The Arithmetic Translatar—(}(}mpiler of the IBM

Fortran Automatic Coding System

Prragp T SHERIDAN . Tnternats j ; M aeh) ;
Perer B, SHerioan, International Business Machines Corporation, New York, N. Y.

1. Introduction

The present paper describes, in formal terms, the
steps In transiation employed by the Fortran arithmetic
translator in converting Fortran formulas into 704 as-
sembly code. The steps are described in about the order
in which they are actually taken during translation.
Although sections 2 and 3 give a formal description of the
ForrrAN source language, insofar as arithmetic type
statements are concerned, the reader is expected to be
familiar with Forrran I1, as well as with Sap IT and the
programming logic of the 704 computer.

The first major phase of translation, deseribed in sec-
tions 4-7, -is concerned with converting an arithmetic
formula, regarded as the statement of an algorithm, into
a set of triples (C;, ., N;) which also describe the al-
gorithm, but in a manner which lends itself more easily
to conversion into conventional computer code (not neces-
sarily that of the 704). The three elements of a triple have
essentially the following meanings:

{4 : operation to be performed
N : operand
C,;: “time” at which the operation must be performed

There are as many distinet “times” of operation as there
are subexpressions in the entire expression to be evalu-
ated. For example, consider the arithmetic expression'

(4 +B)—O/(DxE+F)/G —H+J)). (1)

One may regard this expression as containing as many
subexpressions as there are distinet pairs of parentheses
shown—namely six. To evaluate the entire expression
all six subexpressions must be evaluated. While there is
some latitude in the order in which these subexpressions
are to be evaluated, not all orders will work (since “higher
ﬁglez\f(*,l” subexpressions depend on “lower level” ones for
‘their values). A possible order of evaluation for the ex-
ample shown is as follows:

1. (A + B)
2. ((4 + B) — O)

3. (B + F)

1. (D% (B + F)/®)

5. D+ (B + F)/G) — H+J

6. (A + B) — C) /(D * (E + F)/G) — H + J)).

The triples representing this computation would break
up into six subsets, called segments according to their C-
anumber (first member of a triple). In each segment (cor-
sponding to a subexpression) there are as many triples

! In the Forrran system = is used for multiplication, #* for
cponentiation.

as there are terms in the subexpression. (The number o
triples in a segment may be called the length of a seg
ment.) Using the numbers written alongside the sub
expressions as names for these subexpressions, we get
the following representation of the computation in triples
notation:

(A, +, A, +, B)2, +, (2, =, C)
@, +, B)3, +, F)(4, %, D)
4, % 3)4, /,)5, +, 85, —, H)
(5, 4, J)(6, *, 2)(6, /, 5)

If the divide operation is regarded as multiplication by the
inverse, then it is clear that the triples belonging to any
given segment of (2) could be reshuffled into some differ.
ent order without disturbing the algorithm. Although not
all possible segments which the ForTraN translator pro-
duces allow reshuffling, the latitude, whenever present
is later used to obtain economies in the computer code
eventually produced. It should also be observed that
since each triple bears its own segment number, extensive
rearrangements of the triples could be tolerated without
making it impossible to restore them into proper order
The ForTraN translator takes advantage of this fact ir
that it does not necessarily produce the triples segment
by segment with segments in proper order. However, the
deviations from this ultimately required order which the
process of triples generation introduces are correctible
by reordering. The segment numbers developed by the
ForTrAN translator are in reverse numerical order, i.e..
the largest segment number represents the subexpression
first to be evaluated, while the smallest segment number
represents the last (which always coincides with the en-
tire expression). The first major objective of the FORTRAN
translator is accomplished in a number of steps and con-
sists in the translation of form (1) into form (2).

The first step, described in section 4, is to replace con-
stants and subscripted variables by simple variables,
thus ensuring that all of the arguments entering into the
computation are of a uniform nature.

The next step, described in section 5, is aimed at ensur-
ing that every subexpression in the expression to be evalu-
ated is provided with an explicit pair of parentheses. In
writing Forrran formulas one need not indicate all
parentheses, the usual order of precedence among arith-
metic operations being assumed: exponentiation, multi-
plication and division, addition and subtraction. The
method by which these precedence relations are made
explicit by the ForTrAN translator is roughly the follow-
ing: An arithmetic connective of high precedence may be

Communications of the ACM 9

Algorithn for Computing Triples from Hormal ¥

{Read from left to right)

(Column in which the arrowhead of an operatlion
15 the "fime" at which the operation is executed

one operation may be performed at a time.)

Operation Codes:

Koot .

fransfer]

Kormal form being
scanned:

Gperation,
Cperand:

Triples
Sub-expression to
whi this triple
belongs:

" oaub-

ions not yet

thought of as weakly separating the arguments to either
side of it, while a connective of low priority strongly
separates the arguments to either side of it. Since there
are three degrees of precedence to be considered, we may
represent three degrees of separation power by placing
one, two, or three pairs of parentheses to either side of a
connective according to its order of precedence, thus:

A x B A) wx (B
AN = (B
AN+ (B (addition)

This introduction of parentheses is balanced in the sense
that as many left parentheses are introduced as right
ones. If, in addition to inserting parentheses as shown
above, one also prefixes the entire expression by three
left parentheses and closes it by three right parentheses,
then——as the reader may convinee himself——a correct
parenthesization of the expression is accomplished even
though many unnecessary (though harmless) pairs of
parentheses are also inserted. For example:

A+ B C/D (3)

~(exponentiation)

convert A * B into (multiplication)

A+ B

becomes

(((4))) + (((B) % (C)/((D)))

In the Forrran translation four rather than three levels
of precedence are recognized because the character “,”
which conventionally separates successive arguments of a
function—as in f(a, b, ¢)-—is also treated as an arithmetic
connective. Also, for reasons having to do with the sub-
sequent generation of triples, each inserted left paren-
thesis is preceded by an operation sign which essentially
tags the parenthesis with its strength:

F(x(e(4))) + (Gx(B) 2% (C))/(32(D))) (4)

Arithmetic expressions expanded by the insertion of
parentheses and operation signs as indicated above (and

10 Communications of the ACM

carefully described in section 5) are called arithmetic
expressions in normal form.

The next step in translation, described in section 6, is
the generation of a list of triples which (except for the in-
clusion of some extraneous list members) constitutes an
unsorted representation of the desired algorithm. A single
scan forward on expressions of a form equivalent to that
shown I (3) above produces the desired triples. very
left parenthesis marks the beginning of a subexpression;
the operation sign preceding it shows in what sort of
arithmetic operation that subexpression is to participate
as a term. A running index, N, (N for nexl subeaxpression),
which steps up one every time another left parenthesis is
crossed, serves to generate a set of subexpression numbers
which become the indices N; of the generated triples.
The numbers '; (' for current subexpression) may be
generated from N, provided that one keeps a record of
what subexpression numbers were generated at previous
left parenthesis crossings, and steps back to the proper
carlier subexpression after having crossed one or more
right parentheses.

This procedure is illustrated in figure 1, using expression
(4) as a source of triples production.

Section 7 describes how {o eliminate extraneous triples
from lists described as above. To begin with, one can (with
only one exception) eliminate all triples which form a
single segment by themselves. Secondly, after sorting the
triples into order, one can eliminate duplication between
entire segments of triples which can be recognized to be
identical sub-expressions.

Section 8 describes some intra-segment 1'0&rrmlgen‘lentsi
of triples which lead to an ultimate order of computer
operation which is not randomly wasteful of storage-to-
register and register-to-storage transfers in the course of
expression evaluation. '

When once an expression has been converted into a
string of triples, properly rearranged and made as short

as possible by elimination of duplication, it is ready for
¢

;
5
5
:
i
3

conversion into one-address Sar assembly code. Tn most
triples the last element N, will have to be interpreted as
an Sar address of a number to be operated upon by an
operation corvesponding to O .

Sections 9 and 10 show how the Forrmran translator
assigns storage locations and computes addresses for the
various classes ol operands encountered in these triples.
The following classes of operand storage are considered
in order:

Integer and flouting poiné constant storage

Tnpul and oulput wrrays (Represented by source lan-
guage references to subscripted variables)

Warking storage for each expression (Represented in
triples code by references in one segment to the result
produced by another segment of the same expression)

Argument storage for funclions

Retwrn jump address slorage required when functions are
nested and control must pass down a chain and then back
up again.

Section 11 actually shows, almost in flow-chart form,
how Sap assembly instructions are produced from the
strings of triples into which Forrran expressions have
been recoded.

The Appendix shows how TorTran statement com-
pilation can be extended to the case in which the operations
consist in Boolean and, or and not.

The author is indebted to Messrs J. W. Backus, R. A.
Nelson, and T. Ziller of IBM for initially suggesting to him
the basic ideas underlying scetion 6 below, and he is most
especially grateful to Mr. A. W. Holt of Remington Rand
for the extended introduction to this paper, without which
its readability would have suffered considerably.

2. Definitions

(@) The alphabet of ForrrAN comprises the alpha-
meric characters a, ---, 2,0, 1, ---,9 and the set of
“special” characters: «, (,), ,, +, —, %, /, =,and . The
last is not a character explicitly indicated in any FORTRAN
statement, serving solely as a statement endmark on the
executive level, with which we shall here be primarily
concerned. Lower case Greek letters will be used through-
out to denote arbitrary characters of the Forrran al-
phabet.

By the term string we shall mean a sequence of juxta-
posed alphabet characters, of finite length. Upper case
Greek letters will be usged,to denote arbitrary strings.

The length 1(%) of a string ¥ is the number of literal
oceurrences of character tokens in its construction. The
symbol A will be used to denote the null string, of length
0; of course, for any string ¥, ZA = AZ = 2,

Two strings ® = ¢ - @m, ¥ = - ¢, are said
to be identical (and we write ® = ¥) if and only if m = n
and for each 4, ¢; = ¥ .

A string @ is said to be included v (or to be a substring of)
a string ¥ (and we write: & C V) if ¥ has the represen-
tation ¥ = A®B where, A, B are strings. As usual, A is
sald to be o head of ¥, and B a tail of ¥.

If ¥ is an arbitrary string, then the notation I, (¥),
T,.(¥), where n is an arbitrary non-negative integer, is

defined as follows: If ¥ = ®X, then
(@ ifn < L(¥) and L(®) = n,

H,(¥) = orn > L(¥)and ¥ = &
LA ifn =10
Xifn £ L(Y) and L(X) = n,
1T.0¢) = { orn > L{(¥)and ¥ = X
lAifn =0

Thus, if ¥ = ABC + D/E s I
11,(¥) = ABC+
To(¥) = /I +4 I
Hu(¥) = ¥

To(¥) = ¥

then

(b) Names are strings classified as follows:
mteger constants
floating-point constants
integer variables
floating-point variables
funetion names

An nteger constant is a string K = & - - - , such that
each «; is an integer between 0 and 9 (inclusively) and the
relation K < 2 holds.

A floating-point constant is a string T = vy -,
where y; = + for some j and each v;, for ¢ # j, is be-
tween 0 and 9 (inclusively), provided T' = O or 107 <
I < 10%.

An integer variable is a string I = - -+ +, where each
¢; is alphamerie, but ¢ is one of the characters 1, 4, &,
L, M or N, and L(I) £ 6.

A floating-point variable is a string T = v1 - - v
where each v, is alphameric and #; is alphabetic but not
one of the characters 1, 7, K, L, M or N. Again, L(T) = 6.

A function name is a string & = ¢, -, ¢n, where
each ¢; is alphameric, ¢ is alphabetic and such that either

(1) L(®) £ 6, & does not appear in a DIMENSION
statement, and L{P) < 4 or ¢, # ¥

or (1) 4 £ L(®) £ 7and ¢, = F.

Functions denoted by names in the first category are
referred to as Fs-type functions, and are defined by
Torrnan II FUNCTION or SUBROUTINE subprograms.
Those denoted by names in the second category are

- referred to as Fn-type functions, and are defined by

machine-coded library tape subprograms, built-in open
subroutines, or by a single arithmetic statement (see
funection definition below). An Fs-type function is integer-
valued if and only if ¢ is one of the characters 1,1, X,
L, M or X. An Fx-type function is integer-valued if and

2 Por definition, see, e.g., the Forrrax Programmer’s Refer-
ence Manual.

Communications of the ACM 11

only if ¢; = x. (This diserepancy in notational convention
is, in principle, a nonessential one and arose only through
historical accident.)

(¢) A subscript is a string of one of the following forms:

z

K

K#*2Z
Z+ K
2 —-K
K2+ 7D
K« - 7P

where K, P are integer constants and 2 is an integer vari-
able. In addition, the magnitude of a subscript cannot
exceed 2° — |,

(d) A subscripted variable is a string of the form

T<21 y T Ek)

where 1" is an integer or floating-point variable and such
that if 7' = 7, --- 7,

(#) T appears in a DIMENSION statement
and (&) L(T) < 4orr, % F
and the 2; are subsecripts with ¥ < 3.

3. Rules of Formation

(1) The set of expressions is recursively characterized
as follows:

E1. A constant or variable name ® is an expression of
the same mode as . If & = ¢; -+ ¢, and L(®) < 4 or
¢n 7 F, and & appears in a DIMENSION statement, and if,
furthermore, 2y, ---, 2, (1 £ k £ 3), are subseripts,
then ®(Z,, ---, Z) is an expression of the same mode
as &.

2. It @ is an expression not of the form +¥ or — ¥,
then +&® and —® are expressions of the same mode as &.

E3. If ® is an expression, then (&) is an expression of
the same mode as .

E4. If @ is an n-adic function name and A4, , - --
are expressions, then ®(A4,, -
the same mode as ®.

5. If ®, ¥ are expressions of the same mode and ¥
18 not of the form -+ X or —X, then & -+ ¥, & — ¥,
P % ¥, &/¥ are expressions of the same mode as .

E6. If @, ¥ are expressions and ¥ is floating-point mode
only when ® is, then unless either or ¥ is of the form
A » B (A, B variables, constants, or function expres-
sions), ® #x ¥ is an expression of the same mode as .

Note that K1-£6 prohibit, by implication, the writing
of mixed-mode expressions except under certain special
formal conditions. To wit, the only allowable expressions
in our language are those we shall term snfeger and Soat-
tng-povnt expressions. An integer expression is one in
which any floating-point mode name occurs, if at all,
within the “argument vector” of some function expres-

, An
-+, 4,) is an expression of

12 Communications of the ACM

sion —for example:
1 -+ XsINF(A % B/C)

A floating-point expression, on the other hand, is one in
which any integer-mode name occurs, if at all, within the
argument vector of a function expression, within the ex-
ponent of an exponential, or within a subseript,—for
example:
A1) #* 7 4 sINp(K # /M)

Any other string is referred to as mized, and cannot
belong to the set of allowed expressions.

(r1) An arithmelic expression is a string of the form

=&

where ® is an expression in the sense of £1-I6.
(i) A pure arithmetic statement is a string of the form

¥ = o

where ¥ is a subscripted or nonsubscripted variable, and
= & | is an arithmetic expression.

(1v) A quasi-arithmetic statement is a string of one of the
following forms:

(a) 17(P), where ® is an expression.

(b) caLL ®(A,, ---, 4,), where ® is a function name
such that

(2) if® = ¢, -« ¢, then L(®) < 4 or ¢, = 7, L{B) =
6 and ® does not appear in a DIMENSION statement

(1) each A, is an expression, in the sense of F1-K6
or a Hollerith field (q.v., Fortran Programmer’s Refer-
ence Manual).
The reason for referring to the above as quasi-arithmetic
statements will be made clear later.

(V) A function definition is a string of the form

éb(‘llly"',An) = E[Alv;AnJJI

where ® is a function name such that

@) if®=¢ - @, then 4 £ L®) =27 and ¢, = r,

(i7) each A; is a nonsubscripted variable name,

(#75) ElA,, -+, A,] is an expression (in the sense of
E1-E6) in the (free) variables 4,, ---, A4,. We note
in passing, that any A, may occur vacuously in KE[A;,

-+, A,). Thus, E{A,, -+, 4,] is a function form in the
free variables A;, -+, A,.

4. Reduction of Expressions

An expression ® is reduced in the following manner:

(1) Each integer or floating-point constant occurring
in ®, but not contained in a subseript, is replaced by an
integer or floating-point variable name, respectively,
provided the replacement is made at all occurrences of
that constant and the replacement name does not already
oceur in .

(11) Each integer or floating-point subseripted variable
is replaced by a nonsubseripted integer or floating-point
variable name, respectively, in such a manner that the
replacement name does not already occur in ® and such:
that the replacement of each subscripted variable name is
made at all occurrences of the latter in ®. Also, no sub-
seripted variable can have the same name as a honsub-

seripted variable, nor can any two n-dimensional sub-
seripted variables have the same names if their first n — 1
dimensions are respectively identical, -

The result, then, of applying procedures (1), (1r),
above, to the expression ® will be termed its reduced form
and denoted by &,

Now, if @ is an expression, then we shall denote by
Ve the set of all non-null connected name strings oceurring
in ®. Thus, for example, if

® = aBC % (—XY)

then By = [a, B, ¢, 4B, BC, ABC, X, ¥, xv}. Clearly, for
any expression ®, there exists at least one element 3 € By
such that if ¥ € By and 2 € ¥, then T = ¥, ie, =
15, in this sense, a maximal element. We shall denote
by W4 the subset of Vg consisting of its maximal con-
nected non-null name strings. In the last example, ¥ =
{ABC, XY,

5. Normal Form of an Arithmetic Expression

In this section we shall define a set of transformations
which, beginning with any reduced arithmetic expression =
4" -, recursively generate what we shall call partial nor-
mal forms A;X where T/(X) = - and A, is the character
=. The recursion on the head-strings A; is as follows:

then A = AV,

We shall assume throughout that T ¢ 4 U {(}.

TULAZX — A + (x(:x(BZX
(Ai 4+ (x(ax(HZX
T2.8;, £ ZX —
Ai))) £ k(DX
T3 A:% /JEX — A;)) # /((DZX
Th A; % ZX — Ay)+ (HZX
5. Ar}f(X. — A; D (X
76.0)X — A;))))X
Ti. A, X—4;)))) & (X
T8 A:+4 — A:)))

if T1(8:) € {=, (}
it Ty(Aaye {=, (}

otherwise

if T1(A:) € By

Note that the recursion is terminated by T8, since
X = - at this step. Note, further, that stratification
(by levels) of the arithmetic expression = & - via the
~above schema proceeds from the assumption that the
order (or degree) of “binding” of operations appearing in
% coincides with that of conventional mathematical usage,
wviz. (in order of increasing “‘strength’): =4=; */; %*; and &.
Of course, the last noted “operation” is associated solely
in each partial normal form with functions and has only a
syntactical purpose in that context. Thus, T'1-7'8 reflect
~and render more explicit normally assumed usage regard-
“ing stratification of algebraic expressions.

If we denote by N.(®) the #th partial normal form of
P, and by N(®) the last of these (which we may refer to
“simply as the normal form of &), then the following ex-
~ample should suffice to illustrate the above schema.
 Let ® = —xvzr(a, BxC# (—D))/E + F. Then,

No(@) = A -, with A, standing for =
Ni(®) = A4, B % ¢ xx (—D))/B + ¥ -,
with &; = Ay — (x(sx(DxYZF
No(@) = Ao, B* Cx (—D))/E + ¥ -,
with Ay = A} & (
N3(®) = 83, B*Cx* (—D))/1m + ¥,
with Ay = Ay 4 (*(**(@A
Ny(®) = AB * C#x (—D))/B + r -,
with Ay = Ay)))) & (
Ne(®) = Asx cxx (—D))/B + ¥,
with 4; = Ay + (x(x«(PB
Ne(®) = Ag#x (—D))/B -+ F -,
with A¢ = A5))*(x(Dc
NA®) = Ay — D))/ + 7, with Ar = Ag)ex(& (
Ne(®) = Ag)/B + F-, with Ay = Ay — (x(xx(DD
No(®) = Ay)/m 4 -, with Ay = Ag))))
LVlO(‘.D) = Alo/\[‘i) + F '*i, with Ay = A()))))
Nu(®) = Ay -+ v+, with Ay = Ap))/Gx(Dr
Npp(®) = Ap-, withAp = Ap))) + (x(Brw

and, finally,

IV(@) == N]J(@) = Al;; y with A[:; == Alg)))

More explicitly, then, N(®) is the expression
= —(#(ex(@xY2F @ (+G((Ba)))) & (+ (+(x
(@8) Jx(er(BC)rr(D(— (x(ex(@0))))))))))/
(#(Br))) + G(=x(BF))

It may be seen quite easily that the result N (®) of appli
cation of T1-T8 to a reduced arithmetic expressio:
= ®" - is such that the balance of left and right paren
theses is not disturbed (closure condition). To wit: the thre:
additional left parentheses generated by 71 are closec
by the three additional right parentheses generated byj
T8, if T1(A,) is =, or T6, if T1(A,) is (; the same is tru
for the first line of T2, and the second line of T2 is self
closing; 73, T4 and T5 are self-closing; 76 introduce
three additional right parentheses which are closed by
the three additional left parentheses generated by 77
or the first line of 72; identical assertions hold for 7™
and T8.

If N(®) is =¥, then we shall define ®" as ¥, i.e., the
string N(®) minus the ForTran = sign. Thus, ®" is ¢
string of elements of the form {.,¥; where, for each ¢

Qi= Aand ¥; =)
or Oi € {+, —, % %, @} and ¥; € W U {(}.

6. Level Analysis

The level analysis of an arithmetic expression = ¢
consists in the recursive generation of what we shall cal
partial productions II;, each partial production a string
of triples (of entities to be described below) formed ip
the following manner.

We define three integer sequences {Ni}, {C.}, { A
and a sequence {K;} of integer sequences such that,
initially, Ny =1, ¢, = 4, =0 and K: = A. By K
we shall mean the last term of the sequence K, , and if
K; = (©, K/) then K; = (0) (possibly null). We set the

Communications of the ACM 13

N, 1, 2, 31 4 5
¢ ol 1, 201 3] 3! 4
A; o] 1| 2] 3] 3| 4!
i 1) 2] 3l 4] 5 6
R rai v \,é;ﬂ w‘_;_mi_ﬁ_;._._ —
Ny 17118191919 19
C; 617181817 | 16

321 33

e
A p 9101 11|10 9

initial partial production I = A, and if T, — ILE,
then IIH_l = IIJ’J
Now if {,¥; denotes the 4th element of &, the pro-

duction schema is as follows:

(then IL; — I(C:, Oi, Ny

Nig =N+ 1
ji+l = N;
Ay = A, + 1

K = (Kw ’ 07’>
2, where 2 € R,
then II; — IL(C,, O, Z)

Ni+1 = Ny
Ifw, = Cin = Cs
Az‘+1 = /L;
K‘H—l = K,
) then I; — 11,
Ni+l == Ni
CH-] = [(1:/
A’H—l == Ai - 1
L Kip = K;

The effect of applying these transformations com-
pletely to the normal form ®" is to produce a string T1(®)—
which we shall refer to simply as the production of &—
which is a representation of the computation required
to evaluate the original arithmetic expression = & .
The computation proceeds from the innermost to the
outermost levels (in the sense of T1-7T'8) in a systematic
manner, as we shall later see.

Note that, since 4, = 0 and

A+ 1 when ¥; = (
Ay =< A, when ¥; € 8
A; — 1 when ¥; =),

then the last term of the sequence {A;} is 0 if and only
if ® itself is closed with respect to parenthesization.

Now, each element (' (respectively N) of the set of
terms of the sequence {C;} (respectively {N.}) may be
interpreted as the index of a “currently defined” (respec-
tively, “next-to-be-defined”) expression S. (respectively
Sy) embedded in the production I1(®). Each such expres-
sion is defined as the set of all triples of the form (C, {7,
¥,"), for arbitrary, fixed ¢, where the index j ranges over
the number of triples having the “current” index C.

14 Communications of the ACM

@(! IR RIS RGN —

8 16
3 15
14 ‘]

19 1 20

119

17 2

41 | 42

Irom the above “partial production” schema, it is
easily seen that, for any %, j, € = C; entails 4, = 4,
(but not conversely). Thus, since each clement of the se-
quence {A;} is a level index (rising by 1 for each left
parenthesis, dropping by 1 for each right parenthesis,
and otherwise stationary), it is meaningful to state that
each of the above mentioned triples belongs to the same
level. We shall call such a set of triples a segment of the
level to which any of its members belong. Of two seg-
ments Se;, S¢;, moreover, we may say that they belong
to (or are segments of) the same level if and only if 4; =
A, . Since this is an equivalence relation between seg-
ments, we see that each level is completely defined by
the set of all segments belonging to it, in the above defined
sense. [‘urthermore, since all triples comprising a segment
belong to the same level, their operation elements are of
the same type, Le., all » and/or /; all + and/or —; all
s%; or all .

Before proceeding further, let us pause to illustrate the
partial production schema with respect to the example

® = —xXYZF(A, B % C#x (—D))/E + ¥

of section 5. To this end, it is convenient to arrange all
information in the form of table I, wherein the 7th column
contains at its head the element ¥, of " and, imme-
diately below, the respective values of N;, Ci, A, , and @.
Table 2 is a parallel display of the generated terms of the
sequence { K.} (which we name the C-sequence) and the
partial productions 11, .

7. Optimization (General)

The first stage of optimization of II(®) consists in the
elimination of redundant parentheses arising out of the
transformations 7'1-7'8. Having achieved the desired
stratification of ®, they shall now disappear from the
scene, and in the following manner.

The production I(®) is scanned, ‘back-to-front”, one
triple at a time. If and only if a triple (C, O, ¥) belongs !
to a segment of length 1 and { » — is this triple elimi-
nated from IT, and ¥ replaces the third member of its
immediate predecessor. This “telescoping” procedure is
based on the fact that a segment is of length 1 only if its
“name” (i.e., current index () is “addressed” by its imme-
diate predecessor. This last assertion follows, in turn,
from the first partial production rule.

TABLE 2

C-Sequence Partial Productions
Ky = A Im = A
Ke = (0) II; = IO, —, 1)
Ky = <0, 1) Ug = Hg(l., *, 2)
Ko = (0,1, 2) I = YI3(2, %%, 3)
Ky = (0, 1, 2) I; = [14(3, @, XYZI")
Ks = (0,1,2,3) Uy = T:3, D, 4)
K; = (0,1,2,3,4) ; = I, +, 5)
Ky = (0,1,2,3,4,5) s = (5, «, 6)
Ky = (0,1,2,3,4,5,6) I, = TILe(6, #x, 7)
Ko = (0,1,2,3,4,5,6) I = (7, @, 4)
K = (0, 1, 2, 3, 4, 5) Oy = IT,O
K = (0.1,2,38,4) I = 1y
Kiz = (0,1, 2,3) Iy = Iy
KH = (0, 1, 2) HN = II[B
K = (0, 1,2 3) N, = I3,®, 8)
Kis = (0,1,2,3,8) e = My5(8, +,9)
K = (0,1,2,3,8, 90 Iy = 10469, #, 10)
Kis = (0,1, 2, 3,8,9,10) s = 10,;(10, =, 11)
Ky = (0,1,2,3,8,9, 10) I = (11, @, B)
Kgo = (0, 1, 2, 3, 8, 9) Hzo = HW
Ky = (0,1,2,3,8) Iy = Ty
Ky = (0,1,2,3,8,9) Iy = T (9, %, 12)
Ki = (0,1,23,8,9,12) My = I0u(12, %, 13)
Ku = (0,1,2,3,8,9,12) Iy = Ix%(13,®, ¢)
Kys = (0, 1, 2, 3, 8, 9 Iy = a4
Ky = (0,1,2,3,8,9,12) Uiy = Tp5(12, #¢, 14)
Ko = (0, 1,2,3,8,9, 12, 14) Iy = Tle(14, @, 15)
K = (0, 1,2,3,8,9, 12, 14, 15) Ty = Il (15, —, 16)
Ky = (0, 1, 2, 3, 87 9, 12, 14, 15, 16) Hzg = Hzg(lﬁ, *, 17)
Kio = (0,1,2,3,8,9, 12, 14, 15, 16, 17) | I3 = Ts(17, #x, 18)
Ki = Ky My = (18, &, »)
K = (0,1,2,3,8,9,12, 14, 15, 16) Iy = 1y
Ko = (0, 1, 2, 3, 8, 9, 12, 14, 15) 1133 = 1132
K = (0,1,2,3,8,9,12, 14) Iy = Tl
Ki = (0,1,2,3,8,9,12) Ty = My
Kis = (0,1,2,3,8,9) Mg = Ty,
Ky = (0, 1, 2, 3, 8) Oy = Iy
Kgg - (0, 1, 2, 3) r[33 = H:n
Ki = (0,1, 2) 33 = Ilgg
Kip = (0, 1) s = Ty
Ky = (0) Iy = Iy
Ky = (0, 1) Iy = Iy (1, /, 19
Ks = (0, 1, 19) Iy = T.(19, **, 20)
Ky = Ky T = 45(20, @, B)
Ki; = (0, 1) Iy = Mgy
Kig = (0) Hyp = Iy
Ky = A Iy = Il
Kg = (0) Mg = M4 (0, —, 21)
Ko = (0, 2]) Iy = 1143(21, *, 22)
K:,o = (0, 21. 22) H;’,o = II49(22, *k 23)
Kii = Kso s = M50(23, @, ®)
Kz = (0, 21) Il5e = Ils
Ks; = (0) Il = Ils
Ki = A IIsy = Iy

 Next, the set of so-condensed segments 11(®) is ordered
~according to current indices, so that, if

@ =8 - 8

where

then S.. “precedes” S.s if and only if ¢ =

S, = (C, OLwh - (C, ch“, ‘ch)‘c)

7"

The next stage of optimization involves the ‘“‘elimina-

tion’” of common subexpressions, so as to avoid redundant
computation, This is accomplished in two steps:

1) Beginning with S, , the last segment in I(®), and
for each 1 = L, the set of all S; with j < 7 is examined
for the occurrence of an §; = §;. As soon as some S; =
8., 8, is eliminated from [1(®), and all references to S;
replaced by references to S;, i.e., if some ¥, = j, then j
is set equal to <.

2) Having eliminated, by 1), common segments, we
now eliminate common subexpressions. Beginning with
S, , and for each ¢ < L, the set of all S; with j < ¢ is
examined for the occurrence of more than one reference
to S:, l.e., the oceurrence of ¥,,, ¥, , with m = »n and
¥, = ¥, = 4. If and only if this is the case is S; tagged
as a common subexpression (what we call a cs-type seg-
ment).

Procedures 1) and 2) together assure the elimination
of outermost common subexpressions. Thus, if

G = A% (B*c)+ sine(a x (B *),

then
(@) = (0, +, 1){0, +, 14)(1, *, A)(1, %, 7)
(7, %, BY)(7, %, ¢)(14, @, swr)(14, B, 16)(16, *, A)
(16, %, 22)(22, *, B)(22, *, ¢)]

Procedures 1) and 2) reduce II to
0, +, 16)(0, +, 14)(14, @, sivr)(14, D, 16)

(16, %, A)(16, %, 22)(22, *, B)(22, *, ©),
with Sy tagged as a cs-type segment, since o' = ¥ =
16.

We shall denote the result of common subexpression
elimination by (II®).

8. Optimization (Special)

Owing to the fact that the ForTrAN System was origi-
nally designed to compile “object’” (running) programs
in 704 language, certain further species of optimization
regarding the compilation of arithmetic statements ap-
pear to be necessary if advantage is to be taken of the
machine’s own special characteristics. We list these in
the order in which they are considered by the executive
program.

1) Each segment S; with O,' = * is scanned for pos-
sible permutation of its members, so as to minimize the
oceurrence of compiled memory accesses. Specifically,
each segment S; of the form

(4, %, W) - (G, OM,)
where
O = I<jsEN

undergoes permutation of its elements so as to yield a
(possibly null) maximal subsegment of the form
(7:7) \I/ijl)(i7 /7 \yifz) U (Zﬁ *, \I/ijk—l)(iy /7 ‘I/ijk)
i.e., a maximal subsegment whose operator structure is
*a/; */: 7*/

Since the only remaining elements (if any) are of the form
(z, %, ¥) or (¢, /, ¥), consider the following cases:

(7) The number of #’s in S; is one more than the num-

* or /,

Communications of the ACM 15

ber of /’s. In this case, the operator structure of S, is

(#7) The number of #’s in S, is at least two more than
the number of /’s. In this case, the operator structure of
Si 18 wx/x/ o x/x o %,

(#7) The number of /’s in S, exceeds the number of
*’s. In this case, the structure is %/ -+ - %/ .. /,

2) A segment S; is said to be type Mq if its last opera-
tion is /; otherwise, it is said to be fype Ac.

A further species of optimization of II®), which we
term linkage, designed to minimize memory accesses, is
performed in the following manner. Beginning with the
last segment, S,, each segment S, is examined as to
type and affected in the following ways.

(1) 8:1is type ac. Then S; is tagged as ac-linkable and
Sio1 as ac-linked, if and only if one of the following con-
ditions obtains: _

(i) Oid' = 4 or —, and for some 7, ¥,y = ¢.In this
case, In addition to tagging S; and S, interchange the
first and jth elements of S, .

(i) Qia' = %, Ois = /, and for some gy Wiy’ = 4
Oiy’ = . Again, in addition to tagging S; and S,
interchange the first and jth elements of S, .

(i) Osd = ®, Wiy = 4 and ¥, ,'is the name of &
closed subroutine (see below), and FN-type function, or an
open univariate function.

(iv) Oy’ = %+ and ¥, ;' = 3.

() S; is type Mq. Then S; is tagged as mo-linkable
and S; 1 as Mq-linked, if and only if one of the following
conditions obtains:

1) Oidt = %, iy’ = xand for some 7 e = 1,
Oy’ = * In this case, in addition to tagging S; and
Si.1, interchange the first and jth elements of S, .

() Oud' = @, Vi =iand ¥, ' is the name of a
closed subroutine (see below), an ¥x-type function or an
open univariate function.

(ii) Ois' = #*. There are two cases:

(a) ¥, is the name of an integer constant less than
7 (in which case S, is compiled as an open subroutine),
and ¥, ' = 4.

(b) Vi = 4.

In all other cases, i.e. cases which do not fall either under
(1) or (11) above, S8; is unlinkable and S,_; unlinked.

9. Function Types

With each library or ¥x-type function appearing in a
FoRrTRAN program is associated a type number according
to the following scheme:

1) Each library function is of type 0.

1) If ® is an pN-funetion name, where

®(Ay, -, An) = B[4, ---
then
(a) if E contains no library or rx-funetion name, ® Is
of type 1.
(b) if K contains a library or sx-function name, and

7L, ©*+, T are the type numbers already associated with
these functions, then the type number of & is simply
max (ry, «--, 7)) + 1.

16 Communications of the ACM

10. Address Compilation

Each member of an element (triple) occurring in
(@) is represented during compilation by the contents
of a full word of 704 storage. These three words are re-
ferred to, respectively, as the lag word, operator word, and
symbol word. The precise bit-structure of each of these
words is a function of the role played by the element in
question.

The tag word of each element of a segment S, contains
not only the current index 7, but in addition, if this ele-
ment refers to a subscripted variable in the original (un-
reduced) expression ® a set of three tags identifying the
dimension, subscript and addend combinations.

The operator word of each element contains the opera-
tion code and, if the first clement of a segment S:, a set
of bits containing information as to certain properties of
this segment, viz., whether the segment is linkable or
linked (and through which arithmetic register): whether
arithmetic for this segment is floating or integer mode;
whether, if &) = @, 8. defines a library, open sub-
routine, ¥s- or FN-function (and, if the latter, what its
type); whether or not S; defines a common subexpres-
sion; whether the result of computation of S; appears in
the accumulator or multiplier-quotient register.

The symbol word of each element contains the name
of the operand, which may be an integer or floating mode
variable, an integer or floating mode constant, a fune-
tion, or some other segment S, .

We shall denote the compiled tagged-address asso-
ciated with the jth symbol of the 4th segment by ¥,

Actual Sap-form address compilation proceeds as
follows:

(i) An address reference to an integer (respectively
floating-point) constant is compiled into a symbolie
address 2) (respectively 3)) and relative address » (re-
spectively u), where » (respectively u) is associated with
the »th (respectively uth) distinet integer (respectively
floating-point) constant occurring in a given source
program.

(i) An address reference to a subscripted variable is
compiled as follows: ‘

(a) If K% 2 = P is the canonical form of the subscript
associated with a one-dimensional variable ¥/, then the
symbolic address is compiled as ¥, and the relative
address as 1 + P. ' ,

(b) If Ky*Zy &= P, Ky%3 £ P, are the canonical
subseripts associated with a two-dimensional variable
¥, then the symbolic address is compiled as ¥,” and
the relative address as

€ (:tPl — 61) - Fl(:f:PQ bt Gz),

where
€ = 0 if 21 = 22 = A
1 otherwise,
oo JO it mes A
t 1 otherwise,

and T is the first dimension of ¥/,

¢ Finall if Kl * 2y o+ P1 Ky % 2o o P
Y)

2

are the canonical subscripts associated with the three-
dimensional variable ¥/, then the symbolic address is
compiled as ¥, and the relative address as

¢ — (£P — &) — Di(EP; — &) — ITo(kPy — €3)
swhere

0 i =3 =3 = A
€ 11 otherwise,
o i oz A
® 71 otherwise,
and Ty, Ty are the first two dimensions of ¥/,

(iii) An address reference to another segment S, is
compiled into a symbolic address 1) r, where 7 is the
type number associated with the arithmetic expression =
® -, and a relative address ¢;. The ¢’s are erasable
storage relative addresses determined in the following
way: Beginning with the last segment S, of II(®), each
S; is examined to determine whether it is nonlinkable or
is tagged as a common subexpression. In either case (and
only then) an erasable storage relative address

o= ¢;+ 1

is associated with S;, where S; (i £ j) is the last seg-
ment nonlinkable or tagged as a common subexpression,
and, initially, ¢ —1 or 0, depending upon whether
fi(®) does or does not define an ¥N-type function.

(iv) With each tape library or Fx-type function is
associated a class of erasable storage cells set aside as a
buffer for the transmission of its arguments. The type =
of any given class is determined by the type assigned to
the function in question. Thus, tape library functions are
always of type 0, and an sv-function is of type 1 greater
than the highest type occurring in its definition.

In the case of a tape library function, an address refer-
ence to its kth argument is compiled into a symbolie
address 4)0 and a relative address — (k—1).

In the case of an ¥~-function, on the other hand, an
address reference to its kth argument is compiled into a
symbolic address 4)7, where = is the type number, and
relative address k-1.

It should be noted, at this point, that the necessity
for typing tape library and w~-functions arises from the
fact that either may occur within the definition of an
vx-funetion. Unrestricted nesting of these functions
within such a context is possible, therefore, only if their
argument, buffer regions are non-overlapping.

(v) For the reasons cited at the end of (iv), the class
of calling-index saving cells is also typed, type 0 as-
signed for tape library functions and type 7 > 0 for a
given FN-function of type . The relative address in both
cases is 0, the symbolic address 7)0 for tape library func-
tions and 7)r for Fy-functions.)

(vi) Finally, when intrasegment erasable storage is
required, a single cell is set aside having symbolic address
730 and relative address 0.

11. Arithmetic Statement Compilation

Beginning with the last segment S, of ILI(®), each seg-
ment S, is “forward scanned” and compiled according to
the following schema.

(1) Inatial Compilation of a Segment

(A) 4 = +. There are two cases:
(i) S;is linked. Proceed to (11), unless S; is of length
in which ease proceed to (rr).
(i) S; is unlinked. Compile cLa ¥,' and proceed to
(11).

B) &) = —. Again, two cases:

(1) S; is linked. Compile cns and proceed to (ir),
unless S; is of length 1, in which case proceed to (1m). -

(i) S; is unlinked. Compile crs ¥,', then proceed as
per B().

(C) O = % Two cases:

(i) S;is linked. Proceed to (11).

(i) S:is unlinked. Two subcases:

(a) OF = /. Compile cra ¥/,

(b) O = = Compile Log ¥,

In either case, proceed next to (11).

(D) O = @. There are several cases:

(i) ;' is the name of a tape library subroutine. Three
subeases:

(a) 8;is ac-linked. Compile the sequence

Mg T
st 4)0 — 2

1

7

Log ¥
lsTQ 4)0 — (A — 2)
Log ¥,

followed by the sequence
sxp 7)0,4
Tsx .\ 4
Lxp 7)0,4.

Either subsequence in braces is vacuous (not compiled)
in the event S; deflines a univariate or bivariate func-
tion only. Note, further, that both the sxp and Lxp in-
structions surrounding the Tsx may be eliminated by a
later section of the ForTRAN executive system in the
event that the flow of indexing information obviates
saving the contents of register 4 at this point.
(b) S is Me-linked. Compile the sequence

[CLA \&

followed by the sequence
cLa ¥/
sxp 7)0,4
Tsx ¥, 4
Lxp 7)0,4.

Communiecations of the ACM 17

The subsequence in braces is vacuous in the event S, de-
fines a bivariate function only.
s . ~ . T 9
(¢) S, is unlinked, Compile cLa W7, then the sequence

((LI)Q ¥

gro 40— 2
g &,
Hsta 40 — (A — 2)
g W

followed by the sequence
sxp 7)0,4
Tsx W, 4
Lxn 7)0,4.

Fither subsequence in braces is vacuous in the event S,
defines a univariate or bivariate function only.

(i) W' is the name of an ¥x-function of type 7. Three
subeases:

(a) S;is Ac-linked. Compile sto 4)r, then the sequence

4
p

Lo ¥,
s 4)r o+ |
cra

sro A)r A+ 2

s B
lsro 47 + (v~ 2)

followed by the sequence
sxp Tyrd
T8X \'[’,;l,vt
Lxn 7)rid.
Fither subsequence in braces is vicuous in the event S,
defines a univariate or bivariate funection only.
(b) S;is mo-linked. Compile the sequence
¥,
CLA Wy
s1o 4)7
srq) -+ 1
then the sequence
LA Wy

gro 4)r 4 2

§T0 A1 A (A, — 2)
followed by the sequence

$X0 T)7,4

sx W, 4

XD 7)7,4.

The subsequence in braces is vacuous in the event S,

defines a bivariate function only.

18 Communications of the ACM

{¢) S 1z unlinked. Compile the sequence
CLA \.‘I—/;B
sTo 4)7,

then the sequence

Lo W/
g1 b 41
SN v
41 j5TO) 4+ 2
{
fcna WM
sto D 4+ (v = 2)

followed, again, by the sequence
$xn 7)7,4
rsx W4
LxXn 7)1,

Fither subsequence in braces is vacuous in the event S
defines a univaviate or bivariate function only.
(i) W' is the name of an es-function. Two subeases:
(1) No subscripted variable containing o variable
subseript index occurs us an argument of W', Compile
the sequence

sxn 7)0,4
Tsx W4

5, 2
,,,,, — i

LxXp 7)0,4.

(b) Some subscripted variable occurring as an argu-
ment of ;' contains a variable subseript index, If ¥,
oo W comprise such o set, then compile the sequence

pxp 7
anrs I8
ADD & — 2
STA « + 7y
pxh ¥t
ARs 18
ADD * — 2
STA « + Ji
sxD 7)0 4

Tsx ¥, 4
Lxp 7)0,4.

The symbolic address « denotes the relative location of
the Tsx instruction within the body of the program, and
each entry in the sequence between the Tsx and 1xp in-

structions is of the form ", if m # any j,, or ¥" if
otherwise. We recall, in passing, that in this context
¥ is our symbol for the composite symbolic-relative
address and tag of ¥ if the latter denotes a subseripted
variable. That is, if p/" is the algebraic (signed) relative
address and +;* the tag associated with this variable, then

T = o

Thus, the effect of the sequence pxp, ARS, ADD, st is
to compute the effective address of this variable and
store same as an actual address in the calling sequence,
which address is then available to the subroutine de-
fining the value of ¥, via the calling index register 4.
The symbolic address = denotes the contents of the 704
program counter at the time an instruction having this
symbolic address is interpreted by the machine.

(iv) ¥/ is the name of a built-in open subroutine.
Owing to the fact that compilation of an open subroutine
into the main body of an object program is an essentially
ad hoc procedure——depending, as it does, on the particu-
lar nature of the funetion in question, the number of its
arguments, and upon the particular context within
which the function arises—and since, further, actual
compilation of open subroutines is deferred to a section
of the executive system later than that with which the
present paper is concerned, we shall omit a detailed de-
scription of this subject for the present.

() O = .

(i) S; defines an open subroutine, viz., ¥’ is the name
of an integer constant less than 7. The same remarks
apply here as for (D) (iv) (q.v.).

(ii) S; defines a closed subroutine.

(a) S; is aclinked. Compile Loq ¥./; then proceed
to (C).

(b) 8; is not ac-linked. Compile cra ¥,

1) S; is mq-linked. Proceed to (C).

2) S, is not Me-linked. Proceed to (a).

(¢) Compile sxp 7)0,4; then proceed to (d).

(d) Three distinet built-in tape library subroutines
compute the exponential according as the exponent is
integer or floating valued, or the base is fixed valued.

(1) ¥/, ¥ are both integer valued. Compile Tsx
Exp(1,4.

(2) ¥ is floating valued, ¥ integer valued. Compile
Tsx EXP(2,4.

(3) ¥, ¥/ are both floating valued. Compile Tsx
EXP(3,4.

(4) ¥, integer valued, ¥, floating valued. Disallowed.

(e) Iinally, compile 1xp 7)0,4 and proceed to (rir).

(t1) Intra-Segment Compilation

(A) O = +. Two cases:

(i) S; is in floating-point mode. Compile Fap Y
(ii) 8; is in integer mode. Compile App ¥..

(B) O = —. Two cases:

(i) 8;is in floating-point mode. Compile rsp ¥,
(ii) 8; is in integer mode. Compile sus ¥,’.

(C) O = * Two cases:

(i) Predecessor in mq. Le, 07" = / or O = % and

j = 2. Two subcases:

a) 8, floating-point. Compile rmp ¥’

b) 8; integer. Compile Mpy ¥, aLs 17.

(i) Predecessor in acc. Le, O/ = % and j = 2
Compile sTo 7)0, Loq 7)0, and proceed to (i) (a) or (1) (b)
above, depending upon mode of S;.

(D) OF = /. Two cases:

(i) Predecessor in Mq. LE. &/ = /. Two subcases

(a) 8; floating-point. Compile stq 7)0, cra 7)0,
Fop ¥,

(b) 8; integer. Compile pve ¥/, crm, w1Ls 18.

(ii) Predecessor in acc. Le. &7 = % Two subcases

(a) 8, floating-point. Compile rpp ¥,

(b) S; integer. Compile rLrs 35 and proceed to (i) (b)
above,

(mx) Final Compilation of a Segment

(A) Last segment compiled was S, .

(i) TI(®) is an 1F-type production, i.e., is the productior
of an expression ¢ contained in a ForrTran source lan-
guage statement of the form

IF(@)’I’Ll y M2y N3

where the n,’s are source program statement names.

(a} Spis type ac. Finis.

(b) 8, is type mq. Compile Lus 37 and finis.

(ii) II(®) is a caLL-type production, i.e., is the produc-
tion of an expression ® contained in a FORTRAN source
language stagement of the form canrn ®, where ® is ar
Fs-funetion. Finis.

(ili) IT is neither an IF- nor caLL-type production
Then the source language statement containing & is o
the form ¥ == & -, where ¥ is a variable or rN-functior
name, Consider the cases:

(a) ¥ is integer-valued.

(1) S, is in floating mode and is type ac. Compile the
(fixing) sequence vra 6), Lrs 0, ANA 6) + 1,118 0, ars 18
We note, here, that two constants having Sap identifi
cations 6), 6)+1, -+ are compiled into the object pro
gram constant-region. These constants are, in 704 octa
word-format, 233000000000 and 000000077777, respec
tively. Thus, the above sequence has the effect of placing
the point of the floating-point number, whose intege
form is desired, to the extreme right of the accumulator
preserving its sign in the MqQ register, extracting the
mantissa (now positioned in the last 15 bits of the ac
cumulator), restoring the sign and shifting the mantisse
into the decrement field.

() If ¥ is an rFN-function name, compile Tra 1,4
Finis,

(8) If not, compile sro ¥, and finis.

(2) 8 is in floating mode and is type Mq. Compile
sTqQ 7)0, cLa 7)0, then proceed as in (a) (1), above.

(3) S, is integer valued.

(o) ¥ is an rN-function name.

a) S, is type ac. Compile TrA 1,4.

b) S is type mq. Compile s1q 7)0, cLa 7)0, TRA 1,4,

Communications of the ACM 1¢

(8) ¥ is a variable.

a) So is type ac. Compile sto V.

b) 8o is type Mq. Compile srq V.

(b) ¥ is floating valued.

(1) Sy is floating valued. Proceed as in (a) (3), above.

(2) 8y is integer valued.

(@) Sois type ac. Compile Lrs 18, ora 6), FAD 6).

a) ¥ is an rv-function name. Compile TrA 1,4,

b) Otherwise, compile sto .

(B) So is type mMq. Compile stq 7)0, cra 7)0, and pro-
ceed as in (2) (a) above.

B) Last segment (S;) compiled was not Sy .

(i) S; linkable and not a common subexpression.
Proceed to compilation of Si.; . &

(i1) 8; not linkable or is a common subexpression.

(a) 8;1s type ac. Compile sto 1)r + ¢;, swhere 7 13
the type number associated with @, and equals 0 if ¥ is
not an Fs-function name; otherwise, is the type of the
function currently being defined (see section 9). The
relative address ¢; is defined as in seetion 10 (ii1). Pro-
ceed to compilation of S,y .

(b) S;is type mq. Compile st@ 1)7 + ¢;, and proceed
to compilation of S, .

APPENDIX

Al. Implicit Multiplication

A certain conciseness of notation in the writing of
expressions is allowed of by the fact than an = sign need
not occur in an expression ® if ® is not of the form ¥ * X,
where T\(¥), H,(X) belong to Bs . Thus, if & ~ ¥ (read
“p equivalent to ¥”) is taken to mean that the corre-
sponding arithmetic expressions = &, = ¥ yield
identical object (machine-language) programs, then

(=a)B(1) ~ (—a)*8(1)
x01L(1)B ~ x01(1)*8B \
SINF(X)COSF(X) ~ SINF(X)*COSF(X)
A(B + ¢) ~ ax(B + 0©)
(A/B)LOGF(X) ~ (A/B)*LOGF(X)
(A+B)X4+ YY)~ A+ B)*x+¥Y)
TANF(X) (A — B) ~ TANF(X)*(A — B)
A2, Boolean Statements

An immediate extension of the mechanisms of arith-
metic statement compilation, exploiting the AnD-OR
logic of the 704, is readily at hand. If the operation signs
+, %, and — are interpreted to denote union, intersection
and complementation, respectively, then a certain subset
of the set of expressions defined by EI-E6 (see section 3)
is sufficient for the formulation of any Boolean function
on the set of all 36-bit binary strings, We shall call the
elements of this subset sentences and recursively charac-
terize them as follows:

S1. Every floating-point variable name @ is a sentence.
If, furthermore, ® = ¢1, *+ - ¢, and L(®) < 4 or ¢, # F,
and ® appears in a DIMENSION statement, and if Z;, -- -
3. (1 £ k £ 3) are subscripts, then (2, , --
sentence.

S2. If & is a sentence, so is ($).

83, If & is a sentence such that H,(®)s<¢ —, and & is
not of the form ¥ -+ X, where ¥, X are sentences, then
—& is a sentence.

S4. If ® is a sentence of the form ¥ + X, where ¥, X
are sentences, then — (®) is a sentence.

S5. If @ is an n-adic function name with H,(®) = x,

’
:, Ek) is a

20 Communications of the ACM

and 4, ---
sentence.

S6. If ®, ¥ are sentences, and H(®) = —, H (V) —,
then ® + W, &« ¥ are sentences.

(Note: The same rule regarding implicit multiplica-
tion of expressions—mentioned in A7 above—applies as
well to the construction of sentences.)

Rules S1-86 prohibit, by implication, the writing of
expressions of the form & — ¥, where &, ¥ are sentences.
Thus, what in conventional logical notation is writtern
&N ¥ or A ~ ¥ cannot be abbreviated to @ — ¥, hut
must be rendered by &« (—¥).

We define a Boolean expression as a string of the form

, A, are sentences, then ®(4,, ---, 4,) is a

-

where ® is a sentence.
Similarly, a pure Boolean statement is a string of the
form

¥ =P

where W is a subscripted or nonsubseripted floating-point
variable, and = @ - is a Boolean expression.

A quasi-Boolean slatement is a string of one of the
following forms

(a) ¢ (@), where ® is a sentence.

(b) cauL ®(4,, ---, 4,), where ® is a funetion nanme
such that

(i) if ® = ¢, - @u, then L(®) < 4 or ¢, # ¥, P does
not appear in a DIMENSION statement, and L(®) < 6.

(ii) each A; is a sentence or a Hollerith field.

A (Boolean) function defindtion is a string of the formn

(I)(Aly"'aAﬂ) = E[Al,'"')An]

where ® is a function name, and such that

(D) if® = ¢ - ¢u, then Hi(®)# x,4 = L@®) = 7
and ¢, = F.

(ii) each 4. is a nonsubscripted floating-point variable
name.

(iii) B[4y, -+, 4.) is a sentence in the (free) variables
Ay, -+, A, wherein each 4; may occur vacuously.

Exactly the same reduction, level analysis and geners)
optimization procedures are applied to Boolean as +tq

arithmetic expressions. In addition, the special optimiza-
tion procedures (section 8) apply with one minor modifi-
cation. Nince each segment S; is type ac (the / sign can-
not oceur in a sentence), then linkage can only oceur,
if ever, through the machine’s accumulator register.
Hence, it $ o4t = %, and for some J, ¥.\' = 1, interchange
the first and sth elements of S, tagging S; as ac-
linkable and Si- as ac-linked.

Compilation of Boolean statements proceeds in a man-
ner analogous to that of arithmetic statements except
for the following operation code transformations:

CLA =% CAL
LDQ —> CAL
STO —> SLW
CLS > CAL, COM
FMP —> ANA
FAD —> ORA
CHS — COM
8TQ — SLW

[ExAMPLE.
MPF(X, ¥) = (—X) + Y

EQUIVF(X, Y) = Mpr(x, Y)imper(y, x)

z = (((A*B)C) + p) + wer(((axB)c) + D),

EQUIVF(— (~X), Y))

We shall assume that the above statements appear in a
possibly more extensive program, and that each is tagged
as o Boolean-type statement (the letter B in column 1
of an IBM Forrran card).

Note that the rvpr function is type 1 and translates
into the following instruction sequence:

caL 4)1

coM

ora)1 41
TRA 1, 4

The (free) variables x, v are associated with 4)1,
4} 1 + 1, respectively, in this case.
The wquive function is type 2, and translates into

caL 4)2 + 1
sLw 4)1

CAL 4)2

sLw)1 + 1
sxp 7)1, 4
TSX Imp, 4
Lxp 7)1 4
sLw 1)2

cAL 4)2

sLw 4)1

cAL 4)2 + 1
sLw 4)1 -+ 1
sxp 7)1,4
T8X IMP,4
Lxp 7)1,4
Ana 1)2
TRA 1,4

Finally, the third of the above statements translates
into the sequence

CAL X
coM

com

sSLw 4)2

CAL Y

SLw 4)2 - 1
TSX EQUIV,4
sLw D1 4 1
CAL A

ANA B

ANA ©

ORA D

sLw 1) + 2
sLw 4)1

caL 1) + 1
stw4)l + 1
TSX IMP,4
orA 1) + 2
SLW 2

Communications of the ACM 21

