SOFTWARE ENGINEERING/IKBS
Strategy for Knowledge Based
IPSE Development

The

Alvey
Directorate

Prepared by

Tony Dignan (Software
Engineering Directorate)
Alvey Directorate

Dept of Trade and Industry
Millbank Tower

Millbank

London SW1P 4QU

August 1984

>

SOFTWARE ENGINEERING/IKBS
Strategy for Knowledge Based
IPSE Development

1. INTRODUCTION

The Alvey Software engineering
Strategy (1) identifies three generations
of Integrated Project Support Environ-
ment (IPSE). Those three generations
are characterised as follows:

1st generation — file based

2nd generation — database

3rd generation — knowledge based.

A target date of 1989 is proposed for
the design of a demonstration third
generation IPSE. This document is
concerned with the development of
“intelligent” tools for use within this third
generation IPSE or Information Systems
Factory (ISF).

Within the context of this programme
intelligent tools may be loosely defined
as those which utilise techniques which
are normally classified under the
general heading of IKBS. Such tools
may replace conventional tools (e.g. a
rule based syntax checker), enhance
conventional tools (e.g. intelligent front
end to a complex test generator) or
provide assistance for tasks which have
little, if any, conventional tool support
(e.g. expert system advisor for require-
ments analysis).

2. OBJECTIVES
The basic objective of the intelligent
tools programme is to ensure that the
UK has the expertise needed to meet
the 1989 target date for the design of a
knowledge based IPSE. In order to
achieve this objective three inter-
dependent sub-goals can be identified:
(1) The industrialisation of IKBS tech-
niques—the development of IKBS
products must be advanced from a
largely experimental process to one
which is predictable and con-
trollable.
(2) The convergence of Software
Engineering and certain KBS
themes—products must be de-

veloped which incorporate elements
of SE and IKBS and the system de-
veloper must be familiar with a wide
range of techniques which origi-
nated in either community.

(8) The development of tools which
exploit IKBS technigues in order to
support systems development.

The third of these sub-goals, the
development of intelligent tools, pro-
vides the most tangible product. For this
reason the intelligent tools programme
will be the main vehicle for achieving the
overall objective.

A secondary, although vital, objective
of the programme is to ensure that the
benefits of intelligent tools are
sufficiently widely appreciated that the
knowledge based IPSE will find an
eager market. The programme will seek
to disseminate information on tools as
they become available and encourage
the widespread adoption of such tools.

3. TOWARDS A DIALOGUE
Although there are several different soft-
ware development life-cycle models in
existence there is general agreement
upon the basic structure of such a
model. It consists of a number of, largely
sequential, phases covering require-
ments specification, design, implement-
ation, integration and on into operation
and subsequent “maintenance”. While
compliance with this basic life-cycle
mode! does not guarantee a successful
project it has been found that non-
compliance, in order to shorten delivery
timescales or save costs, is likely to
result in a spectacular failure. The life-
cycle model provides an essential
framework for project management, it
enhances the visibility of the project and
allows progress to be monitored. Quality
management and configuration man-
agement activities are also largely
based upon the life-cycle model.

Much of the current Software
Engineering research work is aimed at
improving the working practices within
each phase of the life-cycle and in
particular at improving the end-product
from each phase. The use of more
formal methods and notations ensure
that the end products from each phase
can be checked for internal homo-
geneity and for compatibility with the
output from the previous phase. Such
methods, which promise to provide
worthwhile improvements in software
quality and productivity, will be pro-
gressed within the Alvey Software
Engineering programme.

In the ideal life-cycle model the work
within each phase is complete, and the
end product “frozen” before the
subsequent phase begins. In practice,
certainly for any large complex system,
such an ideal is rarely, if ever, attained.
Even ifit were possible to define fully the
requirements prior to design the user
would continue to refine his perception
and expectations of the system during
the development process. Clearly such
changes to the requirements must be
incorporated into the delivered system if
it is to meet the user's real needs.
Despite various feed-back loops on the
basic life-cycle model it must be
admitted that current software engineer-
ing practice is less than totally success-
ful at coping with such continuously
evolving requirements.

IKBS offers a somewhat different
paradigm for system development. One
which places great emphasis on the
production of animated specifications
or prototypes. Such specifications
enable the user to explore the con-
sequences of his stated requirements
and are claimed to be easier to modify
than conventional software specifi-
cations. Such a paradigm appears to
avoid some of the problems inherent in

3

the present Software Engineering
approach. However, the IKBS paradigm
is immature and unproven. It may not
deliver as much as it promises when
exposed to the commercial and tech-
nical constraints of the market place.
Indeed it has yet to address, or even
recognise, some of the legitimate
concerns of the software engineer.

Clearly the largely pragmatic, Soft-
ware Engineering community and the
largely academic, IKBS community have
much to offer each other. At present
there is comparatively little dialogue
between the two communities. There is
aneedtointroduce KBS ideas andtech-
niques to the commercial and industrial
Software Engineering community and
to demonstrate that such techniques
can be applied to large scale systems.
Equally there is a need to introduce the
IKBS community to the Software Engin-
eering approaches to such diverse
topics as predictability, reliability,
maintainability, etc. The intelligent tools
programme provides a natural forum for
the inter-community dialogue. KBS
techniques will be exploited, within
normal Software Engineering discipline,
to produce commercial quality artifacts.
Such artifacts will then be available for
use by both communities.

4. STRATEGY

4.1 Early Exposure

The introduction of new tools oftén
leads to changes, in methods of work-
ing, which are difficult to predict in
advance. Such changes in working
methods may in turn modify the
requirements for the tool. Hence there
may be several iterations of build/use/
modify before the interaction between a
tool and its environment stabilises.
During this period the tool is unlikely to
provide the full anticipated benefits and
may be abandoned completely by its
user community. Itis likely that intelligent
tools will have fundamental and often
unpredictable effects upon the system
development process. In order to
assess the impact of intelligent tools
andtheir likely influence on the methods
and skills required for system develop-
ment it is essential to obtain early
experience on the use of such toois and
feed the evaluation back into the tool
development programme and other
areas of the Software Engineering
Strategy.

While 1989 is considered to be a
realistic target date for the design of a
prototype, knowledge based, Integrated
Project Support Environment, it will be
possible to introduce some intelligent

4

tools before this date, in particular
through the first and second generation
IPSE programmes. Indeed, as ex-
plained above, it is essential, to the
speedy exploitation of the knowledge
based IPSE, that prior experience of
intelligent tools be obtained. Similarly
1989 cannot be regarded as marking
the end of intelligent tool development, it
is likely that many difficult areas of
system development will still be poorly
served by tools at that date.

The intelligent tools strategy will,
therefore, like the overall Software
Engineering strategy, encourage a con-
tinuous programme of research and
development coupled with the exploit-
ation of emerging tools at the earliest
possible opportunity. However, within
this continuum, three distinct phases
can be identified. Each of these phases
is discussed below.

4.2 Exploratory Phase

Some intelligent tools are already being
developed and the programme will en-
courage the production and early use of
these early tools.

It is natural that many of these early
tools will tackle some of the less de-
manding areas within system develop-
ment and project control, areas which
are unlikely to have the highest potential
payoff. Similarly the tools are likely to
come from a variety of sources in an
unco-ordinated manner and cannot be
expected to form a coherent or well
matched set. Consequently care must
be taken to ensure that expectations,
among the user community, are not
raised too high as this could damage
the whole tools programme.

Within the constraints discussed
above, the programme will encourage
the introduction of intelligent tools, in a
controlled manner, to assist with various
tasks within the first generation of Alvey
IPSE (it should be noted that the first
generation of IPSE are intended to have
an evolutionary capability such that
more advanced tools can be added).
The use of these tools will be carefully
monitored and, in conjunction with the
software metrics programme, attempts
will be made to measure their effective-
ness. A wide spectrum of software
development organisations will be en-
couraged to use these intelligent tools
and the results (good and bad) will be
widely disseminated.

4.3 Method Based Phase

As indicated in the Alvey Software
Engineering Strategy the use of an inte-
grated Project Support Environment
implies the selection, by the user

project, of a particular development
methodology. With a knowledge based
IPSE it is vital that the methodology and

IPSE are compatible since the in-built
rules will assume a certain approach to
system development; any significantly
different approach will, at best, be poorly

supported by the IPSE and may proveto
be impossible.

While it would be possible to con-
struct some form of knowledge based
IPSE in the absence of a clear mode! of
the underlying methodology (or classes
of methodology) to be supported the
value of such an exercise is question-
able. A prerequisite for the implementa-
tion of a successful third generation
IPSE is seen to be a clear definition of
the methodology to be supported, with
the environment being constructed to
assist, encourage and enforce adher-
ence to the methodology. This is not
intended to imply that an IPSE should
totally constrain its users to a particular
mode of working; some degree of free-
dom must be provided to allow a project
team to adapt the IPSE to cope with
local conditions and individual skills, etc.
The environment must also be capable
of evolving to accommodate improved
techniques and tools as these become
available; a characteristic which the
knowledge based IPSE must share with
the earlier generations. Nevertheless
the basic approach should be first the
method then the toolset.

Unfortunately, there are, at present,
no methodologies which have gained
wide acceptance. indeed even within a
single organisation several different
methods and sets of tools may be used.
This situation is likely to impede the
development of a commercially viable
knowledge based IPSE. This second,
method based, phase of the intelligent
tools development strategy is hence
closely linked with the progress made
by the formal methods programme (2).
There will be considerable interaction
between the two programmes to identify
a common set of objectives which are
both desirable and achievable.

Even without an explicit intelligent
tools initiative various IKBS techniques
would naturally be absorbed by the
software engineering community as the
impetus towards formal methods
gathers pace. For example, work on
declarative languages will be exploited
in the formal specification of system re-
guirements; work on theorem proving
will provide for designs which can be
proven correct with respect to the speci-
fication; work on inference will be ex-
ploted to provide analysis and
prototyping facilities. The intelligent

tools programme will encourage and
seek to accelerate such synthesis.
However the programme will also seek
to extend the impact of IKBS into areas
of Software Engineering where the
natural take-up of such techniques
might be less rapid. For example
intelligent front ends can be constructed
for a wide range of tools addressing all
aspects of system development and
project control while expert systems
can provide assistance with many of the
creative tasks which currently have no
support.

While formal methods can be seen as
a sound foundation for the use of IKBS
techniques the widespread use of more
formal methods is likely to be consider-
ably assisted by the success of the
intelligent tools programme. Tools will
be requiredto enablethe large numbers
of practising software developers,
trained in traditional methods, to adopt
the more rigorous approaches. Thus
there is a natural synergy between the
intelligent tools and formal methods
programmes.

4.4 Convergence Phase

The convergence of the enabling tech-
nologies, at a number of different levels,
is essential to the ultimate success of
the Alvey initiative. Throughout the 5
years of the Alvey programme there is
likely to be considerable and increasing
cooperation between the various com-
munities together with the adoption, by
one community, of ideas and tech-
niques pioneered by another The
Integrated Project Support Environ-
ment, intended to support all phases
and activities of project development,
will be the most visible product of this
convergence. However, given the acute
problems each community faces in
attempting to develop its own tech-
nology, it is inevitable that the full con-
vergence will only become a reality
towards the end of the period.

The convergence of Software
Engineering and certain IKBS themes is
a major goal of the intelligent tools
programme. This convergence is not
confined to the use of intelligent tools to
support traditional Software Engineering
tasks, this is merely the major vehicle for
encouraging the convergence process.
Within industry it should be possible to
merge elements of both communities to
produce a new generation of software
developer able to utilise a wide range of
tools and techniques which originated
in either Software Engineering or IKBS.

The Alvey/SERC Infrastructure, by
supporting a common base of hardware
and software for use by both communi-

ties, encourages a dialogue to take
place. The intelligent tools programme
will implicitly assist with the con-
vergence process by encouraging
members of both communities to be
contributors to and users of the tool set.
More explicitly the programme will seek
joint ventures, with the IKBS arm of the
Directorate, which seeks to exploit IKBS
research within the context and con-
straints of industrial system and soft-
ware development.

The programme will also seek to
identify and produce tools to support
MMI and VLSI design activities within
the IPSE. Efforts will also be made to
define standard interfaces which will
assist with the communication of ideas
and with technology transfer between
the various enabling technologies.

5. APPLICATION AREAS

The Software Engineering Strategy

identifies (section 3.3.4) six main sub-

systems which together will form an ISF,
namely:

(1) Specification
facilities.

(2) A Software Development Environ-
ment.

(3) A facility for CAD of VLSI and hard-
ware development.

(4) A database or knowledge base of
available software and hardware
components.

(5) The communication systems, both
local and wide area, to facilitate
cooperative development.

(6) Project management aids.

Intelligent tools can make a major
contribution in all six of these areas.

and prototyping

5.1 Specification and Prototyping
The software industry has, to some
extent, accepted the argument that
greater effort devoted to the early
phases of the development life-cycle
will result in a better quality product and
an ultimate saving in through-life costs.
Consequently there is considerable
interest in more rigorous approaches to
requirements analysis and specification
and the use of formal, machine
manipulable representations which can
be subjected to analysis to prove
internal consistency and completeness.
That such interest has not been trans-
lated into the widespread adoption of
more formal methods is due to several
reasons, not least of which is the
difficulty of learning and applying such
methods. This problem is perhaps most
severe for large complex projects
involving large, mixed ability teams, i.e.
the very projects which stand most in
need.

The use of models or prototypes to

verify design assumptions and provide
user feedback is well established in

many branches of engineering. Proto-
typing has often been proposed for soft-
ware based developments, indeed
some methodologies place consider-
able stress on the desirability of early
prototyping. However, in practice large
scale prototypes are rarely, if ever, con-
structed, largely due to the cost of such
an exercise and the anticipated detri-
mental effect upon the timescales for
delivery of the final product.

Clearly prototyping should result in a
product which is more closely matched
to the user needs; only by interfacing
with a model of a proposed system can
auser assess how it willimpact upon his
environment and thus what the detailed
requirements are likely to be. The
increased emphasis on MMI aspects of
systems development aiso implies an
enhanced need for prototyping; it is
clearly difficult to claim that a system is
user-friendly if no users have been
allowed to evaluate the system.

Logic programming and functional
programming are approaches, with
roots in IKBS, which appear likely to
revolutionise the software life-cycle by
supporting the development of
animated specifications, which in some
cases may be sufficient in themselves
to remove the need for programme
implementation. The full potential and
limits of these approaches need to be
fully explored.

5.2 Software Development
Environment

The software development environ-
ment is currently the most advanced
subsystem of the ISF and the one where
intelligent tools are likely to make the
earliest impact. This scenario is to be
encouraged since it would ensure that
the tool builders could be among the
first users.

Initially individual tools will be
introduced as they become available
and will provide only fragmented, ad hoc
support. Later environments will contain
intelligent tools which provide integrated
support for the complete development
life-cycle.

For many applications, in particular
within the smaller systems market, intelli-
gent programme generators are likely to
be developed which will replace both
the present generation of generators
and many standard applications
packages. Such generators will be
easier to use than existing products,
cover a wider range of applications and
provide more options.

The impact on larger systems is also
likely to be dramatic. All aspects of soft-
ware development are candidates ‘or
intelligent tool support, however the
most significant developments are likely
to affect those tasks which currently
have littte or no tool support. For
example the derivation of a design to
satisfy a requirement specification is
currently without tool support. Expert
systems advisors to assist with this task
are feasible even if total automation is
unlikely.

Intelligent tools for Software Develop-
ment will contribute directly to one or
both of the Software Engineering
Strategy goals of improved quality and
improved productivity.

5.3 CAD for VLSI
The Alvey Directorate strategy for VLLSI
(3) includes a number of initiatives in the
area of Computer Aided Design (CAD).
Initially this work will be largely indepen-
dent of the work pursued in the Software
Engineering area although a measure
of compatibility will be provided by
adherence to the Infrastructure Policy
and Common Base Policy as appropri-
ate; this compatibility should be
sufficient to ensure that any early CAD
tools can be integrated into the IPSE
programme as this progresses.
Intelligent tools for CAD is a topic of
considerable interest and activity and
more active coordination of the CAD
and Software Engineering programmes
is required to reduce duplication of effort
and to ensure a smooth integration.
Tools for CAD are likely not only to
contribute to improved quality and
productivity but to reduce the time taken
to produce a chip or path. At this stage
of requirements specification VLS and
software have identical needs and a
common approach would appear
feasible. Other areas, such as chip
layout and path analysis, are unique to
CAD but can be supported within the
IPSE development.

5.4 Database/Knowledge Base of
Components

The use of formal specifications of
Behaviour will assist the wider re-use of
software based components. However
other information also must be recorded
(the environment it requires, timing/
performance information, how easily it
can be modified to perform slightly
different tasks). Having established
whatto record and how, itis then neces-
sary to encourage users torecord avail-
able modules and to look for suitable
re-usable modules, intelligent tools are
likely to assist with both activities.

6

There is little incentive for the
developer of a software based module
to enter details into the knowledge base
hence this task must be as simple as
possible and an intelligent front end to
the recording tools could assist.

For the potential user of an existing
module the incentive to search the
knowledge base is obviously greater.
However, software developers often
display a great aversion to using the
fruits of someone else’s endeavours; in
the early days the hit rate will not be high
and any difficulty in interrogating the
knowledge base could destroy the
scheme. Hence intelligent browsers to
enable the user to easily scan a library
and identify potentially useful modules
are essential to the success of the
approach.

5.5 Communications Systems

While local and wide area networks
open up many opportunities they also
provide many potential problems;
intelligent tools can ameliorate some of
these problems.

For the user with a large volume of
incoming mail an intelligent filter to
prioritise the messages and possibly to
dump irrelevant messages could trans-
fer the communications system from a
time consuming monster into a useful
tool.

For the system supplier, intelligent
route finders and fault finders would
greatly ease maintenance problems
and could increase the capacity of a
system.

5.6 Project Management Aids
Intelligent tools for project management
may include some for the very earliest
phases of the life-cycle. Current algo-
rithmic approaches to estimating,
require fairly precise specification of the
system to be developed, something
which is only available after consider-
able work has been done. A rule based
approach is likely to provide a useful, if
less accurate, estimate much earlier in
the process.

6. PLAN

This section describes the activities
which must be performed in order to
achieve the three phases of delivery
identified in section 4.

6.1 Exploratory Phase

The Alvey Directorate will organise joint
Software Engineering/IKBS workshops
and other events to accelerate the two-
way technology transfer between the
SE and IKBS communities.

Useful, knowledge based, tools which
can be developed using current tech-
nology will be identified. Some tools will
be commissioned for use within the first
generation of IPSE.

Jointly, with the Director for IKBS, on-
going research work which will affect
the intelligent tools programme will be

identified and monitored.

6.2 Method Based Phase

Develop tools, identified by the formal
methods programme, to support mature
methods.

Identify areas of Software Engineer-
ing most in need of new or improved
tools (e.g. from the STARTS guide (4))
and how IKBS can contribute.

Promote work which will explore the
potential and limitations of the IKBS
development paradigm within the con-
text of commercial and industrial
system development.

Jointly, with the Alvey Director for
IKBS, identify problem areas within
IKBS product development where
proven Software Engineering tech-
niques may enhance the quality of the
product or the productivity of the
development team and commission
work to prove the efficiency of such
techniques in an IKBS context.

6.3 Convergence Phase
Initiate research into the likely life-cycle
model for future SE/IKBS products and
the implication for methods and tools.
Initiate research on the development
of large computer based systems to
identify the knowledge which will need
to be incorporated into the third
generation IPSE.

REFERENCES
(1) Talbot D., Witty RW.
Alvey Programme—Software
Engineering Strategy
DTI Publication, November 1983.
(2) Jackson M.l et al.
Programme for Formal Methods in
System Development
5th March 1984.
(3) Fawcett W.
Alvey Programme—VLSI Strategy
DTI Publication, December 1983.
(4) Various
The STARTS Guide
DTI Publication.

