
PRELIMINARY

DAP ASSEMBLY PROGRAM

FOR THE DDP-24

GENERAL PURPOSE COMPUTER

COMPUTER CONTROL COMPANY

Copyright, 1963

CONTENTS

Title Page

SECTION I

INTRODUCTION .•...•...... 1-1

SECTION II

GENERAL .

THE CODING FORM .

2-1

PAPER TAPE .

CARDS .

2 -1

2 -1

2-1

2-3

2-3

2-3

2 -3

2-3

2-4

2-5

2-5

2-5

2-5

THE LOCATION FIELD

THE OPERATION CODE FIELD.

THE VARIABLE FIELD .

THE COMMENTS FIELD .

SYMBOLS AND EXPRESSIONS ..

SYMBOLS . .

EXPRESSIONS .

LITERALS .

ASTERISK CONVENTIONS .

SOURCE PROGRAM PREPARATION .

SECTION III

GENERAL .

END

MOR

ORG

3-1

3 -1

3-2

3-2

3-3

3-3

3-3

3-6
3-6
3-7

3 -7

3 -7

3-8

3-8

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS .

REL .

DATA DEFINING PSEUDO-OPERATIONS .

BCI

DEC .

OCT " .

DICTIONARY CONTROLLING PSEUDO-OPERATIONS

CALL

NTRY

RTRN

i

Title Page

SECTION III (continued)

LIST CONTROLLING PSEUDO-OPERATIONS ..

LIST•.

NLST ,•.

MACRO DEFINING PSEUDO-OPERATIONS .

MAC .

ENDM .

STORAGE ALLOCATION PSEUDO-OPERATIONS .

BES ...

BSS

3-8

3-8

3-9

3-9

3-10

3-11

3-11

. 3-11

3-11

3-12

3-12
3-12

COMN .

SYMBOL DEFINING PSEUDO-OPERATION .
EQU .

SECTION IV

SUBROUTINE LIBRARY CHANGES ...•.

4-1

4-2

4-2

4-2

4-2

4-2

GENERAL

SUBROUTINE LIBRARY .

LIBRARY DIRECTORY .

SUBROUTINE PROGRAMS .

UTILITY UPDAT ER .

SECTION V

DIAGNOSTICS .

5-1

5 -1

5 -1

5-2

5-2

5-3

5-4

5-4

GENERAL .

ASSEMBLER OPERATION.

SENSE SWITCHES ..

ASSEMBLER PRODUCTS ..

LISTING .

PUNCHED TAPE .

RELOCATION SPECIFIERS ..

APPENDIX A -- DDP-24 CHARACTERISTICS.

APPENDIX B -- DAP INSTRUCTION REPERTOIRE.

APPENDIX C -- OCP CONTROL PULSE CODES ..

APPENDIX D -- SKS SENSE LINE CODES .

APPENDIX E -- TYPEWRITER CODES .

APPENDIX F -- NUMERICAL INSTRUCTION LIST

APPENDIX G -- ALPHABETICAL INSTRUCTION LIST

A-I

B-1

C-l

D-l

E-1

F-1

G-1

ii

SECTION I

INTRODUCTION

The DDP-24 Assembly Program (DAP) is a programming aid that will translate a symbolic
language to permit writing programs in a form more convenient to the programmer while maintain­
ing the flexibility of machine language (binary) coding. It enables the substitution of mnemonic sym­
bols for desired binary instructions, such as ADD in place of 001000, and allows the programmer to
assign names to specific data items or groups such as DAY, RATE, or MACHand to use these
names when referring to the items as operands. Several pseudo-operations are provided to allow
the programmer to express concepts that have no counterpart in normal machine language. Addi­
tional features of DAP include the facility for programmer defined macro-operations, the capability
for linking with FORTRAN II programs and vice versa, the option of producing absolute or relocat­
able object programs, and operations that give the flexibility of using subroutines (either library or
non-library) .

DAP is designed to work with a minimum machine configuration: a paper tape reader, a paper
tape punch, an on-line typewriter and 4,096 words of memory. No optional features are required to
assemble a program using DAP; however, provision is made for utilization of a line printer, mag­
netic tapes and card equipment when available. Thus, by using a smaller system the user may
assemble a program designed to run on, and take advantage of a more complex system.

1 -1

SECTION II

SOURCE LANGUAGE FORMAT

GENERAL

The general format of the DAP source language consists of four major subsections; these are
the Location, Operation, Variable and Comments Fields. The rules governing the use of these fields
are the same for either a paper tape system or a card system; however, the preparation of the source
program for processing by DAP (keypunching) is different for the two systems. This difference is
discussed under SOURCE PROGRi\M PREPARATION.

THE CODINGFORM

Figure 1 illustrates the coding form that may be used for writing DAP source programs for
either the paper tape system or the card system. The line and column spacing on the form has been
designed to be compatible with standard typewriter spacing and the color (dark green print on light
green paper) has been used to minimize reflective glare.

THE LOCATION FIELD

The Location Field is normally used to assign a symbolic label to an instruction, constant, or
buffer area when it is necessary to refer to that location elsewhere in the program. The symbolic
label in the Location Field consists of from one to four characters from among the thirty-six char­
acter set composed of the alphabet and the ten numeric digits. At least one of the characters in any
label must be alphabetic.

Labels provide the means of symbolic addressing in programs. When a label occurs in the
Location Field of the input format, it is assigned the current value of the DAP location counter (un­
less an EQU or ORG operation in the Operation Field causes it to be assigned otherwise). The first
such occurrence constitutes the definition of the label and any subsequent occurrence will cause re­
definition and an error print-out.

THE OPERATION CODE FIELD

Mnemonic operation codes are used to represent machine instructions, commands to the as­
sembler itself, and macro-operations. Operation codes are either 3 or 4 characters in length.
Appendix B summarizes operation codes recognized by DAP. In addition to specifying an operation,
the Operation Field is also used to specify whether indirect addressing is desired. This is indicated
by writing an asterisk (*) immediately following the operation code.

2 -1

N
I
N

PROGRAMMER IDATE PAGE OF

PROGRAM CHARGE
LOCATION <D OPERATION CD ADDRESS. X <DT COMMENTS e IDENTIFICATION

1 4 6 10 12 30 72 73 80

I

I

,-
T

'r

I

,-

,-
I

r

I

f---.a-.__,__,__

I

Figure 1. DAP Coding Form

THE VARTABLE FIELD

The Variable Field has different uses for different classes of commands. The specific use for
a particular command is covered under the explanation of that command. The most general use of
this field is for the specification of an address and index register. One may write any permissible
expression (an expression is defined below) to represent the address po r t'ion of the command. If this
expression is not followed by a comma, no index register is specified. An index register is specified
by following the address expression with a comma and another expression indicating the desired index
register.

THE COMMENTS FIELD

This field may be used for any comments the programmer cares to write. The Comments
Field has no effect on the assembler, but is printed out on the symbolic listing during Pass Two, if
a listing has been requested.

SYMBOLS AND EXPRESSIONS

SYMBOLS

Symbols consist of one to four characters, one of which must be alphabetic. The remaInIng
characters, if any, may be any alphabetic and/or numeric combination. The following 11 characters
may not be used as part of a symbol:

+ (plus sign) (apostrophe)

- (minus sign) (comma)

,~ (asterisk) (left pa renthe sis)

/ (slash) (right parenthesis)

$ (doliar signi & (ampersand)

= (equal sign)

The period (.) may be used as a character in a symbol, but the programmer is cautioned to
avoid possible confusion with the decimal literal.

EXPRESSIONS

An expression may be either simple (composed of a single element) or .~Q!!mound(composed of
two or more elements separated by operators). Both expression types may have either "relocatable"
or "absolute" modes. A relocatable expression is one which is relative to the first instruction of the
program; an absolute expression is one which has a constant value regardless of its relative position
in the program. The overall mode of the expres sion depends on the mode of each of the individual
elements used to make up the expression.

An element is the smallest component of an expression. An element is either a symbol, a
decimal integer less than 223, or an octal integer less than 223 An octal integer is denoted by a
preceding apostrophe (e. g., '123). (An asterisk may also be used as an element as described
below.)

An QRerator may be used to separate elements in compound expressions. The operators have
the following meanings:

2-3

plus or ampersand addition

minus subtraction

asterisk multi plica tion

slash division

An asterisk may also be used as an element, as explained under ASTERISK CONVENTIONS.

The multiplication and division operators take precedence over the addition and subtraction
operators. Parentheses are not allowed; therefore, implied parenthetical groupings are processed
from left to right, for example:

A'~B+C""D is interpreted as (A*B) + (C*D)

A+B*C is interpreted as A + (B*C)

A-B+C is interpreted as (A-B) + C

A*B/C is interpreted as {A*B)/C

A/B/C is interpreted as {A/B)/C

Two operators may not appear in succession (e. g., A++B); however, when the asterisk is used
as an element, its meaning is unambiguous and is therefore allowed. For example,

*+1

means "this location plus one",

and

means "this location times two".

LITERALS

It is often necessary to refer to a memory location containing a constant to be defined by the
programmer. This can easily be done by the use of one of the data defining pseudo-operations pro­
vided in the DAP language. However, it is sometimes more convenient to reference a constant
literally rather than symbolically. Consider the following examples:

LDA ONE

ONE DEC

END

LDA

END

2-4

In the first example the decimal constant I is referred to symbolically as ONE and must be de­
fined by the programmer; however, in the second example, the programmer is not required to define
the constant. DAP will interpret "=1" as a literal, will automatically assign a location for the con­
stant at the end of the program, and will insert the address of that location in the LDA instruction.

Three different types of literals are interpreted by DAP: decimal, octal and alphanumeric.

1) Decimal Lite ral s.

A decimal literal consists of the equals character (=) followed by a signed or unsigned
fixed-point decimal number (Decimal Numbers are discus sed in Section Ill).

2) Octal Lite ral s

An octal literal consists of the equals character (=) followed by an apostrophe (') fol­
lowed by a signed or unsigned octal number (refer to the discussion of Octal Numbers).

3) Alphanumeric Literals.

An alphanumeric literal consists of the equals character (=) followed by the letter A
followed by four alphanumeric characters. With the exception of the space, control characters can­
not be used in an alphanumeric literal (e. g., carriage return, tab, stop code, etc).

ASTERISK CONVENTIONS

The following programming conventions using the asterisk are allowed by DAP:

1) * in column 1 or first element in Location Field; treat entire card or line as
remarks.

2) * appended to instruction mnemonic: set indirect address flag.

3) * an element: current value of the Location Counter.

4) ** as a symbolic address: address will be modified by another instruction.

5) *** as an operation code: op-code will be modified by another instruction.

SOURCE PROGRAMPREPARATION

PAPER TAPE

In order to make more efficient use of the paper tape as an input medium to DAP, a terminat­
ing code has been used to define the difference between fields rather than specifying "columns." For
example, if the Location Field is not used, it is not necessary to space five times in order to be in
position for the Operation Field. The terminating code used is the tab. In addition, the carriage
return will terminate the entire line. In the example used above, a tab would immediately define the
start of the Operation Field. The general format for the entire line would be:

Location Field (tab) Operation Field (tab) Variable Field (tab) Comments Field
(carriage return)

CARDS

When using cards, no purpose is served by trying to make a line of code more compact since
the entire card must be read. Therefore, the card columns are used to define the fields. The only
exception to this is the termination of the Variable Field and the start of the Comments Field. DAP

2-5

will assume the Comments Field to start after the first blank column following the Variable Field. If
a blank is embedded within the Variable Field, DAP will assume the remainder of the line to be com­
ments. The general format for the card would be:

Location Field Columns 1 to 4

Operation Field Columns 6 to lO

Variable Field Columns 12 to first blank column

Comments Field First blank column to column 72

Identification Field Columns 73 to 80

2-6

SECTION III

PSEUDO-OPERATIONS

GENERAL

In addition to translating all of the DDP-24 instruction mnemonics, DAP will also translate
certain pseudo-operations specifying optional controls and programmer aids for number conversions.
Operations that fall into this category are called "pseudo" because they have no counterpart in the
list of actual DDP-24 instructions.

Primarily, pseudo-operations are provided to give the programnler a flexible language. It is
possible to generate equivalent information by using different instructions or pseudo-operations;
however, the choice made by the programmer is often intended to be meaningful in the context of the
program listing for the convenience of others who may examine the program. For example, the
octal word 40000144 could be generated by anyone of the following DAP operations:

HLT* '144

HLT~' 100

MZE 100

PZE'~ '144

BCI 1, -OIM

DEC -100

OCT -144

ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

The pseudo-operations in this category (ABS, END, MOR and REL) are used for directing DAP
to perform various assembly functions; they do not generate instructions in the object program.

ABS

The ABS (ABSOLUTE) pseudo-operation is used to direct DAP to assemble the subsequent in­
structions in the absolute mode. The format for using the ABS pseudo-operation is:

LOCATION Ignored

OPERATION ABS

VARIABLE Ignored

COMMENTS Normal

3 -1

The effect of the ABS pseudo -operation is to cause a termination of the current block of output
information and the start of a new block in which words are assigned absolute locations, The assem­
bler will then continue to run in the absolute mode until a REL or ORG pseudo-operation is encount­
ered. Initialization of the assembler automatically sets the absolute mode.

END

The END (END) pseudo-operation is used to direct DAP to terminate the current assembly pass
and prepare for the next pass. The format for using the END pseudo-operation is:

LOCATION Ignored

OPERATION END

VARIABLE 1) Main Program. An expression that defines the address of the
instruction to which control should be transferred at the conclu­
sion of the loading process at object time.

2) Subroutine. Ignored.

COMMENTS Normal

The END pseudo-operation causes DAP to perform the following functions:

1) If in pass one, halt. When the start button is depressed, start processing pass two
(while the computer is halted, the operator must reposition the source tape to the beginning).

2) If in pass two:

a) The current block of assembly output information is terminated.

b) The transfer vector is tested to see if subroutines are required; if so, a request
is typed for the subroutine tape and a pass is made to fetch the requested subroutines.

c) If this is a main program, a jump record is written following the assembly out­
put. The address of the jump is the value of the expression in the Variable Field. If this is a sub­
routine, no jump record is written.

d) The assembly process is terminated.

If an END pseudo-operation is used, it must be the last operation of the source program.

MOR

The MOR (MORE) pseudo-operation has various meanings which depend on Sense Switch settings
(see below). The format for using the MOR pseudo-operation is:

LOCATION Ignored

OPERATION MOR

VARIABLE If the MOR pseudo-operation is to be treated as an END pseudo-opera­
tion, the rules for the Variable Field are the same as those described
for the END pseudo-operation; otherwise this field is ignored.

COMMENTS Normal

The MOR pseudo-operation causes DAF to perform the following functions:

1) If Sense Switch 4 is down, halt. When the start button is depressed, interrogate Sense
Switr.h 5 (this will allow the operator to change paper tapes in the event the source program has been
produced in more than one piece).

3-2

2) If Sense Switch 4 is up, do not halt, but interrogate Sense Switch 5.

3) If Sense Switch 5 is down, continue the assembly process.

4) If Sense Switch 5 is up, treat the MOR pseudo-operation as an END pseudo-operation.

ORG

The ORG (ORIGIN) pseudo-operation is used to assign a new value to the Location Counter. The
format for using the ORG pseudo-operation is:

LOCATION Normal

OPERATION ORG

VARIABLE Any relocatable or absolute expression (if left blank, an absolute
origin of zero will be assumed). Any symbol used in this field must
have been previously defined.

COMMENTS Normal

The ORG pseudo-operation performs the following functions:

l) The expression in the Variable field is evaluated for value and mode (relocatable or
absolute).

2) The location counter is reset to the value thus determined.

3) If there is a symbol in the Location Field, it is given this value and mode.

The ORG pseudo-operation will cause DAP to switch to relocatable or absolute mode and will
continue in this mode until an ABS, REL or another ORG is encountered.

REL

The REL (RELOCATABLE) pseudo-operation is used to direct DAP to as semble the subsequent
instructions in the relocatable mode. The format for using the REL pseudo-operation is:

LOCATION Ignored

OPERATION REL

VARIABLE Ignored

COMMENTS Normal

The effect of the REL pseudo -operation is to cause a termination of the current block of output
information and the start of a new block in which words are assigned relative locations. The assem­
bler will then continue to run in the relocatable mode until an ABS or ORG pseudo-operation is en­
countered.

DATA DEFINING PSEUDO-OPERATIONS

The pseudo-operations in this category (BCI, DEC and OCT) are used for the generation of data
to be included as part of the object program. The following is a discussion of the three different
types of data that can be interpreted by DAP.

3-3

1) Alphanumeric Data.

Certain restrictions are placed on the use of alphanumeric data within the scope of the
data defining features of DAP (for both the BCl pseudo-operation and the alpha-numeric literal).
These restrictions have to do with the control characters: back space, lower case shift, upper case
shift and carriage return. With the exception of these specific characters, all of the characters
listed in Appendix E may be used in alphanumeric data fields.

2) Decimal Data.

a) Fixed-point decimal data.

A significance of six decimal digits can be maintained in single precision fixed­
point arithmetic on the DDP-24. In many arithmetic operations, this degree of significance is ade­
quate and is desirable because of the speed in computation. DAP provides two facilities for generat­
ing fixed-point numbers using decimal notation: decimal literal and the DEC pseudo-operation.

A fixed-point decimal number requires one computer word (sign and 23 bits of
significance) and is specified in the DAP language by the use of two parts:

i) The significant part, which is a signed or unsigned decimal number with
or without a decimal point. If the decimal point is not specified, it is assumed to be immediately to
the right of the last digit (a decimal integer).

ii) The scaling part, which is the letter B followed by a signed or unsigned
decimal integer specifying the position of the understood binary point. The scaling part need not be
present (in which case the number will be a truncated decimal integer whose understood binary point
is immediately to the right of the least significant bit in the computer word -- position 23).

The general form of the scaling part is B+nn, where nn gives the posi­
tion of the understood binary point relative to the machine binary po intTthe - defines the understood
binary point to be to the left of the machine binary point, and the + (or no sign) defines the understood
binary point to be to the right of the machine binary point. The machine binary point is defined to be
between the sign bit and the most significant bit of the computer word (between positions 1 and 2).

The following are examples of how DAP would produce fixed-point numbers. The right column
shows the decimal number to be translated and the left column shows the resulting octal word that
would be generated by DAP.

00000017_ 15

00000017_ +15.14

00000017_ 15B+23

17_000406 15.001B5

_ indicates understood binary point

Fixed-point numbers are limited to a magnitude less than 223.

b) Floating-point decimal data.

There are two types of floating-point numbers available to the DAP user, both
of which require two computer words; these are l) single precision floating-point (sign and 23 bits of
mantissa, sign and 8 bits of exponent), and 2) extended precision floating point (sign and 38 bits of
mantissa, sign and 8 bits of exponent). Figure 2 shows the formats of floating point numbers. A
floating point decimal number may be defined by the use of the DEC pseudo-operation only. A float­
ing point decimal number is specified in the DAP language by the use of two parts:

i) The mantis sa pa rt, which is a signed or unsigned decimal numbe r pre-
ceded by a decimal point.

3-4

ii) The exponent part, which is one letter E or two E's followed by a
signed or unsigned decimal integer specifying the power of ten which is the coefficient of the man­
tissa. The single letter E specifies a single precision floating-point number; a double letter E speci­
fies an extended precision floating-point number. An exponent part must be specified for floating­
point numbers; if omitted, DAP will assume the mantissa to be a fixed-5\oint decimal integer. The
magnitude of the exponent may not exceed 75 decimal (coefficient = 107).

SINGLE PI?ECISION

WORD 11 S I I
2 3 4

I I I I I I I I I I I I I I I I I I I
5 I> 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

WORD 2 I S I 0 I I I
2 3 4 5 6

I I I I I I I I I D I I I I I I I I
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

WORD 1 - SIGN, BITS 2-23: MANTISSA
WORD 2 - SIGN, BITS 16-23: EXPONENT (BITS 2-15

ARE ZERO)

EXTENDED PRECISION

WORD 11 S I I I
2 3 4 5 6

I I I I I I ! I I , I I I I I I
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

WORD 21 SL_~~LI~I __ ~I~I~~I~IL-LI~I __ ~I__ LI~I __ IL-~I~L_LI~IL_~I __ LI~I __ LI~I~
2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23

WORD 1 - SIGN, BITS 2-23: MOST SIGNIFICANT BITS OF MANTISSA
WORD 2 - BITS 2-15: LEAST SIGNIFICANT BITS OF MANTISSA

SIGN. BITS 16-23: EXPONENT

Figure 2. Floating Point Format

The following are examples of how DAP would produce floating-point numbers. The right
column shows the decimal number to be translated and the left column shows the resulting two octal
words that would be generated by DAP (assigned to successive storage locations). The second octal
word for each example contains the exponent (power of two) in the low order 2-2/3 octal digits; the
sign bit of the second octal word is the sign of the exponent. All numbers are normalized.

3-5

36000000
.15E200000004

76000000 -.15E200000004

36000000 +.15E+200000004

30000000 .15El00000001

31463146 .1EEO54631403

71463146 -.lEE+OO54631403

iii) Octal data.

DAP provides two facilities for generating octal numbers using octal
notation: octal literal and the OCT pseudo-operation. The only allowable characters in an octal data
field are: + - 0 1 2 3 4 5 6 7

tude that is less than 223.
Octal numbers may be signed or unsigned and are limited to a magni-

Bel

The BCI (BINARY CODED INFORMATION) pseudo-operation is used to direct DAP to generate
binary words from alphanumeric-data. The format for using the BCI pseudo-operation is:

LOCATION Normal

OPERATION BCI

VARIABLE n , followed by 4n alphanumeric characters. n specifies the number of
words to be converted and may not exceed 10 decimal.

COMMENTS Normal

The effect of the BCI pseudo-operation is to convert each group of four characters into a binary
word; these words are stored in successively higher storage locations as the variable field is pro­
cessed from left to right. If there is a symbol in the location field, it refers to the first word of
data generated.

DEC

The DEC (DECIMAL) pseudo-operation is used to direct DAP to generate binary words from
decimal data. The format for using the DEC pseudo-operation is:

LOCATION Normal

OPERATION DEC

3-6

VARL'<\BLE

COMMENTS

One or more subfields, each containing a decimal data item. The
subfields are separated by commas; the number of subfields permis­
sible is limited only by the restriction that the last subfi el d must be
terminated by a tab code or carriage return.

Normal

The effect of the DEC pseudo-operation is to cause DAP to convert each subfield to one or two
binary words depending on the decimal data being fixed-point or floating-point, respectively. These
words are stored in successively higher storage locations as the variable field is processed from
left to right. If there is a symbol in the Location Field, it refers to the first word of data generated.

OCT

The OCT (OCTAL) pseudo-operation is used to direct DAP to generate binary words from octal
data. The format for using the OCT pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

OCT

One or more subfi el ds , each containing an octal data item. The sub­
fields are separated by commas; the number of subfields permissible
is limited only by the restriction that the last subfield must be termi­
nated by a tab code or carriage return.

Normal

The effect of the OCT pseudo-operation is to cause DAP to convert each subfield to a binary
word; these words are assigned to successively higher storage locations as the Variable Field is
processed from left to right. If there is a symbol in the Location Field, it refers to the first word
of data generated.

DICTIONARY CONTROLLING PSEUDO-OPERATIONS

The pseudo-operations in this category (CALL, NTRY and RTRN) are used for the generation
of subroutine linkage facilities to allow communication between programs.

CALL

The CALL (CALL) pseudo-operation is used to direct DAP to generate instructions that will
transfer control to a specified subroutine. The format for using the CALL pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

CALL

A subroutine name.

The effects of the CALL pseudo-operation are:

Normal

1) To enter the subroutine name from the Variable Field into the transfer vector if it is
not already the re.

2) To enter into the sequence of assembled instructions a JST'~ with an address that is
the transfer vector location containing the Variable Field subroutine name.

3-7

3) If there is a symbol in the Location Field, it is assigned to the JST'~ instruction in­
serted in step 2 above.

NTRY

The NTRY (ENTRY) pseudo-operation is used to define a DAP subroutine and to symbolically
assign a name to the subroutine for external reference. The format for using the NTRY pseudo­
operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

The name of the subroutine

NTRY

A name defining the entry point of the subroutine (if left blank, the
first executable instruction of the subroutine will be assumed to be
the entry point).

Normal

The effect of the NTRY pseudo-operation is to cause the name in the Location Field to be
punched on the paper tape output as identification for the subroutine library (refer to Section IV).
There may be as many NTRY pseudo-operations in a subroutine as there are entry points; however,
the NTRY pseudo -operation must be the first operation of the subroutine, preceded only by another
NTRY, if present.

RTRN

The RTRN (RETURN) pseudo-operation is used to direct DAP to generate an instruction that
will transfer control back to a calling program. The format for using the RTRN pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

RTRN

Ignored

Normal

The effect of the RTRN pseudo-operation is to cause a jump instruction to be generated with the
appropriate address specified by the use of the NTRY pseudo-operation. There may be more than one
RTRN in a subroutine and may be placed anywhere within the subroutine as an exit from the routine.

LIST CONTROLLING PSEUDO-OPERATIONS

The pseudo-operations in this category (LIST and NLST) are used to specify the listing options
provided in DAP.

LIST

The LIST (LISTING) pseudo-operation is used to direct DAP to produce a side-by-side listing
of the program being assembled. The format for using the LIST pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

3-8

Ignored

LIST

Ignored

Normal

The effect of the LIST pseudo-operation is to cause the source program and its octal represen­
tation to be listed on the on-line typewriter. The assembler then continues to operate in the "listing"
mode until an NLST pseudo-operation is encountered.

NLST

The NLST (NO LISTING) pseudo-operation is used to direct DAP to refrain from producing a
side-by-side listing of the program being assembled. The format for using the NLST pseudo-opera­
tion is:

LOCATION Ignored

OPERATION NLST

VARIABLE Ignored

COMMMENTS Normal

The effect of the NLST pseudo-operation is to cause DAP not to produce a listing of the source
program and its octal representation on the on-line typewriter. The assembler than continues to
operate in the "no-listing" mode until a LIST pseudo-operation is encountered (initialization of the
assembler automatically sets the "no listing" mode).

MACRO DEFINING PSEUDO-OPERATIONS

A macro operation is defined by the use of the MAC and ENDM pseudo-operations. MAC de­
fines the start of the macro operation, identifies the operation by a unique name, and supplies a list
of parameters for which symbols may be substituted each time the macro-operation is used. ENDM
terminates the definition of the macro-operation. After a macro-operation has been defined, it may
be used as often as desired. A macro sequence may be the following:

MACA MAC

LDA X

ADD Y

STA Z

ENDM

Each time the pseudo-operation, MACA, appears in an instruction sequence, it is replaced by
the three instructions defined by the above macro. For example, the coded sequence:

FMB X + 2, 1

MACA

OTM Z

would be assembled as:

FMB X + 2,

LDA X

ADD Y

STA Z

OTM Z

READ TWOWORDS

OUTPUT SUM

READ TWO WORDS

OUTPUT SUM

3-9

Thus, it is seen that the macro-instruction MACA can be regarded as an abbreviation for a
sequence of instructions.

In most instances, it is undesirable to have the repetitive sequence of instructions operate on
exactly the same data fields in exactly the same manner each time the macro substitution is used. It
would be more convenient if the same general pattern could be repeated, but with certain substitutions
depending on the requirements. This type of substitution is possible in the DAP assembly program.
The previous example could be expanded in the following manner:

MACA MAC X,OPR, v . Z

LDA (0I)

(02) (04)

STA (03)

ENDM

and used as

FMB P + I

MACA P, SUB, P+l,P+2

OTM P + I

The sequence would then be assembled as:

FMB P + I,

LDA P

SUB P+Z

STA P + 1

OTM P + 1

The sequence of instructions defined as a macro is retained in its external BCD form (including all
accompanying remarks) within the computer memory and is processed as if read from an external
source each time the macro is used. It therefore behooves the programmer to omit unnecessary
comments, lines and fields so as to conserve memory and allow for as many macros as possible.

The rules governing the use of macros in DAP are as follows:

l) All macro definitions must appear before the main body of the program.

2) Nested macros are not allowed.

3) The parameter substitution list is limited to eight fields.

4) The number and length of the macros used in a single program are restricted by the
available memory size. (It can be seen that by judicious programming, one may make quite efficient
use of the available memory size.)

5) Parameter substitutions into OCT, DEC, or BCl data fields are not allowed.

6) The pseudo-operation END may not appear in a macro skeleton.

MAC

The MAC (MACRO) pseudo-operation is used to define the start of a programmer-defined mac­
ro. The format for using the MAC pseudo-operation is:

3 -1 0

LOCATION

OPERATION

VARIABLE

COMMENTS

The name of the MACRO

MAC

One or more subfields, each containing a symbol (may be "dummy"
parameters)

Normal

The effect of the MAC pseudo-operation is to direct DAP to insert the subsequent instruction
into the MACRO table.

ENDM

The ENDM (END OF MACRO) pseudo-operation is used to define the end of a programmer-de­
fined MACRO. The formatlor using the ENDM pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Ignored

ENDM

Ignored

Normal

The effect of the ENDM pseudo -operation is to terminate the effect of the preceding MAC
pseudo-operation.

STORAGE ALLOCATION PSEUDO -OPERATIONS

The pseudo-operations in this category (BES, BSS and COMN) are used for allocating storage
for arrays of one or more elements.

BES

The BES (BLOCK ENDING WITH SYMBOL) pseudo-operation is used for reserving storage
locations: - - -

LOCATION

The format for using the BES pseudo-operation is:

Normal

OPERATION

VARIABLE

COMMENTS

BES

Any absolute expression. Any symbol used in this field must have
been previously defined.

Normal

The effect of the BES pseudo-operation is to increase the value of the location counter by the
value of the expression in the Variable Field. If there is a symbol in the Location Field, it is as­
signed the value of the Location Counter after the increase.

3 -11

BSS

The BSS (BLOCK STARTING WITH SYMBOL) pseudo-operation is used for reserving storage
locations. The format for using the BSS pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

BSS

Any absolute expression. Any symbol used in this field must have
been previously defined.

Normal

The effect of the BSS pseudo-operation is to increase the value of the Location Counter by the
value of the expression in the Variable Field. If there is a symbol in the Location Field, it is as­
signed the value of the Location Counter before the increase.

COMN

The COMN (COMMON) pseudo-operation is used for absolutely assigning storage locations in
upper memory. The format for using the COMN pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

COMN

Any absolute expression. Any symbol used in this field must have
been previously defined.

Normal

The effect of the COMN pseudo-operation is to cause DAP to subtract the value of the expres­
sion in the Variable Field from the COMMON base and assign this value to the symbol in the Location
Field. COMMON base is a user option, but is assumed to be the address of the last memory location
in the standard version of DAP. The COMN pseudo-operation establishes a common data "pool" that
may be referenced by several programs.

SYMBOL DEFINING PSEUDO-OPERATION

The pseudo-operation in this category (EQU) is used for assigning an absolute or relocatable
value to a symbol.

EQU

The EQU (EQUALS) pseudo-operation is used for defining a value for a symbol that is referred
to by other DAP operations. The format for using the EQU pseudo-operation is:

LOCATION

OPERATION

VARIABLE

COMMENTS

Normal

EQU

Any absolute or relocatable expression. Any symbol used in this field
must have been previously defined.

Normal

The EQU pseudo -operation causes DAP to evaluate the Variable Field expression for value and
mode and assigns the value and mode to the Location Field symbol.

3-12

SECTION IV

SUBROUTINES

GENERAL

A sizeable body of subroutines is available to the DAP programmer. These include floating
point, double precision and transcendental functions. Other subroutines may be added to suit the
requirements of a particular installation.

A list of DDP-Z4 subroutines and information concerning their use is included in the DEP and
Utility Manual.

Subroutines are called by using the CALL pseudo -operation in the regular programming se­
quence. DAP automatically generates the correct machine language instruction for the link between
the main program and the subroutine.

When a subroutine is called within a program, DAP adds the reference to a table called the
"transfer vector" and replaces the CALL with the machine language instruction, JST'~ A, where A is
the address of the "transfer vector" table entry. Subsequent CALLs to the same subroutine will use
the same table entry. When the END pseudo-operation is encountered, the "transfer vector" is tested
to see if a subroutine was called. If no subroutine has been called, the assembly is terminated. If
one or more subroutines have been called, the assembler requests that the subroutine library be
mounted. The library is then scanned and the subroutines are added as part of the main program. If
a called subroutine contains a CALL to a subroutine not used by the main program, this additional
subroutine is also extracted from the library and punched as part of the program.

Figure 3 shows the memory layout of a program containing CALL's to two subroutines; each
subroutine in turn calls one additional subroutine. Let the first two subroutines be names SUBl and
SUBZ; SUBl calls SUB3 and SUBZ calls SUB4. The subroutine library, in this example, contains the
subroutines in the order of: SUB4, SUB3, SUBZ, SUBl.

MAIN PROGRAM

LITERALS

MAIN PROGRAM TRANSFER VECTORS

SUB4

SUB3

SUBZ

SUBZ TRANSFER VECTOR

SUBl

SUBl TRANSFER VECTOR

Figure 3. Memory Layout

4-1

SUBROUTINE LIBRARY

The subroutine library is contained on a punched paper tape, and is composed of two principal
parts: 1) the library directory and 2) the subroutine programs.

LIBRARY DIRECTORY

The library directory consists of a set of tables defining each of the subroutines in the main
body of the library. The tables contained in the directory are each two or more words in length. The
first word contains the BCD name of the subroutine; the second word is divided into three fields -­
these fields contain:

1) The number of computer words in the subroutine.

2) The number of erasable memory positions used by the subroutine.

3) A number, N, indicating any additional subroutines that are called by the current sub­
routine. N may be zero.

The remainder of the table is N words in length, where N is defined as in 3) above. Each word
in this part of the table is a BCD subroutine name.

SUBROUTINE PROGRl\MS

The program part of the subroutine library is made up of relocatable, assembled programs in
a special format. This special format is supplied automatically by the assembly program when the
pseudo-operation NTRY precedes a program to be assembled.

The first word of each program in the subroutine library is the BCD name of the subroutine.
The second word is a parameter containing the number of erasable memory positions used by the
subroutine in its address portion, and the number of COMN memory words used by the subroutine in
the remainder of the word. With these specific exceptions, the relocatable subroutine programs are
punched in the standard format.

UTILITY UPDA T ER

The Utility Updater may be used to duplicate, add to, or delete from the 3C subroutine library;
control is exercised through the console typewriter. Stacked library modifications are possible; that
is, one may make multiple insertions and/or deletions with a single pass over the library tape. T'he
ext ent of this facility is limited only by the available rn e rn or v size.

SUBROUTINE LIBRARY CHANGES

After the library updater has been called from the system tape, it will print on the tvpewriter:

ENTER INSTRUCTION:

The operator may then type in one of several instruction formats:

1) DUPLICATE

2) DELETE 1'1.1'1.1'1.1'1.

3) INSERT 1'1.1'1.1'1.1'1. AFTER BBBB

4) LIBRARY

4-2

DUPLICATE. After this instruction has been typed in, the machine will execute a HLT so that a
paper tape may be mounted on the reader. Pressing the Program Start button on the console will
then cause an identical copy of the input tape to be punched.

"DUPLICATE" will operate on an input tape of any format. The "DUPLICATE" operation will over­
ride any previous instructions that may have been given to the update routine.

DELETE AAAA. After this instruction has been typed in, the machine will store the information, re­
turn the typewriter carriage and again type:

ENTER INSTRUCTION:

INSERT AAAA AFTER BBBB, CCCC AFTER DDDD, After this instruction, followed by a per-
iod, has been typed in, the computer will execute a HLT so that the tape containing the new subrou­
tines may be mounted on the reader. Pressing the Program Start button on the console will then
cause the mounted paper tape to be read. The desired routines will be extracted and stored, the
typewriter carriage will be returned, and the machine will type:

Remaining Storage: XXXXX

ENTER INSTRUCTION:

Since one or more programs may be read from a single tape it is possible to merge libraries
each of which contain several subroutines.

It is possible to insert a new subroutine as the first routine of the new library by entering the
instruction as:

INSERT AAAA AFTER 0000,

using four zeros as the second name in the instruction.

Note that one need not merge all the subroutines from the input tape; it is possible to request
only certain ones. Any others will be ignored.

LIBRARY. After this instruction has been typed in, the machine will execute a HLT so that the sub­
routine library may be mounted on the reader. Pressing the console Program Start button will cause
the old library to be read and a new library with the requested modifications to be punched. The type­
writer will list the subroutines in the order that they appear in the new library. The machine will
then type:

LIBRARY UPDATE COMPLETED

and execute a HLT.

4-3

SECTION V

DAP OPERATING PROCEDURES

GENERAL

A DAP source program is prepared on the coding form previously described. It consists of a
set of symbolic instructions and pseudo-operations terminated by an END pseudo-operation. (The
pseudo-operation MOR is substituted under certain conditions; see below under sense switches.) The
program is then punched into a paper tape called the source tape.

The utility tape is loaded into the tape reader and DAP is called into memory; the computer
then halts so that the source tape may be mounted. Pressing the start button on the console then
allows DAP to begin the assembly.

ASSEMBLER OPERATION

DAP is a two-pass assembly program; that is, the source program is fully scanned twice before
the completed program is ready to load and execute. In general, this implies that the operator must
manually remove the source program and replace it in the tape reader for the second pass. However,
within the computer memory capabilities, it is possible for small programs to avoid this manual step
by retaining the entire source program in memory. This is done automatically by DAP whenever
pos sible.

When a source program calls for a subroutine, the operator must mount the subroutine library
before the assembly can be completed (refer to Section IV).

SENSE SWITCHES

Most of the functions of DAP are automatic; however, certain options are available to the oper­
ator through the use of the computer console sense switches. The use of the sense switches is given
in the following table.

5 -1

S.S. No. Condition Meaning

Down Listing is under program control.

Up All input is listed.

2 Down Listing is under program control.

Up All listing is suppressed.

3 Down Punching is normal.

Up Punching is suppressed.

4 Down MOR pseudo-op is normal.

Up No halt on MOR.

5 Down MOR pseudo-op is normal.

Up MOR pseudo-op = END.

ASSEMBLER PRODUCTS

Output from the DAP assembly program consists of a tabular on-line typewriter listing and a
punched paper tape.

LISTING

The DAP printed output is called the assembly listing. It is a printing of the symbolic input
instructions in the order in which they appeared together with the octal representation of the binary
words produced by the assembler. A sample listing is shown in Figure 4.

The portion of the listing that is produced by the assembly appears on the left; the margin con­
tains error symbols. The first column contains the line ID number - - an identification provided for
the Source Program Update routine. The next column shows the location of each instruction; and,
finally, in octal, the binary word assigned to the location. The machine operations are subdivided
into separate subfields; numbers are given as eight octal digits with the appropriate sign; BCI words
are eight digit logical groups.

The portion of the assembly listing appearing on the right is a copy of the original source pro­
gram input. This part of the listing will be truncated on the right if the entire line exceeds the car­
riage capacity of the typewriter.

The assembler will indicate minor errors that occur in individual lines by inserting up to three
flags in the left hand margin of the assembly listing (refer below to DIAGNOSTICS).

5-2

OO! ORG 320

002 00500 +00000000 OCON OCT +0,7777, -5

00501 +00007777

00502 -00000005

003 00503 +00000012 XCON DEC +10, -4095

00504 -00007777

004 00505 o 1 56 77766 STRT LDX -10, 1

AX 005 00506 o 1 60 00503 CRA XCON,

006 00507 a 1 10 01012 RUTN ADD TABL+12,1

007 00510 007300515 JOF EXT2

008 00511 o 1 75 00507 JXI RUTN,

009 00512 a 1 54 00001 ADX 1, 1

010 00513 o 1 05 00507 STA* RUTN

all 00514 o 0 74 00600 EXTI JMP RETN

012 00515 o 0 74 00700 EXT2 SMP EROR

013 00505 END STRT

Note: It is assumed that the symbols TABL, RETN and EROR have been defined elsewhere
in the program.

Figure 4. Sample Listing

PUNCHED TAPE

The paper tape output is a binary representation of the source program. It contains essentially
the same information as is found on the left side of the assembly listing. Figure 5 shows the format
of the paper tape records.

The first word of a paper tape record is an identification word containing the program name.
This is followed by a variable number of information blocks. The first three words of each block are
parameters. The first contains three fields:

1) An indicator of the type of information contained in the block.

2) A count of the number of program words in the block.

3) The computer address of the first program word.

The second and third words contain the relocation specifiers for the address fields of each word
in the block (see below). The parameter words are followed by a sequence of up to 24 programwords,
the number being determined by the count field in the first parameter word. The last word in each
block is a check sum of the three parameter words and the program words.

5-3

RELOCATION SPECIFIERS

Four relocation options are available to specify the processing of the address field of each
computer word within a block. They are:

1) 00 the address is absolute

2) 01 the address is relocatable and positive

3) 10 the address is relocatable and negative

4) 11 not defined

DIAGNOSTICS

Certain diagnostic procedures are provided by the assembly program. These are divided into
two categories, major and minor.

Major errors are those which will result in a final assembly that is either impossible or ex­
ceedingly difficult to correct at load time. These errors will be recorded on the on-line typewriter
as they are encountered; the assembler will then execute a halt and the program may be continued or
terminated at the discretion of the operator. Major errors are:

l) Symbol table capacity exceeded.

2) Macro table capacity exceeded.

3) Major pseudo-operation undefinable (i. e. , an undefined symbol appearing in the vari­
able field of a BES, BSS, COMN, EQU or ORG pseudo-operation).

Minor errors will be indicated by flags appended to the object program versus source program
listing (refer to Figure 4). Minor errors and their associated flags are:

l) U Undefined symbol

2) M Multiple defined symbol

3) A Address field missing where required or present where not significant

4) X Index field missing where required or present where not significant

5) 0 Undefined operation code

6) C Conversion of a constant has exceeded word size or caus ed floating point over Ilow

7) E Any detected error not classified above.

Minor errors in a field will result in that field being assembled as zero except in the cases of
multiple definitions where the last label definition is used, and constants where either a truncated or
maximum value is supplied.

5-4

5-5

APPENDIX A

DDP-24 CHARACTERISTICS

THE COMPUT ER

Program operation on the DDP-24 involves the use of various machine registers. Although the
intent of this manual is to describe the facilities of the DAP assembly program, a discussion of these
registers is included, since they affect programming. Functionally, the computer consists of four
units:

l) A rithmetic unit

2) Control unit

3) Input-output unit

4) Memory unit

ARITHMETIC UNIT

The arithmetic unit consists of three registers, A, B, and Z. From a programming viewpoint,
the A- and B-registers serve as the arithmetic accumulator. The results of additions and subtrac­
tions are available in the A-register. Multiplication, resulting in a double length answer, uses both
the A- and B-registers to contain the product, with the high order portion of the product in the A­
register. Division, resulting in two answers (quotient and remainder), uses both the A- and B-reg­
isters, with the quotient in the B-register and the remainder in the A-register. The Z-register is
unavailable to the programmer.

CONTROL UNIT

The control unit consists of the program counter, the index register, and other devices such
as the shift counter and control clock. The program counter contains the memory address of the
next instruction to be performed. Normally, its contents are incremented with 1 each time a com­
mand is executed; however, in the case of jump instructions, the contents of the program counter
are replaced with the memory location of the jump destination. The index register is fully described
below.

INPUT -OUTPUT UNIT

The DDP- 24 provide s a wide va riety of input -output functions, all fully buffe red fo r optimum
machine utilization. A description of 1-0 programming options will be found in a later Appendix.

MEMORY UNIT

The memory unit of the DDP-24 uses ferrite cores as the storage device. Each core is refer­
red to as a bit; core storage is divided into word units of 24 bits each. The basic memory consists
of 4,096 such words.

A-I

Data items are stored in the computer words as absolute quantities with an associated arith­
metic sign:

1 2 24

I I 0 I
/ \ I
/ sign

,
numeric value /

/ \ /

Figure 1

The word illustrated contains a minus one (-1).

The word, when used to contain a computer instruction, is subdivided, logically, into four
areas:

1) instruction code

2) data address

3) index register assignment

4) indirect address specification

1 24

o o o 0lx X X 0 o 1 o o o o o o o o o
\ \
\ \ \\', _--­
\
\ _ - - - - - -- index register assignment =
_ - - - - - - indirect address specification = 0

'" .••..
'---- data address = 1000 (octal)

- -- instruction code = ADD

Figure 2

The word illustrated contains the instruction: ADD 1000, 1.

The Xs indicate bit positions used by systems with expanded memory and indexing facilities.

The bit numbering convention established is from 1 through 24 from the left-most bit to the
right-most. Therefore, Figure 2 can be summarized as follows:

Bit Number Function

1 Indirect Address Bit

2-3 Index Register Specification

4-9 Operation Code

11\ -'..4J.V-W""X Address Portion of Word

A-2

In addition to the basic units and their associated registers, there are several sensing devices
available to the programmer.

I) Overflow indicator.

The overflow indicator is turned on when an arithmetic operation gives a result that
overflows the capacity of the A-register. Normally, this indicator, when set, remains on until
tested by a machine instruction or is manually reset; however, multiple precision operations, when
processed successfully, will leave the overflow indicator off regardless of its prior state.

Z) Improper divide indicator.

The improper divide indicator is turned on when an attempt to divide results in a
quotient exceeding the capacity of the B-register.

3) Sense switches.

There are 6 manually controlled switches at the operator's console. The status of
these switches may be tested by the program.

4) The various 1-0 devices are provided with indicators that may be interrogated by the
program.

INSTRUCTION CODES

The six bits of the instruction subfield and, in some cases, specified bits within the addre s s
subfield, make up the command structure of the DDP-Z4 computer. This command structure includes
a full multiply and divide command, and a multiple precision step command for simple double, triple,
and other multiple precision routines. For a description of each command and its uses, see Appen­
dix B.

INDEX REGISTERS

The primary use of index registers is as instruction address modifiers. For example, the in­
struction shown in Figure Z contains a data address of 1000 (octal); it also has a ONE in the index
register assignment field. The true (or effective) address for the data to be operated upon by this
instruction would not be]000 (octal), but would be the arithmetic sum of 1000 plus the contents of the
index register.

A fuller treatment of indexing is given in the section on addressing. In addition, the complete
effect of indexing fo r each instruction is explained in the section on instruction code s.

INDIRECT ADDRESSING

Indirect addressing allows the programmer to make use of data addresses stored in other
memory locations. In effect, the data address portion of an instruction containing an indirect speci­
fication is not the address as given in the instruction, but is instead the address as given in the lo­
cation referred to by the instruction.

The usefulness of this feature can be illustrated in an example where it is necessary to com­
pute the location of a data item and then store this computed address as part of an instruction. If the
item must be referenced by several instructions, it is often more convenient to reference it indirect­
ly at one location than to store the computed address several times.

In the following example, X is the address of a data item, Y is a memory location containing
the number "X" in its address field; the instructions in memory locations A and B use the item, X,
as an operand:

A-3

x OCT 2 3 4 5 670

y PZE x

A MPY'~ Y

B Y

(The asterisk (*) indicates that the instruction contains an indirect address specification.)

Indirect addressing is effective for all machine instructions and takes precedence over ail other
logical features regardless of the ultimate interpretation of the instruction. The computer hardware
processing of indirectly addressed instructions is as follows:

The four principal parts of the instruction word are separated into unique registers as shown
In Figure 3.

2 3 4 - - - - - - - - - - 9 10 -24

REGISTERS

INDIRECT INDEX
ASSIGNMENT

OPERATION
CODE

ADDRESS

Figure 3

(Note: Do not confuse the index assignment register with the actual index register.)

A-4

EFFECTIVE ADDRESS

The effective address of the operand for a given instruction is dependent on three factors:

1) The contents of the address subfield

2) The contents of the index register subfield

3) The contents of the indirect address subfield

Case No.1. Index register subfield and indirect address subfield both zero. The effective
memory address is the number in the address subfield.

Case No.2. Index register subfield non-zero and the indirect address subfield zero. The
effective memory address is the arithmetic sum (truncated) of the contents of the memory address
subfield and the contents of the specified index register.

Case No.3. Index register subfield zero and the indirect address subfield non-zero. The ef­
fective memory address is found in the address portion of the memory location specified by the ad­
dress subfield. (The contents of this remote memory location are interpreted using the same rules
defined herein. That is, indirect addressing may be extended through several memory locations.)

Case No.4. Index register subfield and indirect address subfields both non-zero. The effec­
tive address is derived by first computing the arithmetic sum of the contents of the address subfield
and the specified index register, then using the contents of the address subfield of the computer
memory location. (Further levels of indexing and indirect addressing as specified in Case No. 3
above are possible.)

A-S

APPENDIX B

DAP INSTRUCTION REPERTOIRE

The assembler translates all basic DDP-24 machine instructions. An instruction consists of
the following:

1) A symbol or blanks in the Location Field.

2) The appropriate instruction mnemonic code in the Operation Field. The mnemonic code may
be terminated by an asterisk (*) to denote indirect addressing.

3) Address and index assignment (separated by a comma) in the Variable Field. These may be
written as expressions.

The following is a list of these instructions, their type, and the permissible fields. The codes
used are:

R - Required

N - Not significant, but permissible

P - Permissible

Absence of a required item or presence of a non-significant item will result in an error flag on
the appropriate line of the octal-symbolic listing.

Mnemonic Octal Code Address Index

ADD 10 R P

ADM 20 R P

ADX 54 R R

ALS 41 R P

ANA 15 R P

ARS 40 R P

BCD 36 R P

BIN 37 R P

CRA 60 N N

DIV 35 R P

DMB 32 R R

ENBI 51 N N

ERA 17 R P

FMB 31 R R

B-1

Mnemonic Octal Code Address Index

HLT 00 N N

IAB 57 N N

INA 52 P N

INAM 52 P N

INHI 51 N N

INM 07 R P

IRX 67 R P

ITC 51 R N

JIX 72 R R

JMP 74 R P

JOF 73 R P

JPL 70 R P

JRT 25 R P

JST 27 R P

JXI 75 R R

JZE 71 R P

LDA 24 R P

LDB 23 R P

LDX 56 R R

LGL 47 R P

LLR 43 R P

LLS 45 R P

LRR 42 R P

LRS 44 R P

MPY 34 R P

NOP 77 P P

NRM 46 N R

OCP 53 R N

ORA 16 R P

OTA 50 P N

OTAM 50 P N

OTM 22 R P

B-2

Mnemonic Octal Code Address Index

RND 62 N N

SBM 21 R P

SCL 65 R R

SCR 64 R R

SKG 12 R P

SKN 13 R P

SKS 61 R P

SMP 30 R P

STA 05 R P

STB 03 R P

STC 04 R P

STD 06 R P

STX 66 R R

SUB 11 R P

TAB 55 N N

TAX 63 N R

XEC 02 R P

SPECIAL MNEMONIC CODES

Three special mnemonic codes are provided for the convenience of the programmer when
writing special instruction groups or calling sequences. They are assembled like any machine lan­
guage instruction in that they may have address, index, and indirect fields.

Mnemonic Address Index As sembles as

PZE P P ZEROs in op-code

P P ZEROs in op-code

MZE P P ZEROs in op-code and ONE in sign position

The following pseudo-operations are provided:

B-3

Operation Code

ABS

BCI

BES

BSS

CALL

COMN

DEC

END

ENDM

EQU

LIST

MAC

MOR

NLST

NTRY

OCT

ORG

REL

COMMAND INSTRUCTIONS

LOAD AND STORE INSTRUCTIONS

Code Mnemonic

03

04

05 STA

B-4

STB

STC

Execution
Time

10 u s e c

10 p s e c

10 u s e c

Purpose

Set punching format

Gene ra te data

Allocate storage

Allocate storage

Link subroutine s

Allocate storage

Generate data

Assembly control

Mac ro definition

Define symbols

Control printing

Macro definition

Assembly input control

Control printing

Subroutine definition

Generate data

Allocate sto rage

Set punching format

Description

Store B

The contents of B replace the contents of the memory
word at the effective address. The contents of Bare
unchanged.

Store Command Portion of A

The contents of A, bits 1-9, replace the contents of
the memory word, bits 1-9, at the effective address.
The contents of A and the address portion of the
memory word, bits 10-24, are unchanged.

Store A

The contents of A replace the contents of the memory
word at the effective address. The contents of A are
unchanged.

LOAD AND STORE INSTRUCTIONS (continued)

Code

06

23

24

55

57

60

Mnemonic

STD

LDB

LDA

TAB

IAB

CRA

Execution
Time

10 p.sec

10 p.sec

l011sec

5 fLsec

l O u s ec

5 u s e c

ARITHMETIC INSTRUCTIONS

10

11

ADD

SUB

10 p.sec

10 usec

Description

Store Address Portion of A

The contents of A, bits 10-24, replace the contents of
the memory word, bits 10-24, at the effective ad­
dress. The contents of A and the op-code portion of
the memory word, bits 1-9, are unchanged.

Load B

The contents of the memory word at the effective
address replace the contents of B. The contents of the
memory word are unchanged.

Load A

The contents of the memory word at the effective
address replace the contents of A. The contents of
the memory word are unchanged.

Transfer A to B

The contents of A replace the contents of B. The con­
tents of A are unchanged. The addres s portion and
index bit of this instruction, bits 11-24 and 3, are not
interpreted.

Inte rchange A and B

The contents of A and B are interchanged. The address
portion and index bit of this instruction, bits 11-24 and
3, a re not inte rpreted.

Clear A

The contents of A, bits 1-24, are set to zero. The
address portion and index bit of this instruction, bits
11-24 and 3, are not interpreted.

Add

The contents of the memory word at the effective
address are algebraically added to the contents of A,
and the resultant sum replaces the contents of A.
Overflow is possible and will set the overflow indi­
cator. If the magnitude of the result is zero, the
initial sign of A in unchanged. The contents of Band
the memory word are unchanged.

Subtract

The contents of the memory word at the effective
address are algebraically subtracted from the con­
tents of A, and the resultant difference replaces the
contents of A. Overflow is possible and will set the
overflow indicator. If the magnitude of the result is
zero, the initial sign of A is unchanged. The contents
of B and the memory word are unchanged.

B-5

ARITHMETIC INSTRUCTIONS (continued)

Code

20

21

30

34

B-6

Mnemonic

ADM

SBM

SMP

MPY

Execution
Time

10flsec

10flsec

10 usec

31 p.s e c

Descri ption

Add Magnitude

The magnitude of the contents of the memory word at
the effective address are added to the contents of A,
and the resultant sum replaces the contents of A. The
sign of the memory word is ignored; if the sign of A
is negative, a subtractive process will occur. Over­
flow is possible and will set the overflow indicator.
If the magnitude of the result is zero, the initial sign
of A is unchanged.

Subtract Magnitude

The magnitude of the contents of the memory word at
the effective address are subtracted from the contents
of A, and the resultant difference replaces the con­
tents of A. The sign of the memory word is ignored;
if the sign of A is negative, an add will occur. Over­
flow is possible and will set the overflow indicator.
If the magnitude of the result is zero, the initial sign
of A is unchanged. The contents of B and the memory
word are unchanged.

Step Multiple Precision

The contents of the memory word at the effective
address are added to or subtracted from A such that
the result has the sign of the result of the overall
multiple precision operation. This sign and the selec­
tion of either add or subtract is determined by the
instruction executed prior to the SMP instruction.
Normally, this will take place at the beginning of a
multiple precision routine. The add or subtract
operation is for initial set-up of the multiple precision
routine only; the sum or difference is not to be used
further. For a multiple precision add, an ADD opera­
tion of the highest order portion of the two operands
will be followed by SMP instructions which add all
portions, starting with the lowest order and producing
the same signs. For a multiple precision subtract, a
SUB operation of the highest order portion of the two
operands will be followed by SMP instructions which
subtract all portions, starting with the lowest order
and producing the same signs.

Any carry (or borrow) produced by an SMP step will be
properly added (or subtracted) at the following SMP.
Overflow is set by the SMP command if a carry is
produced; overflow is reset if no carry is produced.
Overflow of a multiple precision addition or subtraction
can be detected by checking the overflow indicator
after completion of the operation (normally it would not
be set after the last SMP operation).

Multiply

The contents of B are multiplied by the contents of the
memory word at the effective address. The 23 most
significant bits of the 46-bit product replace the con­
tents of A, bits 2-24; the least significant bits replace

ARITHMETIC INSTRUCTIONS (continued)

Code

35

36

37

62

Mnemonic

MPY
(cont)

DIV

BIN*

RND

Execution
Time

33 p.sec

33 tJ.sec

33 p.sc c

6 fL sec

,~Denotes optional command

Description

the contents of B, bits 2-24. The signs of A and B
are set to the algebraic sign of the product. The con­
tents of A are cleared at the start of this instruction.
The contents of the memory word are unchanged. The
B-register must be loaded prior to the execution of the
MPY instruction.

Divide

The contents of the memory word at the effective ad­
dress (the divisor) are divided into the contents of
both A and B (the double-length dividend). The 23-bit
quotient replaces the contents of B, bits 2-24; the 23-
bit remainder (absolute value) replaces the contents
of A, bits 2-24. The signs of A and B are set to the
algebraic sign of the quotient. If the initial magnitude
of A is equal to or greater than the magnitude of the
memory word, the improper divide indicator is set.
The contents of the memory word are unchanged.

BCD to Binary Conversion

The contents of the memory word at the effective ad­
dress are converted from BCD into binary, the result
replaces the contents of A. The contents of Bare
destroyed; the contents of the memory word are un­
changed. The maximum BCD number which can be con­
verted with this instruction is decimal +799,999.

Binary to BCD Conversion

The contents of the memory word at the effective ad­
dress are converted from binary to BCD code; the
result replaces the contents of B. The conversion will
be performed only on those bits of the memory word
which will produce a BCD code within the capacity of
the B-register (24 bits). The improper divide indi­
cator will be set if the binary number to be converted
is greater than octal 3,032,377, resulting in a BCD
number greater than decimal 799,999. The contents
of A are destroyed; the contents of the memorv word
a re unchanged.

Round A

The contents of A are incremented by one if bit 2 in the
B-register is a one; the contents of A are unchanged if
bit 2 (in B) is a zero. The address portion and index
bit of thi s instruction, bits 11 - 24 and 3, a re not inte r­
preted. Overflow is possible and w ill set the over flow
indicator. The contents of B remain unchanged.

B-7

LOGICAL INSTRUCTIONS

Code

15

16

17

Mnemonic

ANA

ORA

ERA

40

SHIFT INSTRUCTIONS

ARS

41

B-8

ALS

Execution
Time

10 usec

10 I-lsec

10 I-lsec

5+n p s e c

5+n u s e c

Description

AND to A

This instruction forms the logical product of the con­
tents of A and the contents of the memory word at the
effective address and replaces the contents of A with
the result. For each ZERO in the contents of the
memory word, a ZERO is written into the correspond­
ing bit in A; for each ONE in the memory word, the
corresponding bit in A is unchanged. The contents of
B and the memory word are unchanged.

OR to A

This instruction forms the logical sum of the contents
of A and the contents of the memo ry word at the effec­
tive address and replaces the contents of A with the
result. For each ONE in the contents of the memory
word, a ONE is written into the corresponding bit in
A; for each ZERO in the memory word, the corre­
sponding bit in A is unchanged. The contents of B
and the memory word are unchanged.

Exclusive OR to A

This instruction forms the logical exclusive sum of the
contents of A and the contents of the memory word at
the effective address and replaces the contents of A
with the result. For each ONE in the contents of the
memory word, the corresponding bit in A is comple­
mented; for each ZERO in the memory word, the
co r re sponding bit in A is unchanged. The content s of
B and the memory word are unchanged.

A Right Shift

The contents of A, bits 2-24, are shifted to the right
the number of positions specified by the six least sig­
nificant bits of the instruction, bits 19-24. The sign
of A is not shifted and is unchanged. ZEROs are
shifted into the vacated position next to the sign of A,
bit 2; bits shifted out of the low order position are
lost. This instruction may be indexed, in which case
the number of shift steps is the sum of the address
portion of the instruction and the contents of the index
register. The contents of B are unchanged.

A Left Shift

The contents of A, bits 2 -24, a r e shifted to the left
the number of positions specified by the six least sig­
nificant bits of the instruction, bits 19-24. The sign
of A is not shifted and is unchanged. ZEROs are
shifted into the vacated low order position of A; bits
shifted out of the position next to the sign of A (bit 2)
are lost. This instruction may be indexed, in which
case the number of shift steps is the sum of the ad­
dress portion of the instruction and the contents of the
index register. The contents of B are unchanged.

SHIFT INSTRUCTIONS (continued)

Code

42

43

44

45

Mnemonic

LRR

LLR

LRS

LLS

Execution
Time

5+n u se c

5+n usec

5+n usec

5+n u sec

Description

Long Right Rotate

The contents of A, bits 1-24 and B, bits 1-24, are
treated as a single 48-bit register and are rotated
to the right (end around carry) the number of posi-
tions specified by the six least significant bits of the
instruction, bits 19-24. The signs of A and B are also
shifted. Bits shifted out of the low order position of A
enter the high order position of B; bits shifted out of
the low order position of B enter the high order posi­
tion of A. This instruction may be indexed, in which
case the number of shift steps is the sum of the address
portion of the instruction and the contents of the index
register.

Long Left Rotate

The contents of A, bits 1-24, and B, bits 1-24, are
treated as a single 48-bit register and are rotated to
the left (end around carry) the number of positions
specified by the six least significant bits of the instruc­
tion, bits 19-24. The signs of A and B are also shifted.
Bits shifted out of the high order position of B enter the
low order position of A; bits shifted out of the high
order position of A enter the low order position of B.
The instruction may be indexed, in which case the num­
ber of shift steps is the sum of the address portion of
the instruction and the contents of the index register.

Long Right Shift

The contents of A, bits 2-24, and B, bits 2-24, are
treated as a single 46-bit register and are shifted to
the right the number of positions specified by the six
least significant bits of the instruction, bits 19-24.
The signs of A and B are not shifted; however, the sign
of B is made to agree with the sign of A. ZEROs are
shifted into the vacated position next to the sign of A,
bit 2; bits shifted out of the low order position of A
enter the position next to the sign of B, bit 2. Bits
shifted out of the low order position of B are lost. This
instruction may be indexed, in which case the number
of shift steps is the sum of the address portion of the
instruction and the contents of the index register.

Long Left Shift

The contents of A, bits 2-24, and B, bits 2-24, are
treated as a single 46-bit register and are shifted to
the left the number of positions specified by the six
least significant bits of the instruction, bits 19-24.
The signs of A and B are not shifted; however, the
sign of A is made to agree with the sign of B. ZEROs
are shifted into the vacated low order position of B;
bits shifted out of the position next to the sign of B,
bit 2, enter the low order position of A. Bits shifted
out of the position next to the sign of A, bit 2, are lost.
This instruction may be indexed, in which case the
number of shift steps is the sum of the address portion
of the instruction and the contents of the index register.

B-9

SHIFT INSTRUCTIONS (continued)

Code

46

47

64

65

B-IO

Mnemonic

NRM

LGL

SCR

SCL

Execution
Time

5+n u se c

5+n I-lsec

5+n psec

5+n p.s ec

Description

Normalize

The contents of A, bits 2-24, and B, bits 2-24, are
treated as a single 46-bit register and are shifted left
until a ONE is shifted into the position next to the sign
of A, bit 2, or until the contents of B replace the con­
tents of A (46 steps). If the index position, bit 3, is a
ONE, the number of shifts required for normalization
is subtracted from the index register. If the index po­
sition, bit 3, is a ZERO, the index register is not
affected by this instruction. ZEROs are shifted into
the vacated low order position of B; bits shifted out of
the position next to the sign of B, bit 2, enter the low
order position of A.

If a ONE is in the position next to the sign of A, bit 2,
at the start of the operation (already normalized), the
instruction will be treated as a NOP. The signs of A
and B are not shifted and are unchanged.

Logical Left Shift

The contents of A, bits 1-24, are shifted to the left the
number of positions specified by the six least signifi­
cant bits of the instruction, bits 19-24. The sign of A
is also shifted. ZEROs are shifted into the vacated
low order position of A; bits shifted out of the high
order position of A are lost. This instruction may be
indexed, in which case the number of shift steps is
the sum of the address portion of the instruction and
the contents of the index register. The contents of B
are unchanged.

Scale Right

The contents of A, bits 2-24, and B, bits 2-24, are
treated as a single 46-bit register and are shifted to
the right the number of positions specified by the six
least significant bits of the instruction, bits 19-24.
The number of positions shifted will be added to the
contents of the index register. The signs of A and B
are not shifted; however, the sign of B is made to
agree with the sign of A. ZEROs are shifted into the
vacated position next to the sign of A, bit 2; bits
shifted out of the low order position of A enter the
position next to the sign of B, bit 2. Bits shifted out
of the low order position of B are lost. This instruc­
tion is not valid if the index position, bit 3, is a
ZERO.

Scale Left

The contents of A, bits 2-24 and B, bits 2-24, are
treated as a single 46-bit register and are shifted to
the left the number of positions specified by the six
least significant bits of the instruction, bits 19-24.
The number of positions shifted will be subtracted
from the contents of the index register. The signs of
A and B are not shifted; however, the sign of A is
made to agree with the sign of B. ZEROs are shifted

SHIFT INSTRUCTIONS (continued)

Code Mnemonic
Execution

Time Description

SCL
(cont)

into the vacated low order position of B; bits shifted
out of the position next to the sign of B, bit 2, enter
the low order position of A. Bits shifted out of the
position next to the sign of A, bit 2, are lost. This
instruction is not valid if the index position, bit 3, is
a ZERO.

JUMP INSTRUCTIONS

12 SKG 10 or
12fLsec

Skip if A Greater

The contents of A are algebraically compared to the
contents of the memory word at the effective address.
If the value in A is greater than the value in the mem­
ory word, the next instruction is skipped and the com­
puter resumes at that point. If the value in A is equal
to or less than the value in the memory word, the
computer takes the next sequential instruction. The
contents of A and the memory word are unchanged.

13 SKN 10 or
12 psec

Skip if A Not Equal

The contents of A are algebraically compared to the
contents of the memory word at the effective addres s.
If the value in A is not equal to the value in the mem­
ory word, the next instruction is skipped and the com­
puter resumes at that point. If the value in A is equal
to the value in the memory word, the computer takes
the next sequential instruction. The contents of A
and the memory word are unchanged.

25 JRT 10fLsec Jump Return

This instruction is an indirect jump. A jump is exe-
cuted to the location specified by the address portion
of the memory word (bits 11-24), at the effective
address. The contents of the memory word and the
contents of A and B are unchanged. This instruction
must be used for returning from all interrupt sub-
routines to restore the interrupt capability again (in
the standard DDP-24), or to effect return to the
previous pria rity level if optional Prio rity Interrupt
is used.

27 JST 10 usec Jump and Store Location

The location of the JST instruction plus one replaces
the contents of the address portion of the memory
word, bits 11-24, at the effective address. A jump is
then executed to one location beyond the effective
addre s s. Bits I-10 of the contents of the memory word
are unchanged; the contents of A and B are unchanged.
This instruction may be used for entering a subroutine.

70 JPL 6 p s e c Jump if A Plus

If the sign of A, bit 1, is positive (ZERO), the
cornpute z takes its next instruction from the
memory word at the effective address and continues
from there. If the sign of A, bit 1, is negative (ONE),

B-1l

JUMP INSTRUCTIONS (continued)

Code Mnemonic

JPZ
(cont)

71 JZE

73 JOF

74 JMP

INDEX INSTRUCTIONS

54 ADX

B-12

Execution
Time

5 j-Lsec

5 p s e c

5 fl.sec

5 u s e c

Descri ption

the compute r takes the next sequential instruc­
tion. Thus, a jump for A negative could be ac­
complished by an unconditional jump instruction
(JMP) immediately following the JPL instruction.
The contents of A are unchanged.

Jump if A Zero

If all of the magnitude positions in A, bits 2-24 are
ZEROs, the computer takes its next instruction from
the memory word at the effective address and con­
tinues from there. If any of the magnitude positions
of A are ONEs, the computer takes the next sequential
instruction. The sign of A, bit 1, is ignored. The
contents of A are unchanged.

Jump on Overflow

If the overflow indicator is set, it will be reset and the
computer will take its next instruction from the mem­
ory word at the effective address and continue from
there. If the overflow iridica to r is not set, the com­
puter takes the next sequential instruction. To reset
the overflow indicator without altering the normal
sequence of instructions, the JOF instruction may be
used with an effective address that is one location
greater than the address of the JOF instruction.

Unconditional Jump

The computer takes its next instruction from the mem­
ory word at the effective address and continue s from
there. The JMP instruction with indirect addressing
may be used for returning from subroutines which are
not interrupt routines.

Add to Index

The contents of the address portion of this instruction,
bits 11-24, are added to the contents of the index
registe r , and the resultant sum replace s the contents
of the index register. Overflow of the index register
is possible, but will be ignored.

If the indirect address position of the instruction, bit I,
is a ONE, the contents of the address portion of the
memory word, bits 11-24, at the effective address are
added to the index register. The contents of A and the
memory word are unchanged. This instruction is not
valid if the index position of the instruction, bit 3, is
a ZERO.

INDEX INSTRUCTIONS (continued)

Code

56

63

66

67

72

Mnemonic

LDX

TAX

STX

IRX

JIX

Execution
Time

5 u s ec

5 u s e c

10 p.s e c

14 p s e c

5 fLsec

Description

Load Index

The contents of the address portion of this instruction,
bits 11-24, replace the contents of the index register.
If the indirect address position of the instruction, bit
1, is a ONE, the contents of the address portion of the
memory word, bits 11-24, at the effective address
replace the contents of the index register. The contents
of A or the memory word are unchanged. This instruc­
is not valid if the index position of the ins truction, bit
3, is a ZERO.

Transfer A to Index

The address portion of A, bits 11-24, replace the con­
tents of the index register. The contents of A are un­
changed. This instruction is not valid if the index
position of the instruction, bit 3, is a ZERO. The in­
direct address position and the address portion of
this instruction, bits 1 and 11-24, are not interpreted.

Store Index

The contents of the index register replace the contents
of the address portion of the memory word, bits 11-24,
at the effective addre ss. The contents of A and the
index are unchanged; bits 1-10 of the memory word
are unchanged. This instruction is not valid if the
index position of the instruction, bit 3, is a ZERO.

Increment, Replace and Load Index

The contents of the address portion of the memory
word, bits 11-24, at the effective address are incre­
mented by one. If the index position of this instruc­
tion, bit 3, is a ONE, the resulting sum replaces the
contents of the address portion of the memory word
and the index register. The contents of A are
unchanged. If the index position of this instruction,
bit 3, is a ZERO, the address portion of the memory
word will be incremented and this incremented value
will replace the contents of A. In this case, the
index register contents are unchanged. Any carry
from bit 11 is ignored. Bits 1-10 of the memory
word are unchanged. Thus, it is possible to have
many "index registers" in memory that can be incre­
mented, saved and made available for use in indexing
operations all with one instruction.

Jump on Index

If the contents of the index register are not zero, the
computer takes its next instruction from the memory
word at the effective address and continues from
there. If the contents of the index register are zero,
the computer takes the next sequential instruction.
This instruction is not valid if the index position of
the instruction, bit 3, is a ZERO.

B-13

INDEX INSTRUCTIONS (continued)

Code

75

Mnemonic

JXI

Execution
Time

7 p.s e c

INPUT-OUTPUT INSTRUCTIONS

07

22

31

32

B-14

INM

OTM

FMB

DMB

10 u s e c

10 f.Lsec

variable

variable

Description

Jump on Index Incremented

The contents of the index register are incremented by
one and the resulting sum replaces the contents of the
index register. If this resulting sum is not zero, the
computer takes its next instruction from the memory
word at the effective address and continues from
there. If the sum is zero, the computer takes the next
sequential instruction. This instruction is not valid if
the index position of the instruction, bit 3, is a ZERO.

Input to Memory

The input word from a previously enabled input channel
(refer to OCP) replaces the contents of the memory
word at the effective address.

Output from Memory

The contents of the memory word at the effective
address are transferred as output to the previously
enabled output channel (refer to OCP). The contents
of the memory word are unchanged.

Fill Memory Block

This instruction is used for high speed input into the
block of consecutive memory locations starting with
the memory word at the effective address. Once
started, the sequence continues without interruption,
controlled asynchronously by an external ready signal.
The FMB instruction may ope rate with any input
channel that has been previously enabled (refer to
OCP). The contents of the index register are incre­
rnent ed by one for each word being stored thereby in­
creasing the effective address. Execution of this
instruction may be terminated by either an external
signal (e. g. , a stop code) or upon the contents of the
index register having become all ZEROs. This in­
struction is not valid if the index position, bit 3, is
a ZERO. The FMB instruction can process input data
at a 166 kc word rate.

Dump Memo ry Block

This instruction is used for high speed output from
the block of consecutive memory locations starting
with the memory word at the effective address. Once
started, the sequence continues without interruption,
controlled asynchronously by an external ready signal.
The DMB instruction may operate with any output
channel that has been previously enabled (refe r to
OCP). The contents of the index register are incre­
mented by one for each output word being transferred
thereby increasing the effective address. Execution
of this instruction may be terminated by either an
exte rrial signal 0 r upon the contents of the index

INPUT-OUTPUT INSTRUCTIONS (continued)

Code

50

51

52

53

61

Mnemonic

DMB
(cont)

OTA

ITC

INA

OCP

SKS

Execution
Time

5 ps ec

5 u s e c

5 u s ec

5 p.s e c

5 u s e c

Description

register having become all ZEROs. This instruction
is not valid if the index position, bit 3, is a ZERO.
The DMB instruction can process output data at a
166 kc word rate.

Output from A

The contents of the A register are transferred as
output to the previously enabled output channel. If bit
11 of this instruction contains a ONE, bits 19-24 form
a 6 bit mask. This provides a facility for flexible
formatting of character outputs. For ZERO mask bits,
the re will be corresponding ZERO bits in the output;
for ONE mask bits, the corresponding bits in A will
be the output. If bit 11 contains a ZERO, 24-bit
output words are transferred by this instruction. The
index position of the instruction, bit 3, is not inter­
preted. The contents of A are unchanged.

Interrupt Control

Interrupt is enabled if bit 11 of this instruction con­
tains a ONE; interrupt is inhibited if bit 11 contains
a ZERO. The index position and the remaining po­
sitions of the address portion of the instruction, bits
3 and 12-24, are not interpreted.

Input to A

The input word from a previously enabled input chan­
nel (refer to OCP) replaces the contents of A. If bit
11 of this instruction contains a ONE, bits 19-24
form a 6 bit mask. This provides a facility for flexi­
ble formatting of character inputs. For ZERO mask
bits, there will be corresponding ZERO bits in A; for
ONE mask bits, the corresponding input bits will re­
place the contents of A. If bit 11 contains a ZERO,
24-bit input words are transferred by this command.
The index position of the instruction, bit 3, is not
inte rpreted.

Output Control Pulse

An output pulse is generated by this instruction for
the control of input-output channels and external equip­
ment. The address portion, bits 11 -24, specifies the
unit to be selected, the type of control, etc. (refer to
APPENDIX C for the code assignments). The index
position of the instruction, bit 3, is not interpreted.

Skip if Sense Line Not Set

The sense line specified by the address portion of
this instruction, bits 11-24, is interrogated. If the
sense line is not set, the computer skips the next
instruction and continues from there; if the sense
line is set, the computer will take the next sequential
instruction. The lines that may be tested include 10
internal sense lines (six sense switches, overflow
indicator, improper divide indicator, input parity and

B-15

INPUT -OUTPUT INSTRUCTIONS (continued)

Code Mnemonic

SKS
(cont)

CONTROL INSTRUCTIONS

00

02

77

B-16

HLT

XEC

NOP

Execution
Time

5 p.s e c

5 u s e c +
variable

5 flsec

Description

stop code), ready signals of input-output channels and
external sense lines from peripheral equipment (busy
status, parity errors, etc.) From one to ten of the
internal sense lines may be tested simultaneously; in
which case any or all of the tested sense lines may
cause a skip. For the channel-ready sense lines,
similar simultaneous testing is also possible. If the
index position of the instruction, bit 3, is a ONE, the
flip-flop associated with the tested sense line is reset.
APPENDIX D contains the sense line selection assig­
ments.

Halt

The computer will halt until the START button is man­
ually depressed (see description of operation), at
which time execution will be resumed at the next
sequential instruction. The indirect address position,
index position and address portion of this instruction,
bits I, 3 and 11-24, are not interpreted.

Execute

The instruction in the memory word at the effective
address is executed. After execution of the specified
instruction, the computer takes the next sequential
instruction following the XEC instruction and continues
from there. If the executed instruction involves a
jump, the computer takes its next instruction from the
jump destination and continues from there; if the exe­
cuted instruction involves a skip, the skip will be
relative to the XEC instruction and not the instruction
at the effective addre ss.

No Operation

No operation is performed by this instruction. The
computer will take the next sequential instruction and
continue from there. The index position and address
portion of this instruction, bits 3 and 11-24, are not
interpreted.

APPENDIX C

OCP CONTROL PULSE CODES

The following is a list of assigned codes to be used in the address portion of the OCP instruc­
tion to perform the specified functions. The codes are given in octal notation.

OCP ADDRESS CODES (x = unit number)

BOTH INPUT AND OUTPUT CHANNELS

00000

00001

thru

00007

00010

00011

thru

00076

00077

INPUT CHANNELS ONLY

00100

00101

thru

00107

00110

00111

thru

00176

Enable Standard I/O Character Channels

Enable No. 1 Optional I/O Character Channels

thru

Enable No.7 Optional I/O Character Channels

Enable Standard I/O Word Channels

Enable No. 1 Optional I/O Word Channels

thru

Enable No. 54 Optional I/O Word Channels

Inhibit all I/O Channels

Enable Standard Input Character Channel

Enable No. 1 Optional Input Character Channel

thru

Enable No. 7 Optional Input Character Channel

Enable Standard Input Word Channel

Enable No. 1 Optional Input Word Channel

thru

Enable No. 54 Optional Input Word Channel

OUTPUT CHANNELS ONLY

00200 Enable Standard Output Character Channel

C-l

OUTPUT CHANNELS ONLY (continued)

00201 Enable No.1 Optional Output Character Channel

thru

00207

00210

00211

thru

00276

00277

WORD BUFFER

003mx

MISCELLANEOUS

01000

01001

thru

01777

TYPEWRITER

0200x

0201x

0207x

thru

Enable No. 7 Optional Output Character Channel

Enable Standard Output Word Channel

Enable No. 1 Optional Output Word Channel

thru

Enable No. 54 Optional Output Word Channel

Inhibit all Output Channels

Word Buffer Control (8 possible)

m = number of characters per word

Ena ble Stop Code Punch

General Purpose Control Pulses for External Devices

thru

01001 thru 01007 Standard with DDP-24

Typewriter Input Select (Keyboard Enabled)

Typewriter Output Select (Keyboard Inhibited)

Typewriter Disconnect (Keyboard Released)

Note: x = 0 corresponds to standard typewriter

PAPER TAPE READER

0210x

02l7x

Paper Tape Reader Start

Paper Tape Reader Stop

Note: x = 0 corresponds to standard paper tape reader

0220x

PAPER TAPE PUNCH

C -2

Paper Tape Punch Select

Paper Tape Punch Disconnect

Note: x = 0 corresponds to standard paper tape punch

LINE PRINTER

0230x

thru

0237x

CARD READER

0240x

thru

0257x

Card Reade r Control

Card Reader Control

026nn

DIGITAL X Y PLOTTER CONTROL (2 possible)

Plotter No.

027nn

nn

Plotter No. 2

=

01 Step -Y (ca rriage right)

02 Step +Y (carriage left)

04 Step -X (drum up)

05 Step -X, +Y

06 Step -X, +Y

10 Step +X (drum down)

11 Step +X, -Y

12 Step +X, +Y

20 Plotter pen down

40 Plotter pen up

03xOO

MAGNETIC TAPE CONTROL (8 possible)

Subs elect one of up to 16 tape units connected to the same channel

thru

03X17

03x23

03x24

03x25

03x26

Start tape handler and read one block, even parity (to be preceded by OCP in­
struction with either 03x42, 03x43, 03x52 or 03x53)

Start tape handler and write one block, even parity (to be preceded by OCP in­
struction with either 03x42 or 03x52)

Start tape handler and read one block, odd parity (to be preceded by OCP in­
struction with either 03x42, 03x43, 03x52 or 03x53 in the address portion)

Start tape handler and write one block, odd parity (to be preceded by OCP in­
struction with either 03x42 or 03x52 in address portion)

C-3

03x41

MAGNETIC TAPE CONTROL (continued)

03x42

03x43

03x44

03x50

03x51

03x52

03x53

03x54

03x55

03x56

03x61

Move one block (to be preceded by OCP instruction with either 03x42, 03x43,
03x52 or 03x53)

Forward with interrupt by record gaps

Reverse with interrupt by record gaps

Search for file gap

Stop transport

Start transport (to be preceded by either 03x42, 03x43, 03x52 or 03x53)

Forward

Reverse

Fast Forward

Fast Reverse

Rewind to load point

Reset write flip-flop

04000

AID AND D/A CONTROL

thru

04377

04400

thru

04777

A to D Control (to be specified)

D to A Control (to be specified)

05000

DIGITAL RESOLVER

T mode with pre scaling

05001

05002

05003

05004

05005

05006

05007

05010

05011

05012

C-4

T mode without pre scaling

T'l' mode with pre scaling

T* mode without prescaling

H mode with pre scaling

H mode without prescaling

H'~mode with prescaling

H* mode without pre scaling

Sequential load of DR; start with Y

Sequential load of DR; start with W

Sequential load of DR; start with W

DIGITAL RESOLVER (continued)

05013 Sequential DR output; start with Y

Sequential DR output; start with X

Sequential DR output; start with W

05014

05015

CONTROL OF DIRECT MEMORY ACCESS AND FULLY BUFFERED CHANNELS

0600n

thru

0603n

0604n

Direct Memory Access Channels

thru

0607n

Fully Buffered Channels

n = function specification

C-5

APPENDIX D

SKS SENSE LINE CODES

INTERNAL TESTS

The address portion of the SKS command has the following formats and meanings:

Sense Switches..•..
f "'

Not Not Stop Over Imp Par
0 0 0 Used Used Code flow Div Err 6 5 4 3 2 1

Bit Numbe r 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ready Signals of
Additional I/O Channels

..•..
f

Par Char Par
Ch" IChan Buff Chan Buff

0 0 0 In In Out Out

Bit Number 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Simultaneous tests are possible. The results of all tests are OR'd together. For example, if
19 and 16 are one's, both sense switch 6 and the overflow flip-flop are tested. If either is set, no
skip is generated.

EXTERNAL TESTS

The address portion of the SKS command specifies 16 sense lines as follows (octal code):

2XXXOthrough 2XXX7 and

3XXXO through 3XXX7

Bits 13-21 of the address are not normally used in the testing, but each of the 16 sense lines
may actually represent a group of 512 different test signals when these bits are specified.

Note: If the index bit of the SKS command is set, any flip-flop tested by the SKS command is
also reset by it.

D-l

Test Octal Code

Sense Switch 6 00040

Sense Switch 5 00020

Sense Switch 4 00010

Sense Switch 3 00004

Sense Switch 2 00002

Sense Switch 1 00001

Parity Error 00100

Improper Divide 00200

Overflow 00400

Stop Code 01000

D-2

APPENDIX E

TYPEWRITER CODES

Lower Case Upper Case Octal

g b 00

1 • 01

2 • 02

3 • 03

4 04

5 @ 05

6 .J 06

7 > 07

8 • 10

9 • 11

" 13

x ¢ 20

I • 21

S • 22

T • 23

U = 24

V
0

250

1-1 " 26

X 27

Y • 30

Z • 31

• 33

40

J • 41

K •• 42

L • 43

t-1) 44

N .. 45

0 tJ. 46

P 47

Q • 50

R • 51

tab 52

$ • 53

E-l

Lower Case Upper Case Octal

1) Backspace (stop) Backspace (stop) 54

Space Space 56

2) & & 60

A • 61

B • 62

C • 63

0 (64

E rr 65

F * 66

G < 67

H " 71

I • 71

73

Shift Shift 74

LC LC

Shift Shift 75

UC UC

Carriage Return Carriage Return 76

3) Line Feed Line 77

1) Backspace includes an eighth level punch on paper tape. The eighth level punch

is an automatic stop code for the tape reader.

2) Lower case & is interpreted as + by DAP.

3) Octal 77 code is ignored by DAP in either case.

E-2

APPENDIX F

NUMERICAL INSTRUCTION LIST

Code Mnemonic Name Page

00

02

03

04

05

06

07

10

11

12

13
15

16

17

20

21

22

23

24

25

27

30

31

32

34

35

*36

Execute

B-16

B-16

B-4

B-4

B-4

B-5

B-14

B-5

B-5

B-11

B-ll
B-8

B-8

B-8

B-6

B-6

B-14

B-5

B-5

B-ll

B-ll

B-6

B-14

B-14

B-6

B-7

B-7

B-7

B-8

B-8

B-9
B-9
B-9

40

41

42

43

44

HLT

XEC

STB

STC

STA

STD

INM

ADD

SUB

SKG

SKN

ANA

ORA

ERA

ADM

SBM

OTM

LDB

LDA

JRT

JST

SMP

FMB

DMB

MPY

DIV

BCD

BIN

ARS

ALS

LRR

LLR

LRS

Halt

*37

Store (B) in (EA)

Store Command Portion of (A) in (EA)

Store (A) in (EA)

Store Address Portion of (A) in (EA)

Input to Memory

Add (EA) to (A)

Subtract (EA) from (A)

Skip for (A) > (EA)

Skip for (A) i= (EA)
Logical AND to A

Logical OR to A

Logical Exclusive OR to A

Add Magnitude of (EA) to (A)

Subtract Magnitude of (EA) from (A)

Output from Memory

Load B with (EA)

Load A with (EA)

Jump Return

Jump Store

Step Multiple Precision

Fill Memory Block

Dump Memory Block

Multiply

Divide

BCD to Binary Conversion

Binary to BCD Conversion

A Register Right Shift

A Register Left Shift

Long Right Rotate A and B Registers

Long Left Rotate A and B Registers

Long Right Shift A and B Registers

':' Denotes optional instruction

F-l

Code Mnemonic Name

45

46
47

Long Left Shift A and B Registers

Normalize Shift A and B Registers

Logical Left Shift A Register

Output from A

Output from A Masked

Interrupt Control

Enable Interrupt

Inhibit Interrupt

Input to A

Input to A Masked

Output Control Pulse

Add to Index Register

Transfer (A) to B

Load Index Registe r

Interchange (A) and (B)

50

LLS

NRM

LGL

OTA

OTAM

ITC

ENBI

INHI

INA

INAM

OCP

ADX

TAB

LDX

lAB

CRA

SKS

RND

TAX

Skip for Sense Line Not Set

Round (A)

Transfer Address Portion of A Register
to Index Register

Scale Right A and B Registers

Scale Left A and B Registers

Store Index Register

Increment, Replace, and Load Index
Register

Jump on (A) Plus

Jump on (A) Zero

Jump on (IX) f. 0
Jump on Overflow

Jump Unconditional

Jump on Index Register Incremented

No Operation

50

51

51

51

52

52

53

54

55

56
57

60

61

62

63

Clear A

64
65
66
67

SCR

SCL

STX

IRX

70

71

72

73

74

75

77

JPL

JZE

JlX

JOF

JMP

JIX

NOP

F-2

B-9
B-lO

B-10

B-15

B-15

B-15

B-15

B-15

B-15

B-15

B-15

B-12

B-5

B-13

B-5

B-5

B-15

B-7

B-13

B-10

B-10

B-10

B-13

B-1l

B-12

B-13

B-12

B-12

B-14

B-16

APPENDIX G

ALPHABETICAL INSTRUCTION LIST

Mnemonic Code

ADD 10

ADM 20

ADX 54

ALS 41

ANA 15

ARS 40

'~BCD 36

'~BIN 37

CRA 60

DIV 35

DMB 32

ERA 17

ENBI 51

FMB 31

HLT 00

lAB 57

INA 52

INAM 52

INHI 51

INM 07

IRX 67

ITC 51

JIX 72

JMP 74

JOF 73

JPL 70

JRT 25

JST 27

JIX 75

JZE 71

LDA 24

LDB 23

LDX 56

':' Denotes optional instruction

Name

Add (EA) to (A)

Add Magnitude of (EA) to (A)

Add to Index Register

A Register Left Shift

Logical AND to A

A Register Right Shift

BCD to Binary Conversion

Binary to BCD Conversion

Clear A

B-5

B-6

B-IZ

B-8

B-8

B-8

B-7

B-7

B-5

B-7

B-14

B-8

B-15

B-14

B-16

B-5

B-15

B-15

B-15

B-14

B-13

Divide

Dump Memory Block

Logical Exclusive OR to A

Enable Interrupt

Fill Memory Block

Halt

Interchange (A) and (B)

Input to A

Input to A Masked

Inhibit Interrupt

Input to Memory

Inc rement, Replace, and Load Index
Register

Interrupt Control

Jump on (IX) f. 0
Jump Unconditional

Jump on Overflow

Jump on (A) Plus

Jump Return

Jump Store

Jump on Index Register Incremented

Jump on (A) Zero

Load A with (EA)

Load B with (EA)

Load Index Register

B-15

B-13

B-l2

B-12

B-ll

B-ll

B -11

B-14

B-12

B-5

B-5

B-13

G-l

Mnemonic Code Name Page

LGL 47 Logical Left Shift A Register B-IO

LLR 43 Long Left Rotate A and B Registers B-9

LLS 45 Long Left Shift A and B Registers B-9

LRR 42 Long Right Rotate A and B Registers B-9

LRS 44 Long Right Shift A and B Registers B-9

MPY 34 Multiply B-6

NOP 77 No Operation B-16

NRM 46 Normalize Shift A and B Registers B-IO

OCP 53 Output Control Pulse B-15

ORA 16 Logical OR to A B-8

OTA 50 Output from A B-15

OTAM 50 Output from A Masked B-15

OTM 22 Output from Memory B-14

RND 62 Round (A) B-7

SBM 21 Subtract Magnitude of (EA) from (A) B-6

SCL 65 Scale Left A and B Registers B-10

SCR 64 Scale Right A and B Registers B-10

SKG 12 Skip fa r (A) > (EA) B-11

SKN 13 Skip for (A) :/= (EA) B-11

SKS 61 Skip for Sense Line Not Set B-15

SMP 30 Step Multiple Precision B-6

STA 05 Store (A) in (EA) B-4

STB 03 Store (B) in (EA) B-4

STC 04 Store Command Portion of (A) in (EA) B-4

STD 06 Store Address Portion of (A) in (EA) B-5

STX 66 Store Index Register B-10

SUB 11 Subtract (EA) from (A) B-5

TAB 55 Transfer (A) to B B-5

TAX 63 Transfer Address Portion of A Register B-13
to Index Register

XEC 02 Execute B-16

G-2

