Technical Memorandum No, 65/5

THE PLANNING OF AN AUTOCOD:: COMPILAR

by

H.P,F. Swinnarton-Oyer

September 1965

T PLAIITNG OF LiN_UTCCODE COMPILIR

by

H.P.¥, Zwinncerton-Dyer,

Introduction

This memorandum comnsists of the planning documents which I wrote before
starting the detailed programiiing of the new Titon Autocode compiler; they
are given in their original form, even thou_h this is not always a correct
descrintion of the compiler as it now is, They have been published here
for two reasons - first as a description of onc nossible way to write a
compiler, and second to show the extent to which the structure of a com-
plicated program should be worled out before any actual orders are written.
The sections of the memorandum werc written in a random order, and there is
considerable cross-referencing between then: the reader is advised to read

et all superficially before trying to follow the details of any onc of
themn. He iz warmmed thot the terminology used herc is not the same as that
in the Mitocode manual. Tho version of the conpiler described here com-
piles from Zutocode into IIT; but in the nlanning I borc in mind the need
to be able, with as little zlteration of the compiler as possibie, to com-
pile directly into binary in the storc.

This meworandun is not of course the complete documentation of the
compiler: there arc alse the detailed swecifications of the open and
closed subroutines in the compiloer, the allocation of B-lines and working
spacc in corc store to particular duties and the details of the way in which
information is packed into them, and the actual annotated machine-code progran.
11 this, however, describes the detailed implementation of particular facets
of the comnpiler. It is not meant to be read as a whole, but it cnables
anyone who needs to undcrstend a particular section of a program to do so.
The principal beneficiary of this is the original nrogrammer hinself - either
when he is writing othour sections of the program, or when he is debugging -
and even if onc ncver expects to have to change 2 prozram it is a falsc
cconorry to ckimp on the documentation, (Apart from slips of the pen, the
most common type of error in writing a large program ariscs from misrcemem-
bering the specifications of other cections of it. This is also the most
Aifficult type of crror to find, since no individual section of the progran
iz wrong in itself.)

The first Titan Autocode compiler was written by M.V, Wilkes and others
an cxample of list-»rocessing teclmique. As ic inevitablc with any

o
]

list-processing progran, it used a great deal of store. Since the ma%n
supcrvisor has been planned in such a way as to rum soveral progrems simul-
tancously, which avoids the computer lying idle during maznetic tape and
disc transfers, it was nccessary to nrovide a smaller compiler; in writing
the present compiler small size and high commiling soeed have been the
primary objectivee, cven at tho exponse of some lack of optimization in the
object nrograon comniled, It is indencndont of the nrevious compiler ex-
cept that the 'Autocode packege' has beon taken over almost unchanged,
(This is the sct of closed subroutincs in the objoct program which are uscd
to imploment LIBRARY and similar instructions. They are the same, and
cccupy the same fixed arca, for all object nrograms; thoy arc held in
binary form on magnctic tape, and are called down into the store by the
firet few obiyed orders of the objeet progran.,) Because the Autocode
package was in existence whon I started planning this compiler, its speci-
ficatiomsin this nemorandum arc nuch more specific thon those of the rest
of the compiler,

Becausc of th: conditions that it had to mect, the compiler described
herc was designed and written in as low-brow o manncr as possible,** The
advontoges of such an opproach arce that the rosulting compller will be both
saller and faster thoen cne writton by nore OOﬂlutlc ted methods, The
disadventases are

(i) that the compiler is more liable to contain undetected Srrors,
since cach brrach of it has been writton individually and so
there is no necogsory uniformity of treatment;

(1i) that because the compiler takes alvantage of incidental foatures
of the lrnsuzge from which 1t is compiling, it is very much more
tircsone to alter it when the l-nsuase is wmodificd,

It is generally belicve2 alse thot a compiler of this sort is more laborious
to write thon onc which uses morc sophisticated techniques. However, the

** For gome alternative coupiling tuchnigues, sce

Dijkstro, oo¥W. JIGOL 60 Irenslotion, alzol Bulletin Supploment No. 10
(1961).

Randell, B. and ‘ussell, L.d. ﬁlgol 60 Implementation. &.2.I1.C.
Ztudies in Dota Processing No.5 (1954).

Irons, G.7. The Structure and Use of thoe Syntox Direct.d Compiler,
Annual Roviow din dutomatic Programning, Vol.2 (1953),

Brooker, Re.d., liacCsllum, I,3,, morris, D., and fohl, J,.5, The
Compllicr Commilor, Annual Roview in automatic
Progr.ming, Vol.3 (1963),

efficiency of the compiled object progran does not depend on the type ?f
corpiler, but only on the amount of effort that has sone into writing it
the price of better object prosran is just a lsrger and slower conpiler.

The character in»mut routine

in Autocode instruction consists of a string of characters, and the
routines which read and edit ench Autocode instruction rmst obtain the
characters and operate on them one by one. In principle we could gsimply
read each character by a 1054 order, but it would then be necessary to find
the type of the character anid in some ¢nses (such as shifts) to take snecial
action, Instead, all reading is done through a subroutine: this supplies
the next effective character, both in internnl-code form and as classified
by type and value. It also does certain necessary boolk-keeping operations,
ond copes with error messages caused by a wholly illegal character - that
is, 2 character illepal regardless of its context,

The information which the subroutine must hold from one entry to the
next consists of three marker Zisits and the current line number. The
markers are as follows:

(i) Current internale-code shift, This is resct whenever a shift
character or a newline ig read.

(ii) VWithin text, title or option~l soction not being compiled. This
marker is set -l unset ocutside the subroutino, but is used in-
side it, It ives a2 convenient way of dealing with those charac-
ters which ars lz23al in text or title but illezal otherwise,

(ii1) Current line contains effective charncters. This is set by any
character which corresponds to a zrinted sysbol in the input docu-
nent, an! iz unset by o newline. It is used when uplating the
current line nuiber.

The line number is held in the form 'line ot after label & of block ¥ ', or
'line ol of block & ' if no lcbel has yet been read in this block. The
compiler in fact holds two line numbers, one for the nexl character to be
read and the other for the head of the current instruction. The first of
these 1s ndvanced whenever = newline is read and the last line contained
effective charocters; it is resct at the start of a new block or on dealing
with o legitimate label, The sacond is set from the first whenever the
coumpiler starts to real a new instruction.

To each internal-code charzcter correspond two entries in a look-upn
table, For a normal character these give its type, which is a positive
half-integer, and its value, which is an integer or half-intecger; for a

character which has to be treated specinlly, the tyne is renlacel by the

3.

'

addvess f e firat o»deor of the associatad cpen routine, with the sign
digit set as 2 marker. When the owbavatine is cntered, it will usuelly
use a 1054 order to read the next internnl-code charancter and will then
increase this by 8 if it is in outer set; sometimes, however, the charac-
ter will already have been read, increased anid stored, and then it need
only be recovered from the storz, In either case, the apparent type and
vrlue are found from the lock-up table, If the ty»e is positive, which
happens when the cheracter is nornnl, set the 'character-in-line' marker
and exit, If the type is negative, entsr the associated open routine;
note that for = newlinc this routinc is entered directly from the 1054
order, without mny table look-un, Some characters ~re abnormal only be-
cause the morker digits or line count neecd spacial trentment; in such
casss the routine does this, sets the type number, and exits. Others are
abnormal because they may form »art of composite characters; in this case
further characters must be read and if nec:ssary (that is, if a composite
charccter cannot be formed) stored for later use. For other abnormal
characters the routine does mny neccsgary book-keening, including nossibly
putting out 2n error message, cnd then returns to the start of the sub-
routine in order to read a further character from the input stream,

Thosc abnormal characters which may not proiuce a normal exit, and the
actions taken in the corresponding routines, are listed below, These
characters do net have a tyne number in the normal sense, and the values
ascribed to them are never actually used by the compilor,

(1) Charecters illegal regordless of context. This includes any
Tharacter which in theory cannot apmear in mn input strean,
together with 0.3, 3.2, 4,0, 7.6 an? 7.7 of inncr sct snd 2RO
247, 340, 3.7, 3.2, 3.4 on? 7,6 of outcr sot. The routine puts
out an error messoge; it miay or mny not set the 'character in
line' narker,

(ii) Character illegal excont in text or title, These are 0.0 and
1.2 of inner set and 3.6 of outsr sct, The routine examincs
the 'in text' anrker, wn? procevis 2s in (1) if this is not sct,
If it is sot, ignore 0.0; for th. other two characters, sct 0,1
as the charncter read, sct the 'in lince! wmarker ~né exit normally
fron the subroutine.

(iii) Character wholly ignors.. Thess arc 0.6 and 0.7 of inner set and
0.6, 0,7, 1.4 and 7.7 of outer set; note that on the last of
thesc the 'cherneter in linc!' marker nust be set.

(iv) shift characters. These are O.4 and 0,5 of eithor scty they
cause the 'internal-code shift' markor to be undated,

There arc two characters either of which may be the first part of a com-
posite character, In each casc we read further characters one by one,

testing each to sce if it is the next once noeded to fori: tho composite
character. If the couposite character is formed thon it is uscd: other-
wise the initial choaracter is used an the other characters are stored, to

be used on later entrics:

(v) 'CGreater thomt. This nay be followcd by 'cquals' to form a
composite character which is given -~ normal type and value.

(vi) ‘'Arrow', This nay be followe2 by another arrow nand a newline;
if so, the line count is incrensed by one oand the composite
character treate? as a saaco,

The other characters which have their own special routines arce as follows:

(vii) Space =nd Tab. Reset the type number and exit from the subroutine,
without changing the 'charactor in line' marker.

(viii) Newline. If the 'character in line’ narker is set, nidvance the
current line nunber by onc nnd clear the marker to zero. Sct
the charccter read to a negative value (for usc in toxt or title),
set the type nvwber rnd value, anl exit from the subroutinc,

It remnins to classify those charncturs which wroduce o nortinl exit from the
subroutine, o to ascribe valu:s to thom. Any scheme of classification is
a cormpronise betweon the demands of speed and of size, and is to some extent
choszon on non-lozical grounds, Thers nre in this compiler six tvpes, with
type numbers C,0, O.%, ..., 2.4; the corresponding charncturs and values
are as follows:

(1) Letter, no listinction being made batween upper ~nd lower cosc,

<

The valuc of any lotter is ziven by the followin,: t-ble:

A to D 6 tor §
S to o 33 to 36
I to T <31 to =20
Uto2Z 37 to 42

Thus from the valuc of 2 letter onc cmn irmcidiately deduce whether
the corresponding: voriable is index or floating point, and what is
the corrcsponding B-line or rorister of storc.
(ii) Dirits. Ihe valuc of ~ny digit is the dipit itsclf.
(1ii) Noewline ~nd scmicolon, These have voluces O cnd 1 respectively.
(iv) Space an? tab. These have valuce O ond 1 rosnectively; but in
fact both herc and in the provious case the valuc is never used.
(v) Characters which can oppenr inside an arithuaetic exwpression.
There arc ten such characters, and their volucs are given by
th: followin; table:

Suffix toen ~1 Square kot 1.4
Point 0.4 Minus 2
Rouni bra 0 Mlus 2.4
Roun” kot O.h4 3troke 3
Squarc br- 1 Asterisk 3ot

(vi) Other characters. There arce six of thesc, with the following
values:

Colon =0k Grenter than 1
Zguals 0 Greoter than or 1.b
4 or nu O.h cquals

ArTrow 2

Thesc values have been chosen so as to simmlify both table look-up —nd the
discrimination of 'colon! or 'ocquals' within tho tyne,

As has alrcady nppenrcl from the description above, the character innut
routine ncels a small anount of workinz space in which it ¢on storc thosc
charncters which have been read frow the irnput stream but do not yet have
to be handed over to the main input routine; anl it sust also kecp a count
of these charrcters, They arce stored onc to a halfword, with the internal
shift alroady included in thenm, Becruse of thoe presconce of this buffer of
characters, it is nogsible to iuplencnt a further subroutine, which honds
back ~n internal-cole chnractor to the innut stream; this is done by writing
the c¢haracter te the buffer, each member of which has to be pushed down a
place, and increansing the count. It is uscful for woking uniform the entry
conditions to sowe of the other innut routines - for exomple, when reading an
arithmetic expression onc or two of whosc characters have nlready beon read
before the naturce of the cxpression has been recopmized.

Readinz and editing Zutocodce instructions:

The routinc which reoads on autocole imstruction ani checks the corrcct-
ness of its syntax should be thought of as opcrating in two modes - one for
reading arithmetic expressions and the other for roading the rest of the
instruction, In sractice it is convenicnt to road arithmetic exproessions
by means of o closud subroutine with wausually claborate entry and exit
cenlitions, An arithnetic expression ie storcd in compiler working space,
where 1t can later be dealt with by the translation routines, Other parts
of cn Antocode instruction contsin only small amounts of information; this
is cither held in B-lines or uscd ot oncc to control the oneration of the
conpiler, (But therc arc excontions to thic, such s the t~ble in a switch
instruction.)

There arce three imnortant ways in which several characters have to be

6.

cortbined to form a singlc symbol; in oach casc the treatment is different
according ns thoe characters orc inside on arithmetic cxpression or not:

(i)

(ii)

(iid)

A preset word, If the first two charactors of an instruction arc
letters, then the instruction nust start with o word; this is
read by an open routine which also notes the terminating cheracter,
an is idwntificd by compariscn with a table, Once the word is
found, it identifics the type of instruction. A word in any other
position outside am arithmetic oxprossion 1s predictable; its
presence is checked by a closed subroutinc, which may or may not
be satisfied by o newline instend, according to context, Within
an arithmetic cxpression, a sequence of lottors is both treated as
o product of varisbles and 2lso built up as a potentinl word; on
reaching a non~-letter, thoe coupiler tests whothor a function name
has been built up, and if so redlaces ths proluct of letters by
the function,

A nuinbcr, Within an arithmetic coxpression this is built up by
one of threec opun routines, according as the number is fixed point,
floating noint, or in an undetersined mods. Elsewhere, the nunmber
must be an intséger nnd well within the ronge of a B-line, so that
there is no difficulty in testing for overflow; it is read by a
closc¢? subroutine, which has two cntries according as the first
dizit hns alrealy been reod or not, The subroutine notes the
nunber formed, and nlso the terminating choracter; there is an
errcr cxit on nenr-overflow,

& multicharacter identifier, This is read by onc of two essen-
tially similar subroutincs, one of which is used for floating point
and the other for intuser identifiers. apch of thesc has two
entry points, onc for when the ~sterisk or »oint alone has been
read, and the other for when the lotter following it has also been
read; the first is normnlly used outside sond the socond inside

an arithmetic expression. The idontifier is built up in a pair
of halfwords, characturs after the cighth being ignored; the ter-
minating chrracter is presorved for usc outside the subroutine,
when the identifier is comploete, it is compared with thosc already
in the corresponding table; if it is not alrendy prescnt it is
inscrted in the next vocant position. On exit, its position in
the table is Ziven, Thers is an crror exit if the identifier is
not in the table and there is no room to insert it,

Thers ore cther woys in which several dintercl-code characters may be come-
bined, for cxample to form '>', but thesc are dealt with = hoc in the charac-
ter input subroutine.

The followin3 tynes of error will be Zetected by the input routine:

(i) Codeword not recormized by the compiler; this can only happen at
the beginninz of =n instruction, sinco elsewhere the snalogous
fault will be trented ns 2 character out of context.

(ii) A4ppearnnce of ROW, CHAR or IilPUT twice in the risht-hand side of
a cnlculation instruction, or nt all in ~ny other arithmetic
expression.,

(1ii) Character out of context; in this cose the charocter is named in
the error messnge, c¢ven thourh it may not be the onc rezxlly at
fault.

(iv) iHismatched brackets; this may be a round or squarc ket when the
other was expected, or an unnaircd bra or ket in an arithmetic
axpression.

(v) Zxpression toc large for the commiler to handle.

{(vi) Too many multicharncter identifiers,

¥hen the routine detects any one of these, it puts ocut a message which gives
the type of error and the line on which it occurs. If the error precedes
the first SROGRAM instruction, or is of type (vi), then compiling is
abandonced; otherwise the current instruction, incluling subscquent charac-
ters up tec the next newline or semicolon, is ignorcd and the input routine
is rce-entereld to denl with the next instructien.

The port of the dinput routine which roads an arithmetic expression into
he store must ~lse updnte certain lists and markers which are uscd clse-
where in the commilcr, The following norkers are sct inside the routine,
and arply only to o sinzlc cxpression:

(1) The expression is ~ single varinbla, possibly subscripted, This
is examincd to sez that the left-hand side of a caleulation ins-
tructicn is accuerntoble,

(i1) The function IHPUT has nppearcd, This is eoxwained on reading
‘> n IF /' after a colecul~tion instruction,

(1ii) INPUT, ROW or CHAR has appcarcl. This is ox~wincd on reading eny
of these three, and also at the end of any arithmetic expression
other than the right-hond silde of a calculation instruction; there
is an error exit if it is set then.

(iv) First charncter is o minus, This is uscd only in dealing with
the step in a FCR instruction, and is wmost conveniontly scet out-
gide this routine,

There is also o thrie-velued worker which determines whether the part of

the arithmetic expression currently being reed is index, floating point or
of type as yet unlecided. It is initially sct before starting to read the
arithmetic expression, and its value may be carrie? over from onc oxpression
to the next within o single imstruction; it has the value 'tyne undecided!

only for the argument of n PRINL instrmction ox» for the arithmetic expres-
sion involvel in o conditicnal jump or switch., Its value is chanpoed with-
in the routine by the machinery wiich checks the »airing of brackets: sce
below, At the c¢nd of any arithustic oxpression, the routine also updates
the list of working-spncc interv~ls in which arithmetic expressions are
held; this list has bounded length since the left-hand sides of calculation
instructions arc treated in o different w2y,

There are also two lists concerncd with the bracket structure, the
first being neomingful for an entirc instruction and the sccond only within
o sinple expression:

(1) List of arguments of the function INTIGIR., These are identified
by the positions of the cpuning and closing brackets. Beenuse
of the way the list is formed, if onc argument contnins onother
the inner one is the enrlier in the list.

(1i) List of bras not yot ovaired with 2 ket, and associated information.
For this nurpose there are three sorts of bracket: square, normal
round, and those which cnclose the argument of th.: function
INTEGER, Bach entry in this list gives the tyve of the bra nnd
the current 'head of »nroduct' information described below; for
an LHTEG R bra it also zives the store oddross of the bra and the
current value of the 'indox/flozting point' marker. This list
iz o pushdown list,

While mn arithmetic exdreossicn is being reod, encugh informaticn has to be
held to cnable the sisn of the current product to be chonped from minus to
plus if possible, by changing the sign of a constant or by using negative
multinlicntion, This informntion consists of a norkoer showing whother the
sign of the prouct is plus or minus, an?d if 1t is uoinus wheot is its store
2ddress nd whether it is unary or binnry; note that 2 unary plus is never
recorocd in the store, The twz lists describad ~bove arce alterced only
when a bra cor ket is read. On rending a bra, sct the relevant information
and the type of bra in list (ii); note that the type of bra is the last
thing written, sc that it will be the first thin: read, For a square bre,
change the ex.ression type to 'index'; for on INTIGER bra change it to
'fleating noinc', In ~ny cnse reset the 'heed of product'! information.

On rending 2 kot, reald the tyse of the corresponding bra from list (ii) and
check thaot it opgreesy; it is only at this point that an INTEGSR ket and a
noranal round ket e be distinguished, If list (ii) is cupty, there is

an error cxit; but notce that this is the corrcet exit when reading the
sroument of say o FUINT instruction, since in this case the initinl bra is
not recordecl and the fiuol ket acts as a ternminator, Now supposc that the
ket is correctly paired. In cach casc the 'head of »roduct' information

is rcecovered; for on INLILGLR kot the 'index/floating point' marker is

procovered from the list, and a now entry is made in list (i) for a square
ket the marker is resct to 'floatinz noint'. At the end of =an arithnetic
expression list (ii) should be cmpty, anld there is an cerror oxit if it is
not.

The other sorts of crror thnt the innut routinoe must test for are the
illegal juxtnposition of two symbols, and the arescnce of 2 floating noint
symbol in an index cexpression, 4 synbol is repressated by o pair of
aumbers packed into o halfword, onc giving the tyse and the other the par-
ticular symbol within the tyns. The possible typcs cre os follows:

(i) Index identificr, whother single or multicharacter, The identi-
fying numbcr is thnt of the corrssponlding 3-line.
(ii) Simple floating point variable identifier, The identifying
number is that of the corresvonding worl of store,

(iii) Subscriptcd variable idcntifier, The identifying number is as
in (ii); dindecd this type is obtaincd by convorsion from {(id)
after reading a square bra,

(iv) Flo~ting point constant, identificd by its position in the list
of thesa,
(v} TFixed point constont, idintified by its position in the list of
these.
(vi) Functions, incluling INPUT, ROW, CUAR and INTEGIR,
(vii) Arithmotic siims,
(viii) Drockete.

During cempilations, throo pore typoe will cpouzr: those ~re null halfwords
and index or floating voint working varicbles. Types (ii), (iii), (iv),
nost functionc ~nd stroke -ro of floating point type. If ~ny of thesc
cccur in on indox oxoression this causes an crror exit; 4f it occurs in an
expression of unknown typ. thon th: type is forced to 'flooting noint!'.
hile o constont is being rend in an oxpression of unknown typs, it is
forned in both modes; if it hns neither fractional »nart nor decimal ex-
poncent, it is stored as o fixel noint constront. In this woy we nay have
fixed peoint constants in what subscquently turns out to be o flonting point
expressiong such constrnts are converted during cowmpiling. In testing for
illeognl juxtaposition we koen o note of the last symbol, classificd on a
rather 2ifferent basis. Here the possibilities are as follows:

(i) Opcrand, that is, =n identifior, 2 constant, = round or square
ket or one of the functions LIIPUT, DROW or CHAL. If this is
followsd by nn identificr, consteont, function or round bra, then
the duplied smltiplication sirsn must be inserted botween the twoe.
It e Do followed by a sgu-rs Yen imdy AF it ig & flaztin oint
identificr; and in this cnse its type must be changed from simplo
to subscrizted,

(ii) TFunction having an argutient. This must be followel by a rounc
bra.

(iii) Arithnetic sign. This wmuet be followed by an identifier, con-
stont, function cr round bra,

(iv) Start of cxpression or round or squarc bra, This must be fol-
lowed by a plus or minus sign, identifier, constant, function or
round bra.

Whenever the lost character read ceither is a complote symbol in itself or
terminates onc, the aywbol is checked by Lhuou rules; 1if it is legitinate,
it is written to the storc and also rccordod ns the noew value for the last
symbol read, There is a snceinl 1ff1cu1 ty in denling with = scquence of
letters which right compose a word. Thesa are initially treated as simple

voriables rmltiplicd togeth.r; 4if when the word is terminated it can be
identified as a function, thoen it overwrites thom, {The function will
certainly be legitimate in its context; but it may be nocessary to restore
the sign of the product,)

The tywe of an instruction is dotermined by its first fow characters,
more thon onc being ncoded only if the first is a letter, The possible
non-letters that ¢zn begin on instruction, and the corresponding tyoses of
instruction, arce as follcws

(1) 4 aigit, If no PR0GRAM instruction iing yot been rend, this
must be the stort of 14 /42; thus the entire line con be
ignored, Othcrwiss roal the number which begins with this digit,
and store it in a B-line. Iimoring spaces, the following symbol
must cithor be TRACK, which concludes the instructicn, or a c¢olen
which marks the number as a label and torminates it.

(i1) in arrow, This rust introluce ~ jump or switch, either con-
ditional or unconditionnl, or ~ subroutine jump. For the rest
of the routince sce bolow,

(iidi) A square bra, round hra or round ket. These introduce res-
pectively a comment -~nd the boginnins and end of optional
complllnM mac cnugse in cach casc an dmmedicte jump to the

associrted routine.

(iv) A point or asterisk, This sust introduce a calculation
instruction,

If the first ebarncter is o lotter but the sccend onc is not, we are again
Cealing with a calculation instruction; in fact the sccond charoacter is
bouni to be a spacc or tab, 'equals' or o square bra, but we neced not check
this now. If the first two chnracters are both letters, then the instruc-
tion starts with a world; the input routin: reads this word and identifios
the tync of instructicn from it by comparison with 2 table,

M.

If the instruction starts with an arrow, read the followin;: symbol;
this must be either a number, for ~n ordinary or a subroutine jump, or the
nzame of an index variable, for a switch, In the former case store the
number in a B-line ani exnmine the rest of the line. There are now threc
possibilities:

(1) The rest of the line is cmpty; the instruction is an unconditional
Junp which is now complete znd can be hanled over for compilation,

(i1) The next symbol is 'IF', introlucing a conditional jump. Set the
expression type to 'undeterminel', and read an arithmetical cox-
pression and the symbol which terminates it, which must be a
relation; then read a further arithmetic expression, and check
that it is terminated by a newline. (Note that for convenionce
in eliiting, coch expression should be preceded in the store by a
sparc halfword,) Now edit so that

o= H becomes X - = 0 X £ s becomes X =-£ £ O
X 2 becomes «. =4 > O x> becomes -d < O

if X or 4 is just the constant zero it should be deleted at this
point. The elitin: process consists of changing all sizns out-
side brackets in that expression whose sisn is to be roversed,

anl re-agbsorving minus sipgns into constents or products as far as
possible; note that befor:s doins this we must restore any sup-
rressed unary plus at the berinninc, e instruction is now
complete -nd may be handed over for comniling.

The rest of the line is an ~rrow; the instruction was 2 subroutine
junp anld it is now completo sni can be handed over for compilinsz.

(iii)

If the instruction is a switch, notc the inlox variable and check that it is
followed by a square bra. Then reca? n scquence of numbers anl store them
in consccutive halfwords of working spoce, continuing this as lonc as they
are terminated by colons; the last number will be terminated by a square
ket, This concludes the switch part of th> instruction; the information
it contains consists of the name of the index varisblc, the count of numbers
renll and the numbers themselves., tJow procced as for o jump, cxcent that of
the alternatives above only the first two are allowed.

To read o~ calculation instruction, first hand back to the input stream
the cno or two characters that werce read before recognizing it, Now read
an arithmetical expression; this is bound to be a single variable, possibly
subscripted, ond to be terminated with an 'equals' sirn, If it is an index
variable, chanize the type to ‘index'; and in any case deletoe the entry in
the list of arithmetic expressions. fead another arithmetic expression,
and if it is terminated by 'oquals' repeat the tests and actions above.

12.

Zventually we shall reed an arithemetss vxpression with some other terminator,
and this concludes the calculation part of the instruction. Therc are two
possible additional complications:

(1) Mn cxpression of the form '- n IF /', This is allowzd only if the
function INPUT has appenred in the calculation instruction; in this
case the numbor n is recorded.

(ii) One or morc expressions of the form *m whers O < m < 5. These are
in fact not read until the rest of the instruction has been
translated; they are then rend one by one and comparsd with the
keys currently sct, and if nscessary an optional printing section
is compile?,

If both these occur, they must be in the order given above,

All other instructions begin with a word, which identifics the type of
the instruction. The most compliczted to deal with, in that it can contain
arbitrary floatingz point expressions, is the 'FOR' instruction. After the
initial word, rcad a simplc or multi-character identifier and check that it
is followed by 'equals' after perhaps some spacas. If this is an index
identifier, sct the arithmetic expression type to 'index'. Read an arith-
meticnl expression and check that it is terminated by a colon. Then read
the next chaoracter other thon a space an? note, for usce in comwiling, whether
it is a 'minus'; oive it back to the input stream and read a second arith-
metic expression, chocking that it also is terminated by = colon. Finally
read a third arithmetic expressicn and check that it is torminated by a
newlines his completes the instruction.

We regnrd a LIBRARY instruction as broken up intc subtypes by the
number that follows; and we olso troot in the same way TRAP, UNTRAP,
FRINICHAL ond the five maonctic tope instructions. To cach of these cor-
responds a codeword which shows for each arcument in turn whethor it is a
floating »noint variable, an inlex expression or a label, and whether it is
terminated by o colon or by an unnaired round kat. Check that the initial
word of the instruction is terminated by a round bra; then read the argu-
ments onc by ono, using the appropriate subroutine and checking that the
terminator is the correct onc, The last arjument is that terminated by an
unpalred round ket. A similar tochnique works for PUNCH and PRINT, except
that we usc an explicit scquence of subroutine calls, and the last argument
is terminatel by a noewline; note that for PRINT we do not know in advance
the number of arguments. LAYOUT is also declt with in this way, except
that the key word is terminatcd by a space.

The othor types of instruction arc simnler, though they pive rise to a

considcrable variety of nossibilities, T.XT and TITLE have been dealt with
clsewherc; we verify that the key word is followed by a colon, snd then

13.

enter A routine which denls with both input ~nd output simultancously. The
other possibilities are as follows:

(1) ZEQUAT:, Check that this word is torminated by a colon; then
read o sequence of rmulticharactur identificrs, checking that they
arc all of the same tyne., The instruction is terminated by
roadinge & newline. In proctice it nay be convenient to treat
the first one snecially an? process uzoch of the subscquent ones
as soon as it is read.

(ii) PROGRAM. This is followed by o nuaber, which may indeed ter-
rinate the keyworl, After this thcere is o possibly cmpty
sequence of items, cach of which consists of a floating point
identificr terninated by a square bra, followed by a number
terminated by o squars ket, sach of these itens e-n be pro-
cessed separately. The whole instructicn is terminated by o

F

3

newlinc.,
(iii) RITUIW may be 2 complete instruction, or it may be followed by
an unconiitional juwp or switeln, To tesgt which, find the next

charocter, which must be a newline cr an arrow; in the latter
cwe hand back the arrow tec the input stream and trent the word
as n corplete instruction.

(iv) XEY or KT¥S is followaed by a series of Jipits, oach of which iso
most casily “onlt with as zocn as it is re-~d.

(v) BTART is followed by & pair of numbers, the first being terminatoed
by a stroke rmd the socond by o newline.

(vi) IIADER and OUTPUT arc creh followed by a sianglc number.

(vii) The other six werds nre cach complete instructions, The only

unusuzl featurce about then is that the content of the rest of
the line st be ignorel, since it con have the status of a
coriment.

Object wroran spoce allocation

The spacc avnilable to the object prosrom consists of the B-~lines, up to
BY90 inclusive, mamd the core store. The B-lines arc nllocated as follows:

B1 -~ B12 Zach of thesc holils the current value of one of the
twelve sinsle character irdex variables I to T.
B13~ B63 These are allocated one by one te the fiftyone permitted

muiticharacter index variecbles, in the order of their
first appenrance. Notc that if one of these B-lines

is relcased by an EQUATE instruction, it <docs not become
available 2gndin to the compiler.

BG4 This helds, in coded form, the line number of the
Aatocode instruction whose translaticn is currently
being obeyed; its content can be unpacked into tho form
'line &£ after label m of block n'.

1.

B6S - B6? Reserved for special purposes in the Autocole pqckf;o
routine denling with IuPUT, Of these, BO7 holds the
allress tc which to Jjump on reading a stroke; and on
an error cxit BH6 holds the illesal character and B6S
the nuwiaber of previous successful entrics.

B6E - BY9 Genoral worlsing: spnce fer index calculations; -md data
for entry tc library-tyne routines in the Aubocollsz
nackosa,.

B8O - BGY workin: spice for library and other routines in the
Autocode pockage. licte thot the functions ROW, CHAR
and index INPUT leave their results in B3O,

B90O Return jump address for exit from routines in the
fsutoeccde prckaric.

Except fer BO4, which is necded for the monitor routines, these are iden-
tical with the allocations in the previous dutocode compiler.

The principle of comuatibility has also had some ceffect on the allo-
cation of space in core stere. The bottom end of the store is assigned in
an absolutely fixed manaer

0 - 3 Floating noint varizbles A to D.

b -~ 32 Guneral working spnce for floating point caleculations;
library routincs are allowed to use 6 to 19 inclusive.

33 . L2 Floating npoint verichles B to H ond U to Z.

L3 - 142 These are slloented onc by onc to the hundrod permitted

multichnrocter unsubsceripte? floating point variables,
in the order of their first appearance.

The space immedintely beyond this is rescrved for the Autocode nackane read
down from magnetic tape, and for the masmetic tane buffer which occupics
512-1023% 11cluu1vv. Tlc routines in tae nackage thomselves start at 150,

but thic entire bleck O - 519 hss to be read from the t ~pe; this cnables
the initial vnlues of the floating »neint vorinbles to be set automatically.

The upper end of the reigion reservel for the Autocode packase is de-
fined by two paramcters; (1) is the address of the first repister not used
for the routines, and (60) which is the first subsequent multiple of 512,
is the first register whose contents nre not overwritten when the package
is brousht down from magnetie tape. The subscripted variables occupy a
regicn storting at (1), whose size is dotermine? by the declarations of the
first program block. The cbject progrom follows immedintely after this
region, with the proviso that in no cirecumstances mny it be;in before (60).

e fixed storting routine which is obeyed at the beginning of any

15-

object nrogram ensures that the index vo
A

rinbles I to T are sct to 0.1 and
the floating point varisblies 4 to G o U 0

non-stancardized gzere; By

cenvention H is set to =w. This mkes it pessible t5 arrange thot in the
post mortem only thosc varinbles which have been sct arc printed out.

Preset objoct »rogram routines

The object progrom as ~ctually obeyed censists of two warts: those
orders ol congtints which Wwe been cxlicitly compiled and assembled in
trs store az the transintion of the original futocods pro ram, and a presct
pactage whieh is brought down from masnetic tope in binary form, Thig
package is brought dewn to o fixed aren in the store, so that it does not
have to be relocatable, cnd ortriss to it nre cagy to comniles; but this
implics that for cach object prosram we have to bring down the cntire packnge
and not just those uwnrts of it which riy be ncodod. The packopge is dn foct
brougiit down by the first few obeye? orlces of the objuct prograin, which are
explicitly coupilud but have = preset form; they are fellcowed by a jump to
the initinlizing routine in the packose, with o link sct to the address in
the utocolde strrt idrective. It iz “nly when this link hns been dboyed
that the objeet prosr-m proper cin be s2id to have started.

e prekere is real down onto the first few blocks of sbject progrom

spoce, and therefore formrlly contnins some registors allocated to floating
noint variables. ~part from this, its contents are as follows:

(i) Closed subroutincs, ~nl the long-ternm working spnce used by them.
These correspond Lo lutocode words, such as LIBRARY, for which we
do not wish to hicws to comnilu explicitly the corresponding sequence
of orlers,

(i1) Thac initinlizins routine. Tails scts ell the initicl conditions
assunicd in the deseription of the jmtoccde: innut and output
stronmg, traps, etc.

(1ii) The routines for Postmortems mnl Rescuc.

(iv) Possibly some uscful constmnts.

For short-term working spnce thesc reutines can, with certain precautions,
usc the registers allocated to temporary floatings noint varicbles; aay
additional spnce they need is within the packoic. Like crthodox Library
routines, they usc B3O to B89 and hold ~ link in B9O.

The clossd subroutines nrc cntered by 1362 orders in the compilad
pPrograi. This involves some loss of time in obeying the object program, by
comparison with the usual method of loading B9O and then Junmpinzg cxplicitlys
indecd some of the subroutines or: so short thot it would be better to come
pile them in open form inte the prosr-w. Part of the excuse for the present

S

16.

treatment is the compiler-writer's convenience; but there is also o con-
pensating saving of time from reducing tho number of orcers that have to he
compiled and assemblel, Waen a version of the compiler is procduced which
#enerates binary program in the store, instoend of IIT in on cutput stream,
this should be rceconsidered,

The various routinces arc described in detail below. The norancters
dich arc usced to labol the entry points in this description are those which
appear in the IIT form of the packnrse. They 2lso appesr in the Autocode
cowniler, wherce they are explicitly set by directive; in the object program,
therefore, jumps to those entry »oints can be compiled with absolute addresses
and the corresponding pnramctors never occur. The pornnmeters which address
lenpg~-term working sprce only awpenar in the IIT form of the package; they are
used hers solely to simplify the doscrintion,

In gencral, the arguments which a routine nceds are ;given on entry to it
by the contonts of B63, BS9 and sc on; oan index expreasion or o label is
called by value, nnd a floating; point varisble by refercuce. In some cir-
cumstonces the value of o floating; point exvression may be in the accumulator.

In order to organize the nesting of subroutines, we naintain a pushdown
list of subroutine linlks and n count of the number of links in the list; the
former of these is held in 32 halfwords starting at (100), the latter in the
address part of a varinble order in the packozc. Therce are threc entrics:

(1) 4t (3), corresponlin: to -> label —. Bet (b90+1) in pushdown list
and incrense the count by O0.4; nd then jump to b0, Error exit

if the list was olrexdy full,
(i1) At (&), corresponding to RWTURN. Decrease count by O.4, rcmove

>
inst link fron the list and jump to the aldress jiven by it,
Zrror oxit if the list uas already cmnty.

(ii1) At (5), corresponlin: to RZETURN = 1abel. Decrecase count by 0.4
and remove the last item from the listy then jumn to H90. Error
exit if the list wos alrendy emnty.

There are cssentinlly two print routines, the first for PRINT i:j:k =nd
the scocent for FRINT 1 5 we rosord PRINT i:3 os the specinl case of the
former in which k = 1, Some ccastants nre common to beth routines, and the
first onz calls in the szeond ia casce of overflow. Entry conditions are as
follows:

(1) For PRINT i:j:k sct b63=i, bb6S=j and b70=k. inter at (9) to
print from the accurmulator, or at (10) to print from B71.

(11) For PRINT i sct b68=i; enter at (11) to print from the accumu-
lator, or at (12) to print from B6Y.

17.

In esch case there is an error exit if the print parameters are outsils tho
permitted ranss. Nete thet the print /Jutine'* Zc not themselves put out
the spocos nt the end of o nunber; the 3 only set n count in B8S which is
used by the layvout routine, The only cnne in which PUINT is not followed
immediately by am ontry to the layout routin: is in optionnl printing; and
in thnt ense 2 newlins is cxplicitly cuinut.

goch of the seven output streams for vwhich provisien is made hrs its
own layout counts. Thege oceupy four holfwords for cach streoi; two of
these hold the number of itous in ench block ol the nurber of columms, both
decrensed by onc, ond the other two holl the curront velues of the corres—
von:ling counts. vorking spnce for the counts of itoms starts at (164),

for the covnts
to set un the

Coiil

of columas

at (165).

i~yout for one output

vonee the
(i) For L&TOUD isdtk sat LGS=
This scts up the counts fo
if 350 - thet dis, if we arc
layout - it nlss outs cut
unlzas 1< 1< 7.
(i) To alvwmce tho l-yout ccount
with the valuce of b88 thet
entry should nct be used 2
aut “nces the block rovi
tlb end ¢f n block, cr onc
of thcsp, it »~uts cut the
There is ~lso a routi for bin
set bE8=3 and bGY=i, ~nl wntor -t (2
j = 5,7 or O.
There is o routine for orch of
cnter ot (15): a1 oxit the value of
enter at (16,, nfter exmit, nask the

layout counte for the current stroam

m, -
Fogie) o]
atro-m

are two ontry vpoints, the first
initinlly, nnd the szcond to ad-

i, b69 ~nd Bv20=k, and cnter ~t (13).

r n new block for cutout strowa 1

¢ setting rother thisn unsettir he
~onewline on stro-om i, Zrror oxit

oftzr printing o nuwber, enter ot (14)

w2s set by the print routine; this

zeant dmnedintely ofter -RIhL, 1t
counts, and priats two newlines for
for the ead ¢f o row; £uiling either

prasct number of spoces.

ary output. To implement PUICH (1) j

5). sre 1s mm oerrer oxit unless

the tnree inoat functions. For CHAL,

tho function will be in BG3. For ROW,
contont BGG with a suitable constont,

whose vrluc has boon scet by o previous TRICK instruction, mnd the rasult VLWl
he the volue of tho function,

For INZUT, entur ot (7) to form the rosult in the ~ccumlator, or at
(8} to form it in 388, In cithoer crse 367 should held the adlress to which
to jumy on rzading a stroke; on o normnl oxit this is reset to lead to @n
crror routine, so that the compiled nart of the cobjcet prosram nced only sct
it in response to ' a IF /Y, There is an errer oxit coused by reading any
unsuitable chrracter; in this case the character is givenm, in its original
internal codc form, in 866, ~nd the numbor of previcus succossful entrices to

this routine is in BES. {T3e 3o the only use of thesc three B-linos in tho
objoct progsram.) This routine uses intern-l workin; space only.

To LIBX.RY n correspyoniis o routine ecnterud at (30+n) with informntion
about its vnormmoters hold in BES, BGY ~nd so on. AlLl library routincs treat
thiir parameters in the srre woy. & parsmoter wiich ia o flo~ting »oint
variable or comstont is ¢ 1led by rcefersnce, "nd sn inlox or label is called
by vrlue; thus ~ny index norometor cnn be an expression rother thon a2 single
varizblo, If o library rouiine hins orror oxits, these will be of the form
1156 0 O n+1<. 4s well o the librory 3-lincz, these routines mny use
resisters 6-19 as working znocc.

<%y
=t

The mnpnetic routines cro ¢-1lel ir vssenti-1lly the zame way as library
routines; in particular the troetment of thelr paramcters is identical.
They use 5712 to 1023 s a buffor for mesnetic tane tronsfers, but the rost
of their workidne sorce is intern-ol. ater at (17) fer FILE, ot (48) for
RID, ot {19) for WRITE, at (20) for VOSITLON «nd st (29) for WIWFILE; in
cochh cnge there is nn error oxit if thoe valusz of the parameters ore inad-

missiblc. It is nlso necossary to wmtor this soockege at the end of the

cbject PIOLT in order to tidy u»n the buffor; for this nurnose, cnter

~t (21) instead of o 1177 order. This routine terminntes with an 1117 crder.
The epecinl) functicns HADIAIS ~nd DIGESES are ohtained by multinlyiag

the content of the accummlater %y consionts whosc silross are (24) and {25)

resnectivaly

¢ prorrom are iu faet automaticdly tropped;
the normnl trappinz 2re -t the gtort of the rost-nortoem routine. The
instruction TRAP fi:j) therefore "lt“ s the trepying aldress for the cor-
rgohon'Ln frult, instruction UNTHRLAP (j) re ros it. To implement
1) cater ~t (21C; with tqb valuc of label i in 368 and with 3 in
LL imnlement 2 (30 oator ot (211) with 3 in BA8. In cither casc
is mnoerror oxit unloess 0<3<7.

The initislizing routine
he sutocole pocks ~v iine H oy
with 3890 centaininge the woluc
It wots initi-1 conlitiony an follicws

(i) ﬁct stresm 1 for Lot imwmt ~nd cutiut, srovided in ench cane
ta~t it hrns been spzecified in the job leserdiption. {In cach

cose, the error oxit from the stream-setting oxtracodc is tropped;
aence thico wiil not at the moment work ccrr(ctly for cutrut,)

(i1) 3zt (30} a5 the nliress for private monitor aand 2{30) for all

=3
O

(iii) Set tho impossible value 0.1 in Bl to 865 inclusive (the B—ll:.nos
which hol? tho inlex varinbles) so that the post-mertem routine
cn detect which of thum have Leon set in the Autocods preogran
_d ucP” not nrint the others.

(iv) Bst O in B85 and (2C0) in BG?, for use in the routine for INIUT,
(v) Sct thu file bounldary by meons of the 1000 cxtracode.

wWhen 211 this has been Jdone, control is tr-nsferred to the comniled prorram,
=t the lsbel spocified in the iut-code strrt lirectiva,

The post-mortem routine is centerel aftor any fault, other than one for
which o tron haos bewn st da the Jutocode projram. The entry for foults
97 to 99, which cannot be trappel, is nt (30) ~nl is o private nenitor
routine; all othor faults cntor the trap routine at 2(30). The two oxtra
orders ore usced to reconcile the entry conlitions. The post-mortom routine
foils into two parts, nrinting first the volues of those single-character
varicbles whiclh have becn sct cnd then information zbout the type of error
anc, if possible, whers in tnc prorram it has cccurrcd, Since the infor-
mation cbtaincd by the trap is hell in 378 “nﬂ 379, the proset print routinces
dusceribed above can snfoly be used. There is also o clescd Uubr cutine which
is uscd to print noess ;3 it ie entoerel with - link in 890 and the ~ddcess
nf the first of the sequonce of halfwords containins: the messsge in B68, and
it puts out chnractors until it encounters 0,0, which mnrks the cond of the
MesLass. Hote thot newline is stored ~g 7.6 for this purposc.

Tho nost-nmortonm rvoutine first »uts cut o suitoble heading. It then
exrrdines B1 te B12 in turny ot for ony of these whiese contont contains no
fro ctlﬁn 1 port it outs cut on cquaticn sttins the vodue of the corresponiing
index vari~ble. It thom samines similorly thosce registors of store which
cerrespons to L singlo-chorocter flontin: vpoint varisble; and for oach of
these whose contunt is not /0/0 it =muts out mn eguation statin: the value of
th: cerrcoponling vari-vle.

0n o

he next stop iz to print cut an indication of the causc of the error.
To eoch frult number corrcspond two halfwords, one giving the nddrcss of a
sultoble crror sicosane 2nd thoe other iving tqv address of the corrcsponding
opcr routine, Zxcept for error tyons 14, the acticn token is strai htforward:

(i) Forfmlts 1,5,8—10,12,13,19 and 97-99 2 standard nmessase is put
out; 1n onch case the descrintion of the fault in the Autocodc
pro.ram is essentinily the se as in mochine code torms.,

(1i) Fwmlts 0,2 md 4 imply that the program has been overwritten
brcause of 2 previcus misusc of subscriptel variables. For
fault O the post-mortem routince also cxamines the value of B127
whien the trep occurrc?; this shows whether it was the cenpiled
program or the presct pockarme that was overwritten, and hence
whether the subscript was too larpge or wns negative.

(iii) Fanlts 3 and 6 arc the iwmcdiat. conscquence of
subscripts, the subscript bouing neg-tive in the
too larze in the lattor,

(iv) TFor f-ult 11 the current inmut stroam number ie
of the obvious orror messa .
(v) Faults 20-25 ~re magnotic t-ps f-ults not causcd

progrom; thoey have a common mcag~ne which includle

numbr,

out-nf-rom;e

former cane mnd

put out a5 part

by the Autocede
6 the fault

Zrror typc 1% roprusonts thoe crror oxits from th: mresel routines and those

deliberately commile? into the objuct wouzenn. The type

of vrror is in-

dicnted by the ~liress of the 1156 order; the post-mortem routine therefore

exmmminegs this to find 2 suitable messoic.

(1} If the ~liress is negative, then the object pro

“ram has reachoed

tho ond ~f 2 block nnd not found a jump 1notruction. The block

number is n, where n=-100 is the adlross of the 1

156 ordcr.

{ii) idlresses 1,2,5,6 rnd 8 correspond to errors in the preset

rcutlnvs as follows:

ConT o =

Aldress 7 corresponds to an 11los:l character in the ot

Subroutines nectel more thrn 32 deep.

No address in list when exitins from subroutine.
Print poramcters outside permitted range.

Layout parrmeters cutside permitted range.

PUNCH instruction with 1muov 3ible trock numboer.

ror 3

by an INPUT

instruction; the chreactior is in B66 ond the count of succensful ontrics

in BG5S,

(i1ii) Adress n+10, whore 1<n<20, corrrsnom s to misus

¢ of Library n,

(iv) AlJreeses 31 to 33.3% inldic~te misuse of the marnetic tape »ackage,

the dnterral part iulicatia: th: tyme of nisuse

md the fracticnal

wart the type of wmn, motic 1nstruction in the Autocode nrornm.

The cerresponlin:

~rs niven in the following two tablos:

31 file numbcr outsie the permitte? ronsv.

2 The file hez not boen initialize?,

m

N AN

toae nermittel rongoe.
C,6 In FILZA 0.1 In POSLTIONH
Co2 Inm fED 0.3 In WJITZ

When the post-mortem routing hns finished cutputtin-
and any information associ~ted with this, it puts out the
J ' I

3 The Llock ot which th: file ia to start ie outeide

the typ. of crror
xosition of the

¢rror in the ori inal Autocods »nrooram, This is held in couod form in B6k,

in which the dicits arc assigned as follows:

0 - 8 Lest label number; this is forced te 511 if no
1nbel hnos yot been roal in this hlock.

~ 19 Number of lincs since the lmet label,

- 23 Block numbcr,

[@2Ns}

2

Compilation of arithmetic cwzprussions

The subroutincs described below compile those wnrts of the objict pro-
grom which caleul:ite the voalues - whoether in floating point or index mode -
of oliebroic cxnressions., In vach case the “ata for the subroutine is a
formule; or scetion of a formul-, after it has been compressel and cdited by
the input rouflnvu ns the formuln is compiledl, so corresponiing altorations
are made in th. tﬂ The Antn will hnwve beon axomined for syntnctic corrors
before these bubroutlncm ore entored, o formula is »acked inte o sequence
f halfwords, the contont of 2 halfword reprosenting o symbol, The following
types of symbol ar.e poneratel by th: input routine:

(1) 4 vorisble, whother sinzle or fulti-charcetoer, The halfword
contrins mn indiecntion of vhethur the verinble is simple, sub-
seriptel or indcx; ond it ~lec contains an indicstion of the

oelatel allress. For n simpl: variable this is the store
nilrese, for mn index it is the assveiatod B-linc, and for a
subscriptel variable it is o peinter to the vlace in = list in
which the base Ulress for that row of variables is held.

(ii) . constmnt, The holfwerd contains on indication of whether the
censtont is fleatin: soint or inlex, ~n” also its position in the
assoeinted list of conetrnts, Dunlicates are not eliminated from
thoge ljsgg, breouse thoer. mzy be changos of siin Curing oditing,
The list of floatin< point censtonts is - enuine ons which can
be sutput ot ony 9 rtusity a5 nart of the objeet prozram; the
ligL of index eomstonts is mercly o necessary nicce of indirect
adlreseing,

(iii) Functlcns. Th: the spoeinl functions INPUT, 80Y snd
CH.L, which hafw no argunents,

(iv) JArithmetic si s, By this stoge all dmmlied multiplicrtion
sizne hove bewn nade explicit. In allition tc the usunl four
signs, +, -, ¥ ond /, the sign for negative multiplication mny
f2ve boron Inscrted during editing, as port of the attempt to
replnce minus by plus siqas,

{v) Brackcts, Distinctions arc Jrown between bra =n? ket, and
between round ond squarc brackets; but it is not neccgsary
to 2ueide whether round brackets are functional or ~2lgehraic,

(vi.) Beginnins and cnd of the exprossicn to be compiled.

The followins sywmbols are pencrat.ol Juring compiling:

{vii) Null h-lfwords, These are nroiucsd becruse the formula is not
neczssarily clesc un to the left as it is simplifi.d. Tacy
are wholly isnorcl in the lcseriptions that follow,

(viii) Temperary varin bles, both flontinsg peint ond indow. The half-
word indic-tes the type of the varieble ond the associnted store
address, in much the swne woy ns in (1) chove,

Thore is nlso tho fellowin;: notional symbol, which will not appenr explicitly
in the dets but which it iz conveniont to use ir the description:

(ix) The currsnt contunt of the accumulaotor,

The subroutines have becn Jesirqnc) to com mile rensonable, Ciourh not
optimal, object wroprom; clu"rlv thcy'c&ulg be chanjbi so o8 to cmboly
more ¢laborate ruloes. The emphosis has been on wminimizing the number of
orgers muneratal, reother th-n on rinimizinge objoct prosram running time;
thus there ars no qualms rhout oxtracodes such ns the 1302 order. Tho
primary re~son for this is that it le~ls to simpler rules for compilingg
but it is hoped that the savins in compilor an? asssiibly time will balapce

he increase in ohjcet nrosrin runnin;: tine, Sindlnarly, inlex vori-bles
in o floating point cxprossicn are converted to flooting bo*nt nmolde before
any arithactic is Jdone on them; the mein reanson for this is simnlicity, but

it does nlso Jdecrease the risk of u ﬂgtﬂctc(averflow, No spocinl attemnt
has been made to use ths minimum amncunt of o Ject progrom werking, space,

cither for index or for flG ting point vari °leu. If the spnee allow=d is
cxhausted, this is t-kon to indic~ts thet the expraosion is teo complicated,
mnd on oerror nesstge is arinted,

mny ¢nll in others lower thon itsolf, but none of them con be uscd recursively.
This conditicn has to be dmmosel bec-use thc total working spacce of the
comziler is lisdted; in T ct it s-ves both machin: time ond nrosremming

The =ubr-utines have o strict hicesrchic~l crlers; thus aoch gubroutlno

Ffort, It con bo %cHiu -2 by n suitable choico of the corder in which the
subformmlae ~rs to he Ll ite

The cules of the cumpilation rocess ~ro stoted in such a way thot thoy
enable ony syntoctically correet foraule to be comvilg“' but there are two
contexts in which they have nat been wmads cp t1r~l beewse they will alrecdy
have becn chong .2 by the input eliting proccss. Onc of thOuC is the uvnary
plus, which shouli always hove beon hvletcﬂ. Tho othor is a minus sign
pbreceding o product; here the minus should have been chonged to a plus
(or deloted if un~ v) i oone nultinlication chonpud from mositive to
negative,

23.

The hishest lov.l subroutin. mercly removes 2ll occurrences of the
speci -l function LiTiGIl, This hos to be ‘ealt with specizlly becruse it
occurs in ~n index oxprossion but invelves the use of the accumulator. This
process is lescribod ns happening inside cn arithmetic expression; but in
practice it will usunlly b lonc over a whole line at cnce. It is in order
to save time in this subroutine that the inosut routine forms a list of the
positions of the arpumonte of the function INTIG:R in an instructicn, This
subroutine is suppliec? with sn auxiliory, dencnding on the naturs of the line.
The cuxiliory detcrmines the index varisble to which the value of each function
IsTaGSR will eventu~lly be assigne?, zn? is not lusceribus hers.

Subroutine 1. Xouce arithmetic wuprossions by removing INT4GIR, For onch
item in the list of argumonts of the function INTIGUR, treated on o first-in,
first-cut basis, us: subroutine 2 to cempile the arpument inte the nccumulntor,
ond delete it from the expression; thon cnter the awxilisry to obtain a
suitable index verinble, and compile 2 1301 ordor to it; then roplace INTEGSR
by o reference ts this vori-ble.

The svcond level subroutine compiles floating noint exproessions which
20 not invelve the function INTIGIDR, (The eorresacnding subroutine for
fixed »oint cxpressions ig nution-1ly -t ~ lower level, becrusc it does not
involve subscripts.) The structurc of this subroutine is ~overncad by the
fact thnt 21l arithwmctic must be done in the accwrulator; thus once we haove
the value of o subixprossicn in thoe accumulator (in the object arorram), we
should as wuch work on it as possible bofor: storin:; the result, The
sequencs of ordirs compilsd by this subroutine necessarily leaves the value
of the cxpression in the zccumilator, which is where it will be noscded.

In orlcr to simplify the description of the subroutine, we shall use
'operanl' te inclule varishles (whothor simonle, subscrinte? or indox),
constants ~n? the tws spocisl funeticns 109 an? CHIR. is involves corw
tzin conventions in intorprotin: the uscriontion, M opermnd is reparded
as o single symbel, even thouzh it will snrend over severnl holfwords if it
is a subscrintul variable; din other worls, pointers iymnore square brackets
wa their contents. By 'compiling' an accumulator order invelving n sub-
scripted varinbl., we understond the appropriate entry to Subroutine 3,3%;
this will compilc the nccumulator order precedeld by any necossory modifior
Orasrs. A4 constant will be fionting gcoint and is troated cxrmctly like o
slample variable; any advantoge that can be obtoined by changing its sisn
will alrendy have been snined in the cditing routine. If ROW or CiHAR
appcars, it is replaced by a temporary index variable and the corresnonding
sequence of orders is commiled; this happens before the accumulator order
is compiled, perhaps even 23 soon as the pointer reaches it.,

Subroutine 2., Comuilec reiucesd floatins noint expression., This subroutine
has two phases; ia the first it finds o suitable operrnd to roeslace by

24,

face', an?d in the sccend it cbsorbs symbrls of the expression into 'Lec!
stop by step until this is no lonior nossible. If at the end of the sccond
phose the expression has beea reducel to the sinele symbol 'Acc' then the
subroutine is finishsl; otherwise ws repl-ce thee' by a temporary varicble,
compile a suitnble 356 order ~n’ rcturn to the first nanse,

The search for o suitable opermnd is contrelled by a nointer, Cn the
orijinal entry to the subroutine this peinter starts ot the right-hand end
of thac exprossion; on a re-cntry to rhose ons from mhnss two, it storts ot
the tumporary variable which hng just replre.l tice! in the oxpression,
During phase onc the pointer moves from right to left symhol by symbol until
it finds one of thoe followins nituations:

(i) The function INPUT, which is the onl; function cther thon ZOW or
Cdik which ¢~n bo found in this »haso. Teplnece this by 'ace!
~nd compile the appropri-t: libr-ry call.

(13) Reund bra, or the left-hand ond of the axprossion, This must be
Followe by operand, 'plus' onernnd or ‘mimus' oncrond, In tho
first two cnscs corppile a suitable 324 or 1524 ordors; in the
third case counile 2 325 or 1525 ordlor. Then dclet: the sion,
if any, ond replac: the operond by 'lcc'. Howaver, there is ao
wyseible rofincnent. IT the bra is preceled by o function othor
thon RADLATS or DIGIEIS, ~nd the arpument of the function is on
uncigned floating noint eperond, thin ws ¢ form the function by
2 single corder,

(idii) Stroke, provided th~t the noxt non=-opcran’ cn the ricsht is o
stroke or = positive or nepative multiplicntion, fuplace the
symkol after the strokx:, which mist Le ~n omerand, by tAcc!' and
corpilte n 324 or 1524 crlor.

(iv) Plus or minus, provilel that thc next non-operand om the right is
a stroke c¢r & vogitive or negative multiplication, Renlace the
symbol after the plus or minus, which must be an opersnd, by 'Acc!';
if the sign was plus, compile a 324 or 152% order; 1f it was minus,
change it to plus ond compile 2 325 or 1525 order,

These situations are mutu~lly exclusive, and con therefore be tested for in
i)

any orier; moreover cne of them must happen cventually. As soon as we have

found one n~nd token the proper action, we enter the szcond phase,

In phage two we sxamine the neighbourhood of 'Acc' to sce if it fits
any one of the following descriptions, Note that these are not mutually
exclusive, and have thercfore to be examined in the order given; also that
we only exomine o Zescription if we have friled to fit any of the previous
deseriptions.

25.

(i) Noxt symbol to the right is a stroks. Delete the stroke nnd the
syabol following it, which must be an oper-nd, and compile a 374
or 1574 order.

(ii) Next symbol to the right is a positive or negntive multiplication
sign., Delete this sign an! the symbol following it, which mmst
bo an operand, and compils a 362 or 1562 orler for a positive
multiplication, or n 363 or 1563 order for a negative multiplication,

If neither of thesc cases has occurre? then the next symbol to the right must
ke »lus, minus, o round ket or the eni of the expression.

(i1i) Previous symbol to the left is o positive or negative multipli-
cation sign. If the symbol before that is an operand, delete the
operand ond multiplicution sign, and compile a 362 or 1562 order
for 2 pogitive multivlic~tion, or a 363 or 1563 order for a
negative onc.

(iv) Previous symbol to the left is plus, minus, round bra or start of
expression, anl next symbol to the right is plus or minus. In
this cuse the noext but onc symbol to the right must be an operand;
delete this operand and the plus or minus that nrecedes it, and
comnrilc an orier accorling to the following table:

Choractor before VAce!

Opaerand Sin of owerq~nl Finus Other
Floatin;; + 322 320

L - 320 321
Inidcex + 1521 1520
8518155 ~ 1520 1521

voreovoer, cheang: the sywbol kofore 'Ace! to plus if o 322 order
wns compiled,

(v) Previous symbel to the left is »lus or minus, which is procaded
by an operand, LIt the symbol before tha operand is plus, minus,
roun:: bra or the strrt of the expreasion, procied as follows.
Compile ' order accordin, to the followin; tnble:

Symbol befors 'Acc!

Opermmd Preceled by + -

Floatins Minus 321 320
> Other 320 322

Inlox Minus 1521 1520
& Other 1520 1521

Delcte the opernnl, and the character before it if thet is a signg

N
26,

322 oridir was compiled then chenge the symbol before

YAcct'! to a plus,

(vi) Previous symbol to the left is plus or minus, preceded by a round
bra or the start of the expression. Delete the sign; and if it
wos o minus compile n 322 order which refers to the constant 40,
which is available in the package.

(vii) Previous symbol to the left is round bra. In this case the next
symbol to the right must be round kot. If the symbol before the
round bra is a function; compilc the order that caleulates it and
delete function, bra ~nd ket. Otherwise simply delete the bra
and ket,

If the description that was found led to nny action, then repeat phase two
with the new situation, If it led to no actiocn, or if no suitable des-
cription was found, then cither exit from the subroutine or return to vhasa
one as described above.

It is also nccessary to consider in detnil the relation between the
symbols used in the description nbove and the actunl string of halfwords
which represents the expression, The symbol 'Acc' is never held in the
store; it correcsponds to a sequence of null halfworls, and it is represen-
ted by pointers to the first anid last of these halfwords. Deletion in
phnse two involves increasing the scope of 'Acc!'. Pointers are moved by a
pair of internal subroutinces to find the symbnl before or after a given
symbol; these move one halfword =t a time, testing for the ends of the
cxpression and ignoring null holfwords and square brackets and their conteonts,
On roturning from phnase two to vhase one, the cxopression is contracted to
the lef? by removing thosc null halfwords which constituted YAdee!, except
for the onc into which the temporary variable is put; this is not logically
necessary, but it shoull save time.

This is tho only subroutine which uses tumnorary floating point
vari~bles; onl the Jdescription above shows thot it uses them on a strict
'last in, first out! basis. de can therefore control the nllocation of
storaje reglsters to thosc varinbles as follows, (We assume that the
registurs available ar: consscutive, and that thoso with the lowest ade
dresses are to be used first; but only minor chrmzes in the descrintion
would be needel to change these conventions,) #¢ hold throughout the
subroutine o nuobor, which is the addr:ss of tho next register available
for usc., On ontry to the subroutinc, this is set to the first aldross
allocated to tomporary voriablos, It is increased by on:» cvery time 'Acc!
is replaced by o tumpornry variabl: at the ond of phrge twoy and it is
decreased by one whenever any other order involving o temmorary floating
point variably is compilod - the new volue of the number being in this casc
also the sddress of the order comniled. Thus in the representation of the
expression in the store, we do not nced to hol? the address of the temporary

varisble; we can simply use the same symbol for all temporary floating
point vorinbles,

The remaining subroutines deal with index cxpressions which do not
involve the function INT.IGSR, Becnuse of the method usel for dealing
with this function in 3Zubroutine 1, w. crnnot usc the simple tcchnique
above for controlling temporary inlex virisbles. Instead, a tomporary
index veriable in thoe expression to be compiled is represente? by a half-
word which contains thc number of the variablc; and to cach potuntial
temporary vorieble we assign o marker which denotes whether it is in use
at the moment or not, This marker is sot to 'in use! whencvir a ncw
temporary variable is supplicd - the voaricble being the one with smallest
aldress omong thosc at prescnt not in use; the marker is rosct to 'not
in use' whenever the vorinble is used to ca'noo the vnlue of another
varicble,

Avart from the special treatment of the functions I PUT, CHAR and ROW
in Subroutine 4, the only orders asscmbled in these routines arc 120 to 124,
1302 ond 1303, If these combine the valucs of two temporary varicbles,
then the result is the now volus of the temporary vorisble with the lower
address and the other is relersced; this convention is imposed so that
Subroutines 3.2 anl 3.4 should compile assisnments to the tomporary varinble
with the low:st possible address, os the specifications of Library routines
QBSUNC « If the order nssembled combinss the values of a temporary and a
named variable, then norm-1ly the result is the new value of tho temnornry
voriable; the only cxcoption is duscribod ¢xplicitly in Subroutince 3.1,
where the result is the now value of the namzd varinble ~nd the temporary
varinble is releoscd, Sudroutine 3.1 is 2lso the only place wherc the
values of two named varinblos are combin.l. The function vart of the
order compiled ig determincd by the arithmetic involved, excopt in the choice
between a 120 and 122 orlur; hsree wa choose so th-t tho result has positive
sizn in the cxpression boing asscmbled,

The other operonls that can cccur ~re constants and functions - tho
latter only in 3ubroutinc 4, Tc each of the threc poszible functions
corresponds on Autocode-packe ;¢ subroutine which londs B83; as soon as
onz of them is cnecounters?, we compile an entry to the corresponding
subreutine, folleowsd in the cazz of R0Y by ~ masking order whose arjument
has boun sct by a urovious TRACK instruction, We then replace the function
by a pscudo-vrrinble nssocinted with B33, which bohnves ex~ctly like a
tunporary varinble cxccpt in two respects, It Jdocs not hnve 2 'usced -
unused' marker, to be resct when it is relenscd; and it Joes not count
as o temporary variable Juring the scorch for one in Subroutine 3.2

So far =s multiplication is concerncd, n constant is troated exnctly

N
op]

like a named varicble; this copes with Subroutine k. The active port of
any other subroutine is comcern:d with manipulating -n clementsry sum: thot
is, 2n oxpression contninin; no brackets, products or functions. The first
step in this ic to scrm through the cxoression (from loft to right so as to
simplify dealing with signs) looking for particularly dosirable voeriabless
the definition of thess lencnds on the subroutinc, but they alwoys include
the tcmnorary vaoricble with the smnllest oliress. The same scan deals with
constonts: we sot 2 number initially to zero, and whon we find - constont
we Jelete it (ond the plus or minus that proccdes it) end add it into the
numbcr, The number ic then usced as the cdiress mart of the next order
compiled, with sign chaonged for o 122 or 123 ori.r; and it is then rosct

to zero as a marlker.

Subroutines 3.1 @nd 3.3 wholly delct: tho original cxpronsion, re-
placing it by null halfworls; the other subroutines replace the oxpression
oy o roduced form of it, not nseussarily closod u» to the left. TFor this
purpose, 3Subroutincs 3.3 and 3.4 regard the expression as including the
subscripted varisble and thoe square brackets,

Subroutine 3,1, Compilc roluced indox oxnrossion as value for named varicble.
Se call this namo? voriable the ‘target variable'. First usc Subroutine &
to re¢luce the oxpression to an elementary sum, Sc-n through this sum,
dealing with constonts ~nd also looking for the target varioble {(on its
first nppearance only) anl the tommorary varioble with smallost addross; if
cither or both of these arc found, note them and delete them and their sisns
from the cxmression, If »o towporary variable heas been found but therc arc
at loast two operonds left in the cexprossion {or if there is just one
operand, but beth it ~nd the target varisble are negative) then delste one
cperand, obtain mnd nete a new tomporary varicbhl: takon nositively, and com~
pile oosuitable 121 or 12% orlor,

LE wo now have a temworory vari-»le, scan throu-h the oxpression agoin,
rerging opertnds one by on: into the temnerary varinble; cach merge in-
volves dcleting the eperand from th. oxpression, compiling ~ 120, 122 or
124 order and (for o 120 order enly) changing the sign of tho temporary
variabic from minus to plus. If there is ne temporary voriabls but the
cxpriseion still contnins an operan?, thon note this ns if it were a tem-
perary variable and dclete it from the exprescion, (Thus at this stope
the cxpression is totally dolcetod.) Finally, find which of tha four zl-
ternatives below corresponds to the operands noted and net accorlingly:

(i) Ne vorirbles. Compile a 121 orilcr to sct the target variesble,
(i1) Torgct varinblc only, Coupile =2 124 or 120 order accerling to
the sign of the target varioble, to incorporat: the constonts.
(iii) Won-target vorizble only. Compile © 121 er 123 order to set the
torget from the non-terset varicble, according to the sign of the
latter,

(iv) Torgot and non-target varichles. — First, if both these have
negative signs compils a 120 order to change the sign of the
temnornry varinble; and note this chaonge of siim. Then com-
pilc o 120, 122 or 124 orler te obsorb the non-targzet into the
target varinble,.

Subroutin: 3.2, Compile roiucc? index cxmrassion ns voluc for tomporary
varizble. Use Subroutine 4 to reduce thoe oxpreesion to an clementary sumg
and then use Subroutine 5 to denl with this. The tomporary variable as-
signed to this will be the one with lowest alircss among: those which arc in
the cxpression or availablc for use in it.

Subroutinc 3,3. "Imnlement compilation of ~n crder referring to a subscrinted
varioble. The datn for this subroutinc consists of the function part of the
order and o pointor to the halfword in an cxprossion which contains the name
of the subscriptel variablic, First usc SBubroutince 4 on the subscript to
reluce it to an elementary sum. se:n through this sum, denling with con-
stents and clso lookin for the temporary veriable with smallest ndlrass,

~nd for one other positive opermnd; if cithor or both of thesc are found,
acte them ~nd deleto them from the cxpression, If no temmorary variable
nns boon found but there sre at least two opermnids loft in the oxoression

(or onc negative onc), then delote one cperand, obtzin and note a new tom-
porary variavle token positively, and comnilc o suitable 121 or 123 order.

If therc is no tumporary vericble but the expression contains just one
operand, which 1s positive, uncte this as if it were 2 temmorary varinble and
delete it from the subscript.

If there sre still opermnds in the subscript, and hence cortainly a
tenporary varicble, scan through the subscrint azain nerging operonids one
by one into the teompsrary varicble; as ~bove, each merse involves doleting
the operand from the subseript, compiling a 120, 122 or 12% order =né (for
a 120 order only) changing the sign of the tunnorary voriocble from nlus to
rninus. If ot the ond of thic scon the tumpersry varinble is still negotive,
compile n 120 order ~ni note its change of siin,

At this stage the subsceript is totzlly delotad, &d to the number
representing the coatribution frem the constants the base addross corrces-
ponding to thc nam: of the subscrinte’ wariables and delete this name ond
the square brackets. Finslly commile the orler ziven, using as moldificrs
the twe vardichbles noteld,

Subroutine 3.%. 5ot reforence adiress for subseripted variable os tomporary
varizble, The data for this is 4 point.r to the holfword in o cxoression
which conteins th: ramc of the subscriptel varizble, Reploee the neme by
the base address associnted with it, ‘clete the saquare kot, angd Jclete the
squers bro or ruplace it with plus accoridiang as the subscript does or does

not start with a =im. Jac Subroutbine # to roducs the resulting sub-

5 - qdd s s 40
expreseion to ~n elomentary sumy mnd then use Subreoutine 5 to lec with
this,

In practice this onl Subrmutine 3.2 will be donce by the same g roup of
orilers

Subrouting 4: Put r.uced inlox cxpression inte ths fomm of an clementary
sum, The subrouting is controllod by n pointer which otorts at the right-
h-n?l cnl of the expression and moves back sten by stev, ignoring null
holfwor.lsa. After erch stop the subroutine tosts whether the peinter noints
to any of the four situntions bolew: note that these are not mutua 11y ox-
clusive and honmcu must boe tostel for in the ordor stated:

(1) Tomporsry varinbls, followed on the ri ht by a multiplication
sisn, Merge this varisble ond the noext operonl, compile a 1302
or 1303 orier, mnd dzlete one operaad and the multinlication sign,

(11) Temporsry varichle srece’cd on ths loft by o multiplication sign.
I the previous chercctor is sn opor-nd, merze it with this
varisble, cosmile a 1302 or 1307 crler, and Jdelcte conc operand
snd the multinlicoticn sigza.

(iii) Operoné followsd cn the right by o multinlication sipn but not
procsied by ons. Obtﬂln ooy t*mpor&ry varieble and sct it in
the exprossion dn place of this oper-nd, and compilc the corres-
poniing 121 ordor,

(iv) Round bra, Avnly Subroutine 5 to th: subuxprossicn strictly
botweon thio round bra an? the next rounld kot to the risht; then
aclets the rounl brrekots.

IT the deseriptinon that woe found 1ol to ony netion, then rosct the pointer
to the result of the cetion anl tist ogrin for sny of the four situations

listed; notce that this mny mesn moving the sointer to the risht, If no

vctilon was taken, or if the actusl zituntion fittod none of the dose criptions,
thon move the pointer back ~nothor ston. wincn the nointer reaches the left-
hl 3

amnd ol of the capression, the subroutine ic finizhed,

ﬁJJPQL&E&i_{, Compile suia s volue for tommorary wariable. Scon
he sutt, J\‘l;n‘ W]tﬂ Cﬂnut nts and also looking for the tommorary
V”Pl‘jlp with smolicet nddressy i this i1s found, note it and clote it

from the sum, If no tomwmornry varinble has boen foun?, obtain and note a
naw one teken positively; if there are operands still ir the sum, dolote

one of tnem and compile a 121 or 123 order according to its sigmi if not,
comaile o 121 ordur to deal with the constants., Now scan throush the ox-
pression again, mer; ing operanls one by cne inte the tumdorary varinble;
cach merge involves deleting the operan? from the uxpression, comwiling a
120, 122 or 124 crdor nnd (for o 120 orlur only) chmnging Eiic sion of the

\
S0
L)

temnorary varicble from minus to plus. If nt the cnd of this the tcma??nry
varisble is still negotive, comdile a 120 order to chonge its s1 N Then
1f the constonts marker is non-zero (s that no order has yet beon conmiled),
commile a 124 order to denl with the coanstonts.

Finally, writce te sonmce halfword of the cxpression (which is now null)
the symbol for this tomwornry varinble; ond oxit from the subroutinc,

Iransication of Autocode instructions

An Autocod: instruction of any porticular type may be rejarded as a
fixed syntactic formula whesc aps, if wny, centain numbers, variables,
labulis, or index or floating noint expressions., The contents of the joaps
vrevide 211 the variability in the instruction; in effect they are the
arpunents of o rather clumsily written functicn. To cach type of ins-

truction corrcsponds a translation routinc; this nay compile orgenizationa
orders for the oo3ect projron, or updato tnb long-ternm information held by
the compilur, or both. If necossory, the translation routine will czll in

a subroutine for denling with nrithmetlcnl expressions,

With this smethol of tromslation, there is o corrcspondence between
Autocole instructicns in the source prosram and scctions of machine code in
the cbjoet prozronm,. To sinmplify Rescu., we wish to mnke this correspon-
Junce explicity sc we czronge that while the object projran is being
obeyad o warticular B-line shall nlwoys conteoin tihe line number of the
curreont linc in the sourco »rojram, The content of this B-line must be
resot nt the bosinning of ench section of object nropram; becouse of the
possibility of cxcoeding tinme or sutput liudts, we muet o this even 1f the
scetion of object progrou yeors inennoble <f uonitorin, ;. most tronslotion
routinius will therefor. co mpile an crdor to resct this B-ling, although this
will not be stoted explicitly; the current lince number is necusstrily held
by the input routine, since it is ncelul by the crror cxits from the compiler,

Tt is convenicnt to think of the coupiler ns working in two pha
the first phose it rends on dutocodc instruction inte the stors, odi
compresges it, ca? checks it for gyntactic corrcetncss. In the sccond

nhase it recornizes the type of the instructiom, anﬂ cntere the spproprinte
routine to tromslato ity these are the reutines doscribed below. In
vractice, the intirince is sonowﬁﬁt different, bbculs the type of an Autecodoe
nstructisi is unigucely dotoruine! by its first fow characters; thus the
first phose contains onc routince for cach instruction type, and thic routine
leads straight on to the corresponling routine of phnsce two. For certain

types of instruction, input and translation jo on at the snuie ting; these
arc tho crscs in which the tronslation procuecs is unusualdly simple tnd in
which the instruction uisght reasonably be so lony; thot it could not all be
held in the store at once:

32,

(i) Progr~z block and subseriptel voriables declaration. In foct,

each dceclaration is renld ~n tronslated by itsclf, in order to
save space; but we shall ignorce this when we come to describe it,

(i1) Bquare brackets cnclosing comnent. Cn rcading the sguarc bra,
sct up a count of bracket depth, whese original valuc is onc.
This count iz to be increascd by one on reading a square bra and
deerensod by onc on roading o squore kct. The comment enls with
the squarc ket ot wiich the count becouos zero; woe must then
verify that the rest of the line in the source progcrom is cimty.

(iii) TITLE, Verify that the next charccter is o colon. Then read
char-cters from the input stream ond writs thonm to tho systom
output stroam until cnothor colon is road; this terminatos the
title and is not itsulf cutout, The compiler must koen o record
of Shce currunt internnleccdc shift in tho output stroanm and put
out shifts when necessary; this record is initinlly sct to 'inner!
an mast Be left so ot the ond of the title, if no casary by out-
patting on extra 'inner set', Two choractors, other thon colon,
noeld specinl treatoent: o suffix 2 must be replaced by -~ SHACT
and aonewline must he ut out Dy a 1065 0 0 2,1 order aad rust
resct the output strean shift worker, At the end of the title,
verify that the rost of th- line is cupty.

(iv) DT, This is trentel in easentislly the same way as TITLI, oxcopt
that instend of outputting o chroroctor wo ccmpile a 1064 order in
the objuct prosrams note that for a newline this is 1005 0 0 2,1
agein,

Thore crc two other types of Autoco’c inctruction which nrs snomalous in that
neither occuples o ling te itsclf:

(1) M Mutocs e label crusca the corregponiding raching code labol to he
coupiled; this compilation incluies ~ check that the 1absl hes not
been used before, anl sny nccvssary uplotins of lists, After this

hine been deng, the vericuc line couants in the corpiler arc chongzed
s0 ag to rofor to this label rother thon the srevicus onc; but
there is no chmge if the provious 1nbel wos on the same line.

(i1) Round brocksts 2onotin- Koy O optional compilin., These may be

trented as one Autocode instruction or ns two. If 2 round bra

is rand wiin key © is not sct, then we rood and imors chnrscters

frem the input stream uatil we cncountor a nowline Followed by &

round ket; this cnis the optional s.ction, and we then verify that

the rest of the currunt linc is oupty, (This treotment leads to
curtain anennlicvs for TEXT or TITLE; it ie ictated by competibility.)
If & rounl bre is rend when key O is sot, this nerely scts a

flip~flop; ond when a round kot is rend at the cnd of the soction

the flip-flop is unset nsnin. In ¢ither cnse there is an orror

=3 G
Cu

W
W

@Xit if the flip‘-f 3 in in tho wrong position. (A ILYS ing-
truction in the mid2le of ~n optional section will thercfore not
couse the rest of the section to be ignorud.)

RO
APl

The instructions ZiU0ATE and PLOCHAL control the allocation of snace to
subscripted and multicharacter variahles; thoir immcdiate effect is to up-
date the tables which the compiler uses for this ~urpose. There are three
such tablez, the first for mltichoaractor index v-riables, the second for
multicharacter flenting »oint vorirbles, and the third for subscripted
varicbles whether single or multichuracter, The first table assipgns to
coch multicharactor index voriclle a B-line; whon such = voriable is first
encountered by the input routine it is cssigsnel the next unused B-line, but
this may later be altered by an ZUATI instructien. The second table ns-
signs te each imlticharacter floatin,; point variable a stormpe regicter;
reviariis similor to those above apply in this casz also. The third table
¢ives for onch storaje register assijned to a fleating point variable the
basc adlresc for the corrasponding subscripted variable name; if no such
subscripted variable has been declorsd thils base address is negative, as a
narker, (Notc that the argument for entering this t-ble is not the name
of the simple varicble, becsuse we have to allow for the effccts of EJUATE.)
The third teble is cltered by a PROGRAN instructien,

fn SYUATS instruction has the form DAUATE a¢ . o pee Xy where n > 1
and the . are multicharnctor identificrs of thoe samc type. Without loss
of gcnoral%ty asswas this type to be index, e thon rend the entry in
toble 1 corres»monding to = 0 ~md write this into the pevitions in trble 1
corrosponding to Cqr emes Ao

. PROGRAH instructiosn hns the form JROGLH m &, ... £ where n can be
zero ~nd coch @ has the form o [] with X the namo of a flogting noint
voriciile and @ o none-ncgative dantsoor. On ronding m, comnile a paranctoer
row dircctive for the object program, cot -1 in overy position in toble 3
ond reset the count givine the first rogistor still availsble for subseripted
variaxbles te its bLase voluo. Cn realing any & , find the address assiznoed
to « as a simple variabl., ster:s th: current value of the count in the core
responding position in toble 3 (verifying thot that position proviously
contained ~1), @nd incranse tho covnt by O + 1. At the ond of thoe ing-
truction, if this is not the first vrojram block to be dealt with, verify
that the valuc of the count is rot groater than it wos for the first progron
hlocle,

Thers arc two otior instructions which only altcer the information held
in the compiler, For n TRACK verify that n = 5,7 or 8 and thon sot 31,
127 or 255 respuctively as the nask to be used when commiling the function
ROV, For LY or XKEYS ’91 oo 'On cle~r all koy marker Jizits and then reset vse

IA

5.

A 1n a~ch E
for 9’P soey Qn’ verifying that e-ch 5

The main body of o caleulstion instructicn has the form == ... =43
where the o, ore variables, with the floating peint sreceling the indeX
ones, and ﬁ?%s an arithmeticrl expression which is index or floating point
according as X 1is. If thic is followed by ' m IF /', which can only
happen when theMinstruction contains the function INIUT, compilc an orier
to sct the value of label m in BG7. If the instruction is followed by one
or more optionnl print messages of the form *m, test whether key m has bewn
sct, and if so sct the ontional »rint markcer; this will be used when the

aleculation instructicn has been compiled, Next, apply Subroutinc 1 to
the ontirc cxpression (not just to £) to rumove all anpearances of the
function INT.ZG:Ii,

There iz now 2 division, according as G ig an index or a floating
peint varicble, 1f < is =n indoex, usc Subroutin. 3.1 to comnile the
orders waich imalement o = £ Now if n > 1 delete '= £, repard =X
as a now £ 'l roturn to The hend of this oaraprphe If n =1, test if =
the optional nrint marker is sety if so, commile the orders to sct the
value of o, in B69, to sutnout - newline followed by *m and a space, to
print from é69 and to output rnother ncwlince, If, however, % _ is a
floating noint varinble, use Bubroutinc 2 tc compilc the orders which load
the value of,ﬁ intc tho accumulator. Taen for coch X in turn, compile o
356 order to set e from the accumulntor, using Subroutine 3.3 for this if «
is a subscripted variablc. Finnlly tost if tho optional print marker is
sct; if so, compile the ordcrs to outnut nowline followad by *m and a snace,
to nrint from thoe nccuvimlotor and te output ~nother ncwline.

Autocode cycles nre organized by the instructions FOR L = £, : B, 1 £
ond RePEAT, wihlch cre woalred, In princivle, o FOR instruction causes two 5
clhunks of progrom to be compilel; one of thom is output imincdiately as oort
of th: object pro, rau, the other is nut into 2 pushilown list, A RUPZAT
instruction caouses the ton chunk to b removed from thoe huchdown list and
outmut os nart of thc objeet prorrim, Thers 1s the further complication
that thoe first chunk invelves ferward roforonecs to the sceconi ene, and nust
thorafore boe supnlicd with osbject orosram labelsy this has to be done by
a specinl subroutine, since it will have to Lo changed for direct compiling
into binary.

Suppuse first that « is » floatin: point variable (accessarily a
simnle onc) and that the count is an increasing one; this last fact will
hovo been neted in the input routine. Enter a subroutine to obtrin two
object progrom labels A and w . Compile object prorrmm orders to implc-
ment the caleulntion instructiont = &4 and foellow thosc with the order
21 * 0 (A), Tin) *, the currcent valuc of (0), and sct ,« cnd ¥ in

the pushdown list. Compile object projr-m orders to imp}ement.the calcu-
lation instruction o = X + A,, vhere the nlus sign is omitted if the first
character of £, is plues or minus. Outout the cbject prosram label A 3
then use Subroutines 1 and 2 to compile the orders which lead &, - e into
the accunmlator, and follow these by 237 * O (u). This completes the
tronslation of n FOR instruction. If the count wns o decreasing one, the
only chenge is that we commile = - ,83 inste~d of (83 - X .

If « is an index variable the trentment is similar; suppoese ~ain that
the count is an increasing one. Proceed as n~bove up to ocutputting progrem
label A ; then use Subroutines 1 and 3.2 to compile the orders which load

, = %X as » temporary variable (necess-rily B68) ani follow them with
217”7 * 68 (pm). If the count is decreasin., compile & - £, insteal.
Certain refinements to tals are availahle, For a iecreasingBCount with
f33 = 0, we need not comnilex - O but c'n uss o 217 order to test o« directly,
If”8 ., is at worst the sum of an index varinble nd a constant, we can com-
vile & - ﬁ} or X, -o into Bt by 2 singzle 170 order, and test it with
227 0 ().~

To tronslrte REPEAT, remove the top pair 4+ , ¥ from the pushdown list,
compile the orler 121 * O v and then ocutput the object program label ft .
There will be an error exit if the pushdown list was empty; there will also
be one on a FOR instruction if the pushiown list is already full.

Therc is scope for consilerably grenter saving by putting the test into
the port of the nrogr~m compilel by REPL.T; this is worth doing if the count
is not too complic=te.l, For example, sunpose that o is on index variable,
that 8, = 1 and thnt ﬁ3. is ot worst the sum of an index varisble and a
Constan%; then a botterBtranslation srocelure is as follows, nter a
subroutine to obtain one object »nrosram lnbel A, Compile object program
orders to implement the calculstion instruction of = &, ~nd fellow these
with on order to set 3, -~ in Dt -n~ then the order 22? * 0 (A). Fina
¥ , the current value af (0), =n’ set = » A5, D and ¥ in the pushdown list.
To tr-mslate REPL.LT, ramove them frow the »ughdown list, compile an order to
set &_ - s in Bt, and then the order 221 * « ¥ , 2nd finally outsut the
object)program label 2, There ~re owvious minor ch-nges for & , = -1, and
even further simplification when #& g = 0] N

An Autccole jurd instruction mny be unconditionnl or conditional, and it
nay be either n simnle jumd or a switch; this gives four possibilities. In
addltion there are the entries to and exits frow subroutines.

A simmle unconditional jumm huas the forimt ' m' ond is translated into
the single order 121 * 0 (m). Thie input routine edits o conditional
Jurm, so that it is hwnded over to the translator in the form - m IF« = Q!

or "X £ 0 or ' > 0" or ' < O' where X is an index or flt.).”t%:in._-:.pojl.nt
expression., In ~ll the descriptions we assume thot the condition isds= 0;

the other cases only involve changin:, the function part of the test order.

If o is Tloxntin,. point, use Subroutines 1 and 2 to compile coriers which load

o¢ into the accumulator, end follow these with 234 * 0 (a). If « is an
index expression, comwile orders which lonl it ns a tcmpornry varicble,
necessnrily B68, and follow these with 214 * 63 (m); but nots that if &£ is
the 2difference of two vorinbles, plus peorhans o constant, it would be better

to compile the one order which scts it inte Bt and feliow that by 226 * 0 (m).

A switch has the form —=A[A v eeay N _J wherc B is an index vaoriable
and the A, arc lobels, To tronsi-~te it, gompile the four orders
217 * 2 n¥5(0), 170 2 0 n, 227 * O n+3(0), 101 * & 1(0) followed
by the n+1 pairs /(&)/0 ... /(»_)/0. If the switeh is conditicnal then
the condition is editéd as above; nsuppose it is X = 0, If X is 2 floating
point expression, compile the orders to load.®x into the accumulnator, followed
by 235 * 0 n+6(0) and then the orders to tronslate the corresponding un-
cenditional switch; similerly for o4 an index expression.

Subroutine entries and exits involve 2 jump to a prasct routine, and the
poarametors explicitly numberad are the correspenlding compiler ones. Hepy
~ m ~ compile the two orders %62 0 0 (3), 121 * 0 (mj; for RATURN
compile 1362 0 O (4). For the instruction obtainad by following RETURN
by an unconditional jum», commile 1362 O 0O (5) followed by the orders
corresponding to the jumy,

There are = vardety of instructions of library type, for nll of which we
complle the orlers which sit the par-metors in their proper places, followed
by a 1362 order to cnter & presct subroutine whose addrcss is a parometer of
the commiler, The print rcutines are anomelous, in that their parameters
are token in an unanturcl order, and in that the 1362 order compiled must be
followed by a further orler 1362 O O (14) to 2cal with layout:

(1) For PRINT (&} i:j:k use Gubroutinos 1 and 3.2 to compile orders to
set the value of 1 in 363, then that of j in B6Y ~nd then that of
k in B70, If o is n floatin »noint cxpression, use Subroutines 1
end 2 to compile orders to sct its value in the nccumulator, ond
follow thesc with 1362 O O (9); if « is an index expression use
Subroutines 1 end 3.2 to compile orders to set its valuc in B71 and
then compile on order 1362 © 0O (10).

(ii) Tronslate PRINT (o) i:j as if it were PRINT (X)) i:j:1.

(111} TFor PRINT (X) i use Subroutines 1 and 3.2 to comrsile orders to
set the value of i in B63. If K is floating point, compile orders
to set it in the accumulator, followed by 1362 0 O (11); if it
is o index expression, commilc orders to set it in B69 and then
comnile 1362 O 0 (12).

The instructiorn PUNCH (i) j is amemnlous only in the order of its parameters.
Compilc orders to set j in B68, znd then to set i in B69, and then compile
1362 0 0O (26).

The other instructions of this sort are LAYOUT, LIBRARY n, TRAP, UWTRAP
and the five magnetic-tape actions; for this purmose we regard each LIBRARY n
instruction s a distinct tyne, rathcr than treating n as a paramcter. To
ench of these types corresponds an adircss (m) in the preset routines, and o
codeword which shows how mmy parancters should be supplied and whether they
arc flonting point, index or label. For cach paramcter in turn, coupile the
orlers to set the corresponding B-line. For flonting »noint we either compile
a 121 order or use Subroutines 1 and 3.43 for -on index éxpression we use
Subroutines 1 and 3.2; for o label we compnile a 121 order. When o1l the
par~meters have been dealt with, compile the order 1362 O 0O (m).

The instruction PRINTCHAR (X) would be dealt with in exactly the same
way, but there happons to be no preset routine associated with it. Use
subroutines 1 end 3.2 to compile orders to get the valuc of 4 in B68, and
then compile 163 68 0 O three times, followed by 106k O 68 O.

Any other type of instruction leads to the compilation of a fixed se-
quence of orders, whose ndiresses muy dedend on the numbers in thoe instruction:

(1} For START m, where¢ m is a label, first noto ¥, the current value

of (0). Comile the sequence of orders 1260, 1267, 1274 which will
bring the opreset packnge of routincs down from magnetic tape; the
rest of these orders depend on the compiler-supervisor interface
mmd are not yet fimed. Then compile 121 90 O (m), 129 * 0O (2)
to jump to th: preset strrting sequence and thence to the Autocode
startin: adlruss. Pinally cempile the start dircetive = ¥, This
ends the compilntizn vnrocess; the compiler then discovors whether
the process hes beon satisfactory or not, and oxits accordingly.

(ii) The followin: instructions contzin = number, and this must be ine
scrted into the machine cole formula which is compiled as a
tranzlation of them:

RILDER n 1050 0 O n
QUILUT n 1060 0 0 n
{(1ii) The fellowin:; instructions lend to the compilation of the fixed
order or sequence of orders shown copposite thom:

RUKOUT 121 68 0 40

1066 0 O O
203 * 68 -1(0)

TLGE 1061 63 0 O
1071 066 O

CRLF 1065 0O 0 2,1

STOP 221 * 0 (21

(iv) The instructions WaIT ond 14h/£2 are toitally izncred,

30,

Qutnut of cbject nrosram

The first version of the compilor will produce chjoct program in IIT
form as a character stream; but thore will be o later version which as-
scmbles it in binary lirectly into the store. For this later version it
will be necussary to rewrite the routines which put out the individual iteoms
of the object progrom, and these whieh arce in -~ny way concerncd with object
prografil par~mators, Thesc routines nrc describoed below; some of the
subdivisions of cnces are more cloborate than we need for the first version
of the comnilcr, but this will prove aZvantageous for the later onc,

To each Autocode prosram block corresnonds one object projram parnmeter
row, the number of the row being one groater thon thet of the block. Para-
meters 1 to 256 are assigned to the labols of the autocode program, para-
meter V' 4+ 1 corresponding to label ¥ . Paramcters 257 to 511 are available
to the comniler for references to lists of floating point constants and for
the forwars roferencos implicit in 'for - repeat' cycles. To cnsure that
sny tisuse of labels in the _Autocode progr-m is deteeted during compilation,
rather thon in the IIT asscembly routine, two marker digits arc assigned to
cach possible label: one of thoem records whether the label has beon uscd,
the other whether there has been any rcforence to it, wWwhen o label is
used, the routine checks that the first moarkor was unsct and then sets it
when a reforcence is made to a label, the routine sets the sccond marker
whethor it wos nreviously sct or not. Before implemoenting the start
directive, the compilcr checks thint there is no labol whese sccond marker
is set but whose first is not,

The compiler nlso kions o list of floating point constants appearing in
he Autoesle progrom; this list is built up by the input routine, and is
clanrsd by being put cut ns part of the object prosram at any reasonable
cpportunity - that is, aftcr ~ny unconlitional jump or at the ond of a block,
In additicrn the compiler has five counts associated with the output routines
to prescerve:

(1) Current value of (0). This is initinlly sot during compilation
of the first PROGR.M instruction; it is advonced whenover an
item is outzut,

(11) Idist of pro.r~m block numburs =lready used. This is necded to
check thnt no number is used twicej it is updatoed on cach FROGRAN
instruction, :

(1ii) Numbor of conastants currently held in the list, This is in-
¢rensel by the input routine whenover a now constant is »ut in
the list; it is resct to zerc whencver the list is clenrced by
output,

{iv) Object nrogram porameter to be used to label the noxt list of
const-nts,

39.

(v) Next object prosram parsmetor nvailable for usc.

Of these, (i) and (iii) are used in other wmarts of the comniler, and must
therefore romain the smrme when this soction is re-writton. Becausce thero
is ~ special output routine for orders which rofer to the list of floating
»oint constants, no access to (iv) is nocumsary; =nd access to (v) is pro-
vided throush o speciel routine describe? below.

There ore three print subroutines in the strict scnse, which outmut 2
digit strin; corrcsponding to the contents of = B-linec:

(i) Print deeim~l integer or aldress. This is the subroutine norm2lly
used for ony number within an item, Since it is to be uscd for
paromet or numbers, it must nevoer put out nny snaces, cither in
»lace of non-si;nificant zeros or in place of a plus sign.

(11) Print functicn part of order from octnl form. To reduce trons-
cripticn crrors in writing the compiler, the function nart is
AJiven shifteld two places te the risht of where it should bo, One
initizl zero may be sunpressed.
(iii) Print halfword in octal, A floating peint number will be »nut
out as 2 mair of octal halfwords, to reducce conversion errors.

The routines Zescribed below all deal with onc or more complete itoms; and
they therefore call in these open or closzd subroutines to dozl with the
parts of an itcom.

There are five Jistinet types of order to be cutput, dewonding on the
structurc of the address part; and thus five entrics to the corresponding
routinc., In each cnse the function ond the two modifier narts arc given in
B~lincs on ontry:

(1) Simsle numerical adiress.,

(11) ildress involves an ~utocole lebel in this block, and must
thercfore be just the correspondin:: paramcter, The address
is specified by the Irbel numbsr, ~nd is put out as a parametor;
in addition the routine must set the marker digit which shows
that a refercncs hes beon made te this label,

(1ii) Adlress involves an Autocode lnbel in nnother block. This is
the soane ns (i1), oxcunt that cn entry two numbers are nocded to
specify the a'lress.

(iv) .ddress involves o compiler parameter - that is, 2 parameter
nunmber betweon 257 and 511, This is the same as (ii), excopt
that therc is no narker disit to be set. Note that cach pora-
meter anpears in just one alddress.,

(v) allress involves refercnce to list of consteonts. The address

4o,

is now an integer plus the associated compiler parnmeter, and is
put cut in this forn, Note that only the integer nceds to be
specified on entry to this routinc, sincc the paramcter number
is alrealy known,

It is in fact truc that Ba = 127 in cree (iv), and that Ba = Bm = O in cnse
(v); but it may not be cxpelicnt to take ad ontase of this,

The only parameter whose valuc is set oxplicitly is (0). The corres-
ponuing routine puts out a dirsctive of the form '(0) = ...', obtaining the
value from the approprinte B-linc into which it has olroady been sct. A1l
other narameters are sct by labellinc. For a compiler parometer the routine
simply puts out the parameter number an a closins bracket. For an lutocode
label the routine first checks that the label has not alrealy beon used, and
scts the corresponding: marker dic-it; it thon rescts the count of Autocode
progrom lines to count from this label, unless it is not the first label on
the line; and finally it puts out the parcmeter number =nd a closing brocket.
There is also a routine which obt=ins the number of the next compiler nara-
meter available z2nd alters the corresnonding count,

For n switch instruction o jump toble is commilel; cach item of this
table is a »nair of halfwords of which the first is the value of an Autocode
lobel and the scecond is irrelevant ~nd for convenicnce zcro. There is a

subroutine to put out such a pair of halfworls; as well as outputting, it
scts the marker Zigit which shows thot the labcl has been usod.

There is a routine which puts out the current list of flonting voint
constants as part of the object »roprom; this is entors? after compiling
an unconditiornal jump or 2t the end of a progrem block, The routine firgt
tests whether the list is cmpty; if so it oxits having token no action.
Otherwisc it puts cut the cbject procrom lobel currently assisncd to the list
of constonts, followel by the wombers of the list; for simplicity each of
these is nut out os 2 »pair of octal halfworils, It then resets the count of
flonting point constants to zore, obtains ~ new pormmeter to identify the
list of floatin; point constants, and oxits,

The routine which outputs the start dircctive also tidics up any loosc
cnds in the compilation, and it hands over to thoe supcrvisor all the infor-
mation it needs about the ohject nrogram - including the statement whether it
is error--free and can therefore be run, It first puts out the start direcctivog
the allress of this will always be non-prr-mctric. Then it runs throush the
Autocod. 1-bels, tusting if there arce sny which ore unset but to which re-
ference is made, It then hanls over to the supervisor the number of para-
meter rows 21l the largest parametcr number uscd, md also the current value
of (0), which gives the total space needed, Finally, it returns control to
the supervisor by an extracode which depends on whether the object nrosram
is error-free cor not.

L1,

