
SOL

Paul Bryant
November 1966

ACKNOWLEDGEMENTS

The author wishes to thank the Atlas Computer Laboratory staff for their help and advice during the implementation of this
compiler. Also grateful thanks are due to J. McNeley for kind permission to reproduce his original papers on SOL, and to the
Institute of Electrical and Electronics Engineers in whose transactions these papers first appeared.

Foreword

This is a provisional manual. Dr. Bryant has written a compiler for the simulation language SOL and this language is now
available to any user of the Atias Laboratory. We believe that the compiler is free from, at any rate serious, errors and we
would not have undertaken this task if we did not believe that the language is powerful and flexible and provides a unified
method for attacking complicated problems of the operational research type. But we need practical experience and have
therefore decided to put it on field trial as quickly aa possible. Dr. Bryant will be glad to help anyone who has difficulty in
interpreting these notes or in using the compiler, and.will be glad also to know of errors and to receive suggestions for
changes or additions and for the form and content of a final version of the manual.

J Howlett, Director

Atlas Computer Laboratory

15th December 1966

CONTENTS

• I Introduction
• II SOL - A Symbolic Language for General-Purpose Systems Simulation
• Ill A Formal Definition of SOL
• IV Differences in Atlas SOL
• V Compile time Diagnostics
• VI Run time Diagnostics
• VII Limitations
• VIII Sample program output

CHAPTER I

Introduction

The simulation of complex systems on digital computers is a powerful tool in the design of such systems. Examples of the
types of problems amenable to this form of solution are the flow of traffic through a road network, the flow of material through
a factory, or the most economical way of deploying a fleet of ships. Simulation models have the advantage over the live
system that the parameters associated.with a given system may be varied at will, cheaply and easily and the resulting effects
can be computed and the inferences drawn without the vast cost of making the changes to the actual system.

The earliest simulation problems were tackled with hand coded programs and were one off jobs tailored to a particular need
but with the development of large and powerful computers the essentials of simulation problems were extracted and put into
the framework of compilers which were then capable of tackling large problem areas.

One such compiler is SOL (Simulation Orientated Language) designed by D. E. Knuth and J. L. McNeley. The author first met
this language at Carnegie Institute of Technology where it was being used extensively for the simulation of multi-access
computing systems. There is no better introduction to the language than the original papers which are reproduced in Chapters
II and Ill. Chapter II gives an easy introduction to SOL by way of a fairly complicated example and the reader is advised to
fully understand this Chapter before proceeding. Chapter Ill gives a formal definition of the language; the Atlas
implementation has adhered to this as far as possible. This Chapter may be omitted at a first reading. Chapter IV gives the
exact differences between SOL as defined in Chapter Ill and Atlas SOL. These differences have been demanded by the card
character set on Atlas and the limitations of the Atlas Compiler Compiler language by means of which Atlas SOL has been
implemented. Chapter VIII gives a listing of the Sample problem of Knuth and McNeley in Atlas SOL followed by the output
from the actual running on Atlas of the problem. The results differ from those of Knuth and McNeley only because a different
random number generator was used.

CHAPTER II

SOL-A Symbolic Language for General-Purpose
Systems Simulation

D. E. KNUTH AND J. L. McNELEY

Summary-This paper illustrates the use of SOL, a general
purpose algorithmic language useful for describing and simulating
complex systems. Such a system is described as a number of indi
vidual processes which simultaneously enact a program very much
like a computer program. (Some features of the SOL language are
directly applicable to programming languages for parallel computers,
as well as for simulation.) Once a system has been described in the
language, the program can be translated by the SOL compiler into an
interpretive code, and the execution of this code produces statistical
information about the model. A detailed example of a SOL model for
a multiple on-line console system is exhibited, indicating the nota
tional simplicity and intuitive nature of the language.

SIMULATION by computer is one of the most im
portant tools available to scientists and engineers
who are studying complex systems. The first com

puter programs of this type were especially designed to
simulate some particular model; but afterwards the
authors of several of these programs abstracted the es
sential features of their program organization and pre
pared general-purpose simulation programs. The most
extensively used general-purpose programs of this type
have apparently been the SIMSCRIPT compiler of
Markowitz, Hauser, and Karr [1], and the GPSS (Gen
eral-Purpose Systems Simulator) routines of Gordon
[2]-[4].
Although SIMSCRIPT and GPSS are both general

purpose simulation programs, they are built around
quite different concepts because of their independent
evolution, and so they bear little resemblance to each
other. SOL (Simulation-Oriented Language) is another
general-purpose simulation routine, in which we have
attempted to incorporate the best features of the other
languages. After a careful study of SIMSCRIPT and
GPSS, and after having implemented a version of GPSS
for another computer, we found that it would be possible
to generalize the characteristics of the former programs,
while at the same time the language became simpler
and more convenient for the preparation of models. This
simplification was achieved by extracting the essential
characteristics of GPSS and recasting them into a sym
bolic language such as SIMSCRIPT. There are, of
course, a great many ways in which this can be done,
and we are not sure that the compromises we have
chosen have been optimal; but a year of experience with
the SOL language, after applying it to a number of
problems of different kinds, indicates that SOL is a

Manuscript received January 3, 1964.
D. E. Knuth is with the California Institute of Technology,

Pasadena, Calif.
J. L. McNeley is with the Burroughs Corporation, Pasadena,

Calif.

quite powerful and flexible way to describe systems for
simulation. We also found that the increased generality
available in SOL was actually simpler to implement
into a computer program than the previous routines
were.

A complex system can be represented as a number of
individual processes, each of which follows a program
very much like a computer program. For example, if we
were simulating traffic in a network of streets, we might
have one program describing a typical automobile (or
perhaps two programs, one which describes all of the
women drivers and one which describes all of the men),
another program which represents the action of traffic
signals, and possibly some other programs representing
pedestrians, etc. Each program depends not only on
quantities which are specified in advance, but also on
random quantities which describe a probabilistic be
havior; thus, we can specify the probability that a driver
will turn left, the probability that he will switch lanes,
the distribution of speeds, etc. Although each program
represents only a single entity (such as a single auto
mobile), there can be many entities each carrying out
the same program, each at its own place in the program.

Because of these considerations, SOL is a language
which is in many respects very much like a problem
oriented language such as ALGOL or FORTRAN.
There are three major points of difference between SOL
and conventional compiler languages. SOL provides

1) mechanisms for parallel computation,
2) a convenient notation for random elements within

arithmetic expressions,
3) automatic means of gathering statistics about the

elements involved.

On the other hand, many of the features of problem
oriented languages do not appear in SOL, not because
they are incompatible with it, but rather because they
introduce more complication into this scheme than
seems to be of practical value for simulation processes.

A program written in the SOL language is punched
onto cards and it is then compiled by the SOL compiler
into an interpretive pseudocode. The SOL interpreter is
another machine program, which executes this pseudo
code and produces the results. (The SOL system has
been implemented for the B5000 computer, but at the
present time it is being used only for research within the
Burroughs Corporation, and it is not currently available
for distribution.)

A self-contained, complete description of SOL ap-

401

402 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August

pears in another paper [5]. The definition there is rather
terse since it is intended primarily as a reference de
scription; we will introduce the language here by means
of an example, discussing the significance of each state
ment in an intuitive fashion.

EXAMPLE: COMMUNICATION WITH
REMOTE TERMINALS

The following example has been chosen not only to
illustrate most of the features of SOL, but also because
it is a practical application in which SOL has been used
to evaluate the design of an actual system of some com
plexity.

Consider the configuration shown in Fig. 1. This
represents one of four similar groups of devices which
all share the processor shown at the right. The "TU's"
are terminal units which may be thought of as inquiry
stations or typewriters. There are three groups of type
writers, with three in the first group (TU[1], TU[3],
TU[S]), two in the second group (TU[2], TU[4]) and
only one in the third (TU[6]). These groups are located
many miles from each other and from the central proces
sor. People come in at the rate of about five or six per
minute to use each typewriter, and they wait in the
appropriate queue until the typewriter is free.
These people will send one of three kinds of messages.

Message Frequency Compute time Number of Re-
sponse \Vords

A 20 per cent 250 msec 3

B SO per cent 300 msec 4

C 30 per cent 400 msec s

Each message type has a different frequency and re
quires a different amount of central processor time.

Communication between the typewriters and the
processor is handled by site buffers SB [1], SB [2], SB [3],
one at each remote site, and by two processor buffers
PBU's, which receive the information and transmit it to
the computer. These processor buffers sequentially scan
TU[1], TU[2], · · ·, TU[6], TU[1], · · · until locat
ing a typewriter ready to transmit information; this
scanning is done by sending control pulses to all lines,
then receiving a "positive" response from the SB if the
appropriate TU is ready. Then a message is transferred
from SB to the PBU and from there to the processor;
after computing the answer, the processor refills the
PBU, and the appropriate number of words is sent back
to the SB and is typed on the TU (one word at a time).
Further details will be given as we discuss the program.
We will compose three programs.

1) A program which describes the action of each per
son who uses the remote typewriters.

2) A program which describes the action of each of
the two PBU's.

3) A program which simulates the action of the other

six PBU's, which share the central processor with
the configuration shown in Fig. 1.

Fig. 2 shows these three programs together with the con
trol information, as a complete SOL model.
The independent quantities which enact the programs

as the simulation proceeds are called transactions. (Much
of the terminology used in SOL is taken from Gordon's
simulator [2]-[4].) As simulation begins, there are only
three transactions: one for each of the programs 1), 2),
3). Therefore, these programs describe not only the ac
tion of the quantities mentioned above, they also de
scribe the creation and dissolution of new transactions.
Each transaction contains local variables which have

values that can be referred to only by that transaction.
There are also global variables, and some other types of
global quantities, which can be referred to by all trans
actions. Thus, transactions can interact with each other
by setting and testing global quantities. Only one
"copy" of each global variable is present in the system,
but there are in general many copies of each local vari
able (one for each transaction).
Program 1), which represents the people using the

typewriters, might begin as follows:
process USERS ;
begin integer Q, START TIME, MESSAGE TYPE;
new transaction to START; new transaction to START;
ORIGIN: new transaction to START; wait O: 5000; go to

ORIGIN;
START:

The first line merely identifies a process (i.e., a program)
with the name "USERS." The language resembles
ALGOL, and we distinguish control words by putting
them in bold-face type. The second line states that there
are three local variables in these transactions, having the
names Q, START TIME and MESSAGE TYPE. The statement
"new transaction to START" describes the creation of a
new transaction whose local variables have the same
values as the local variables of the parent transaction (in
this case zero, since all local variables are automatically
set to zero at the beginning of a process), and this new
transaction begins executing the program at the state
ment labeled START. The statement "wait 0: 5000"
means an amount of simulated time, chosen randomly
from O to 5000, is to elapse before the next statement is
executed. In general, the statement "wait E," where E
is some expression, means that E units of time are to
pass before excuting the next statement. The expression
E1:E2 always denotes a random integer chosen between
E1 and E2, and therefore "wait O: 5000" has the meaning
stated above. A unit of time in this case represents
1 msec in the simulated model.
The reader should now reread the above sequence of

coding before proceeding further. The essential action it
describes is that three transactions will begin executing
the program beginning at the statement called START,
and thereafter a new transaction (i.e., a new user enter-

1964 Knuth and McNeley: SOL-Symbolic Language for Systems Simulation 403

:~~:~ ~ PBU
pairs

Queues Terminal
Uni.ta

Site Communication Processor Buffer Processor
Buffers Lines .Units (_P8U' s)

Fig. !-Multiple console on-line communication system.

begin
facility TU[6], SB[3], LINE, COMPUTER;
store 10 QUEUE [6];
integer TUSTATE [6], SBNUMBER [6], TUMESSAGE [6];
table (2000 step 500 until 15000) TABLE [6];
process MASTER CONTROL;
begin SBNUMBER[l]-1; SBNUMBER[2]-2;

SBNUMBER f 3]-1; SBNUMBER [4]-2;
SBNUMBER[5}-1; SBNUMBER[6]-3;

wait 60 X 60 X 1000; stop end;
process USERS;
begin integer Q, START TIME, MESSAGE TYPE;
new transaction to START; new transaction to START;
ORIGIN: new transaction to START; wait O: 5000; go to

ORIGIN;
START: Q-1:6; enter QUEUE[Q];
MESSAGE TYPE-(1,1,2,2,2,2,2,3,3,3);
seize TU [Q] ;
TUM ESSA GE [Q]-MESSAGE TYPE;
wait 6000: 8000;
START TIME-time;
output #TU#, Q, #SENDS MESSAGE#, MESSAGE TYPE,

#AT TIME#, time;
TUSTATE [Q]-1;
wait until TUSTATE[Q] =0;
release TU[Q]; leave QUEuE[Q];
tabulate (time-START TIME) in TABLE[Q];
output #TU#, Q, #RECEIVES REPLY AT TIME#, time;
cancel end;
process PBU; begin integers, T, WORDS;
new transaction to SCAN; T-3;
SCAN: T-T+l; if T>6 then T-1; wait 1;
s-sBNUMBER [T];

seize LINE;
wait 5; if sn]s] busy then (wait 80; release LINE; go to

SCAN);
seize SB[s]; wait 15; if TUSTATE[T]~l then
(wait 65; release LINE; release SB [s]; go to SCAN);
wait 225; SEND: wait 170; if pr(0.02) then (wait 20; go to

SEND);
new transaction to COMPUTATION; wait 20; release SB [s];
release LINE; TUSTATE [T]-2; cancel;
COMPUTATION: seize COMPUTER; WORDS-TUMESSAGE [T]
+2;

wait (if WORDS= 3 then 250 else if WORDS= 4 then 300
else 400);

release COMPUTER;
OUTPUT: wait 1; seize LINE; wait 5;
if SB [s] busy then (wait 80; release LINE; go to OUTPUT);
seize sn]s]: wait 75;
RECEIVE: wait 80; if pr(0.01) then (wait 20; go to

RECEIVE);
release LINE;
WORDS-WORDS-1;
if WORDS= 0 then new transaction to SCAN;
wait 325; release sn]s]: wait 170;
if WORDS> 0 then go to OUTPUT;
TUSTATE[T]-o; cancel end;
process OTHER PBUS;
begin integer I; I-6;
CREA TE: new transaction to COMPUTE;
r-r-1; if I>O then go to CREATE; cancel;
COMPUTE: wait 3200: 5000; seize COMPUTER;
wait (250, 250, 300, 300, 300, 300, 300, 400, 400, 400);
release COMPUTER; go to COMPUTE end;
end.

Fig. 2-Complete SOL program for the on-line system.

404 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August

ing the system) will be created at intervals of about 2.5
sec. We have started the system with three transactions
so that it will not take it very long to arrive at a more or
less stable condition.
The program now proceeds as follows:

START: Q<---1:6; enter QUEUE[Q];

The statement "Q<---1: 6" means that local variable Q is
set to a random number between 1 and 6; thus the user
is assigned to one of the six typewriters. The "enter"
statement refers to one of six global quantities,
QUEUE[l], · · ·, QUEUE[6]. At the conclusion of the
simulation, data will be reported giving the average
number of people in each queue at a given time, and
also the maximum number.

MESSAGE TYPE<---(1,1,2,2,2,2,2,3,3,3);

The expression (E1, E2, · · · , En) denotes a random
choice selected from among the n expressions. There
fore, the given statement means that the local variable
MESSAGE TYPE receives the value 1 with probability 20
per cent, 2 with probability SO per cent and 3 with
probability 30 per cent; this represents the choice of
message A, B or C as stated earlier.

seize TU [Q] ;
This statement refers to one of the global quantities
TU [1], · · · , TU [6], which are classified as facilities. A
facility is seized by one transaction, and then it cannot
be seized by another transaction until it has been re
leased by the former transaction. Therefore, if transac
tion X comes to a seize statement, where the correspond
ing facility is busy (i.e., has been seized by transaction
Y), transaction X stops executing its program until
transaction Y releases the facility. If several transac
tions are waiting for this event, they are processed in a
first-come-first-served fashion.
Thus, the statement "seize TU [Q]" expresses the situ

ation that the user takes control of typewriter number
Q, after possibly waiting in line for it to become avail
able.

TUMESSAGE [Q] <--MESSAGE TYPE;

This statement says that the global variable TUMES
SAGE [Q] is set to indicate the type of message. This
global variable is used to communicate with the PBU
process which is described below.

wait 6000: 8000;

This statement simulates the time of 6 to 8 sec, taken
by the man to type his request on the terminal unit.

START TIME<---time;

We now set the local variable START TIME equal to
"time," the current value of the simulated clock.

output #TU#, Q, #SENDS MESSAGE#, MESSAGE TYPE,
#AT TIME#, time;

This statement causes the printing of a line during the
simulation, having the form "TU 3 SENDS MESSAGE 2 AT
TIME 12610." The "#" symbols indicate a string inserted
into the output.

TUSTATE[Q]<---1;

Another global variable TUSTATE [Q] is now set to 1 to
indicate that the typed message is ready to send.
TUSTATE[Q] has three possible settings.

TUSTATE = 0 means the TU is free.
TUSTATE = 1 means the message has been typed.
TUSTATE = 2 means the answer message may be typed.

The next statement

wait until TUSTATE [Q] =0;

means the transaction is to stop at this point until
TUSTATE[Q] has been set to zero (by some other trans
action). This indicates that we are to wait until the
answer message has been fully received. When that oc
curs, the transaction finishes its work as follows:

release TU [Q]; leave QUEUE [Q];
tabulate (time-START TIME) in TABLE[Q];

The latter statement is used for statistical data;
TABLE[Q] is a global quantity which receives "readings"
by means of "tabulate" statements. At the end of simu
lation, this table is printed out giving the mean, the
standard deviation and a histogram of the data it has
received.

output #TU#, Q, #RECEIVES REPLY AT TIME#, time;
cancel end;

The last statement, "cancel," causes the disappearance
of the transaction, and the word "end" indicates the
end of the program for this process.

Program 2), which runs simultaneously with 1) and
3), describes the action of the PBU's.

process PBU; begin integers, T, WORDS;
new transaction to SCAN; T<---3;
SCAN:

We have three local variables, s, T and WORDS. At the
beginning, two transactions (representing the two
PBU's) start at SCAN, one with its variable T = 0, the
other with T = 3.

SCAN: T<---T + 1; if T >6 then T<---1 ; wait 1 ;

These statements represent the cyclic scanning process
which we assume takes 1 msec. The variable T repre
sents the number of the TU which the PBU will be
referencing.

"sBNUMBER" is a table of constants, which is used to
tell which SB corresponds to the TU scanned.

seize LINE;

1964 Knuth and McNeley: SOL-Symbolic Language for Systems Simulation 405

We now seize the facility LINE, which represents the
long-distance communication lines. (If the other PBU
has seized LINE already, we must wait until it has been
released.)

wait S; if sn]s] busy then
(wait 80; release LINE; go to SCAN);

We wait S msec for a control signal to propagate to the
SB unit. Here sa]s] is a facility; if it is busy (i.e., has
been seized by the other PBU) we wait 80 msec more,
receiving no signal back, so we release the line and re
turn to scan the next TU.

seize SB [s]; wait 15; if TUSTATE [T] ;:z! 1 then
(wait 65; release LINE; release SB [s]; go to SCAN);

If sn]s] received the control signal, it is brought under
the control of this PBU. Fifteen milliseconds later, the

line, and scan again.

wait 225; SEND: wait 170; if pr(0.02) then
(wait 20; go to SEND);

It takes 225 msec for the SB to get ready to transmit
the message and to send a warning signal across the
line to the PBU. Then 170 msec are required to send the
input message. The construction "if pr(0.02)" means
"2 per cent of the time," and so this statement indicates
that, with probability 0.02, a parity error in the trans
mission is detected; in such a case, we send back a signal
calling for retransmission of the message.
new transaction to COMPUTATION; wait 20; release SB [s];
release LINE; TUSTATE[T]f--2; cancel;
At this point two parallel processes take place. As the
PBU tries to send the message to the computer, it also
sends a "message received" signal across the lines to the
SB, and, 20 msec later, the SB and the lines are released.
The TUSTATE is adjusted, and then this portion of the
transaction is cancelled.

COMPUTATION: seize COMPUTER;
WORDSf--TUMESSAGE [T] +2;

wait (if WORDS= 3 then 250 else
if WORDS
= 4 then 300 else 400);

release COMPUTER;

Here we send the message to the computer facility,
possibly waiting for it to become available. The local
variable WORDS is set to the number of words output
for the current message, and we also wait the appropri
ate amount of computer time. At this point, the output
message has been created by the computer, and it has
been sent back to the PBU. The final job is to output
this message, one word at a time:

OUTPUT: wait 1 ; seize LINE; wait S;
if SB [s] busy then (wait 80; release LINE; go to OUTPUT) ;

A control word is sent out to interrogate the SB, as in
the case of input above.

seize SB [s]; wait 7 S;
RECEIVE: wait 80; if pr(0.01) then

(wait 20; go to RECEIVE);
release LINE;

We have output one word to the SB; there was proba
bility 1 per cent that a transmission error was detected.

WORDSf--WORDS-1;
if WORDS = 0 then new transaction to SCAN;
wait 325; release sn]s]: wait 170;

After the last word has been transmitted, a parallel
activity starts with another scan. It takes 325 msec for
the SB to send the word to the typewriter, and another
170 msec are required for the typewriter to finish its

number T has been transmitted across the line, and it typing.
takes 65 msec for the SB to determine if TU [T] is ready
to transmit or not. If not, we release the SB and the

if WORDS> 0 then go to OUTPUT;
TUSTATE[T]f--0; cancel end;

When the output has all been typed, TUSTATE is reset to
zero (thus activating the USER transaction) and this
parallel branch of the program disappears.
Program 3) is used to describe the traffic which takes

place at the computer, by creating six simulated PBU's
as follows:

process OTHER PBUS;
begin integer 1; 1 f--6;
CREATE: new transaction to COMPUTE;
1 f--J -1; if r > 0 then go to CREA TE; cancel;
COMPUTE: wait 3200: 5000; seize COMPUTER;
wait (250,250,300,300,300,300,300,400,400,400);
release COMPUTER; go to COMPUTE end j

Our example program is now almost complete. We
precede the three processes given above by the following
code, which declares the global quantities. There is also
a fourth process which accomplishes the initialization
and which stops the simulation after 1 hour of simulated
time.

facility TU[6], SB[3], LINE, COMPUTER;
store 10 QUEUE [6];
integer TUSTATE [6], SBNUMBER [6], TUMESSAGE [6];
table (2000 step SOO until 15000) TABLE [6];
process MASTER CONTROL;
begin SBNUMBER [1] f--1 ; SBNUMBER [2] f--2;

SBNUMBER [3] f--1; SBNUMBER [4]f--2;
SBNUMBER [5] f--1 ; SBNUMBER [6] f--3;

wait 60 X 60 X 1000; stop end;

REMARKS
We have purposely chosen a rather complex example

to show how SOL can be used to solve an actual problem
of practical importance, and to show in what a natural
manner the system can be described in the language.
Fig. 3 is a sample of some of the output resulting

from the program of the preceding section,

406 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August

.,_.('I")_. ;::I'
ZON,O
:, f"")Q ..,_
O""'-.,x'l .:::,
U _.

I l I

,o Nin co ,0"' ,0 q NO- ••.•. co (\f

co"' °' O"-0 q N q0 '° ,._
in_. N °' q q '° q qq Oq q '° •...•... '° •... °' ..• "' o• qq 0•... N N MM MM q ,., "',., -ON 0,. 0- °' co -0 co '° ,-.c,in '° N "' O"'- q,r,,-. "',.,,., ...••. N 0- ,o N 00-M

0,0 M•. •... _.M
"' co "' ..•..• NN N N ,., ,.,, ,., ,.,,.,

WWW
::r:::r: ::r:

w
::r:

w
::r:

w
::r:

I- -- I-

•uw Wt•-' w
CJ(!) C,UU
-cl'..4 -ccww
''"" V) a:: a::
V) V) V)
WWW
::r::::£ :::£
V) V) V)
00 0-0 <:J"
zzz
WWW
V) V) V)

:::, :::, :::, •..•......

I- -- •.... ,_ •...
~--~www~~~ww~~~w~~ww~~www~
ccc:::£:::£~«««:::£~c:::£«:::£««::r::::£c«::r::::£::r:« --- -- - - -- --- t-- ,- I- I-,- I- t-- I- I- I- I- I-

I- I- ,_ ••. I- I- ,_ ,- I- ,-.. 1-1-
C: < < << < - - < < < <C

.,.._.N ,., N.-, N N _.N ,.,,., _.
>->- '>- >- >- >- >- .,... .,... >-.,....,..
...J ...J .J .JJ .J ...J ...J .JJ .JJ
a.. a.. a.. a..a.. a.. a.. a.. a.. a.. a.. a..
WW la.J WW w w WW WWW
a:: ll:'. r a:: X X <r a:: X X X X

V) V) V) V)V) V) "' V) V) V) V) V)
WWW WW w w WW WWW
>> > ->> > > >> >>>

wwwwwwwwwwwwwwwwwwww
u~~~uu~u~u~~uu~~uuu~
W44<CWW<W<CW44WW<~WWW~
(l'.V)V)V)(l'.(l'.V)(l'.V)(l'.V)V):X:(l'.V)V)(l'.(l'.(l'.V) ~~~ ~ ~ ~~ ~~ ~
WWW WW WW WW W
:::£:::£:::£ ::r: ::r: ::r::::£ ::r:::r: ::r:
V)V)V) V) V) V)V) V)V) V)

1{)000..0NOU-,0,.,00-<:J"OOl{)NMO
zzz z z zz zz z
WWW WW WW WW W
V)V)V) V) V) V)V) V)V) V)

:::,::::,::::, ::::,:::, :::, :::, ::,-:::, >-r-t- •....•.... ,_ .,_ .,_.,_

:::,
I-

0
0
0
0
0

'° ,.,

V)
<
3::

z
0 - ::::, ::, ::, I-

I- I-,-.. <(
...J
::,
:::£ - V)

:::, u.
I- 0

D z
w
I-
<
w
:::£ - ~
X:
u
0
.J
u

~
a::
w
1-
z
::::,
0
u
z
w
w
X
w -..,
V)
....J
w
00
<[
.J

_J
w
co
<
.J

z1- t_J
<[::> •.•...
u<i.:::,
V) ,_ a..

:::, T
00
u

I I I

1-ZW
a:: 0 ,-
<[- - ,- ,_ w
"' <C a::

I- u
::,

.J a..
:..LI ~
ro o
< u
.J

•..... ~,..._ 0
z i.n,...__ 0.
::::) .;;:s, .::;z 0.
0.-t.-tl,/)
u

z

I

LL
0

z
0

a:> •n "- :.f\ N 1/l .-1 .-t O .,.. ::,,.
...-4i/'\a::)C00Cl')lflNN..:J'O
CY"JO :OOP">ll'lON.-1.0ln
COCO"-COCO,,._.Od'NCOtn -
00000000000

> ...
...J

u
<
u.
lL
0

w
::r:
< z

-~ _, _ _,r-,,,.........-, r-,WQ:'.
...-1Ntr1-=:tll'\-O-'Nt""JZW
000000000-1-
000000000...J::)
....,J..-'--'L....11~1...J~ .•...• I...J Cl..
:::,::,::,:::,::,:::,cncncn :::£
•..... .,_ ~ -- t- I- I.I)~..,, 0

u

IJ'J I I I I
w
:::£

zow .,_ -z>
<!lW-

LL.. -Ll)W
0 ~ u

0 W
er er
w .J
co w
:::£ (D
::> < z ...J

1964 Knuth and McNeley: SOL-Symbolic Language for Systems Simulation 407

z
0

,<[
N

-0
..J ••••
- 0 I- •.•.•
::, 0

N
W ~<Jd'0.:::2'r,....
c.!> N N eo "'- CX'l 0-.
<(1/)~,..,,.,,,_, •....• :;:i-
'l'.'.: NC\JN....-tN--t
w ••• - • -
> 000000
<[

>
L>
z
<[
Q.
::,
L>
L>
0

w
C,
<[
er
w
>
<[

('\J~ lf'\..o.::::r
~ •n (Y') °"' ~ "'
N N <0 -0 co c,,.
I,{\~ (""J ,.._ - "

a
w
V'J
::,

X
,<[
2:

u
,<[
Q.
<[
u

000000 -- __.•.....• -

w
er
0
I
V')

lL
0

w
::.:
,<[
z

......, ,..... ,...........,, ,.....
.-t N ,.-. .::,- II) -0
000000
000000
•••••• 1,,-t •••••••••••••••••,
wwwwww
::, ::, ::::, ::::, ::, ::,
wwwwww
::::, ::::, ::::, :::, :::, ::::,
"31·3'3f'(J::30

"" 0
0 ~
w
..J
co
,<[
I-

a z
V'J N <C
w •...• w
::, •...• T
..J ,n
<[• lL
> - 0

w
J
Q.

..J

..J
,<[

lL
0 z

0

I-
<[w
- >
> - ,..., l-
o ,<[

..J
0 :::,
er T
<[::,
a u
z ..•
I-
V')

w
::.:
<I'. z
w
...J ,0
er, O·
<(•
I- 0

1-
z
w
u

0::
1-
z
w
w
...J
m w
<[...J
•.... 'D ~

<[•...•
lL I- 2:
0 •...•

~ ..J
0:: 0
w er
00 Z W
::.: <[Q.
:::, w Q.
Z T ::::,

.,.., •...• 0<0,o~M-o-<0-0aM •...• c,,..._,oaN •...• ~~-0a~o~ .-.0,. •... aNO<O-OM-c,,..._,n.,..,0<0-0aNO •... II'IM-c,,. •... a
~~~~~ro~~~~~-0~-0-0~~~~~q.::;2'~q~~~ 
""a,n-0 •... <00-0-N.,..,alI'I-O •... CO~O-NMa~,o •... (OC,,. 

oo~~oNO~N~~~,.._ooN~,.._,.._ooocoooo 
oo~o~o~~o~~o .....• ~~~-~mooocoooo ········--···-··-········-·· ooN~Mr---O~~q~~~~~~~~~oooooooo 

N~~~~~~~~~~~~~~oooooooo 
.•......• ------- 

oo~~~N~~~-0-~~~0~~~0~0000000 
oo .....• ~M-o~r--~~-N-~~q~~o~ooooooo 

oo,na-0N-OMII'l<0Non-a---o-ooooooo 
_.l"')t"'l~NN__.__._ 

000000000000000000000000000 
000000000000000000000000000 
o~o~o~o~o~o~o~o~o~o~o~o~o~o 
NNM~aann-0-0~~com,~oo--NN~~aan 



408 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 

The ideas used in SOL for creating and canceling 
transactions have applications in the design of languages 
for highly parallel computers. 
The techniques which are used in the implementation 

of SOL will be the subject of another paper. It should be 
indicated here, however, that the implementation gives 
a rather efficient program because separate lists are 
kept for transactions which are waiting for different 
reasons. Those which are waiting for time to pass are 
kept sorted on the required time. Those which are wait 
ing for a condition such as "wait until A=O," for some 
global variable A, are kept in a list associated with A; 
this list is interrogated only when the value of A has 
been changed. 
The SOL system has proved to be especially advan 

tageous for simulating computer systems since "typical 

programs," which we assume are to be run on the simu 
lated computers, are easily coded in SOL's language. 

ACKNO\VLEDGMENT 

The authors wish to express their appreciation to J. 
Merner for many helpful suggestions. 

REFERENCES 
[1) H. M. Markowitz, B. Hauser, and H. \V. Karr, "SlMSCRIPT 

A Simulation Programming Language," Prentice-Hall, Iric., 
Englewood Cliffs, N. J.; 1963. 

[2] G. Gordon, "A general purpose systems simulation program," 
Proc. Eastern Joint Computers Con]., pp. 87-104; December, 1961. 

[3) --, "A general purpose systems simulation program," IBM 
Systems J., vol. 1, pp. 18-32; September, 1962. 

[4] "Reference Manual, General Purpose Systems Simulator 11," 
IBM Corp., White Plains, N. Y.; 1963. 

[5] D. E. Knuth and J. L. McNeley, "A formal definition of SOL," 
this issue, page 409. 

[6] M. R. Lackner, "Toward a general simulation capability," Proc. 
Spring Joint Computer Conference, pp. 1-14; May, 1962. 



CHAPTER Ill 



A Formal Definition of SOL 
D. E. KNUTH AND J. L. McNELEY 

Summary-This paper gives a formal definition of SOL, a general 
purpose algorithmic language useful for describing and simulating 
complex systems. SOL is described using meta-linguistic formulas 
as used in the definition of ALGOL 60. The principal differences be 
tween SOL and problem-oriented languages such as ALGOL or 
FORTRAN is that SOL includes capabilities for expressing parallel 
computation, convenient notations for embedding random quantities 
within arithmetic expressions and automatic means for gathering 
statistics about the elements involved. SOL differs from other simu 
lation languages such as SIMSCRIPT primarily in simplicity of use 
and in readability since it is capable of describing models without 
including computer-oriented characteristics. 

I. GENERAL DESCRIPTION 

SOL IS an algorithmic language used to construct 
models of general systems for simulation in a 
readable form. The model builder describes his 

model in terms of processes whose number and detail 
are completely arbitrary and definable within the con 
straints of the language elements. A SOL model con 
sists of a number of statements and declarations which 
have a character similar to that found in programming 
languages such as ALGOL. 
The model is not built to be executed in a sequential 

fashion as ordinary programming languages require. 
Rather, the processes are written and executed as if all 
were running in parallel. Control between processes is 
maintained by the interaction of global entities and by 
control and communication instructions within the 
different processes. At the initiation of the simulation 
all processes are begun simultaneously. 

Variables declared within a process are called local 
variables. Within a given process it is possible to have 
several actions going on at once; therefore, we may 
think of several objects on which the action takes place 
each in its own place in the process at any given time. 
These objects will be referred to as transactions. A set of 
local variables corresponding in number to those de 
clared in the process is "carried with" each transaction 
of that process. Transactions situated within one proc 
ess may not refer to the local variables of another proc 
ess nor to the local variables of another transaction in 
the same process. 
Global quantities are of three major types: global 

variables, facilities and stores. Global variables can be 
referenced or changed by any transaction from any 
process in the system, and the variable possesses only 
one value at any given time. 

Manuscript received January 3, 1964. 
D. E. Knuth is with the California Institute of Technology, 

Pasadena, Calif. 
J. L. McN eley is with the Burroughs Corporation, Pasadena, 

Calif. 

A facility is a global element which can be controlled 
by only one transaction at a time. Associated with each 
request for the facility is a "control strength," and if a 
requesting transaction has a higher strength than the 
transaction controlling the facility, an interrupt will 
occur. Interrupts may be nested to any depth. If the 
requesting transaction is not of greater strength than 
the controlling transaction, then the requesting transac 
tion stops and waits for the facility until the controlling 
transaction releases its control. When a transaction is 
interrupted, it cannot advance to any other position in 
its program until it regains control of the facility. 
Stores are space-shared rather than time-shared global 

elements, and they are assigned a specific storage capac 
ity. As long as there is sufficient storage to accommodate 
the requesting transaction the request for space is satis 
fied; otherwise, the transaction waits until the space it 
is requesting becomes available. In this sense, a facility 
may be regarded as a store which has a capacity of one 
unit only, except for the fact that no interrupt capabil 
ity is provided for stores. 
Simulated time passes in discrete units indicated in 

"wait statments." The model builder requires the trans 
actions to wait a proper number of time units at the 
appropriate places in the processes, and this specifies 
the time element. The interpretation of the physical 
significance of a unit of time is immaterial in the SOL 
language; if all time interval specifications are multi 
plied by a factor of ten it will not decrease the speed by 
which the model is simulated. 

Control within or between processes is also introduced 
into the simulation by allowing a transaction to wait 
until a global variable or expression obtains a certain 
value. A transaction may also be forced to wait until a 
space- or time-shared element attains a certain status. 

Output statements which display the progress of the 
simulation may be inserted at will in the model. Special 
types of statistics are automatically available, such as 
the per cent of utilization of a facility, the average and 
maximum number of elements in a store at a given 
moment, etc. Another type of global quantity, called a 
table, is introduced to record statistical information 
about desired data. The mean, the standard deviation 
and a histogram are provided for all data recorded in a 
table. 
Processes initiate parallelism within themselves by 

using a duplication operation. The transaction makes an 
exact copy of itself and sends the copy to a specified 
location in the process while the original continues in 
sequence. A transaction is taken out of the system when 
it executes a "cancel" statement. 

409 



410 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August 

Other operations available in SOL are similar to those 
of existing algorithmic languages, but these portions of 
the language are at the present time less powerful than 
the features available in a large scale programming lan 
guage. 

A detailed example of a complete SOL model appears 
in a companion paper in this issue [2]. 

II. SYNTAX AND SEMANTICS OF SOL 
We will define the syntax of SOL using meta-linguistic 

formulas as given in the definition of ALGOL 60 [1 ]. 
Certain things which have been carefully defined in 
ALGOL 60 will not be redefined here but will merely 
be stated to have the same interpretation as given by 
ALGOL. We will use the abbreviation *<A)* to mean "a 
list of <A)," i.e., 

*(A)*::= <Ml *<A;*, <A) 

Comments may be written in the form "comment 
<string without semicolons);" as in ALGOL 60. 

A. Identifiers and Constants 

(letter):: =A/ Bf cf D[ · · I Z 
(digit):: = o] 112 f3f-:-. · I 9 
(number)::= (constant i] <decimal constant) 
<constant):: =*<digit)* 
(decimal constant)::= (constant).(constant) 
(identifier): : = (letter i] (identifier )<letter)/ 

(identifier) <digit) 

Identifiers are used as the names of variables, statisti 
cal tables, stores, facilities, processes, procedures and 
statements. The same identifier can be used for only one 
purpose in a program. Constants are used to represent 
integer numbers. Decimal constants represent real num 
bers. Identifiers must be declared before they are used 
elsewhere. 

B. Declarations 
(declared item): : =<identifier) f <identifier) [<constant)] 
<variable declaration):: =integer*<declared item;*/ 

real* <declared item)* 
<facility declaration):: =facility "(declared item)* 
<store declaration):: = store *(constant)(declared item)* 
(table declaration):: =table *((number)step(number) 

until (number))(declared item)* 
(monitor declaration):: =monitor *(identifier)* 

If the declared item is simply an identifier, it means 
that a single item of that name is being declared. The 
other form, e.g., A [10], means 10 similar items called 
A[l]. A[2], · · ·, A[l0] are being declared. 
The variable declaration is used to specify variables 

(either local or global, depending on where the declara 
tion appears). All variables are initially set to zero when 
declared. "Integer" variables differ from "real" variables 
in that when a value is assigned to them it is rounded to 
the nearest integer. 

When a facility is declared, it is initially "not busy"; 
at the end of the simulation run, statistics are reported 
giving the per cent of time each facility was in use. 

A store declaration gives the capacity of each store 
(the number preceding the identifier). At the end of the 
simulation run statistics are given on the average and 
the maximum number of items occupying the store (as a 
function of time). Stores are empty when first declared. 

A "table" is used to gather detailed statistical in 
formation of any desired type; readings are tabulated 
and afterwards the mean, the standard deviation, histo 
gram distribution, etc., are output. The constants pre 
ceding the table name give the starting point for histo 
gram intervals, the increment between intervals and the 
highest value. 

A monitor declaration names items which already 
have been declared, with the understanding that these 
identifiers are to be "monitored." This means that when 
ever a change in the state of the corresponding quantity 
is detected, a line will be printed giving the details. This 
capability is especially useful when checking out a 
model, and it can also be used to advantage for output 
during a regular simulation run. 

C. Expressions and Relations 
(name): : = (identifier) f (identifier) [(expression)] 

By (variable name), (facility name), etc., we will 
mean that the identifier in the name has appeared in a 
(variable declaration), (facility declaration), etc., re 
spectively. 
(primary n : r= (variable name)[ (store name)[ 

(constant i] (decimal constant i] time] 
(*(expression)*) f abs( (expression)) I 
max(*(expression)*) I min(*(expression)*) I 
normal((expression), (expression))/ 
exponential( (expression)) f poisson( (expression)) I 
geometric( (expression)) f random 

(term): : =(primary) I (term) X (primary) [ 
(terrn j-e- (primary) I (term)/ (primary) [ 
(term )mod(primary) 

(sum):: =(term)f +(term)[ -(term)[ (sum)+(term)/ 
(sum)-(term) 

(unconditional expression)::= (sum i] (sum): (sum) 
(expression ri :== (unconditional expression)[ 

if (relation) then (expression) else (expression) 

The meaning of the arithmetical operations inside ex 
pressions is identical to the meaning in ALGOL 60. 
The new elements here are "a mod b," the positive 

remainder obtained upon dividing a by b; 
"rnaxfe., · · · , en)" and "min(e1, · · · , en)," which de 
note the maximum and minimum values, respectively, 
of then expressions; and there are also notations for ex 
pressing random values. The expression "(e1, • • • , e,J" 
indicates that a random selection is made from among 
then expressions with equal probability of choosing any 



1964 Knuth and McNeley: A Formal Definition of SOL 411 

expression. The expressions normal(M, S), poisson(M), 
geometric(M) and exponential(M) indicate random 
values with special distributions which occur frequently 
in applications. A random number drawn from the nor 
mal distribution with mean M and standard deviation 
S is denoted by normal(M, S) and is a real (not neces 
sarily integer) value. A number drawn from the ex 
ponential distribution with mean M is denoted by ex 
ponential(M) and is also of type real. The poisson 
distribution signified by poisson(M), on the other hand, 
yields only integer values; the probability that pois 
son(M) = n is (e-MM0/n !). The geometric distribution 
with mean M, denoted by geometric(M), also yields 
integer values, where the probability that geometric(M) 
=n is l/M(l-l/M)0-r. The symbol random denotes a 
random real number between O and 1 having uniform 
distribution. Finally, we have the notation er: e2, which 
denotes a random integer between the limits er and e2; 
more formally 

The normal, exponential, poisson and geometric dis 
tributions are mathematically expressible in terms of 
random as follows: 

normal(M,S) = S X v - 2 In (random) 

X sin (211' random) + M 

exponential(M) = - M In (random) 

( M2 M-1) poisson(M) = n if e-M 1 + M + - + .. · + --- 
2 ! (n - 1) ! 

;;;; random < e-M ( 1 + M + ... + :!°) 
geometric(M) = [ 1 + In (random)/ln ( 1 - ~)]. 

(The poisson distribution should not be used for 
values of M greater than 10.) As examples of the use of 
these distributions, consider a population of customers 
coming to a market with an average of one customer 
every M minutes. The distribution of waiting time be 
tween successive arrivals is exponential(M). On the 
other hand, if an average of M customers come in per 
hour, the distribution of the actual number of customers 
arriving in a given hour is poisson(M). If an individual 
performs an experiment repeatedly with a chance of 
success, 1/M on each independent trial, the number of 
trials needed until he first succeeds is geometric(M). 
The special symbol "time" indicates the current time; 

intially, time is zero. The value of a store name is the 
current number of occupants of the store. 
(relational operator)::= = I~ I < I ;;;; I> I ~ 
(relation primary)::= (unconditional expression) 

(relational operator)(unconditional expression)/ 
(facility name) busy J (facility name) not busy] 
(store name) full J (store name) not full] 
(store name) empty] (store name) not empty] 
pr( (expression)) I ( (relation)) 

(relation): : = (relation primary) I 
(relation primary) V (relation primary.) I 
(relation primary)/\ (relation primary) 
7(relation primary) 

These relations have obvious meanings except for the. 
construction "pr(e)" which stands for a random condi 
tion which is true with probability e. (Here e must be 
less than or equal to 1.) Thus we might say 

if pr(0.12) then (12 per cent of the time) 
else (88 per cent of the time). 

III. STATEMENTS 

A. Processes 
As this simulator operates, any number of processes 

written in the language may be in use at once. We may 
think of several objects, each in its own place in the 
process at any given time. These objects are referred to 
as transactions. In this section, we describe the various 
manipulations that transactions can perform in the lan 
guage. 

(process description):: =process (identifier); 
(statement) [ 
process (identifier); begin 
(process declaration list); (statement list) end 

(process declaration n t== (variable declaration)! 
(procedure declaration)! (monitor declaration) 

(process declaration list): : = (process declaration) I 
(process declaration list); (process declaration) 

There are two kinds of variables, global variables (not 
declared in a process) and local variables (those which 
are declared in a process). All transactions can refer to 
the global variables, and a global variable has only one 
value at any given time. But a local variable is "carried 
with" each transaction within a given process, and there 
is in general, a different value for a local variable de 
pending on which transaction is using it. Transactions 
situated within one process may not refer to the local 
variables of another process, nor can the local variables 
of one transaction within a process be reached directly 
by other transactions in that same process. Communica 
tion between processes is accomplished solely with the 
help of global quantities. 

B. Labels 
A statement may be named by any identifier as fol 

lows: 
(statement)::= (unlabeled statement)[ 

(identifier): (statement) 



412 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS August 

By the designation (label) we will mean the name of a 
statement. 

C. Creation of Transactions 
At the beginning of simulation, there is one transac 

tion present for each process described. Each of these 
initial transactions starts at time zero and is positioned 
at the beginning of the process. More transactions may 
be created by using "start statements." 
(start statement): : = new transaction to (label) 

This statement, when executed, creates a new transac 
tion (whose local variables are the same in number and 
value as those of the transaction which created it). The 
new transaction begins executing the program at (label) 
while the original transaction continues in sequence. 
New transactions are also created by input statements 
(Section III-T). 

D. Disappearance of Transactions 
Transactions "die" when they execute a cancel state 

ment. 
(cancel statement):: =cancel 

An implied cancel statement is at the end of every 
process, so cancel statements need not always be ex 
plicitly written. 

E. Replacement Statements 
(replacement statementj i i r= (variable name) 
-(expression) 

This replaces the value of the variable by the value of 
the expression. The variable may be global or local, but 
not the name of a store. If the variable is an integer 
variable, the expression is rounded. 

F. Priority 
Time is measured in discrete units, so it may happen 

that by coincidence two transactions want to do some 
thing at precisely the same time. They may be in con 
flict, e.g., they may both want to seize a facility, or 
to change the value of the same global variable or one 
may want to change it while the other is using its value. 
Actually, in such cases of conflict, the simulator does 
choose a specific order for execution; no two things 
actually happen at the same instant, as we deal more 
properly with infinitesimal units of time between the 
discrete umts. The choice of order is fairly arbitrary ex 
cept when a difference of priority is specified; in that 
case, the transaction with higher priority will be acted 
on first. Each transaction has a priority, which is ini 
tially zero; priority is changed by the statement 

PRIORITY-(expression). 

The declaration "integer PRIORITY" is implied at the 
beginning of each process, i.e., PRIORITY is treated as a 
local variable. In the present implementation of SOL, 
the priority must be between 0 and 63. The effect of 
priority is spelled out further in Section IV. 

G. Wait Statements 
(wait statement):: =wait (expression) 

The expression is rounded to the nearest integer, and 
then this statement advances "time" by max(0, 
(expression)), as far as this transaction is concerned. All 
time delays in a simulated process are, in the last analy 
sis, specified by using wait statements. 

H. Wait- Until Statements 
(wait-until statement): : = wait until (relation) 

This causes the transaction to freeze at this point 
until the relation becomes true (because of action by 
other transactions). The relation must not involve ex 
pressions which have a random value; e.g., it is not legal 
to write "wait until pr(10)" or "wait until A[l :4] =0," 
etc. 

I. Enter Statements 
(enter statement):: =enter (store name)j 
enter (store name), (expression) 

The first form is an abbreviation for "enter (store 
name), 1." The value of the expression, rounded to the 
nearest integer, gives the number of units requested of 
the store. The transaction will remain at this statement 
until that number of units is available and until all 
other transactions of greater or equal priority which 
have been waiting for storage space have been serviced. 

J. Leave Statement 
(leave statement):: =leave (store name i] 
leave (store name), (expression) 

The first form is an abbreviation for "leave (store 
name), 1." This statement returns the number of units 
equivalent to the value of the (rounded) expression. 

K. Seize Statements 
(seize statement):: = seize (facility name) I 
seize (facility name), (expression) 

The first form is equivalent to "seize (facility name), 
0." This statement is usually rather simple, but there 
are situations when complications arise. If the facility 
is not busy when this statement occurs, then it becomes 
busy at this point and remains busy until later released 
by this transaction. (Note: If this transaction creates 
another transaction by means of a start statement, the 
new transaction does not control the facility.) 
The expression appearing above represents the "con 

trol strength" which is normally zero. Allowance is 
made, however, for one transaction to interrupt an 
other. If the facility is busy when the seize statement 
occurs, let E1 be the control strength with which the 
facility was seized and let E2 be the control strength 
of this seize statement. If E2 ~ Er, the transaction waits 
until the facility is not busy. If E2 > Er, however, inter 
rupt occurs. The transaction T1 which had control of 



1964 Knuth and McNeley: A Formal Definition of SOL 413 

the facility is stopped wherever it was in its program, 
and the present transaction T2 seizes the facility. When 
T2 releases the facility, the following occurs: 

1) If T1 was executing a wait statement when inter 
rupted, the time of wait is increased by the time 
which passed during the interrupt. 

2) There may be several transactions not waiting to 
seize this facility. If any of these has a higher 
control strength than E1, then T1 is interrupted 
again. The transaction which interrupts is chosen 
by the normal rules for deciding who obtains con 
trol of a facility upon release, as described in the 
next section. 

The control strength in the present implementation of 
SOL must be an integer between O and 4095. This al 
lows interrupts to be nested up to 4095 deep. 

L. Release Statements 
(release statement):: = release (facility name) 

This statement is permitted only when the transac 
tion is actually controlling the facility because of a pre 
vious seizure. When the facility is released, there may 
be several other transactions waiting because of seize 
statements. In this case, the one which gets control of 
the facility next is chosen by a consideration of the fol 
lowing three quantities in order: 

1) highest control strength, 
2) highest PRIORITY, 
3) first to request the facility. 

M. Go To Statements 
(go to statement):: =go to (label)j 

go to (*(label)*), (expression) 

This statement is used to transfer to another point in 
the program; statements are usually executed sequen 
tially. In the second form, the expression is used to 
select which statement to transfer to; if there are n 
labels, the expression, when rounded to the nearest 
integer, must have a value between O and n. Zero means 
continue in sequence, 1 means go to the first statement 
mentioned, and so on. 

N. Compound Statements 
Several statements may be combined into one, as 

follows: 
(statement list):: = (statement) I (statement list); 

(statement) 
(compound statement):: =begin (statement list) end] 

((statement list)) 

0. Conditional Statements 
(conditional):: =if (relation) then (unconditional 

statement)! 
if (relation) then (unconditional statement) else 

(statement) 

The meaning is the same as in ALGOL; testing of the 
relation requires no simulated time. 

P. Tabulate Statements 
(tabulate statement):: =tabulate (expression) in 

(table name) 

The value of the expression is recorded as a statisti 
cal observation in the table specified. 

Q. Output Statements 
(carriage control)::= (empty)/ pagej line/ double 
(string)::= (any sequence of characters excluding "#") 
(output list item):: =#(string)#! (expression)! 

(store name) j (table name) j (facility name) 
(output statement):: =output *(carriage control) 

(output list item)* 

Output occurs for all items listed, in turn, after doing 
the appropriate carriage control positioning. The out 
put for a string is the string itself. An output for an ex 
pression is the value. For a store, table or facility, the 
appropriate statistical information is output. At the 
conclusion of an output statement, the final line is 
printed out. 

R. Stop Statements 
(stop statement):: = stop 

A stop statement causes simulation to terminate im 
mediately, and all transactions cease. The statistics for 
all stores, tables and facilities are output as in the out 
put statement, as well as the final time, the number of 
times each labeled statement was referenced and the 
number of transactions which appeared in each process. 

S. Procedures 
(procedure declaration): : = procedure (identifier); 

(statement) 
(procedure statement)::= (procedure name) 

A procedure is simply a subroutine used to save cod 
ing. Parameters are not allowed, but their effect can be 
achieved by setting local variables in the transactions 
before calling the procedure. There are local procedures 
and global procedures (the latter are declared outside 
of a process). Global procedures cannot refer to local 
variables. A go to statement may not lead out of a pro 
cedure body. Procedures may be used recursively. 

T. Transaction Input-Output 
(transaction read statement):: =read (constant) to 

(label) 
(transaction write statement): : = write (constant) 

The read statement inputs a set of values of local 
variables for a transaction of the same type as the one 
executing the read statement; this set of values is used 
in the creation of a new transaction which begins exe- 



414 IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 

cuting the program at the statement mentioned. The 
write statement writes the current values of the local 
variables of the transaction onto the unit specified and 
does not cancel the present transaction. The constant 
in each refers to a tape or card unit number. The same 
tape should not be used for both input and output in 
the same simulation run. 

U. Summary of Statements 
(unlabeled statement):: = (unconditional statement) I 

(conditional) 
(unconditional statement)::= (start statement)! 

(cancel statement) I 
(replacement statement)! (wait statement)! 
(wait-until statement) I (enter statement) I 
(leave statement) I (seize statement) I 
(release statement) I (go to statement) I 
(compound statement) I (output statement) I 
(tabulate statement)! (stop statement)! 
(transaction read statement)! (procedure statement)[ 
(transaction write statement)! (empty) 

IV. THE MODEL AS A WHOLE 
(model):: =begin (global declaration list); (process list) 

end. 
(declaration): : = (variable declaration)/ 

(facility declaration)/ 
(store declaration) J (table declaration)/ 
(monitor declaration)/ (procedure declaration) 

(global declaration list):: =(declaration)/ 
(global declaration list); (declaration> 

.(process list):: = (process sdescription ) I 
(process list); (process description) 

Initially all variables are zero, all facilities are "not 
busy," all stores are "empty," the time is zero, one trans 
action appears for each process described and the simu 
lator is in the "choice state." 
When the simulator is in "choice state," each trans 

action is either positioned at a wait statement, a wait 
until statement, a seize or enter statement or else it has 

just been created. (We will dispense with the latter case 
by assuming a "wait O" statement has been inserted just 
before the present position when a new transaction is 
created.) If there are no transactions which can move 
at this time, the time is advanced to the earliest com 
pletion time for a wait statement. Now, from the set of 
transactions able to move, that one is selected which has 
the highest PRIORITY, and in case of ties, which has 
been waiting the longest. (If there is still a tie, an arbi 
trary choice is made.) The selected transaction is acti 
vated, and it continues to execute its statements until 
encountering a cancel or stop statement, a priority as 
signment statement, a wait statement, a wait-until 
statement with a false relation or a seize or enter state 
ment which cannot take place at that time. We examine 
all other transactions which are stopped because of a 
wait-until statement involving global quantities 
changed by the present transaction. If the correspond 
ing relation is now true, these transactions become free 
to move at the current time. Then we have once again 
reached "choice state." Note that all release statements 
which are passed during the time the selected transac 
tion was moving are processed immediately in such a 
way that the facility becomes not busy only if no other 
transaction were interrupted or were waiting to seize it; 
if other transactions are in the latter category, the choice 
of successor and the transfer of control described in 
Section III-L takes place immediately as the release 
statement is executed. Therefore, it is conceivable that 
the statement "wait until FAC not busy" may never be 
passed if other transactions are always ready to seize the 
facility FAC. Similar remarks apply to the leave state 
ments. 

Since this paper was written, a few additions have 
been made to the SOL language, including "synchron 
ous" variables and some additional diagnostic capabili 
ties. 

REFERENCES 
[l] "Revised report on the algorithmic language ALGOL 60," Comm. 

ACM, pp. 1-17; January 6, 1963. 
[2] D. E. Knuth and J. L. McNeley, "SOL-A symbolic language 

for general-purpose systems simulation," this issue, page 401. 



CHAPTER IV 

Differences in Atlas SOL 

A. Some character and phrase substitutions have been made to suit the Atlas character set. These are as follows: 

SOL Atlas SOL 
(1) [ ( 
(2) J ) 
(3) ' New line or new card 
(4) X --.':: 

(5) <- ~ 
(6) = .EQ. 
(7) ~ .NE. 
(8) < .LT. 
(9) :::; . LE. 
(10) > .GT. 
(11) ~ .GE. 
(12) ) after a label 
(13) in <sim> : <sum> 
(14) # I 
(15) busy .BUSY 
(16) not busy .NOT BUSY 
(17) full .FULL 
(18) not full .NOT FULL 
(19) empty .EMPTY 
(20) not empty .NOT EMPTY 

(21) Spaces are ignored everywhere including text to be output. In the case of text to be output * is interpreted as space. For 
example 

will be printed 

54 THIS IS TEXT 129 

All letters are upper case. It is therefore unwise to use syntactically meaningful letter combinations as identifiers or as the first 
characters of an identifier. WAIT or OUTPUTABC would not be wise choices for identifiers. Only the first eight characters or 
identifiers are recognised although identifiers may be of arbitrary length, hence the first eight characters must uniquely define 
an identifier. 

B. Other syntactic changes are as follows: 

1. (1) Statements or declarations may be terminated by either end of line or TT. Where there is no ambiguity no terminator is 
necessary. For example the following sequences are equivalent 

(i) 
BEGIN 
INTEGER I,J 
REAL K 
(ii) 
BEGIN INTEGER I,J,* 
REAL K 
(iii) 
BEGIN TI INTEGER I,JTI REAL K TI 

2. The dictionaries for identifiers and labels (procedure names are treated as labels) are distinct and the same names may 
appear in each. All labels must be distinct and there is no check that jumps from one transaction to another are not made 
and this could cause trouble. The names of local variables are local to a process. 

C. A few changes have also been made in the interpretation of statements. 

1. If not explicit in a seize statement, the seize strength is taken to be one, not zero. SEIZE FAC,O has the effect of making 
the facility NOT BUSY but is not recommended as the facility is not released correctly. 

2. There is no check that transactions do not release store not entered by them. 
3. The cancel statement does not release the facilities or leave the stores associated with the transaction. 
4. TIME is a preloaded integer which may, in fact, be used on the left hand side of an expression, probably with disastrous 

effects. 

D. Two extra statements have been included: 

1. DUMP: this statement causes all the variables, stores, facilities and tables to be printed together with information about 
each transaction. The dumping is in octal and is designed as a last ditch debugging aid. 



2. CODE: This statement causes the code produced by the compiler to be dumped and also the jump table and the 
directories. This statement can be used in conjunction with the DUMP statement. 



CHAPTER V 

Compile time diagnostics 

(1) IDENTIFIER NOT DEFINED 
No corresponding REAL, INTEGER, or FACILITY declaration 

(2) IDENTIFIER DEFINED TWICE 
Caused by a REAL, INTEGER, or FACILITY declaration 

(3) IDENTIFIER DEFINED TWICE, STORE 
Caused by STORE declaration 

(4) IDENTIFIER DEFINED TWICE, TABLE 
Caused by TABLE declaration 

(5) INSTRUCTION NOT RECOGNISED 
The SOL declarations or any process is syntactically checked before the more detailed compilation takes place. Any failure 
in this checking will cause the above diagnostic which will be printed after the first line which could not be recognised. In 
general the compilation will have difficulty proceeding and will continue producing erroneous INSTRUCTION NOT 
RECOGNIZED on the rest of the source material 

(6) LABEL SET TWICE 
Self explanatory 

(7) STORE BUSY 
Non-facility found in a .BUSY or .NOT BUSY relation 

(8) FACILITY FULL 
Non-store found in a .FULL etc relation 

(9) NON STORE IN ENTER 
Faulty enter statement 

(10) NON STORE IN LEAVE 
Faulty leave statement 

(11) NON FAC IN SEIZE 
Faulty seize statement 

(12) NON FAC IN RELEASE 
Faulty release statement 

(13) L.H.S NOT VAR 
Left hand side of a replacement statement is not real or integer 

(14) FAC. OR TAB. IN EXPRESSION 
Facility or table used in an expression 



CHAPTER VI 

Run time diagnostics 

(1) END OF SIMULATION 
Caused by the stop statement 

(2) NOTHING TO DO 
All transactions halted 

(3) ILLEGAL SEIZE 
Transaction seizing a facility it already controls 

(4) NEGATIVE SEIZE 
Negative seize strength 

(5) ILLEGAL RELEASE 
Transaction releasing a facility it does not control 

(6) LEAVE NEGATIVE 
Transaction leaving a negative amount of store 

(7) LEAVE TOO BIG 
Transaction leaving more store than has been entered 

(8) ENTER NEGATIVE 
Transaction entering a negative amount of store 

(9) ENTER TOO BIG 
Transaction trying to enter more store than the capacity of the store 

(10) TABULATE OUT OF RANGE 
Tabulated quantity out of range of the table 

Both NOTHING TO DO and END OF SIMULATION will be followed by the statistics. After an error, the simulation will attempt 
to continue and the statement in error will be omitted. This would probably, of course, cause further errors. 



CHAPTER VII 

Limitations 

In general all arithmetic is executed in floating point and a number is truncated if an integer is required at any stage. 

Real variables and expressions are printed with 8 places before the decimal point and 4 after. Integers are printed with a 
maximum of 8 digits. 

Seize strengths and priorities may be from 0 to 1048575. 

The size of program which can be compiled is governed by two factors - the store request, and the size of the largest process 
(or maybe the size of the global declarations if these are large). The exact size is difficult to estimate but processes of 150 
lines have been compiled successfully. 

There is no check on array bounds. 



CHAPTER VIII 

Sample program output 

There follows a listing of the sample problem given by Knuth and McNeley rewritten in Atlas SOL. The program is prefaced by 
the job description to give the user some idea of the store and time requirements of a typical program. The final END card 
would normally be followed by a file card but in this case it is followed immediately by the program output. A listing of the 
program is always produced before execution. 



JOB SOL EXAMPLE 
COMPUTING 12500 INSTRUCTIONS 
STORE 45/70 BLOCKS 
OUTPUT OLINE PRINTER 700 LINES 
TAPE 1 S.R.C. COMPILERS 
COMPILER SPECIAL 
SOL 

BEGIN 
FACILITY TU(6),SB(3),LINE,COMPUTER# 
INTEGER TUSTATE(6),SBNUMBER(6),TUMESSAGE(6)# 
TABLE (2000 STEP 500 UNTIL 15000)TABLE(6)# 
STORE 10 QUEUE(6)# 

PROCESS MASTER CONTROL 
BEGIN S8NUMBER(l)=l# SBNUMBER(2)=2# 

S8NUMBER(3)=1# SBNUMBER(4)=2# 
S8NUMBER(5)=1# SBNUMBER(6)=3# 

WAIT 360000# STOP END# 

PROCESS USERS# 
BEGIN INTEGER Q,START TIME,MESSAGE TYPE# 
NEW TRANSACTION TO START# NEW TRANSACTION TO START# 

ORIGIN) NEW TRANSACTION TO START# WAIT 0,5000# GO TO ORIGIN# 
START) Q=l,6# ENTER QUEUE(Q)# 

MESSAGE TYPE=(l,l,2,2,2,2,2,3,3,3)# 
SEIZE TO(Q)# 
TUMESSAGE(Q)=MESSAGE TYPE# 
WAIT 6000'8000# 
START TIME=TIME# 
OUTPUT 'TU' ,Q, 'iddd'SENUS'''MESSAGE' ,MESSAGE TYPE. 'idddd'AT1'TIME' ,TIME# 
TUSTATE(Q)=l# 
WAIT UNTIL TUSTATE(Q).EQ.0# 
RELEASE TU(Q)# LEAVE QUEUE(Q)# 
TABULATE (TIME-START TIME) IN TABLE(Q)# 
OUTPUT I ,'<i<*,~TU' 'Q, I ,'<i<*,~RECIEVE51'REPL Y1'AT'''TIME I 'TIME# 
CANCEL END# 

PROCESS PBU# BEGIN INTEGER S,T,WORDS# 
NEW TRANSACTION TO SCAN# T=3# 

SCAN) T=T+l# IF T.gt.6 THEN T=l# WAIT 1# 
S=SRNUMBER(T)# 
SEIZE LINE# 
WAIT 5# IF 58(5).BUSY THEN (WAIT 80# RELEASE LINE# GO TO SCAN# 
SEIZE 58(5)# WAIT 15# IF TUSTATE(T).NE.l THEN{WAIT 65# 

RELEASE LINE# RELEASE 58(5)# GO TO SCAN)# 
WAIT 225# SEND) WAIT 170# IF PR(0.02) THEN (WAIT 20# GO TO SEND)# 
NEW TRANSACTION TO COMPUTATION# WAIT 20# RELEASE 58(5)# 
RELEASE LINE# TUSTATE(T)=2# CANCEL# 

COMPUTATION) SEIZE COMPUTER# WORDS=TUMESSAGE(T)+2# 
WAIT (IF WORDS.EQ.3 THEN 250 ELSE IF WORDS.EQ.4 THEN 300 ELSE 400)# 
RELEASE COMPUTER# 

OUTPT) WAIT l#SEIZE LINE# WAIT 5# 
IF 58(5).BUSY THEN (WAIT 80# RELEASE LINE# GO TO OUTPT)# 
SEIZE 58(5)# WAIT 75# 

RECEIVE) WAIT 80# IF PR(0.01) THEN (WAIT 20# GOTO RECEIVE)# 
RELEASE LINE# 
WORDS=WORDS-1# 
IF WORDS.EQ.0 THEN NEW TRANSACTION TO SCAN# 
WAIT 325# RELEASE 58(5)# WAIT 170# 
IF WORDS.GT.0 THEN GO TO OUTPT# 
TUSTATE(T)#O# CANCEL END# 

PROCESS OTHER PBUS# 
BEGIN INTEGER I# I=6# 

CREATE) NEW TRANSACTION TO COMPUTE# 
I=I-1# IF I.GT.0 THEN GO TO CREATE# CANCEL# 

COMPUTE) WAIT 3200'5000# SEIZE COMPUTER# 
WAIT (250,250,300,300,300,300,300,400,400,400)# 
RELEASE COMPUTER# GO TO COMPUTE# END# 
END 



TU 6 SENDS MESSAGE 1 AT TIME 6546 
TU 3 SENDS MESSAGE 2 AT TIME 7532 
TU 1 SENDS MESSAGE 3 AT TIME 7704 

TU 6 RECIEVES REPLY AT TIME 9610 
TU 1 RECIEVES REPLY AT TIME 13248 

TU 2 SENDS MESSAGE 2 AT TIME 14390 
TU 3 RECIEVES REPLY AT TIME 14423 
TU 2 RECIEVES REPLY AT TIME 18152 

TU 1 SENDS MESSAGE 1 AT TIME 26172 
TU 3 SENDS MESSAGE 1 AT TIME 20979 

TU 1 RECIEVES REPLY AT TIME 23159 
TU 2 SENDS MESSAGE 2 AT TIME 25651 

TU 3 RECIEVES REPLY AT TIME 26467 
TU 1 SENDS MESSAGE 3 AT TIME 29706 

TU 2 RECIEVES REPLY AT TIME 30114 
TU 6 SENDS MESSAGE 2 AT TIME 32347 
TU 3 SENDS MESSAGE 2 AT TIME 32347 

TU 1 RECIEVES REPLY AT TIME 35001 
TU 6 RECIEVES REPLY AT TIME 36358 

TU 2 SENDS MESSAGE 1 AT TIME 37507 
TU 5 SENDS MESSAGE 3 AT TIME 37936 

TU 3 RECIEVES REPLY AT TIME 39065 
TU 2 RECIEVES REPLY AT TIME 41078 

TU 1 SENDS MESSAGE 3 AT TIME 42975 
TU 5 RECIEVES REPLY AT TIME 43521 

TU 6 SENDS MESSAGE 2 AT TIME 44910 
TU 1 RECIEVES REPLY AT TIME 318350 
TU 5 RECIEVES REPLY AT TIME 319030 

TU 3 SENDS MESSAGE 1 AT TIME 319619 
TU 4 SENDS MESSAGE 1 AT TIME 320555 

TU 2 RECIEVES REPLY AT TIME 322250 
TU 6 RECIEVES REPLY AT TIME 323066 
TU 3 RECIEVES REPLY AT TIME 324769 

TU 5 SENDS MESSAGE 3 AT TIME 325871 
TU 4 RECIEVES REPLY AT TIME 325948 

TU 2 SENDS MESSAGE 2 AT TIME 329381 
TU 5 RECIEVES REPLY AT TIME 330182 

TU 3 SENDS MESSAGE 1 AT TIME 331590 
TU 2 RECIEVES REPLY AT TIME 333560 
TU 3 RECIEVES REPLY AT TIME 334481 

TU 1 SENDS MESSAGE 3 AT TIME 335006 
TU 1 RECIEVES REPLY AT TIME 339821 

TU 2 SENDS MESSAGE 3 AT TIME 340371 
TU 4 SENDS MESSAGE 2 AT TIME 341458 
TU 3 SENDS MESSAGE 2 AT TIME 341820 

TU 2 RECIEVES REPLY AT TIME 344806 
TU 3 RECIEVES REPLY AT TIME 346163 

TU 5 SENDS MESSAGE 3 AT TIME 347808 
TU 4 RECIEVES REPLY AT TIME 348864 

TU 2 SENDS MESSAGE 2 AT TIME 351765 
TU 5 RECIEVES REPLY AT TIME 351912 

TU 6 SENDS MESSAGE 2 AT TIME 352493 
TU 3 SENDS MESSAGE 1 AT TIME 353549 

TU 2 RECIEVES REPLY AT TIME 354698 
TU 1 SENDS MESSAGE 3 AT TIME 354974 
TU 4 SENDS MESSAGE 2 AT TIME 356456 

TU 6 RECIEVES REPLY AT TIME 356606 
TU 3 RECIEVES REPLY AT TIME 357202 

TU 5 SENDS MESSAGE 3 AT TIME 359688 
END OF SIMULATION 



CLOCK TIME AT END OF SIMULATION WAS 

NUMBER OF TIMES LABELS WERE ENCOUNTERED 

380000 

LABEL 
START 
SEND 
RECEIVE - 

- COUNT 
150 
141 
564 

NAME OF 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 
QUEUE 

STORE 
(001) 
(002) 
(003) 
(004) 
(005) 
(006) 

LABEL 
ORIGIN 
COMPUTAT - 
CREATE 

NAME OF FACILITY 
TU (001) 
TU (002) 
TU (003) 
TU (004) 
TU (005) 
TU (006) 
SB (001) 
SB (002) 
SB (003) 
LINE (001) 
COMPUTER(001) 

CAPACITY 
10 
10 
10 
10 
10 
10 

COUNT 
148 
138 

6 

LABEL 
SCAN 
OUTPT 
COMPUTE - 

MAXIMUM USED 
5 
6 
8 
5 
4 
3 

COUNT 
1993 
649 
477 

FRACTION OF TIME IN USE 
0.7839 
0.9145 
1.0000 
0.7281 
0. 5014 
0.6470 
0. 5967 
0.4437 
0.1959 
0. 8771 
0. 5412 

AVERAGE OCCUPANCY 
1. 6720 
2. 4227 
3.6986 
1.7048 
0. 7010 
0.8416 

AVERAGE UTILZATION 
0 .1672 
0. 2422 
0.3698 
0.1704 
0.0701 
0.0841 



TABLE NAME IS TABLE (001) 
NUMBER OF TABLE ENTRIES IS 22 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 4542.2727 STANDARD DEVIATION 1276.9288 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 
2000 0.00 0.00 0.4403 
2500 0.00 0.00 0.5503 
3000 3 13. 63 13 .63 0.6604 
3500 1 4. 54 18.18 0. 7705 
4000 5 22. 72 40.90 0.8806 
4500 4 18.18 59.09 0.9906 
5000 1 4. 54 63.63 1.1007 
5500 4 18.18 81.81 1. 2108 
6000 1 4. 54 86.36 1.3209 
6500 1 4. 54 90.90 1. 4310 
7000 0.00 90.90 1. 5410 
7500 2 9.09 99.99 1. 6511 
8000 0.00 99.99 1.7612 
8500 0.00 99.99 1. 8713 
9000 0.00 99.99 1. 9813 
9500 0.00 99.99 2.0914 

10000 0.00 99.99 2.2015 
10500 0.00 99.99 2.3116 
11000 0.00 99.99 2.4216 
11500 0.00 99.99 2.5317 
12000 0.00 99.99 2.6418 
12500 0.00 99.99 2.7519 
13000 0.00 99.99 2.8620 
13500 0.00 99.99 2.9720 
14000 0.00 99.99 3 .0821 
14500 0.00 99.99 3 .1922 
15000 0.00 99.99 3.3023 



TABLE NAME IS TABLE (002) 
NUMBER OF TABLE ENTRIES IS 28 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 4630.4265 STANDARD DEVIATION 1318. 5882 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 
2000 0.00 0.00 0.4319 
2500 0.00 0.00 0.5399 
3000 2 7.14 7.14 0.6478 
3500 1 3.57 10.71 0.7558 
4000 4 14. 28 24.99 0.8638 
4500 10 35. 71 60. 71 0. 9718 
5000 6 21. 42 82.14 1.0798 
5500 0.00 82.14 1.1877 
6000 1 3.57 85. 71 1. 2957 
6500 1 3.57 89.28 1. 4037 
7000 1 3.57 92.85 1. 5117 
7500 0.00 92.85 1.6197 
8000 1 3.57 96.42 1. 7277 
8500 0.00 96.42 1.8356 
9000 1 3.57 99.99 1. 9436 
9500 0.00 99.99 2.0516 

10000 0.00 99.99 2.1596 
10500 0.00 99.99 2.2676 
11000 0.00 99.99 2.3755 
11500 0.00 99.99 2.4835 
12000 0.00 99.99 2.5915 
12500 0.00 99.99 2.6995 
13000 0.00 99.99 2.8075 
13500 0.00 99.99 2.9154 
14000 0.00 99.99 3.0234 
14500 0.00 99.99 3 .1314 
15000 0.00 99.99 3.2394 



TABLE NAME IS TABLE (003) 
NUMBER OF TABLE ENTRIES IS 30 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 4930.6000 STANDARD DEVIATION 1157.1875 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 
2000 0.00 0.00 0.4056 
2500 0.00 0.00 0.5070 
3000 1 3.33 3.33 0.6084 
3500 1 3.33 6.66 0.7098 
4000 7 23.33 30.00 0.8112 
4500 3 10.00 39.99 0.9126 
5000 3 10.00 50.00 1.0140 
5500 6 19.99 69.99 1.1154 
6000 4 13. 33 83.33 1. 2168 
6500 2 6.66 89.99 1. 3182 
7000 2 6.66 96.66 1.4197 
7500 0.00 96.66 1. 5211 
8000 1 3.33 99.99 1. 622 5 
8500 0.00 99.99 1. 7239 
9000 0.00 99.99 1. 82 5 3 
9500 0.00 99.99 1. 9267 

10000 0.00 99.99 2.0281 
10500 0.00 99.99 2.1295 
11000 0.00 99.99 2.2309 
11500 0.00 99.99 2.3323 
12000 0.00 99.99 2.4337 
12500 0.00 99.99 2.5351 
13000 0.00 99.99 2.6365 
13500 0.00 99.99 2.7380 
14000 0.00 99.99 2.8394 
14500 0.00 99.99 2.9408 
15000 0.00 99.99 3 .0422 



TABLE NAME IS TABLE (004) 
NUMBER OF TABLE ENTRIES IS 22 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 4442. 2272 STANDARD DEVIATION 870.2028 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 
2000 0.00 0.00 0.4502 
2500 0.00 0.00 0.5627 
3000 0.00 0.00 0.6753 
3500 4 18.18 18.18 0.7878 
4000 2 9.09 27 .27 0.9004 
4500 7 31. 81 59.09 1.0130 
5000 6 27. 27 86.36 1.12 5 5 
5500 2 9.09 95.45 1.2381 
6000 0.00 95.45 1. 3506 
6500 0.00 95.45 1. 4632 
7000 0.00 95.45 1. 5757 
7500 1 4. 54 99.99 1. 6883 
8000 0.00 99.99 1.8008 
8500 0.00 99.99 1. 9134 
9000 0.00 99.99 2.0260 
9500 0.00 99.99 2 .1385 

10000 0.00 99.99 2.2511 
10500 0.00 99.99 2.3636 
11000 0.00 99.99 2.4762 
11500 0.00 99.99 2.5887 
12000 0.00 99.99 2. 7013 
12500 0.00 99.99 2. 8139 
13000 0.00 99.99 2.9264 
13500 0.00 99.99 3.0390 
14000 0.00 99.99 3.1515 
14500 0.00 99.99 3.2641 
15000 0.00 99.99 3.3766 



TABLE NAME IS TABLE (005) 
NUMBER OF TABLE ENTRIES IS 14 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 5292.9285 STANDARD DEVIATION 1676.4334 

UPPER LIMIT NUMBER PER CENT CUMULATIVE MULTIPLE OF MEAN 
2000 0.00 0.00 0.3778 
2500 0.00 0.00 0.4723 
3000 0.00 0.00 0.5667 
3500 2 14. 28 14.28 0.6612 
4000 0.00 14.28 0.7557 
4500 5 35. 71 50.00 0.8501 
5000 1 7.14 57.14 0.9446 
5500 0.00 57.14 1.0391 
6000 2 14. 28 71.42 1.1335 
6500 0.00 71.42 1. 2280 
7000 2 14. 28 85. 71 1. 3225 
7500 0.00 85.71 1. 4169 
8000 0.00 92.85 1. 5114 
8500 1 7.14 99.99 1. 6059 
9000 1 7.14 99.99 1. 7003 
9500 0.00 99.99 1.7948 

10000 0.00 99.99 1. 8893 
10500 0.00 99.99 1. 9837 
11000 0.00 99.99 2.0782 
11500 0.00 99.99 2 .1727 
12000 0.00 99.99 2.2671 
12500 0.00 99.99 2.3616 
13000 0.00 99.99 2.4561 
13500 0.00 99.99 2.5505 
14000 0.00 99.99 2.6450 
14500 0.00 99.99 2.7395 
15000 0.00 99.99 2.8339 



TABLE NAME IS TABLE (006) 
NUMBER OF TABLE ENTRIES IS 20 SUM OF ALL ENTRY VALUES 

MEAN OF TABLE 4581.3500 STANDARD DEVIATION 1180.9796 

UPPER LIMIT 
2000 
2500 
3000 
3500 
4000 
4500 
5000 
5500 
6000 
6500 
7000 
7500 
8000 
8500 
9000 
9500 

10000 
10500 
11000 
11500 
12000 
12500 
13000 
13500 
14000 
14500 
15000 

NUMBER 

2 
4 
6 
2 
3 
1 

1 

1 

PER CENT 
0.00 
0.00 
0.00 

10.00 
19.99 
30.00 
10.00 
14.99 
5.00 
0.00 
5.00 
0.00 
0.00 
5.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

CUMULATIVE 
0.00 
0.00 
0.00 

10.00 
30.00 
60.00 
69.99 
84.99 
89.99 
89.99 
94.99 
94.99 
94.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 
99.99 

MULTIPLE OF MEAN 
0.4365 
0.5456 
0.6548 
0.7639 
0.8731 
0. 9822 
1.0913 
1. 2005 
1.3096 
1. 4187 
1. 5279 
1. 6370 
1. 7462 
1. 8553 
1. 9644 
2.0736 
2.1827 
2.2919 
2.4010 
2. 5101 
2.6193 
2.7284 
2.8375 
2.9467 
3.0558 
3.1650 
3.2741 

SOL EXAMPLE 
DATE 19.12.66 
TIME 15.52.41 
SERIAL NUMBER 

COMPILER NUMBER 

INPUT 0 
OUTPUT 0 

15537143 

INSTRUCTION INTERRUPTS 
COMPILE STORE 
EXECUTION STORE 

MAGNETIC TAPES 

REQUESTED 
12500 

70 
45 

DECKS 
2 

STORE TIME 
4058 

29 

USED 
10304 

68 
40 

BLOCKS 
32 

DRUM TIME 
1 

COMPILE 
1098 

WAITING 
15 

DECK TIME 
156 

2 
564 

BLOCKS READER 0 
RECORDS PRIVATE TAPE 


	Page 1
	Titles
	SOL 
	ACKNOWLEDGEMENTS 
	Foreword 
	CONTENTS 


	Page 2
	Titles
	CHAPTER I 
	Introduction 


	Page 3
	Page 4
	Titles
	SOL-A Symbolic Language for General-Purpose 
	D. E. KNUTH AND J. L. McNELEY 
	[2]-[4]. 
	401 


	Page 5
	Titles
	402 
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 
	August 
	process USERS ; 
	new transaction to START; new transaction to START; 

	Tables
	Table 1


	Page 6
	Titles
	1964 
	Knuth and McNeley: SOL-Symbolic Language for Systems Simulation 
	:~~:~ ~ 
	403 
	begin 
	process USERS; 
	new transaction to START; new transaction to START; 
	START TIME-time; 
	process PBU; begin integers, T, WORDS; 
	seize LINE; 
	wait 5; if sn]s ] busy then (wait 80; release LINE; go to 
	(wait 65; release LINE; release SB [ s]; go to SCAN); 
	new transaction to COMPUTATION; wait 20; release SB [s]; 
	wait (if WORDS= 3 then 250 else if WORDS= 4 then 300 
	if SB [s] busy then (wait 80; release LINE; go to OUTPUT); 
	if WORDS= 0 then new transaction to SCAN; 
	begin integer I; I-6; 
	end. 

	Images
	Image 1


	Page 7
	Titles
	404 
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 

	Images
	Image 1


	Page 8
	Titles
	1964 
	Knuth and McNeley: SOL-Symbolic Language for Systems Simulation 
	405 
	wait S; if sn]s ] busy then 
	(wait 80; release LINE; go to SCAN); 
	(wait 65; release LINE; release SB [s]; go to SCAN); 
	(wait 20; go to SEND); 
	new transaction to COMPUTATION; wait 20; release SB [s]; 
	OUTPUT: wait 1 ; seize LINE; wait S; 
	if SB [ s] busy then (wait 80; release LINE; go to OUTPUT) ; 
	seize SB [ s]; wait 7 S; 
	if WORDS = 0 then new transaction to SCAN; 
	process OTHER PBUS; 
	CREATE: new transaction to COMPUTE; 


	Page 9
	Titles
	406 
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS 
	August 
	-- 
	�.... ,_ 
	�... 
	. . . . . . . . . . - 
	~~~ ~ ~ ~~ ~~ ~ 
	zow
	>
	~
	'°

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3

	Page 10
	Titles
	1964
	Knuth and McNeley: SOL-Symbolic Language for Systems Simulation
	407
	z
	········--···-··-········-··
	z
	a u
	..�
	m w
	a z
	w �...� w
	""
	~
	w
	er, O·
	-- __.�.....� -
	z

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 11
	Titles
	408
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

	Page 12
	Page 13
	Titles
	A Formal Definition of SOL
	D. E. KNUTH AND J. L. McNELEY
	409

	Page 14
	Titles
	410
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS
	(digit):: = o] 112 f3f-:-. · I 9

	Page 15
	Titles
	1964
	Knuth and McNeley: A Formal Definition of SOL
	411
	(M2 M-1)
	2 ! (n - 1) !

	Images
	Image 1
	Image 2

	Page 16
	Titles
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

	Page 17
	Titles
	1964
	413

	Page 18
	Titles
	414
	IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS

	Page 19
	Titles
	CHAPTER IV
	Differences in Atlas SOL

	Images
	Image 1

	Tables
	Table 1

	Page 20
	Page 21
	Titles
	CHAPTER V

	Page 22
	Titles
	CHAPTER VI
	Run time diagnostics

	Page 23
	Titles
	CHAPTER VII
	Limitations

	Page 24
	Titles
	CHAPTER VIII
	Sample program output

	Page 25
	Page 26
	Tables
	Table 1

	Page 27
	Page 28
	Tables
	Table 1

	Page 29
	Tables
	Table 1

	Page 30
	Tables
	Table 1

	Page 31
	Tables
	Table 1

	Page 32
	Tables
	Table 1

	Page 33

