
ALVEY PROGRAMME

SOFTWARE ENGINEERING

SOFTWARE RELIABILITY AND
METRICS PROGRAMME

The
Alvey

Directorate

Alvey Directorate
Dept. of Trade & Industry
Millbank Tower
Millbank
London SW1P 4QU

Prepared by The Centre
for Software Reliability for
the Alvey Directorate

July 1984

Centre for Software
Reliability

The City University
Northampton Square
London EC1V OHB

Computing Laboratory
University of Newcastle
upon Tyne
Newcastle upon Tyne NE1
7RU



SOFTWARE RELIABILITY AND
METRICS PROGRAMME

Prepared by The Centre
for Software Reliability for

the Alvey Directorate

Contents
1. Introduction 2

2. SoftwareReliability 2

2.1 What is SoftwareReliability 2

2.2 The Importanceof Reliability 2

2.3 SoftwareCertification 3
2.4 Aims of the ResearchProgramme 3

3. Relationshipto OtherAlveyAreas 4

3.1 SoftwareEngineering 4

32 VLSI 5
3.3 IKBSandMMI 5

4. ResearchProgramme 5
4.1 Achievement 5

4.2 Assessment 10

4.3 Systemsin Practice 16

4.4 Resultsof the Programme 17

5. Education,TechnologyTransferandTechnologyAssessment 17
5.1 Education 17

5.2 TechnologyTransferandAssessment 18

6. Conclusion 18

AppendixA. ResearchActivitiesand Priorities 19

AppendixB.Contributorsto Report 20

.,



1. Introduction
The ability to produce software of known quality to a given
cost is critical to the future of the UK IT industry. Together
with other aspects of the Alvey software engineering
programme, software reliability research aims to provide
industry with the means of designing and building reliable,
cost-effective software systems. It is therefore primarily
aimed at improving the engineering procedures used in
software production, although 'software' may be
considered to be a generic term encompassing the design
aspect of hardware systems.

It is apparent that software engineering will become a key
world industry. If the UK is to retain or extend its share of the
world IT market, then it must back its established
excellence in innovative product-oriented research with a
new appreciation of the commercial needs of industry.
Furthermore it is vital that research in this area is begun as
rapidly as possible. Already the USA is using the 000
STARS initiative as a means of funding work on software
measurement activities, while the Japanese emphasis on
product quality is a national preoccupation.

In order to remain competitive, UK industry will need to
produce software of guaranteed high quality.This demands
the ability both to understand and improve the software
development process (i.e. the techniques, tools, tasks and
procedures by which software is produced) and to evaluate
quantitatively the product produced by that process. Only
then will software managers and production staff be able to
introduce the vital commercial factors of cost and
resources into the production process and to determine a
profitable balance between production costs, maintenance
overheads and customer requirements.

It seems obvious that companies which are prepared to
provide warranties on their software will have a major
competitive advantage. The need to base warranties on
accurate quality evaluation throughout the development
process will require measurement to be incorporated into
the development process, as well as the industrialisation of
the development process envisaged in Information
Systems Factories (ISFs). Furthermore, new standards of
evaluation must be applied to the techniques, tools and
procedures incorporated into ISFs.

UK industry cannot afford to wait for its competitors to
provide the basic research in this area. Feedback from
measurement and evaluation from the first generation of
Integrated Project Support Environments (IPSEs) will
determine the nature of the second and third generation
products. It is not possible to design integrated
environments which will take up the results of non-UK
research, even if such work remains in the public domain. It
would be folly to allow our competitors two or three years
head start in feeding reliability research into their working
methods and software products. The success of the
Software Engineering initiative of the Alvey Directorate will
rest on its ability to demonstrate the effectiveness of new
methods of development; research into software
measurement and evaluation is essential to that goal.

-_
2. Software Reliability
2.1 What is Software Reliability?
Software reliability may be formally defined as the
probability of failure-free operation of the software fO~a
given time period in a specific environment. Alternative
metrics, such as rate of occurrence of failures, may be of
interest in certain applications. It must be stressed that
these metrics are quantitative and not merely qualitative.
They utilise the terminology of probability theory and
statistics to yield a formal numerical measure of software
reliability. Their use enables a rational and scientific
approach to be adopted towards issues of quality in
software engineering, a notable achievement in an area
which is notorious for its soft and anecdotal nature.

The aim of software reliability modelling is to estimate the
current reliability, and predict future reliability, of a software
system via measurements of the system. A reliability model
should, for example, permit a software manager or engineer
to answer the following questions:
-what is the current reliability of the system?
-how long will it take for a given level of reliability to be

achieved?
-what will it cost to maintain this system once it is released

to customers?

The ability to model reliability successfully will permit a
number of research issues to be addressed:
-what effect have different development techniques on

reliability?
-what measurements of software in its various stages of

development relate to reliability?
-what influence does customer use have on reliability?

These issues will determine to what extent it is possible to
guarantee software reliability and how this may be
achieved.

2.2 The Importance of Reliability
During the early years of programming, it was difficult
enough to produce a system which provided the
functionality required by its users, without worrying about
reliability or any other quality considerations. Computers
acquired the reputation of being unreliable and difficult to
use. Members of the public ceased to be surprised by bills
for ridiculous amounts, but the sphere of influence of
computers and software was sufficiently limited for them
not to feel unduly worried.

However, the last few years have seen a massive increase
in the use of computers throughout society. Familiarity with
computers has led the general public to expect higher
quality software, and moves to computerise life-critical and
cost-critical systems have heightened this new awareness.

Failure of a major company as a result of unreliable
business software or any loss of life due to software failures
in avionic systems or major chemical processing plants
could cause a massive public reaction against the use of
computers, which would have very serious consequences
for all the industrialised countries. Events such as the
software synchronisation failure which delayed the launch
of the Space Shuttle, and the false report of an enemy
attack proclaimed by the WWMCCS computerised defense
control system, may be a harbinger of worse things to come
if software reliability issues are not resolved.

2

..,



It would be foolish to remain complacent about current
levels of software reliability when advances in hardware
and the requirements of industry are encouraging the
development of ever larger and more complex software.
Advances in the functional capability of software must be
matched by improved methods of achieving reliability
targets, and of knowing that they have been attained.

Unreliability of software, however measured, now accounts
for an increasingly substantial proportion of life-cycle costs.
This situation will become untenable unless present trends
and practices are improved. Unfortunately the bulk of
software reliability research has been relatively
unproductive and has failed to produce useful and
applicable results. The reasons for this include:

(a) The poor perception on the part of researchers of the
real problems faced by project managers.

(b) The fragmented nature of software reliability research,
which has led to research projects of little practical or
theoretical importance.

(c) The fact that much research has been reported in a
highly technical and often confusing way which has
not encouraged a wider readership.

(d) The failure on the part of industry to provide objective
feedback on the practical performance of theoretical
results.

(e) The perceived costs and difficulties of collecting,
storing and accessing information on software
reliability behaviour.

(f) The secretive attitude adopted by many organisations
towards the dissemination of data concerning software
reliability.

2.3 Software Certification
Guarantees of software quality will have much greater
credibility if they are based upon independent assessment.
The proposed National Quality Certification Centre is the
obvious agency for such independent assessment and
would be a major user of new measurement and modelling
techniques resulting from the software reliability
programme.

The NQCC would provide software producers with formal
certification of software products. However, a producer
would need to base a warranty on commercial
considerations. When certification confirmed that a product
exhibited a certain level of reliability, the producer could
make informed decisions about maintenance costs before
providing a warranty to customers.

Thus a software guarantee would have two components:
independent certification by the NQCC and a cost-based
warranty provided by the producer (which may also need to
be agreed with the NQCe).

Current practice in software quality assurance
concentrates on the software development process. This
involves agreeing the procedures necessary to complete
the individual processes involved in each stage of software

development (theoretically from requirements definition
until replacement but in practice usually from specification
until delivery), and checking that each process is
completed in accordance with the agreed procedures.
Such procedures usually involve conducting a series of
design reviews or audits, adhering to agreed coding
standards, producing a number of standard documents
and performing certain classes of testing.

The two major deficiencies of this approach to quality
assurance are:

(i) the relationship between system reliability, and the
procedures and process at each stage of
development, is completely unquantified and in some
cases is no more than a pious hope;

(ii) there is no requirement to certify the product itself
rather than the process that produces it:direct product
measurement or assessment is ignored.

,

Accordingly, there is no way of assessing appropriate
software development techniques for various reliability
requirements and no way of evaluating whether reliability
requirements have actually been achieved. The software
reliability research programme presented here will provide
the basic information and techniques needed to resolve
these problems and place software certification on a
scientific and quantitative basis.

2.4 Aims of the Research Programme
The objective of the software reliability research
programme is to provide the capability to design and build
reliable software systems in the most cost-effective way.
Thereby, software producers in the UK will be in a position
to deliver and warrant software of competitive quality.

In order to achieve this objective a number of co-ordinated
research activities need to be initiated:

(a) to understand the causes of system failure, in order to
develop and validate models of system reliability which
permit software reliability to be specified, measured
and controlled;

(b) to understand and measure the component processes
of the software lifecycle in order to develop and
validate quantitative models of software production;

(c) to improve and evaluate software development
methods and techniques in terms of the reliability of
resultant software;

(d) to produce software development rules and
procedures such that given reliability requirements
may be achieved;

(e) to develop resource models incorporating models of
software development processes and software quality
such that costs to the customer and producer can be
predicted and controlled;

(f) to provide procedures and rules to enable the
development of reliable software to be adequately
managed.

3

.•



The programme is divided into two themes, achievement
and assessment, since it is important not only to evaluate
the reliability of software but also to provide the techniques
and tools which assist in the production of reliable software.
The anticipated goals of these areas of research are
summarised in Figure 1. It should be emphasised that the
various categories that are used to partition the research
goals will in practice be very closely interrelated as one part

Figure 1

-
of the research programme feeds back information into
another. For example, the results of technique evaluation
should feed back into the development of handbooks to
guide production and management; cost and quality
considerations and model validation exercises will refine
the original models of reliability and the development
process.

Strategy Innovation Integration Exploitation
and and and
Understanding Implementation Evaluation

Achievement Models of the software Procedures for -Database of software
development process management, and for reliability and

production staff development
e.g. Handbooks for
reliable software -Procedures for software
development certification e.g. data

collection from IPSEs

Assessment Models of software -Cost and quality -Software development
reliability models technique and tool

evaluation
-Procedures for quality

assurance -Model evaluation

3. Relationship to Other Alvey Areas
Technical innovation, particularly on a scale anticipated by
the Alvey report, will create many opportunities to
undertake tasks previously considered impossible by virtue
of their complexity, or to find more efficient ways of
achieving current objectives by using the new enabling
technologies. Hopefully, as these opportunities present
themselves to UK industry, there will be enthusiasm for their
,commercial exploitation.

Initially it may be sufficient to have an innovative or novel
product to secure a foothold in world markets. However, to
secure these markets it is necessary for UK industry to
produce competitive products of known and demonstrable
reliability and quality, delivered to the customer on
schedule. Considerable attention must be given to areas
not traditionally thought of as being research interests, for
example: resource management, project managment,
design control, production engineering, quality control and
assurance, reliability measurement and demonstration.

Whilst this report addresses those reliability research areas
necessary for the creation and support of innovative
software products, it is clear that a concern for reliability
should imbue the other parts of the Alvey programme. The
following sections discuss this issue in more detail.

3.1 Software Engineering
Other specialist panels will support the SE strategy. These
will be concerned with process/ management and formal
methods.

Since the software reliability programme is primarily
concerned with quantification of the software development

process, there must be strong interfaces with the
management and process research programme. The
introduction of quality and productivity metrics, with
associated models of the development process, will
facilitate the development of management support tools.
Such tools will provide managers with quantitative
monitoring and control facilities. For example, cost models
incorporating quality considerations will improve product
planning and estimation. Improved reliability models will
permit program certification techniques to be established.
They will also provide information about the suitability of a
product for release. Models are needed to predict
maintenance and support costs, to complement those for
development and production costs, since the former are
usually a greater proportion of life-cycle costs.

The most important contribution the reliability programme
will make is in the evaluation of the effectiveness of
software development techniques and tools. This will
necessitate close co-operation between the reliability and
process panels so that appropriate information is collected
by the latter to feed into the models and metrics of the
former. It is vital, for meaningful statistical analysis, that this
co-operation should begin before the research
programmes start. Many previous evaluation attempts of
this kind have been rendered worthless by collecting
inappropriate data, expensively, at the wrong time.

Similar considerations apply to the formal methods area.
Formal methods of software development bring
mathematical precision and rigour to efforts to enhance
software quality. It is vital that the level of reliability such
methods can establish is evaluated, as well as the cost of
applying them, since they should eventually form part of the
tool-kit of the practising software engineer.

4

.,



Furthermore, formal methods will need to be extended to
permit the specification of reliability and quality
requirements.

IPSE development, which is a major thrust of the SE
strategy, will be carried out using input from the reliability
panel in its early stages and will be sensitive to advances in
the reliability area. The results of metric and model
development, for example, must influence the automatic
data collection mechanisms incorporated into project
support environments, Additionally, at a later stage, the
requirement to engineer and manage for reliability implies
that the analysis tools provided in the IPSEs be those which
have been proven in the reliability programme.

Clearly, much of the work outlined in the reliability
programme will feed into the development of procedures
and methods required for software certification. This work
will be of direct relevance to the proposed National Quality
Certification Centre (NQCC).

3.2 VLSI
Most current hardware reliability models concentrate on
component failure due to physical causes and are unable
to address the problem of hardware design faults. It is likely
that these design faults will become increasingly significant
with the introduction of VLSIIVHPIC technologies and non
von Neumann architectures, since the complexity of these
designs is increasing by orders of magnitude. The
problems in this area show great similarity to those
encountered in software: for example, the practical
impossibility of exhaustive testing and the intellectual
challenge of formal verification. It is probable that many of
the results emanating from the software reliability research
programme will be directly relevant to VLSI design reliability.
Indeed, the currently available techniques for measuring
and predicting software design reliability are superior to any
in the hardware field and should be more widely used there.

Even the physical-cause failures in VLSI devices might
need to be modelled using techniques which derive from
software work. For example, it is known that as the logic
density becomes very high the devices are susceptible to
quantum effects, diffusion, interference, cosmic and
particle radiation, etc., which manifest themselves as hard,
soft and intermittent failures. Equally, for a very high density
device (even with a 'naive' and correct design) there is a
high probability of manufacturing defects being present. To
overcome these problems of vulnerability and low yield,
defensive design strategies will need to be used. These can
increase design complexity and hence susceptibility to
design faults.

Finally, the increasing use in future system design of CAD
techniques raises the possibility of systematic design faults
induced by faults in design software.

All these problems have close similarities to ones in
software. Close contact between the two research areas is
important in order to prevent duplication of effort on similar
research programmes. This can best be achieved in the
short term by workshops in which both groups describe
problems and what is currently achievable. It will be the
responsibility of the two expert panels to meet regularly and
ensure that technology transfer continues throughout the
development of the Alvey programme.

-
3.3 IKBS and MMI
The development of management decision support and

. advice systems for software production will depend upon
the availability of quantitative models of the development
process.

In addition the requirement to develop systems based on
sophisticated programming languages and novel system
architectures may necessitate the development of new
classes of reliability models.

4. Research Programme
4.1 Achievement

4.1.1 Software Management

4.1.2 Engineering for Reliability
4.1.2.1 The Software Development Process

-requirements
-specification
-design
-implementation
-release
-maintenance

4.1.2.2 Techniques and Tools
-validation, verification and testing
-fault tolerance
-reusable software
-metrics and models

4.1.3 Systems Issues
-system integration
-security and integrity
-safety
-vulnerability

4.2 Assessment
4.2.1 Understanding Causes of Unreliability

-understanding the development process
-cognitive processes
-human factors

4.2.2 Data Issues for Support of Reliability Research

4.2.3 Reliability Models and Tools
-reliability growth models
-criteria for judging reliability measures
-structural models
-process and environment
-development methods
-testing strategies

4.2.4 Cost! Resource Models

4.2.5 Quality Engineering

4.2.6 Technique and Tool Evaluation

5



4.3 Systems in Practice
4.3.1 Critical Systems

4.3.2 Rea/-time Systems

4.3.3 Embedded Systems

4.3.4 Distributed Systems

4.3.5 Future Systems

4.3.6 Support Systems

4.4 Results of the Programme

4.1 Achievement
4.1.1 Software Management
4.1.1.1 Relationship between Reliability and Good
Management
There is ample evidence to show that there is a direct
relationship between management techniques and
reliability, both for hardware and software. Positive
management of reliability for hardware projects is well
established and has had a dramatic effect in increasing
reliability levels of equipment in service and in reducing life
cycle costs.

Management of software can be regarded at two levels.
The first is related to the engineering disciplines applied
during the actual production of software, that is,starting with
an agreed software specification and finishing with a tested
and working 'package' which conforms to the user's
requirements. This aspect of management has received
considerable attention and, while not perfect, does have
available many tools and techniques, e.g structured
programming, modular approaches, etc. Careful selection
and use of these techniques by software development
managers has been found to result in better and more
reliable programs, although quantification of the
improvement and evaluation of the scope and applicability
of these techniques is rare.

However, when the managing of total systems is
considered, the situation is very different. Management
techniques for producing reliable software systems are not
well established. As software gradually replaces more and
more hardware within systems, the unreliability of software
becomes more important both from a functional and a cost
point of view.

The purpose of this area of software reliability research is to
provide the techniques and tools which a project manager,
who may not be a software specialist, can use to monitor,
assess and control the requirements, design, resources,
costs, scheduling and implementation of a project.

4.1.1.2 Management Needs
Overall a strategy is needed which can be applied across
all phases of the project. Specifically, managers need
procedures and tools to assist in monitoring, control and
assessment in the following areas:

Agreement of requirements definitions between users
and developers

Generation of specifications from requirements

-
Design integration issues:

hardware Isoftware apportionment

computer architectures and languages

Cost and resource estimation

Modelling and predicting system reliability and reliability
growth

Interrelationship of hardware and software reliability

Managing development:
preparation of integrated development plans

schedule and resource monitoring

identifying the 'milestones'

documentation and data

multiple sub-system control

Integration and test-metrics

Reliability demonstration, growth and assurance

Transition to service and monitoring in service

System maintenance and configuration control

System change and redesign

4.1.1.3 The Objectives
Detailed consideration of many of the specific needs will be
given within other parts of this document.

The work in support of management tools and techniques
will be to link all the relevant parts of the total programme
into an integrated set of management procedures and
techniques. This will entail research into:

(a) Identification and evaluation of criteria associated with
software creation which must be positively addressed
within the integrated project management of a system.

(b) Assessment of existing managerial tools, techniques
and procedures, and identification of missing or
inappropriate elements.

(c) The review and co-ordination of new tools and
techniques emerging from the Alvey programme
which will reinforce any existing work,

(d) Preparation of management guidelines and
procedures which can be used by project officers
within an integrated management system.

4.1.1.4 Education
Education and technology transfer will be discussed in
more detail in section 5. However, there are specific
problems associated with persuading managers to use
novel development methodology, As the efficacy of
procedures and techniques becomes known from the work
being carried out in the main body of the research

6

..



programme, it is vital that this knowledge is used in real
development projects. This will involve a selling operation.
Managers understandably adopt a hard-headed approach
and need to be shown that new techniques actually work.
The SE programme will therefore support prototype
development environments which can be used to
dramatically exemplify the effectiveness of the new
methodologies by applying them in the construction of
realistic systems.

4.1.2 Engineering for Reliability
4.1.2.1 The Software Development Process
The development of software can be viewed as comprising
a series of stages, each of which could benefit from further
investigation and research. The stages are:

(a) Requirements, that is the discovery, collation and
precise statement of the nature, qualities and
functionality required of the software item, within a
specific environment. When documented,
requirements are usually written in natural language
and are often relatively informal. They should include
the quality and performance levels which must be met
if the product is to be acceptable and useful.

(b) Specifications, that is the formal statements of
functionality required. They may be wholly or partly
presented in mathematical notations and formally
defined languages specific to the nature of the task
and/or to the methodology (procedures and tools)
which will be applied in the next transformation of the
specifications. However, for many practical systems
the specification is written in natural language, albeit
with considerable concern for precision and clarity.

(c) Design. This is the process of transforming
requirements and specifications into an
implementable form. It includes the identification of
computing functions needed, their grouping into
manageable and testable units, the creation (or
selection) of algorithms, the identification and
description of internal and external interfaces, and the
documentation of the validation procedures and tools
which must be applied to confirm the accuracy with
which the design matches the specification and
requirements.

(d) Implementation. This is the process of translation from
design to executable software. Additional testing
needs will become apparent, related to the exact
nature of the code produced and the relationships
between code units.Validation conducted during each
of the preceding stages will be supplemented by an
intensive examination of the structure and functions of
internal modules, and of the functionality, quality and
performance of the software as a whole.

(e) Release. At some point the software must be released
by its builders and handed over to the customer.
Special tests may take place at this point, with the aim
of establishing that the product conforms to standards
of functionality and performance which are
acceptable.

(f) Maintenance. Once accepted and released a product
is still likely to need attention. Faults are repaired,

-
omissions filled and new functions added. Each of the
changes must be considered for its effects on the
current state of the product and, if made, should be
followed by full testing of all affected areas and re
measuring of relevant reliability metrics.

4.1.2.2 Techniques and Tools
Numerous techniques and tools have been devised for the
various stages of software develbpment: methodologies to
assist in design; notations for specification, design and
implementation; testing strategies, etc. Their effectiveness
is expected to be enhanced by making them available in a
coherent and uniform way by means of Integrated Project
Support Environments. The mechanisation inherent in the
use of a tool can itself have a significant impact on
reliability.An IPSEshould facilitate both mechanisation and
consistent modelling, and measurement of techniques.
This should in turn assist in the comparative evaluation of
different techniques, and the control and monitoring of
individual software developments. I

Four particular categories of these techniques can be
expected to have a direct impact on software reliability,and
these are summarised below.

A. Validation, Verification and Testing
The process of software development is basically one of
representation and transformation, whereby a first informal
idea is translated into progressively more detailed and
concrete terms until it is implemented as an executable
system or program. At each stage in the process, each
intermediate representation needs to be checked to ensure
that it corresponds to the proceeding representation, that its
characteristics are consistent with the stage of
development it has reached and that it is suitable for entry to
the next stage of processing. This process of checking is
variously called validation, verification or testing with no
uniformly accepted definition of any of these terms.

In common usage, the term verification tends to be
associated with checking procedures based on
mathematical logic whereas testing tends to be associated
with checking that a program correctly executes with a
number of specific inputs (test cases or trials). Thus
verification has tended to be associated with the early
stages of software development and testing with the later
stages. Validation tends to be used to indicate an
assessment of the general worth of quality of a program and
is not usually confined to a specific checking method.

Thus, it seems appropriate to use the term validation as a
general term for all checking procedures, and to use
verification to refer to formal checking procedures and
testing to indicate validation by program execution
methods. This convention will be followed throughout this
document.

Research issues in validation centre around identifying
efficient and cost-effective checking procedures for each
stage in the development process, and establishing the
inferences which can be made about the quality of a given
software product after validation procedures has taken
place. However, validation procedures which detect errors
efficiently and cheaply may be incompatible with those
aimed at obtaining information relating to product quality.
Thus, there is also a need for research aimed at identifying

7

..•



and reconciling conflicts between validation techniques
aimed at defect removal and those aimed at product
assessment.

Validation techniques which are of particualr importance for
the production of reliable software include:

(i) Animation and prototyping
Animation techniques aim to provide a simulation or a
model of a system early in the development process.
Prototyping is a form of animation with an implication
that the simulation is of a similar nature to the final
system. Animation is more general, encompassing
non-computer based activities such as scenario
building at one extreme, and computer execution of
specifications at the other.

Animation is meant to reduce the uncertainty which
normally exists between a user's perception of a
system which may be expressed in informal
requirements and a systems designer's view which
may be expressed in more formal and abstract terms.

(ii) Verification
Software verification attempts to confirm that the
software and its specification are consistent, usually by
the application of the mathematical techniques. Formal
verification can only be performed when a formal
specifiation is available but then offers a stringent
means of validation which can, in principle, be checked
mechanically.

(iii) Reviews and Inspections
Reviews and inspections are used to validate
representations found early in the software
development process without using mathematical
techniques. Empirical results indicate that both
techniques provide effective and economical means
of error detection although definitions of the two
techniques vary and are sometimes contradictory.

(iv) Analysis
Once code exists, it may be analysed, usually with
automated assistance, to provide information on
measurable properties of the software (such as size
and complexity) and to locate any occurrences of
certain specific faults (such as unreachable code,
non-terminating loops, illegal addresses, etc.). Analysis
of code structure provides measures of test efficiency
(path coverage, proportion of code executed, etc.).

(v) Testing
Testing conventionally consists of determining a set of
input test data, executing the software on each
element of the data set and checking that the outputs
from the system agree with the tester's expectations.
Testing usually takes place at a series of levels of
completeness of a product, as the components of a
product are integrated into larger structural units
(module, subsystem and system).

Testing is an area for which there are many techniques
and little background theory. There are a number of
problems involved in interpreting the results of testing.
There are also practical problems involved with the
conflict between testing aimed at error detection and
testing aimed at demonstrating product quality.

-
Research into the techniques themselves will also be
conducted by the formal methods and process panels.
However, a number of research topics relate directly to
reliability and measurement:

(i) evaluation of the cost-effectiveness of the various
techniques;

(ii) investigation of relationships between measurable
aspects of the techniques and system reliability,and
the implications for product certification;

(iii) overall design of a validation process in terms of cost
and reliability (this must identify the relationships
between various techniques, the development
process and cost and quality factors);

(iv) experimental evaluation of comparable techniques (i.e.
different specification languages, or reviews and
inspections).

B. Fault Tolerance
One of the major factors contributing to the very high levels
of hardware reliability which can now be achieved is the
use of component redundancy to provide tolerance to
physical faults. In recent years, more general techniques
(such as recovery blocks and N-version programming)
have been proposed which aim to provide tolerance to the
faults of design which cause unreliability in software
systems. Software fault tolerance techniques are based on
the implementation of replicated modules of diverse design,
with provision for either state restoration or replication, and
of some means for adjudicating between the outputs from
the replicated modules.

Some highly critical systems have relied on the
construction of independently designed versions of the
entire software system (e.g. Space Shuttle, A310 Airbus,
railway signalling). Many database systems and telephone
switching systems employ sophisticated recovery
techniques which can prevent corruption of data by certain
categories of software fault. Less comprehensive
strategies for software fault tolerance are often referred to
as defensive programming, which can range from this
disciplined use of exception handling notations to the ad
hoc inclusion on run-time assertions.

The increasing complexity of hardware designs made
possible by VLSI techniques implies that design faults can

- be expected to have substantial impact upon the reliability
of future hardware systems. Software fault-tolerance
techniques will be of direct relevance to these hardware
design problems.

Research in fault-tolerance is needed to:

(i) develop more general approaches to design fault
tolerance than the specific notations currently
available;

(ii) ensure that these more general approaches can still
be expressed in notations which allow them to be
exploited effectively by the designers of complex
systems;

(iii) devise techniques for use in concurrent, real-time,
distributed and embedded systems;

8

..,



(iv) establish methodologies for the guidance of the
designers of fault tolerant software;

(v) harmonise fault tolerance and exception handling
approaches;

(vi) evaluate the relative effectiveness of different fault
tolerance approaches;

(vii) compare the effectiveness of fault tolerance
techniques with other ways of improving software
reliability.

C. Reusable Software
It is widely expected that techniques for the re-use of
software modules will have a significant effect on the
reliability and cost of new software products. Although an
immediately attractive idea, there are a number of problems
to be solved by research, design and standardisation
methods. For reusability, the modules must be ones which
are widely required and unambiguously specified. Their
design and implementation must be such that they can be
automatically incorporated into programs created using
different methods and tools. This will be facilitated by
adherence to programming standards. Their
documentation must be both complete and flexible, to
enable its inclusion into larger documents of various kinds.
The SE programme will set up a database of components
(which will include, for example, hardware designs as well
as reusable software modules). This database will be used
in the short to medium term to acquire experience within the
research community of the use of these techniques, and
also to support modelling research. Inthe longer term, there
is a need for the information base to be made available to
the commerical community, perhaps via IKBS techniques.

It can be hoped that trends in modern programming
languages (modularity and encapsulation) and in system
design (object based systems) will give a sorely needed
impetus to the development and application of reusable
software. Special reliability modelling techniques, as
discussed in 4.2.3.3.1,may need to be developed to reflect
the structural properties of software built up from reusable
modules.

Important unresolved issues in this area include metrics.
How, for example, should reliability information about
software modules be combined to form reliability metrics for
the overall programs of which they will be parts? Only when
questions of this kind can be answered will reusability begin
to yield economic benefits. Without such techniques it
would be necessary to treat the module-based new system
as a black box program and obtain reliability measures by
conventional methods. This issue is discussed in more
detail in 4.2.3.3.1.

It should be noted that current notions of structure might
have to be revised if reusability becomes widespread. For
example, the existence of reusable software, coupled with
the possibility of embedding this software in a VLSI
hardware system, might result in cost-effective system
architectures radically different from those currently
advocated.

Equally, the structures which are advantageous from a
reliability standpoint may not be those which system

-
designers would regard as most natural. The importance of
achieving reliability benefits (or at least not incurring

. reliability penalties) in cost-effective ways via reusability,
suggests that there should be close co-operation between
workers in the reliability modelling area and those dealing
with the wider feasibility studies of reusability. It is possible
that the latter may have to pay the price of dealing with
unfamiliar structures to gain the advantage of having easily
obtained reliability measures.

Formal requirements concerning the reliability data to be
collected on modules (and available in the database) will be
agreed with the reliability panel.

D. Metrics and Models
The development of metrics and models relating to all
phases of software development is a major requirement of
any programme which aims to provide quantitative
methods of evaluating and managing the development
process and assessing the quality of software products.
This research area forms the basis of the whole of section
4.2 of this report.

4.1.3 System Issues
Although this report emphasises the more formal aspects
of reliability, users' perceptions of the reliability of systems
generally embrace other,more informal, qualities. There is a
need to investigate interactions between these various
wider reliability issues (such as availability, maintainability,
security, integrity and safety) as they apply to both systems
and software. Different applications may make greater
demands on some of these than on others. For example,
nuclear power plant control needs to be safe, databases
may need to be secure. Availability, which concerns the
amount of downtime resulting from failures, may not be as
relevant for software as it has been traditionally for
hardware.

Research is required to investigate the suitability of various
tools and techniques for the achievement of reliability,
availability, safety, maintainability, etc. The tool mix may
differ for systems whose requirements place different
emphases on these different qualities.This observation has
implications for the development of IPSEs.

4.1.3.1 System Integration
There is a need for research into the reliability problems
caused by incompatabilities between hardware and
software aspects of systems, and into systems
requirement, specification and design disciplines which
serve to reduce or eliminate such problems. Since the
ultimate aim of software reliability is reliability of systems,
there is a need for work aimed at unifying measures and
goals for reliability of hardware, of software and of systems.

4.1.3.2 Security and Integrity
There is a need to investigate means of ensuring and
assuring the security and integrity of computer based
systems. This is an area where there is already
considerable public concern, particularly as far as data
protection and confidentiality is concerned. It wil~ be
necessary to consider both accidental breaches of security
caused by unreliability or other deficiencies, and seek
means of guarding against deliberate attempts by outside
agencies to breach security.

9



4.1.3.3 Safety
System safety is, in certain application areas, one of the
major driving forces for reliability of software. There is a
need for research in this area focusing attention on the
achievement of system safety through the use of suitable
software development methodologies.

4.1.3.4 Vulnerability
Complex systems containing many diverse components
are vulnerable in different ways to the loss of functionality of
one or more of these components. Different structures may
have different vulnerabilities, for example by having
different probabilities of retaining particular important
functions under similar component loss. These important
structural issues need further study.

4.2 Assessment
4.2.1 Understanding Causes of Unreliability
Research is essential into the causes of unreliability in
software: it is only by understanding and avoiding practices
which lead to unreliable software that software engineering
tools and techniques leading to reliable software can be
recognised. This research needs to be very practical,
involving the detailed examination of the background to,
and development of, software systems which are known to
be unreliable, thus identifying properties which differ from
those of reliable systems.

4.2.1.1 Understanding the Development Process
A programme of research is necessary to investigate the
processes involved in the software life-cycle. Two levels of
investigation are required, one at the micro and one at the
macro level. The micro level should aim to provide a
detailed study of the component sub-processes
associated with the conventional phases of the software
life-cycle. The macro level should provide information
about the gross economic processes involved in software
production.

The aims of each part of the programme should be:

(i) To provide a basic understanding of:
-the processes involved in software development
-their relationships to one another
-the relationship between each process and the input

to and output from that process.

(ii) To identify factors which could explain such
relationships.

(iii) To progress towards predictive and strategic planning
models of software development.

The initial investigation should concentrate on descriptive
models but should provide the basic understanding
necessary to identify quantifiable features of product and
process.

It is not likely that the micro and macro level studies will
link-up initially but their integration should be a long term
goal.

This programme should be initiated early in the overall
programme because it will provide necessary input into
other parts of the programme.

-
The major outputs should be:

(i) Standards and definitions of the sub-processes of
software development and their respective product
inputs and outputs.

(ii) Macro and micro level descriptive models of software
development.

(iii) Identification of areas of research needed to link the
micro and macro view points.

4.2.1.2 Cognitive Processes
Since unreliability of software is caused by human errors,
explanations of unreliability necessitate investigation of the
reasons for human error.This implies that a programme of
research is required which will consider the psychological
implications of software development as a problem solving
activity. Investigations aimed at identifying methods for
restricting the occurrence of errors during problem solving
tasks will have implications for many parts of the software
engineering programme. Factors which should be
considered are:

(i) The relationship between language design, problem
representation and problem solving strategies.

(ii) The relationship between problem representation,
problem transformation and learning strategies in the
context of the software development process.

(iii) The implications of psychological research for the
validation of new and existing software development
methods and techniques.

The programme should be in two parts. Firstly, the
implications of current work in cognitive psychology should
be assessed in the light of current software development
methods. Then, a programme of research into the problem
solving aspects of computer programming should be
instigated.

The major outputs of the programme should be:

(i) An evaluation of current software development tools
and procedures in terms of current cognitive
psychology theory.

(ii) An evaluation of software development as a problem
solving activity, identifying methods of reducing the
opportunity for error within the development process.

(iii) Procedures for evaluating new development tools and
methodologies.

4.2.1.3 Human Factors
4.2.1.3.1 Group Factors
The people involved in the various aspects of the
development process may have conflicting views of the
software being evolved. Means of resolving these conflicts
are required.

A programme of research aimed at investigating these
influences will probably involve technology transfer from
management sciences and social psychology aimed at
providing techniques for the project manager and insight
and understanding for group members.

10

..



4.2.1.3.2 Motivation
Motivation is primarily a management responsibility. The
development of understanding and techniques to assist
management require research aimed at the following
issues:

(a) Motivating factors and techniques.

(b) Demotivating factors and avoidance methods. Current
psychological methods need to be assessed in a
computing envirorynent.

(c) Influence of motivation on productivity, quality and
reliability.

4.2.1.3.3 Productivity
Assessment and evaluation of project members is an
important part of project management. Influences on
motivation and group factors, and thus on productivity, must
be considered to be part of any research programme.

4.2.1.3.4 Man-machine Interfaces
A research programme is necessary to ensure that the new
generation of programme tools which will become part of
the IPSEs have well designed man-machine interfaces. It is
important to ensure that interfaces are compatible with
human cognitive processes and productivity aims. First
generation new tools wil be based to a large extent on
current tools. Part of the programme should therefore be
directed towards the evaluation of current techniques. This
will link into other aspects of the programme.

4.2.2 Data Issues for Support of Reliability Research
The success of the entire software reliability programme
depends upon a close integration of the theoretical issues
discussed here and real software development
programmes. Just as, in all projects, reliability should not be
an optional extra which can be invoked when convenient,
so in this work an awareness of reliability issues must
pervade the whole programme.

4.2.2.1 Data Requirements
There is a need to obtain data to support a number of
activities within the software reliability section of the Alvey
programme. These include the assessment of
effectiveness of various tools, techniques and procedures
in achieving reliability and other related goals. Data is also
required to assist in understanding the causes of
unreliability and in identifying and quantifying factors which
explain unreliability. Specific kinds of data are also required
to support the various modelling and reliability prediction
activities.

Data of various kinds will be required by other areas of
research within the Alvey programme, as well as the
important topics of software metrics and quality. Although
this data will be used for different purposes from the
reliability data, the requirements will doubtless overlap, so
that a single statement of data requirements is preferable.
For this reason, the remainder of this section will address
issues wider than reliability alone.

There is an immediate need for an investigation to be
carried out to identify data which should be collected. This
should include data collected throughout all phases of the
software life-cycle.

-
4.2.2.2 Data Sources
In any data collection activity, it is necessary to reassure
providers of data that the data will not be used in ways
which would be prejudicial to their interests. The purposes
for which data is being collected must therefore be
identified to all potential data sources, and an undertaking
given that data will not be used for other purposes without
seeking specific permission. Without assurances of this
nature, commercial considerations may influence the
availability of data.

It is anticipated that software developers participating in the
Alvey programme will be required to provide a certain basic
amount of data, which may be collected automatically or
semi-automatically as part of an IPSE development. It is
hoped that data will also be available on developments
using more traditional methods. Data collected in these
ways will be valuable for the assessment of effectiveness of
software engineering development methodologies.
Substantial economic benefits are likely to come from
knowledge of the degree to which suggested development
approaches succeed in producing reliable software.

In addition to the above 'passive' data collection activities,
more active approaches will be necessary in specific
instances. An example is provided by the data needs of the
reliability prediction area, where it may be necessary for
random testing to be carried out on certain projects (i.e.
testing which simulates or uses an actual user
environment). There are other areas where controlled
statistical experiments may be feasible. Examples include
investigation of independence of behaviour in software
replication for fault tolerance (4.2.3.3.2), economic trade
offs between single programs and multiple version fault
tolerance (4.2.3.3.3), and structural issues concerning
reusable software modules (4.2.3.3.1).

4.2.2.3 Data Organisation
The implication of the requirements for data and the wide
range of potential data sources is that a large database
system will be needed to receive and store the incoming
data. Although such a system will probably incorporate a
number of databases for specific purposes, it is important
that it should be visible to the user as a single entity,capable
of providing information on a wide range of software
matters. The facility should include data analysis
procedures and should, in the longer term, aim to be
accessible on line-subject only to the considerations of
data confidentiality mentioned earlier.

An immediate need is for a study aimed at producing a
specification for the database system, in order that the
database system itself will commence functioning at the
earliest possible date.

4.2.3 Reliability Models and Tools
The objective of a research programme into this topic is the
development of mathematical and probabilistic models that
are powerful in explanation, prediction and control of
reliability. Some of these models will find their main
application in furthering understanding of the process of
software development. Others will be primarily intended to
provide metrics for a particular software product using, for
example, failure data on that product obtained during
testing. This distinction between process and product,
although important, will occasionally become blurred.

11



Indeed, several of the modelling techniques in the following
sections will find application in both areas.

Since software is always a part of a wider overall system,
the models and resulting reliability measures must be
compatible with this wider context. This may be achieved
by regarding reliability as a probabilistic/stochastic
quantity. Examples of formal probabilistic reliability
measures which can be obtained from this stochastic
approach are: rate of occurrence of failures (ROCOF),
probability of failure-free working for a user-specified length
of time, mean time spent out of action over a specified
period, etc. The choice of a particular reliability measure will
depend upon the context in which it is to be used. The
important point is that the choice be made from the set of
formal probabilistic measures which arise from the
programme of research outlined here. It should be
emphasised, though, that these are designed to be useful
as well as formally and mathematically acceptable. The
main reason for their being used by a manager, after all, is
that he can collect (relatively) simple data, feed it into the
model, and obtain meaningful predictions and measures
about the reliability of the product.

The previous paragraphs emphasis how formal reliability
measures should be prescribed for users. The models from
which these measures emanate, on the other hand, must
stand or fall on their ability to be seen by the user as
genuinely explicative and predictive. That is, a user faced
with alternate reliability predictions from two different
models will correctly judge the models on the degree to
which the predictions are verified in the light of actual
behaviour. This kind of judgement is already taking place
within software engineering in fairly informal ways (see, for
example, the waning fortunes of 'Software Science'). Users
require more formal techniques for assessing the degree of
trust they can place in the predictions they make about the
actual project in hand.

4.2.3.1 Reliability Growth Modelling
The most successful techniques for measurement and
prediction of software reliability currently available are
reliability growth models. The reliability of software grows as
a result of the process of fault identification and correction
known as debugging. These models use failure data (for
example, execution times between successive failures) to
estimate current reliability and predict future failure
behaviour (for example, time to achieve a specified target
reliability). It should be noted that these models place
stringent requirements upon the testing strategy which
generates the raw failure data; this issue is discussed in
more detail in 4.2.3.5.

Recent research shows that the performance of these
techniques is variable. For example, comparisons of
reliability predictions with subsequent program failure data
are consistently poor for some models. Other models
sometimes perform well, but will occasionally give
misleading predictions for reasons which are not presently
understood. This means that a potential user cannot select
a model a priori and be certain that the reliability predictions
it produces for his/her software will be accurate. On the
other hand, it does seem to be the case that at least one of
the available models will perform well in a particular
situation. Faced with this, a user urgently needs tools which
will assist in identifying the reliability predictions which are
trustworthy for the particular software under study

-
It is important that this work, and the resulting tools, are
responsive to the needs of the user.Although formally the
problem is the statistical one of examining 'predictive
quality', it is clear that users place different emphasis upon
different aspects of this concept. For example, recent
results show that it is easier to obtain a good estimate of the
current reliability of a program then to predict when a target
reliability will be achieved. The first of these is a useful
achievement: it would be a necessary prerequisite for
formal reliability acceptance testing. The second would be
invaluable for software developers involved in estimating
target dates.

4,2,3.2 Criteria for Judging Reliability Model Performance
When tools are available for judging the quality of reliability
predictions (see 4.2.3.1), it will be possible to investigate in
detail the reasons for differing model performance. The
objective will be to improve and develop these relatively
simple reliability growth models.

It should be noted that this work will have important
implications not only for software but also for hardware
reliability growth, where traditional approaches are
extremely naive, In particular, software reliability growth
approaches will prove relevant to the modelling of VLSI
design fault occurrence.

The development of adaptive reliability models should be
investigated. Given a suitable measure of the agreement
between predicted and actual failure behaviour, it may be
possible to refine future predictions in the light of past
predictive achievements.

4.2.3.3 Structural Reliability Modelling
The most important criticism which can be levelled at the
simple reliability growth models of 4.2.3.1 and 4.2.3.2 is that
they essentially treat software as a 'black box'. No account
is taken of internal structure or other known properties of the
program under study.

There is an urgent need for models which can exploit the
large amount of structural information which is usually
available. Hardware reliability theory provides an interesting
parallel: one of the great achievements of this theory is the
ability to combine information about component reliability
with structural information about the design of the overall
system. Unfortunately, software structure tends to be very
much more complex than hardware structure. Also, the
simple component/ design dichotomy is less obviously
applicable to software, which can be viewed as solely levels
of design embedded in higher levels of design,

Work on structural models like these can be seen as a way
of improving the very general reliability growth models
which already exist. The following are areas where specific
structural issues will shortly become important.

4.2.3.3.1 Reusable Software
Reusable software is an obvious candidate for the
economic achievement of high reliability (see 4.1.2.2 (C)).
The use of software modules, of known performance, within
a novel skeletal structure must be a sensible way of
lessening uncertainty about the performance of the overall
product. However, it is not currently known how the 'module'
and 'structure' reliabilities should be combined to yield a
reliability metric for the overall system. Indeed, it is not at all

12

.,



obvious how to assess the reliability of the novel skeletal
structure into which the modules are to be embedded. It
may be possible to execute such structures, with 'tied-off'
modules, but this needs further study.

A more important problem arises from the observation that,
in general, a module does not simply have 'a' reliability
figure. In fact the reliability of a module (indeed of any
program: see 4.2.3.4.2)will depend upon the type of use to
which it is put. Specifically, it will depend upon the
characteristics of the skeletal software structure in which it
is to be used. It is important, then, that a database of
reusable modules should contain sufficient information for
a potential user to be able to obtain a reliability metric for a
module operating in his own environment. The ability to do
this depends upon the success of the programme of
research into matching reliability performance to
operational context which is described in 4.2.3.4.2.

4.2.3.3.2 Fault-tolerant Structures: Ultra-reliability
Important structural questions are associated with the
achievement of extremely high reliabilities for safety
related systems. It is already obvious, but not necessarily
generally accepted, that heroic debugging of single
programs is not a feasible approach to the achievement of
these reliabilities. The feasibility and cost-effectiveness of
mathematical verification for practical systems is as yet
highly questionable. Special fault-tolerant architectures
may be successful in achieving high reliabilities, but it is
equally important that methods are developed for assuring
the achievement of a very high reliability for a particular
system. It is clearly not possible to receive such assurance
simply from test data.The use of test data within a structural
model may be sufficient, but more work is needed on this.
Since achievement of very high reliability in these
architectures exploits independence of failure behaviour
between disparate replicates, empirical investigation is
urgently needed to determine what degree of
independence is achievable.

4.2.3.3.3 Fault-tolerance: Economic Optimality Issues
Fault-tolerant structures are usually discussed in the
context of very high reliability requirements. It may be the
case, however, that fault-tolerance is a more cost effective
way of achieving the lower reliability targets of more
mundane applications. Equally, it is only when life-cycle
costs or unreliability can be estimated that rational
discussions can be made about reliability targets (see
4.2.4). The success of recent designs of fault-tolerant
hardware in quite ordinary applications suggests that many
users may be willing to pay for guaranteed high software
reliability. It should be noted, though, that these fault-tolerant
hardware designs only buy protection from physical-cause
failures. Protection from hardware design faults is a similar
problem to that of software fault-tolerance, and should
benefit from this research.

Methods of deciding in optimal ways between single
program and different fault-tolerant architectures are
required. It would be valuable for a developer to have
guidance on whether a particular reliability target can be
achieved with least effort by debugging a single design, or
by using a particular kind of design diversity. There is
currently little theory to assist in this kind of decision making,
and virtually no empirical data. These optimality issues can
be stated in different ways. Forexample, instead of reliability

-
a user might be more interested in the effect of failures on
total life-cycle costs (see 4.2.4).Then it would be of interest
.to know which architecture would achieve acceptable life
cycle faliure costs for minimum development costs.

Dependent upon the results of this work, it is possible that
fault-tolerant architectures will find widest use because of
their economic advantages, rather than because they are
the only possible avenues to the achievement of
ultra-reliability.

4.2.3.4 Reliability for Process and Environment
This is the area which is likely to provide most immediately
recognisable benefits to managers involved in practical
software development. What they require is objective
guidance as to the relative efficacy of different techniques
at the various stages of software development. What they
get currently is a large amount of anecdotal evidence and
special pleading.

In order to be able to quantify the effectiveness of software
engineering methodologies, software models must be able
to incorporate variables (explanatory variables in statistical
terminology) which characterise these methodologies. In
fact these new explanatory variable models will have other
important uses. They should be able to characterise the
type of use of the software: matching the reliability metrics
to the environment in which the software operates. This will
be particularly important for reusability to be effective (see
4.2.3.3.1). They should also be able to characterise the
nature of the program itself (complexity, size, etc.).

4.2.3.4.1 Characterisation of User Environment
Present models may allow 'the' reliability of a program to be
measured and predicted. However, in most cases the
actual failure behaviour in use depends upon the type of
environment in which the program runs. General purpose
operating systems, for example, show different reliability in
scientific environments than they show in business data
processing contexts. It will be valuable to be able to predict
user perceived reliabilities from an analysis of test data plus
information characterising the user profiles. Success of
these new models is vital to the programme for reusability of
standard modules.

4.2.3.4.2 Characterisation of Program Properties
Reliability modelling which takes into account properties of
the program and its development forms one of the most
important software engineering issues. The intention is to
obtain quantitative measures of the effect software
engineering methodology has upon ultimate product
reliability. Present knowledge in this area is largely
anecdotal. These new models will be used in investigations
of real software development (see 4.2.2) in order to obtain
quantitative measures of the effect of different
methodologies and program properties.

This work will allow system developers to evaluate the
cost-effectiveness of different development approaches as
revealed by their past effectiveness. It should not be seen
as an alternative to reliability measurement and prediction
during program development, but complementary to this.
The purpose of this work is not to predict reliability before
system design begins. In fact it seems unlikely that this
could ever be done with adequate accuracy. It ought to be
possible, however, to provide guidelines on how given
reliability targets can be achieved.

13

.•



Real-time programs have particular problems of reliability
resulting from timing requirements. Stochastic modelling in
this important and neglected area is urgently needed (see
4.3.2).

4.2.3.5 Testing Strategies
The role of testing is two-fold. On the one hand it is seen as
a method of finding faults present in the program. The
objective here is the achievement of reliability,and this view
is by far the most common. On the other hand, testing
produces the raw data which forms the input to current
reliability models: i.e. it is concerned with the measurement
and prediction of reliability.

Unfortunately, there is currently a conflict of interest
between these two roles. For testing to be meaningful in the
measurement role it is important that the method of test
case generation should accurately emulate the operational
environment envisaged for the program under test. Such
testing has come to be called random testing, and is
normally reviled by software developers because of its
inefficiency in capturing faults.

However recent work in the US suggests that this view of
the inefficiency of random testing may be unnecessarily
pessimistic. More careful quantitative studies are needed to
resolve this issue. In addition, the possibility of devising
'accelerated' random testing strategies should be
considered. Such a strategy would retain the main
advantage of random testing (that faults are discovered
during test with probabilities which are proportional to their
chances of appearing in use) whilst increasing efficiency.

There should be investigation of testing strategies which
are concerned with wider issues than reliability. For
example, since the consequences of failures are often as
important as the frequencies of failures, itwould be useful to
have a testing strategy which matched fault discovery
probabilities with their total life-cycle consequences.

4.2.4 Cost! Resource Models
The engineering of systems, and in particular of software,
has to take place within economic constraints, and against
a background of (often tacit) social and environmental
needs. Failure to meet such constraints results in costs
which mayor may not be measured in monetary terms, and
possibly may be incommensurable. Thus it is important that
these costs be accounted for, and, if possible, understood.
This, in principle, would allow reasonable decisions to be
made by project management regarding the optimum
deployment of available and often scant resources.

Unreliability is a major cost driver, both by requiring the
expenditure of large quantities of resource in reliability
achievement and the incurred costs of failure in service.
Existing reliability models essentially account for failures,
without regard to severity of failure, and usually produce
estimates of failure rate and properties of interfailure times,
etc. These current techniques can be applied also to
individual subclasses of failures (e.g. safety-critical,
catastrophic, etc.). It is possible that the hardware
techniques of FMECA (Failure Modes, Effects and
Criticality Analysis) and FTA(Fault-Tree Analysis) could be
extended here, since they both account for different
classes of failure and link them to their corresponding
effects. Thus if it were possible to cost the consequential

-
effects commensurably, and estimate their rate of
occurrence, we would be in a position to quantify the
support costs.

It is important to distinguish between cost and value, each
of which needs to be measured in commensurable terms In
order to take proper decisions, and much work is needed
into both topics. Project management and the optimum
deployment of resources can only be achieved after the
above measures of cost and value are resolved. f=or
example, project management should be able to determine
the best cessation time for development/testing and this
requires the provision of realistic tools for Life Cycle
Costing. This in turn neccesitates the proper accounting for
foreseen hazardous failures, out-of-service costs,
maintenance costs, etc., against a systems background.
The development of models which attempt to take account
of the severity of failure in a quantitative manner is likely to
be restricted by the paucity of data on costs of failure. It thus
seems likely that research in this area will be constrained by
questions of data availability rather than theoretical
modelling constraints.

Furthermore the economics of software is also likely to be
radically different from that of other 'materials', which
generally get consumed or degrade with time. The software
stock represents a non-diminishing asset and should be
treated differently from other assets in accounting for its
value. This is especially true if designs are included as
being software. How should the value of the FFT (Fast
Fourier Transform) Algorithm be evaluated for example?
How much resource should be expended on developing
particular reusable software? Presently accepted
accounting principles, such as NPV (Net Present Value),
lead to the conclusion that the value of reusable software is
infinite. Such a result implies that it would be economically
sound to spend any finite sum of money (however large!) on
developing reusable software. It also implies that any
relevant reusable software should be utilised almost
regardless of cost! Certainly the concept of reusable
software seems to be economically and practically
attractive even when the administrative and housekeeping
burdens are considered. However it is apparent that further
research is required to produce new accounting principles
which will enable relative value judgements to be made.

The absurdity of this analysis identifies the need for future
research into the following specific areas:

-Cost models of failure processes/maintenance
processes, etc.

-Value models of software.
-Compatible cost models for catastrophic failure.
-I nvestigation into the possibility of extending FMECA and

FTA techniques.
-Establishment of database including failure-cost data.

4.2.5 Quality Engineering
Quality and productivity cannot be considered in isolation of
one another. In one sense they identify the opposing
requirements of the software developer and the software
user but since they represent an important area of trade-off
between customer and vendor, it is essential that software
engineers recognise and understand the relationship
between them.

14



In terms of the reliability programme, research topics in this
area should be primarily concerned with the identification of
improved metrics and the investigation of relationships
betweenthosemetrics

Quantitative measures of product quality are needed for all
the different representations of the software product found
at all stages of software development. Such quality
measures should include both inherent product metrics
such as 'complexity' and indirect measures of the result of
various development .processes such as test coverage
statistics, and error counts and classifications,

It will also be important to investigate the relationship
between quality measures relating to one representation of
the software product and measures relating to other
representations, e.q. relationships between design
complexity and subsequent code complexity,

Research along these lines will permit customers to specify
quality requirements explicitly and will ensure that software
producers have the means to monitor their achieved quality
throughout the development process, Quality metrics will
also provide additional visibility of the development process
which will improve the management process,

In addition, quality metrics relating to the software product
are necessary if quality control and quality assurance are to
progress beyond ensuring that certain processes are
undertaken, towards certifying the quality of the software
itself,

Productivity is the ratio of the 'size' of a software product to
the effort required to produce it.Although this appears to be
a simple concept, there are a number of problems involved
in identifying a measure of size, The metric often used is
lines of code, However, this is not a reliable metric because
it is affected by programmer style and different
programming languages,

Research in the area of productivity should be directed
towards:

(i) identifying style and language independent measures
of product size for each representation of the software
during the development process;

(ii) identifying the relationships between the different size
metrics;

(iii) identifying the relationships between production effort
(costs) and the product size metrics;

(iv) identifying the relationships between the quality
metrics, the size metrics and the effort measures,

This will provide:

(i) objective and comparable measures of productivity;

(ii) the information needed to develop cost models
incorporating quality and size considerations;

(iii) quantitative identification of the trade-off between
quality and productivity.

-
Work in this area is related to other parts of the reliability
programme in the following ways:

(i) Metrics of product quality are needed to provide some
of the explanatory variables needed for the next
generation of reliability models (see 42.3.4),

(ii) Quality and productivity metrics and information about
the relationship between them are essential to the
development of micro-models for cost and resource
estimation (see 4.2.4),

(iii) Quality and productivity metrics are needed to
evaluate software development methods and tools
(see 4.2.6).

(iv) Quality and productivity metrics are needed to quantify
models of the software development process (see
4.2,1.1),

It is related to the wider Software Engineering programme in
the following ways:

(i) Quality and productivity metrics will need to be
incorporated into management tools.

(ii) Quality metrics and the ability to monitor quality should
influence quality assurance and program certification
methods,

(iii) The ability to specify quality requirements should be
incorporated into formal specification techniques.

(iv) The ability to record quality and productivity metrics
should be incorporated into formal specification tools.

4.2.6 Technique and Tool Evaluation
4.2.6.1 Evaluation of Software
The ability to model and measure software quality and
productivity should be exploited by means of a programme
aimed at automating the software quality control, quality
assurance and certification tasks. This programme will
require a further research element to progress from the
stage of theoretical models to concrete procedures for
specific tasks, It should then continue with the production of
software tools to assist the tasks. Tool development will
encompass:

(i) Automatic and semi-automatic data collection,
probably related to a major data collection programme
as outlined in section 4.2.2

(ii) Analysis routines related to each identified task which
allow a structured assessment of specific programs.

4.2.6.2 Evaluation of Software Development Methods,
Techniques and Tools
An important application of the models and metrics
research will be the ability empirically to evaluate software
development techniques. Such evaluation will require a
large amount of data from projects which were developed
using a variety of development techniques, together with
measures of the quality and reliability of the resulting
software. The evaluation should consider the following
questions:

15

..



(i) Are any techniques or tools clearly superior/inferior
with regard to cost and quality?

(ii) Are there quantitative relationships between
development techniques or tools and subsequent
software reliability?

(iii) Is it possible to predict a cost/reliability/technique
trade-off at an early stage of the development cycle?

This programme should aim to validate the metrics and
models previously developed and should result in improved
models both of software development and software
reliability.

4.3 Systems in Practice
The computing systems which are utilised by commerce
and industry (for applications such as process and plant
control, or intelligent robots for factory automation) or those
deployed for military purposes (for example command and
control systems) may pose additional problems for the
software reliability engineer. Successful introduction of
advanced reliability techniques into these areas of
industrial practice may necessitate, on the one hand an
integrated approach combining all that is best from Rand D
advances, and on the other careful consideration of issues
relating to specific application domains.

For particular system architectures and certain
environments the software characteristics pose special
problems, for example the assured provision of high levels
of reliability in systems for life-critical applications and in
systems with decentralised control. In such situations
achieving and assessing required standards of reliability
may entail the use of specifically tailored techniques. The
programme of research should include provision for
activities directed towards improving reliability for systems
in the following areas.

4.3.1 Critical Systems
A system may be termed critical if the cost of any failures of
the system is extremely high, either in terms of loss of
human life or in financial terms. In such systems
requirements are often imposed in terms of safety
considerations. The required software reliability for such
systems is commensurately high-failure rate of
10-9/ hour for commercial flight systems provide an
example. Current technology can neither provide nor
measure reliability standards of this order.Other examples
of critical systems are control systems for nuclear power
stations, life support systems, and military intelligence
systems.

4.3.2 Real-Time Systems
A system may be termed real-time if the value of the service
it provides depends crucially on the timing of the delivery of
that service. The internal design of such systems often
involves the imposition of real-time constraints, concurrent
activity and the use of multiple processing elements.
Consequently these systems are subject to timing and
processing interaction problems in addition to the usual
reliability considerations. Areas in need of investigation are:
design methodologies which build in real-time aspects from
the outset of the design process, integration of hardware
and software reliability concerns, techniques for data and
event driven systems, recovery and fault tolerance

-
approaches. The opportunity to develop and deploy more
sophisticated techniques for building and assessing
reliable real-time systems stems from the ever declining
cost of hardware.

4.3.3 Embedded Systems
A computing system may be termed embedded when it
merely forms a part of a much larger system. In such
systems reliability problems arise because of failure
interactions between the computing system and the
containing system. The computing system must be
designed to cope with unusual circumstances due to
malfunctions in its environment. Design and assessment of
the reliability of the overall system requires a methodology
embracing software, hardware and components of the
containing system.

4.3.4 Distributed Systems
A system may be termed distributed if it contains multiple
autonomous processing elements usually connected via a
communications network. Reliability problems in such
systems include data inconsistencies, resource contention,
distributed control, network configuration, agreement
protocols. Of course, the replicated resources inherent in
distributed systems provide opportunities for achieving high
levels of reliability via strategies for exploiting redundancy,
but reliability assessment techniques are required. This is
because of the possibilities of reconfiguration and self
configuration. A vulnerability study of such systems may
make it possible to model their reliability and integrity and
find strategies to optimise these.

4.3.5 Future Systems
With the continuing burgeoning cost of software production
and the concurrent diminishing in cost of computer
hardware, it is anticipated that the architectures of future
computer systems will depend more intimately upon the
needs of cost-effective software engineering. It seems
possible therefore that research in the area of software
reliability will need to recognise the impact of these new
machines. Similarly it is possible that software development
processes will reflect in an intimate way the results of
software reliability research, and that this research will
therefore lead to new system architectures.

It is also anticipated that new 'language dependent'
architectures will appear in the future, and that these
languages, and hence architectures, may be influenced by
reliability research.

System design methodologies should also change
radically to reflect the reliability achievement problems of
highly complex systems: it seems likely that various forms
of defensive design methodology will become important,
and the effect of these techniques on structural and
functional reliability models will need to be assessed.

4.3.6 Support Systems
Computing systems which are used to support and assist
software development must themselves be very reliable.
Obviously, a software fault in, for example, a compiler or
run-time support environment, could undermine the best
efforts to construct highly reliable software. Ensuring the
reliability of the software embodied in an IPSE is certain to
be a major undertaking, but one which must be tackled.

16



4.4 Results of the Programme
(i) Short term (2% years)
Within the first few years of the programme much of the
fundamental research work will be done. The expected
results in this time period are

-NOCC using improved reliability models (such as
adaptive models) for certification

-mathematical formulation of new classes of reliability
models incorporatinp additional information (project
characteristics, development techniques and
processes, and customer profile)

-handbooks for developers outlining best of current
practice in producing reliable software

-guidelines for project managers based on new models of
the software development process incorporating cost
and quality considerations

-data collection processes established and working.

(ii) Medium term (5 years)
During this time period the theoretical models developed at
the start of the time period will be evaluated and refined
using data from a variety of software projects. In addition
work will continue on developing reliability models tailored
to special types of system (real time, embedded, distributed,
etc.). The expected results by the end of the programme will
therefore be:

-NOCC using new classes of reliability models
incorporating data collected from ISF's for product
certification

-risk models of reliability identifying product
characteristics and development methods most likely to
achieve various levels of reliability (in principle these will
be similar to medical risk models which identify the
characteristics of groups at risk from various diseases).

-mathematical formulation of reliability models for special
systems (validation may not be possible within these
time scales)

-improved software engineering techniques to enable the
construction or more reliable software

-new handbooks incorporating new information resulting
from the entire software engineering programme and
validation exercises performed on new development
techniques

-cost and quality models incorporating and reconciling
macro-level (strategic) and micro-level (project
management) decision making

-automatic collection of project data for certification and
industry standardisation by ISFs.

(iii) Long term (5 to 10 years)
After the completion of the current Alvey proqrarnme, work
will still need to continue to incorporate the new methods of
software development and novel system architectures
developed by Alvey collaborators into reliability modelling
and certification procedures.

It can be anticipated that models of system and software
reliability will need to be adapted and validated as new
concepts of software engineering continue to emerge.

-
5. Education, Technology Transfer
and Technology Assessment
The buzz-words 'technology transfer' have come to be
standard for the process of educating a technical
community in new results. There are, in fact, two types of
educative processes which need to be considered here.
The first process, which involves keeping the community
(generally of researchers, but also 'real' software
engineers) abreast of new developments, we shall continue
to call technology transfer. The second process, in many
ways more important, is the general education of a wider
community. This latter topic will now be discussed.

5.1 Education
It has been argued that, before large sums are spent on
developing new tools for software development, software
developers should be persuaded to use the ones which are
already available. Clearly, these strategies are not mutually
exclusive. However, the point is well taken: many
techniques which are widely recognised to be useful are
used less often than they ought to be. It is important that this
poor take-up by potential users is not a feature of the Alvey
programme.

The problem is one of general education, and positive
selling of what is available. Of course, parts of the research
programme described here will have an important function
in providing concrete evidence for the real-world
effectiveness (or lack of it) of various approaches. If
managers can see the cost-effectiveness of a technique,
they will use it.Such results must be disseminated to a wide
audience.

The Alvey SE directorate will support a programme of
workshops and courses aimed at practitioners. Particular
workshops and courses will be repeated at different times
and venues so that potential attendees can have some
choice.

The Alvey SE directorate will sponsor a series of
handbooks, regularly up-dated, dealing with specific tools
and techniques.

Both these activities will involve the research community.
Although researchers may see this educative role as a
distraction from their primary occupation, the benefits from
contact with practitioners, and thinking about the real
problems of practitioners, are immense.

This programme should start as soon as possible. In the
early stages it will be reporting on work which pre-dates the
Alvey programme, and it is only later that results from this
programme will become available.

The software reliability education programme will be run as
a part of the wider SE programme. In fact, integration of the
reliability aspects (the visible results) with the process
aspects (the detailed description of the tools and
techniques) will be a powerful persuader to potential users.

It is important that the country's educators are kept abreast
of developments in the area of software reliability. Lecturers
in universities and polytechnics will be encouraged to

17

..



participate in workshops and courses sponsored by the
Alvey directorate. In addition, particular attention will be paid
to this audience in the dissemination of research results.

Finally, the Alvey programme will examine ways in which
the best and most up to date techniques can be
incorporated into routine teaching practice.

5.2 Technology Transfer and Assessment
The technology transfer problem is well understood,
although its solution is not obvious. The phrase 'technology
assessment' is used here to emphasise the judgmental role
involved in deciding which parts of world research are
worth disseminating to our own community.

The technology assessment function is the first stage in a
process which would aim to make available to UK industrial
and research communities the best of world research
results. Thus the end-user of the service will be wider than
the Alvey community (although this community will be an
important part of the audience). For this reason the
judgment and assessment roles are paramount. These can
best be fulfilled by individuals who are actively engaged in
research.

The technology assessment function requires action in
three areas:

-information gathering
-information assessment and evaluation
-information dissemination.

5.2.1 Information Gathering
The information that is needed comes from three sources:
articles in technical journals and books; reports of
conferences and workshops; personal contact between
researchers.

Journals and books present formal descriptions of research
results, but may be up to two years out of date. At the other
extreme, personal contact provides up-to-date information,
but this may be anecdotal and speculative. Conferences
and workshops form a middle ground in both formality and
timeliness. All three sources should be exploited.

5.2.2 Information Assessment and Evaluation
The most difficult task is the formation of judgments about
the worth of research results revealed in the information
gathering exercise. Inevitably, this role must be carried out
by research workers who are technically competent to
make critical judgments about the likely usefulness of
research work. Perhaps more importantly, such individuals
will be members of informal networks within the
international scientific community. This will enable them to

keep a finger on the pulse of work in their field around the
world. Indeed, this is something that active research
workers expect to do as part of their own need to keep
up-to-date.

Assessments should be judged according to their firmness.
Thus there should be early warning of work which looks
likely to bear fruit in the future, as well as dissemination of
hard results.

5.2.3 Information Dissemination
This is likely to be a two-way activity. For potential users
seeking advice, it is important to have a central facility
which can steer requests for information and advice
towards sources and expertise. Such an organisation
should also initiate other dissemination activities:
publications, workshops, seminars, etc.

5.2.4 Infrastructure
The Alvey programme will examine the most appropriate
ways of establishing an infrastructure capable of supporting
these activities.

6. Conclusion
It is essential that the UK retain and if possible expand its
share of the world IT market. In order to do this innovative
product development will not be enough. Customers will
demand high quality and, in particular, high levels of
reliability from software-based systems. A considerable
competitive advantage will accrue to software producers
who are prepared to provide warranties to their customers
backed by independent product certification. If UK
Companies are unable to provide this, there is no doubt that
the US and Japanese companies will.

Therefore the Alvey Directorate will back a major research
programme in software reliability as detailed in this
document. The objective of this research programme is to
provide the capability to design and build cost-effective
reliable systems such that:

-a valid base for independent software certification and
warranty is achieved

-software reliability can be measured, predicted and
controlled

-evaluation of development methodologies is based on
objective measurements

-the development of reliable software can be
appropriately engineered and managed.

Acknowledgement
CSR wishes to express its gratitude for the helpful
comments and suggestions made by several members of
the software engineering community on earlier drafts of this
document.

18

..•



Appendix A
Research Activities and Priorities
A coherent research programme has to have priorities. The.
priorities for this research programme, which follow, have
been determined using the following pragmatic criteria:

(i) importance of research area in terms of the likely
contribution which will be made to overall Alvey
objectives;

(ii) chances of success within reasonable timescales and
likely available budgets.

The priorities which follow have been classified A, B. A
represents a programme which is vital and fundamental to
the success of the Alvey objectives and will often be
supportive of other parts of the programme. Programmes
with category A stand a high chance of successful
completion.

Category B contains programmes which generally
contribute less to the Alvey objectives, and often carry a
high risk of being unproductive in the timescale envisaged.

Priority A programmes will normally be funded by the Alvey
directorate, whereas priority B programmes will be funded
only if resources are still available. Note that priorities do not
refer to amount of support, or the time when support should
begin. These are dependent upon the nature of the
particular research programme and its relationship to other
programmes.

Priorities
Software Management
A. Assessment of existing managerial tools, techniques

and procedures, and identification of missing or
inappropriate elements (4.1.1.3 (b)).

B. Preparation of management guidelines and
procedures (4.1.1.3 (d)).

B. Review and co-ordination of new tools and
techniques (4.1.1.3 (c)).

Comment: Management guidelines and procedures will not
be the sale concern of the Alvey programme. These have
traditionally been the responsibility of other bodies, e.g.
MoD, BSI, etc.

Engineering for Reliability
A. Assessment of effectiveness of validation and

verification techniques, leading to recommended
inclusions in IPSE's (4.1.2.2 A).

A. Fault tolerance in concurrent and real-time systems
(4.1.2.2 B).

A/B. Reliability aspects of reusable software (4.1.2.2 C).

Systems Issues
A/B. Reliability aspects of integration (4.1.3.1)

A/B. Assessment of suitability of tools and techniques to
reliability related requirements such as safety,
security, integrity, etc. (4.1.3).
(This has links with 4.1.2, priority A, above.)

-
Comment: The importance of this work would warrant a
category A priority. However, it is likely (and probably

. desirable) that it be supported by bodies other than the
Alvey directorate, e.q. MoD, UKAEA.

Understanding Causes of Unreliability
A. Micro and macro levels of understanding (4.2.1.1).

B. MMI reliability issues (4.2.1.3.4).

B. Linking of micro and macro views (4.2.1.1).

B. Cognitive processes (4.2.1.2).

B. Human factors (4.2.1.3.1).

Comment: The category B programmes are important but
likely to be integrated with other aspects of the Alvey
programme.

Data Issues for Support of Reliability Research (4.2.2)
A. Identification of data requirements, for reliability and

other software metrics.

A. Specification of database system (Le. one or more
databases, as appropriate to the task).

A. Creation and management of database.

Reliability Models and Tools
A. Characterisation of program properties (4.2.3.4.2).

A. Model improvements and developments (4.2.3.2).

A. Tools identifying good predictions (4.2.3.1).

A. Characterisation of user environment (4.2.3.4.1).

A. Fault-tolerance: economic optimality issues
(4.2.3.3.3).

A. Structural models for fault-tolerant systems
(4.2.3.3.1).

A. Fault-tolerance: independence issue (4.2.3.3.2).

A/ B. Structural models for reusability (4.2.3.3.1).

B. Testing strategies for consequences of failure
(4.2.3.5).

B. Testing strategies: conflict of interest (4.2.3.5).

B. Adaptive models (4.2.3.2).

B. Accelerating testing (4.2.3.5).

Cost/Resource Models (4.2.4)
A. Evaluation of current cost models, identifying

inadequacies and areas of potential development.

B. New cost models. Customised cost models for
specific environments.

Quality Engineering (4.2.5)
A/B. (The precise category depends upon the extent of

research activity in this area under the other parts of
the SE programme.)

19

.,



Technique and Tool Evaluation
A Evaluation of techniques and tools (4.2.6.2).

B. Automated data collection (4.2.6.1).

A. Validation of metrics and models (4.2.6.2).

Systems in Practice
A/B. Critical systems; ultra-reliable systems (4.3.1).

Comment: There are many important issues in this area.
The only reason for it not being a top priority for the Alvey

Appendix B
Contributors to Report:
Members of the Centre for Software Reliability

Mr. B.G. Anderson,
British Aerospace Dynamics Group,
PB 225,
PO. Box 19,
Stevenage,
Herts. SG1 2DA

Dr.T.Anderson (Director),
Centre for Software Reliability,
The Computing Laboratory,
University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU.

Mr.C.J. Dale (Secretary),
National Centre of Systems Reliability,
UKAEA,
Wigshaw Lane,
Culcheth,
Warrington,
Cheshire WA3 4NE.

Mr.B. de Neumann,
GEC Research Laboratories,
Marconi Research Centre,
West Hanningfield Road,
Great Baddow,
Chelmsford,
Essex CM2 BHN.

Ms. G. Frewin,
Standard Telephone Laboratories,
London Road,
Harlow,
Essex CM17 9NA

-
programme is the likelihood that other organisations will be
taking responsibility for it.

A. Real-time systems (4.3.2).

A Embedded systems (4.3.3).

A Distributed systems (4.3.4).

B. Future systems (4.3.5).

A Support systems (4.3.6).

Mr.C.H. Gribble,
Ferranti Computer Systems Ltd.,
Cheadle Heath Division,
Bird Hall Lane,
Cheadle Heath,
Stockport,
Cheshire SK3 OXQ.

Mr.L.N. Harris (Chairman),
British Aerospace Dynamics Group,
PB 401,
P.O. Box 19,
Stevenage,
Herts. SG1 2DA

Dr.BA Kitchenham,
International Computers Ltd.,
Westfields,
West Avenue,
Kidsgrove,
Stoke on Trent ST7 1TL.

Dr.B. Littlewood (Director),
Centre for Software Reliability,
The City University,
Northampton Square,
London EC1V OHB.

Mr.AA Wingrove,
Royal Aircraft Establishment,
AW3,
Farnborough,
Hants. GU14 6TD.

Document prepared by:
Ms. G. Palmer,
Centre for Software Reliability,
The City University.

20

..


