape by a previous

run.

2-35

2.15.6. Restrictions and Points to Watch

At present, the MVC system will only accept cards on which the individual columns are

punched in a way which represents some actual character in the ICT code. This means that

with a few special exceptions, double punching is not permissible.

When any of the phases are run for a second time on the same job, the following points

should be borne in mind:

Phase I The only purpose for repeating phase I in any job is that of defining new table

specifications. When this is done, then the variable definitions in the new specification must

be exactly the same as in the original one. Only the table specifications may be changed.

Phase II Phase II can be repeated several times if the total amount of data is large, or if it

is desired to re-read cases which were rejected on an earlier pass and have since been

corrected. Additional runs of phase II can be started without any formality. The case numbers

must be in ascending order on any one run, but need not follow on from the previous one.

Phase III can be repeated as many times as necessary, without formality.

AJTC:JL

15 October 1964

SN:41

