
ESPRIT Project 322

CAD*I

CAD Interfaces

SPECIFICATION FOR EXCHANGE OF PRODUCT ANALYSIS DATA

VERSION 3

Edited By :
Deborah Thomas
Jan Van Maanen
Michael Mead

For Working Group 6:

Gesellschaft fur Strukturanalyse, Aachen, West Germany
NEH Consulting Engineers ApS, Broendby, Denmark

Rutherford Appleton Laboratory, Chilton, UK
ERDISA, Madrid, Spain
INITEC, Madrid, Spain

31 October 1988

...

--
DRAFT

-

Acknowledgement

We would like to acknowledge the assistance of the Commission of the
European Communities in helping to fund the work described in this report.

. ..

-

Abstract

One of the aims of ESPRIT project 322 on CAD Interfaces (CAD*I) is the
development of standards for data exchange between Product Definition
(Computer Aided Design) systems and Product Analysis (Finite Element and
Computer Aided Testing) systems.

This report describes a standard for a neutral file which can be used for
exchange of data between Finite Element preprocessors, Finite Element
analysis systems and Finite Element postprocessors. The lexical structure
and syntax of the file are formally defined. The semantics are defined in
terms of a reference model which is a formal description of all the
entities that can occur in the neutral file with their attributes.
Additionally, an informal description of all structures appearing in the
neutral file is given.

The report also looks at the problems of transferring geometry data from
Computer Aided Design systems to Finite Element preprocessors and proposes
some heuristic rules for the transformations which are needed in this
transfer.

...

••••

List of Contributors

Carlos Arias, INITEC

Emilio Banos, INITEC

Bernhard Carl, GfS

Bryan F Colyer, RAL

Luis Delgado, ERDISA

Rafael Fernandez, ERDISA

Niels E Hansen, NEH

Horst Heinrichs, NEH

Helmut Helpenstein, GfS

Jes M Jessen, NEH

Troels Ladefoged, NEH

Michael Mead, RAL

Wilfried Melder, GfS

Alan Middleton, RAL

Javier Moldes, INITEC

Miguel A Moreno, INITEC

Jose L Navarro, ERDISA

Manuel Peralta, ERDISA

Axel M Spliid, NEH

Deborah Thomas, RAL

Jan Van Maanen, RAL

I

-

Contents

A General Information
A.1 Executive summary ··········1

A.1.1 General Introduction 1
A.1.2 Objectives 1
A.l.3 Achievements 2
A.l.4 Contribution to CAD*I 2
A.l.5 Description of the Report 3

A.2 Background Information 5
A.2.l Exchange of Product Analysis Data 5
A.2 .2 Exis ting Standards 5
A.2.3 Approach to Design of Specification 6

A.3 Example Neutral File 9
A.4 General File Structure 15

A.4.l Product Definition and Product Analysis Domains 15
A.4.2 Interaction between File and Processors 16
A.4.3 Internal Organisation of the File 17

A.5 External Envelope Concept 19

B Reference Section
B.l Syntax Definition 21

B .1.1 The Alphabet 21
B .1.2 Token Definitions 22
B.l.3 BNF Description of the File 24
B.l.4 Description of EXPRESS for FE Specification 24

B.l.4.l Entities and Attributes 25
B.l.4.2 Base Types 25
B.l.4.3 Entity References 25
B .1.4.4 Enumeration 25
B.l.4.5 Unique and Optional 26
B.l.4.6 Aggregates 26
B.l.4.7 Other definition constructs 26
B .1.4.8 Constraints 27

B.2 Levels of the Neutral File 29
B.3 Keywords for FE Model definition 31

B.3.1 OPENMODEL 31
B.3.2 UNITS 32
B .3 .3 COORD 33
B .3 .4 FREEDOM 35
B.3.5 NODE 36
B.3.6 ISO 37
B.3 .7 ISOFULL 38
B.3 .8 ANIS02D 39
B.3.9 ANIS03D 41
B.3 .10 MATERIAL 43
B.3 .11 PBAR 44
B.3 .12 BEAMG 45
B.3 .13 BEAMI 46
B.3.14 BEAML " 47
B.3 .15 BEAMU 48
B.3.16 BEAMT 49
B.3.17 BEAMO 50
B.3 .18 BEAMR 51
B.3.19 STIFF 52
B .3 .20 DAMP 53
B.3.21 PMASS 54

...

••••

B. 3.22 THICK ··········· 55
B.3.23 THICKV ············· .56
B. 3.24 PROPERTY · 57
B. 3 . 25 OR1 ········· 58
B. 3 . 26 OR3•.....••..•...•.......•...••••••...••...•• 58
B.3.27 ORIENT 59
B. 3.28 MASS 60
B. 3 . 29 DAMPER 62
B.3.30 SPRING 63
B. 3.31 BAR 64
B. 3 . 32 BEAM2 65
B. 3 . 33 TRI3 67
B.3.34 TRI6 68
B.3.35 TRI7V 69
B. 3 . 36 QUAD4 71
B. 3 . 37 QUAD8 72
B.3.38 QUAD9V 73
B . 3 . 39 TETRA4 75
B. 3 . 40 TETRA10 76
B. 3.41 TETRA15V 77
B.3.42 PENTA6 79
B. 3 .43 PENTA15 80
B. 3 .44 PENTA21V 81
B.3.45 HEXA8 83
B. 3.46 HEXA20 84
B . 3 . 47 HEXA27V 85
B. 3.48 CLOSEMODEL 86

B.4 Keywords for FE Analysis definition 87
B.4.1 OPENANA 87
B. 4 . 2 COLLECT 88
B.4.3 CDOFLIST 89
B. 4.4 SCOND 90
B. 4 . 5 DCOND 91
B.4.6 COUPLELIST 92
B. 4 . 7 NOCOUPLE 93
B. 4 . 8 COpY 94
B.4.9 ASSEM 95
B.4.10 TRN 96
B.4.11 TRE 97
B. 4 .12 ALLNODES 98
B. 4 .13 ALLELEMS 98
B.4.14 NODELIST 99
B. 4 .15 ELEMLIST 100
B.4.16 NODAL 101
B. 4 .17 ELEMENTAL 102
B. 4.18 PRESET1 103
B.4.19 PRESET2 104
B. 4.20 MPC 105
B.4.21 TEMP 106
B.4.22 LOADP1 107
B.4.23 LOADP2 107
B.4.24 FREQRG 108
B.4.25 STEADY 108
B. 4 . 26 IMPULS 109
B.4.27 RECTAN 109
B. 4.28 SAWTOO 110
B.4.29 SINUS 111

I
I

••••

B.5

B.4.30 SWEEPL ····· .112
B.4.31 SWEEPE 113
B.4.32 STARTL ············ 114
B.4.33 STARTE ············ .115
B.4.34 RANDOM ············ .116
B.4.35 DYNLOAD 117
B.4.36 DISCRLOAD 118
B.4.37 NODELOAD 119
B.4.38 LOADL1 120
B.4.39 LOADL2 120
B.4.40 EDGELOAD 121
B.4.41 LOADS1 122
B.4.42 LOADS2 122
B.4.43 SURFLOAD 123
B.4 . 44 LOADV1 124
B.4.45 LOADV2 124
B.4.46 ELEMLOAD 125
B. 4.47 GRAVLOAD 126
B. 4.48 TEMPLOAD 127
B.4.49 CONVEC 128
B.4.50 FLUX 129
B.4.51 QVOL 130
B.4.52 QVOLP 131
B.4.53 FREQRANGE .' 132
B. 4.54 TIMERANGE 133
B.4.55 MDCONST 134
B. 4.56 MODALDAMP 135
B.4.57 ANSTATIC 136
B.4.58 ANREIGV 137
B.4.59 ANCEIGV 138
B. 4.60 ANFRESP 139
B.4.61 ANTRESP 140
B. 4.62 ANSTEMP 141
B. 4.63 OUTDISP 142
B. 4.64 OUTSTRESS 143
B. 4.65 OUTSTRAIN 144
B.4.66 OUTFORCE 145
B.4.67 FIRSTFR 146
B.4.68 MODELIST 147
B. 4.69 FREQOUT 147
B.4.70 OUTEIGFR 148
B. 4.71 OUTMODESH 149
B. 4.72 OUTTEMP 150
B.4.73 OUTFLUX 151
B. 4.74 CLOSEANA 152
Keywords for FE Results definition 153
B. 5.1 OPENFERES 153
B. 5 . 2 ANCASE 154
B. 5 . 3 DISPR 155
B. 5 .4 DISPC 156
B. 5.5 STRENOR 157
B. 5.6 STRENOC 158
B. 5.7 STREEQR 159
B. 5.8 STREEQC 159
B. 5 . 9 STREPRR 160
B. 5 .10 STREPRC 161
B. 5 . 11 STREENR 162

-

B. 5 .12 STREENC ······ .163
B. 5 . 13 STREEIR ······· 164
B. 5 . 14 STREEIC 165
B. 5 .15 STRANOR ········ .166
B. 5 .16 STRANOC · .167
B. 5 .17 STRAEQR 168
B. 5 .18 STRAEQC 169
B.5.19 STRAPRR 170
B.5.20 STRAPRC 171
B. 5 . 21 STRAENR 172
B.5.22 STRAENC 173
B.5.23 STRAEIR 174
B.5.24 STRAEIC 175
B.5.25 NODFORCER 176
B.5.26 NODFORCEC 177
B.5.27 EIGFR 178
B.5.28 DAMPRAT 178
B. 5 . 29 NODTEMP 179
B.5.30 NODFLUX 180
B.5.31 RC 181
B.5.32 MATSEQ 182
B.5.33 MATBAND 183
B.5.34 MATGEN 184
B.5.35 MATSHP 185
B.5.36 MATDEF 186
B.5.37 MATVAL 187
B.5.38 CLOSEFERES 188

B.6 Notes 189
B.7 Keyword Cross-reference 191

C Implementation
C.1 Processors for FE data 195
C.2 Software developed by the Partners 197

C.2.1 Software developed by NEH 197
C.2.1.1 Program File Handler 197
C. 2 .1. 2 Program NEH61 198
C. 2 .1. 3 Program NEH62 198
C.2 .1.4 Program NEH63 199

C. 2 . 2 Software developed by RAL 201
C. 2.2.1 Program RDNF '.' 201
C. 2 . 2 . 2 PRENAS 201
C. 2.2.3 PRE-NF 202
C. 2 . 2 .4 NF2FG 202

C.2.3 Software developed by GfS 204
C. 2.3.1 Program NFUTIL 204
C.2. 3.2 Program FEREAD 204
C. 2 . 3.3 Program FEINW 205
C.2. 3.4 Program FEOUTW 206

C.2.4 Software developed by ERDISA 208
C. 2.4.1 Program CADMOD 208

C.2.5 Software developed by INITEC 209
C. 2 . 5.1 Program IENF 209
C.2.5.2 Program CVNF 209
C.2.5.3 Program NFAN 210

D Discussion of the CAD-FEMData Transfer
D.1 Intoduction 211

(

. ..

-

D.2 CAD/FEM Interchange Environment 213
D.3 The CAD*I approach to the CAD/FEM interface 217
D.4 Guidelines for FE modelling 219

D.4.1 The complexities involved 219
D.4.l.l The requirements of the solution 219
D.4.l.2 The nature of the problem 220
D.4.1.3 The mechanics of the problem 220
D.4.1.4 The geometry 221
D.4 .1.5 The loads 221
D.4.1.6 The computer code 222

D.4.2 Advanced FE Model1ing 222
D.4.2.l The state of the art of automatic FE modelling ..222
D.4.2.2 An expert system for the CAD/FEM interface 225

D.5 Heuristic rules for FE Modelling 227
D.s.l Development of a model of heuristic rules set 227

D.s.l.l Heuristic Rule Set 1: Model regions 227
D.s.1.2 Heuristic Rule Set 2: Required overall accuracy.229
D.S.1.3 Heuristic Rule Set 3: Type of analysis 230
D.S.l.4 Heuristic Rule Set 4: Type of problem 231
D.5.1.S Heuristic Rule Set 5: Geometry type 232
D.S.1.6 Heuristic Rule Set 6: Geometry complexity 234
D.S.l.7 Heuristic Rule Set 7: Load time distribution 235
D.S.l.8 Heuristic Rule Set 8: Program analysis
capabilities 235

D.s.2 Suggestions on how the heuristic rules might be
implemented in an expert system 235

D.6 The FEM to CAD interface 237
D.7 Conclusions 239

References 241

. ..

•••••

List of Illustrations

1. Model of a Cantilever Beam using Volume Elements 10
2. Deformed Configuration of the Cantilever Beam 10
3. CAD and Analysis Domains 15
4. Interaction Between Neutral File and Applications 16
5. Structure of Neutral File 17
6. Local Coordinate System for 1D e1ements 61
7. Node Ordering for Triangular 2D elements 66
8. Node Ordering for Quadrilateral 2D e1ements 70
9. Node Ordering for Tetrahedron solid e1ements 74
10. Node Ordering for Pentahedron solid e1ements 78
11. Node Ordering for Hexahedron solid e1ements 82
12. Interfaces to FE processors 196
13. Reducing the number of Interfaces 196
14. Software developed by the partners 200
15. Connection between Modelling and Ana1ysis 215

-
A.l Executive Summary 1

A General Information

A.l Executive Summary

A.l.l General Introduction

One major goal of ESPRIT Project No 322, CAD-Interfaces (CAD*I) is the
development of techniques for the exchange of product analysis data.

This report describes a set of specifications for the exchange of product
analysis data. A syntax for representing the analysis data in a neutral
file is presented; this syntax is formally described in Backus-Naur form.
A reference model for the finite element (FE) analysis data is given which
uses a formal data modelling language to define the fundamental data
entities, their attributes and interrelations. Syntactical expressions
(statements) for entities in these reference models are worked out. The
overall internal structure of the neutral file, and the interaction between
the neutral file and the computing environment via pre- and post-processors
are presented.

The final part of this report presents an investigation into the problems
of transferring geometry data between CAD and FE systems and proposes some
initial heuristic rules.

A.l.2 Objectives

This report presents the results obtained by Working Group 6 of the CAD*I
project team. The objectives of Working Group 6 are:

1. development of a specification for a neutral file for exchange of
product analysis data, suitable for describing analytical data.

2. development of pre- and post-processors for a number of representative
FE pre-processors, FE analysis codes and FE post-processors.

3. benchmarking the developed techniques by exchanging suitable test files.

4. contributing to the international standardization activities.

5. development of heuristic rules for the transformation of CAD geometry
into FE geometry.

...

--
2 Exchange of Product Analysis Data

A.l.3 Achievements.

A file for exchange of product analysis data stores a combination of
information that is used or generated at different stages of the analysis
process. Considering FE analysis, one can distinguish FE pre-processing
data, FE model and analysis data, and FE post-processing data. These
different processes may be implemented in different programs, possibly in
different computing environments.

The achievements that are reported on in this report are:

1. A definition of the syntax for the files. This syntax has been
discussed during various meetings with the Working Groups in the CAD*I
project that are developing techniques for exchange of product
definition data (in terms of wire frame, surfaces and constructive solid
geometry models).

2. A reference model for the data entities that are relevant in analytical
product analysis and syntactical expressions for the data entities.

3. A lay-out of concepts on the overall structure of the files and
interaction of the files with the computing environment via pre- and
post-processors.

4. Investigation into heuristic rules for the transformation of CAD
geometry to FE geometry.

The partners in Working Group 6 have implemented the file definitions and
written pre- and post-processors which act as interfaces between the
neutral file and application programs. The post-processors make use of
LR(l), a parser generator and a parser written in standard Fortran, and
also a lexical ana1yser. The use of these software tools has been very
successful and has convinced the partners in Working Group 6 that they
represent valuable aids for implementing the required processors.

A.1.4 Contribution to CAD*I

The prime objective of the CAD*I project is to develop interfaces for
transfer of product data between the different processes of the CAD
environment. This environment is often considered to include processes,
such as FE analysis and CAT and is therefore sometimes referred to by the
term Computer Aided Engineering (CAE). It is therefore essential that
interfaces allow for transfer of both product definition data and product
analysis data.

The work that is reported on in this paper concentrates on the aspect of
exchange of product analysis data. With the aim of having a highly unified
set of specifications for both product definition and analysis data, the
work has not been performed independently from the Working Groups active in
the area of specifications for exchange of product definition data but
rather in close collaboration. The results of this essential interaction
are reflected in various parts of this report, so that the results that are
reported on here truly contribute to the prime objective of the CAD*I
project.

-
A.l Executive Summary 3

A.l.5 Description of the Report

This report describes the work in three major sections. Section A contains
an informal description of the results, background information (Chapter
A.2), scope of the work (Chapter A.3), example neutral files (Chapter A.4)
and an informal description of the file format (Chapters A.S and A.6).

Section B is the reference section and constitutes the formal file
specification. Section C deals with implementation issues, describes the
pre- and post-processors that have been developed, and so on.

Section D contains a description of the work done on transformation of CAD
geometry into geometry suitable for FE preprocessing.

i

. ..

,....

4 Exchangeof ProductAnalysisData

-
A.2 Background Information 5

A.2 Background Information

A.2.l Exchange of Product Analysis Data

Product analysis data includes all the data which is necessary to perform
an analysis on a product together with the results of that analysis. To
illustrate this point consider the data required and generated by a finite
element (FE) analysis.

First the geometry of the product may be generated using a CAD system and
this can then be input to a pre-processor where the product is 'meshed'
(split into elements). 'Within the pre-processor, material properties,
physical properties, loads and constraints are added to the model. All
this data is then passed to a suitable FE analysis program and the results
are given to a post-processor for display.

The above sequence poses problems at several stages. Each of the four
programs CAD, pre-processor, analysis and post-processor could exist on
different machines. The data to be transferred at each stage will most
probably be in different formats. The output from each program is usually
not suitable as input for the next program and any interfaces that exist
are specific to two particular programs only.

The objective of the CAD*I project is to define a technique by which this
data can be stored and transferred so that it can be written or read by any
of the programs. Only two interfaces need exist for each individual
program - one to read the standard data and one to write it. In this way
data can be transferred easily between different programs and different
machines.

A.2.2 Existing Standards

The first task when the Project began was to review available existing
standards. Three standards were considered by working group 6; ANSI
Y14.26M-1981, IGES Version 1 and IGES Version 2. The IGES standard was
originally designed for the transfer of engineering drawings.

ANSI Y14.26M-1981; a number of criticisms of this standard have been made;
they were reviewed briefly in the Technical Annex to the Contract. The
first part of the Standard, taken from IGES Version 1 is straightforward,
though capable of defining only simple constructs. Difficulties arise from
the second part; its relationship to the IGES file is by no means clear.
The data formats are inefficient and voluminous. There is no specific way
to deal with entities such as loads and constraints, other than as
properties associated with geometric entities.

IGES: Version 2 attempts to meet the criticisms which were levelled at
Version 1. It extends into new areas, of which finite element modelling is
of interest here. However, the Standard would still be inadequate for our

6 Exchange of Product Analysis Data

purposes. Version 3, which was published recently, has not been studied in
detail by us.

The IGES Standard has also been reviewed in detail by working group I,
which reached similar conclusions.

During the development of the CAD*I specifications the IGES organisation
decided to develop a new standard for product definition and analysis with
the name PDES (Product Definition Exchange Standard). The International
Standards Organisation subsequently decided not to develop a standard of
their own but to collaborate with IGES in the development of the new
standard. The new ISO standard, although functionally the same as PDES, is
called STEP (Standard for the Exchange of Product data). Through the
International Standards Organisation CAD*I has been able to exert a
significant influence on the development of STEP.

I

I
A.2.3 Approach to Design of Specification.

As the intention is to provide a neutral file as part of a data base which
may be accessed from various programs, it was decided to design a form
which would be common to all files. To achieve this necessitates a method
which is

- as general as possible

- extendible to cover future needs

The files must be transferable between computers of different makes and
different operating systems: this requirement is most generally satisfied
by files of ASCII characters. To ensure extendibility, the most
satisfactory approach is to have files in a form analogous to modern
structured programming languages: each entity in a file is defined by a
keyword, followed by all pertinent information within delimiters
(parentheses). To the program reading such a file, the keyword has the
nature of an operator, which instructs the program how it should handle the
information.

Software for writing such files gives no particular difficulty, but the
writing of software ,to read a file would be a very time consuming and
error-prone task. Fortunately, similar problems encountered by the
designers and authors· of programming language compilers (Fortran, Pascal
etc.) have led to the development of generally available utilities for this
task. The first of these is a program to generate lexical analysis
routines, the second one a 'compiler compiler' which creates routines for
parsing the source statements. Examples of such utilities are: LEX
(lexical analyser generator) and YACC (parser generator) - both being
components of UNIX, and LR(l) (a parser generator and parser written in
standard Fortran).

It was clear from the outset that the only satisfactory way was to adopt
formal methods for describing syntax. Only by these means is it possible
to guarantee complete lack of ambiguity. The method used is the Backus
Naur Form (BNF). Most file structures, entities, etc. are described in two
different ways in this document: one is an informal description which is
understandable and reasonably accurate for the general user of the

-
A.2 Background Information 7

standards and another description is given using formal languages to
prevent any ambiguities.

In the design of the specification great emphasis was put on a correct and
formal description of the file syntax and the entities occurring in the
file. The alphabet characters are carefully defined and from these tokens
are defined using regular expressions. A context-free grammar is used to
describe the syntactical structure of the file. The entities occurring in
the file and their attributes and relationships are defined using a data
modelling language called Express which is described in more detail in the
reference section.

. ..•

8 Exchange of Product Analysis Data

-
A.3 Example Neutral File 9

A.3 Example Neutral File

As an example outlining the structure of the neutral file the following
model is provided. The component used for the demonstration of the
structure of the neutral file is a cantilever beam.

The material is an isotropic linear elastic material. The two material
constants used to define the constitutive re1atio~ are ~oung's modulus E
and Poisson's ratio nue. Here, they are E - 3.0x10 0 N/m and nue - 0.21,
Furthermore, the constant mass density rho is given as rho - 2600 kgym .
This information is given in the MATERIAL keyword.

The beam is subdivided into 48 hexahedron volume elements each with 8 nodes
g1v1ng a total of 117 nodes. The beam is shown in Fig. 1. The beam is fixed
at the right end of the beam, i.e. at nodes 109 to 117. The applied load is
a node load at the left end of the beam, i.e. at nodes 6, 7 and 15, in the
negative z-direction. The deformed configuration of the beam is shown in
Fig. 2.

The above information is given in the OPENMODEL block. In the OPENANA block
is the description of the required analysis. Here, we perform a static
analysis and the requested output is the displacements for all nodes, the
six stress components for all nodes, von Mises equivalent stress for all
nodes and the principal stresses for all nodes.

The requested output is given in the OPENFERES block.

The corresponding neutral file is listed afterwards. However, some marked
sections of the file are omitted for the purpose of presentation.

. ..

10

..

Cantileve~ beam maoe Of

loaacase VOlume elementsj ,

I

...

••••

A.3 Example Neutral File 11

CAD*I FORMAT BEGIN 19851011 1987/06/03 16:18
CAD*I-FORMAT-BEGIN-19881031 1987/06/03 16:18
OPENMODEL (#Canti1;ver: ,'Cantilever beam made of volume elements');
UNITS (#Canti1ever, 1., 1., 1., 1., 273.15, 1., 1. ,360.);
FREEDOM (#F57:'456' ,);
FREEDOM (#F64:'123456' ,);
NODE (#N1:1, 1.2, 0., 0., ,#F57);
NODE (#N2:2, 1.1, 0., 0., ,#F57);
NODE (#N3:3, 1.2, 0.15, 0., ,#F57);
NODE (#N4:4, 1.1, 0.15, 0. ,,#F57);
NODE (#N5:5, 1.1, 0., 0.05,,#F57);

omitted lines

NODE (#N113:113, 0., 0.3, 0., ,#F64);
NODE (#Nl14:114, 0., 0.3, 0.05, ,#F64);
NODE (#Nl15:115, 0., 0., 0.1,,#F64);
NODE (#Nl16:116, 0., 0.15, 0.1,,#F64);
NODE (#N117:117, 0., 0.3, 0.1,,#F64);
MATERIAL (#MO:'Isotropic material' ,ISO (3.E+10, 0.25, 2600.»;
HEXA8 (#E1:1,#MO, ,#N109,#N100,#N101,#N110,#N111,#N102,
#Nl03,#Nl12);
HEXA8 (#E2:2,#MO, ,#N110,#N101,#Nl04,#N113,#N1l2,#N103,
#Nl05,#Nll4);
HEXA8 (#E3:3,#MO,,#NlOl,#N92,#N95,#Nl04,#N103,#N94,#N96,
#Nl05);
HEXA8 (#E4:4,#MO, ,#N100,#N91,#N92,#N101,#N102,#N93,#N94,
#Nl03);
HEXA8 (#E5:5,#MO, ,#Nlll,#Nl02,#Nl03,#N1l2,#Nll5,#Nl06,
#N107,#Nl16);

omitted lines

HEXA8 (#E44:44,#MO, ,#N5,#N6,#N7,#N8,#N20,#N23,#N24,#N21);
HEXA8 (#E45:45,#MO, ,#N9,#N2,#N4,#NlO,#Nl1,#N5,#N8,#N12);
HEXA8 (#E46:46,#MO, ,#N10,#N4,#Nl4,#Nl7,#N12,#N8,#Nl6,
#Nl8);
HEXA8 (#E47:47,#MO, ,#N4,#N3,#Nl3,#Nl4,#N8,#N7,#Nl5,#Nl6);
HEXA8 (#E48:48,#MO,,#N2,#Nl,#N3,#N4,#N5,#N6,#N7,#N8);
CLOSEMODEL (#Cantilever);

OPENANA (#Ana1:#Cantilever,'Static analysis');
COLLECT (#OB1:'Co11ect object' ,(#E1,#E2,#E3,#E4,#E5,#E6,
#E7,#E8,#E9,#ElO,#Ell,#E12,#E13,#El4,#E15,#El6,#El7,#El8,#E19,
#E20,#E21,#E22,#E23,#E24,#E25,#E26,#E27,#E28,#E29,
#E30,#E31,#E32,#E33,#E34,#E35,#E36,#E37,#E38,#E39,#E40,
#E41,#E42,#E43,#E44,#E45,#E46,#E47,#E48»;
LOADP1 (#LPl:3, ,-0.25);
LOADPl (#LP2:3,,-0.5);
NODELOAD (#LP1,1,#N15);
NODELOAD (#LP2,1,#N7);
NODELOAD (#LPl,l,#N6);
ANSTATIC (#ANl:#OB1,(l»;
ALLNODES (#ALL1:(#OB1»;
OUTDISP (#AN1,#ALL1,);
OUTSTRESS (#ANl,NODAL(l,#ALL1,»;
OUTSTRESS (#ANl,NODAL(2,#ALLl,»;

12 Exchange of Product Analysis Data

OUTSTRESS (#AN1,NODAL(3,#ALL1,»;
CLOSEANA (#Ana1);

OPENFERES (#FERES1:#Ana1,'1st. load case');
ANCASE (#ANl,STAT,1,);
DISPR (#Nl,-4.741E-08,-2.403E-lO,-7.556E-07, O. ,0., 0.,);
DISPR (#N2,-4.707E-08,-3.l68E-lO,-6.608E-07, O. ,0., O. ,);
DISPR (#N3,-4.738E-08,-2.579E-19,-7.560E-07, O. ,0., O. ,);
DISPR (#N4,-4.703E-08,-2.498E-19,-6.614E-07, O. ,0., O. ,);
DISPR (#N5,-9.355E-21,-3.579E-20,-6.608E-07, O. ,0., O. ,);

omitted lines

DISPR (#N113, 0., 0., 0., 0., 0., O. ,);
DISPR (#Nl14, 0., 0., 0., 0., 0., O. ,);
DISPR (#Nl15, 0., 0., 0., 0., 0., O. ,);
DISPR (#Nl16, 0., 0., 0., 0., 0., O. ,);
DISPR (#Nl17, 0., 0., 0., 0., 0., 0.,);
STRENOR (#N1,-50.6, 13.4,-7.08, 3.52,-33.3,-1.97,);
STRENOR (#N2,-100.3, 9.175,-2.57, 5.795,-33.3,-1.62,);
STRENOR (#N3,-50.6, 13.4,-7.08,-6.661E-16,-33.3,
3.331E-16,);
STRENOR (#N4,-100.3, 9.175,-2.57,-4.441E-16,-33.3,
7.401E-17,);
STRENOR (#N5, 2.368E-15,-5.921E-16, 0., 1.48E-16,-33.3,
-1.62,);

omitted lines

STRENOR (#Nl13,-1160.,-231. ,-149., 64.7,-33.3,-18.7,);
STRENOR (#N114, 0., 0., 0., O. ,-33.3,-18.7,);
STRENOR (#Nl15, 1160., 231., 149., 64.7,-33.3, 18.7,);
STRENOR (#N116, 1160., 231., 149. ,-1.421E-14,-33.3,
-3.553E-15,);
STRENOR (#Nl17, 1160., 231., 149. ,-64.7,-33.3,-18.7,);
STREEQR (#N1, 81.1184);
STREEQR (#N2, 119.466);
STREEQR (#N3, 80.817);
STREEQR (#N4, 119.011);
STREEQR (#N5, 57.7455);

omitted lines

STREEQR (#Nl13, 981.263);
STREEQR (#N114, 66.1494);
STREEQR (#Nl15, 981.263);
STREEQR (#N116, 974.305);
STREEQR (#N117, 981.263);
STREPRR (#N1, 15.8298,-68.6761, 8.56632, 0.29046, 0.82028,
-0.49273, 0.87972 -0.02633, 0.47475, 0.37645,
-0.57136,-0.72927,);
STREPRR (#N2, 11.9039,-110.781, 5.18245, 0.21146, 0.79038,
-0.57497, 0.9551,-0.04218, 0.29328, 0.20755,
-0.61117,-0.7638,);
STREPRR (#N3, 13.4,-68.6192, 10.9392, 0.46157, 0.,
-0.8871, 0.87949, 0., 0.47591, 0.47591, O. ,-0.87949,);
STREPRR (#N4, 9.17493,-110.568, 7.69779, 0.29101, 0.,

-
A.3 Example Neutral File 13

-0.95672, 0.9556, 0., 0.29465, 0.29465, O. ,-0.9556,);
STREPRR (#N5, 33.3394,-33.3394, 4.487E-06, 0.70627, 0.03436,
-0.70711, 0.70627, 0.03436, 0.70711, 0.99882, 0.04859, O. ,);

omitted lines

STREPRR (#Nl13,-142.758,-1165.49,-231.754, 0.047, 0.23995,
-0.96965, 0.99716,-0.06841, 0.03141,-0.0588,
-0.96837,-0.24249,);
STREPRR (#Nl14, 38.1914,-38.1914, 5.14E-06, 0.61654, 0.34623,
-0.70711, 0.61654, 0.34623, 0.70711, 0.87192, 0.48964, O. ,);
STREPRR (#Nl15, 1165.49, 142.758, 231.754, 0.99716, 0.06841,
-0.03141, 0.047,-0.23995, 0.96965, 0.0588,
-0.96837,-0.24249,);
STREPRR (#N116, 1161.1, 147.905, 231., 0.99946, 0.,
-0.03288, 0.03288, 0., 0.99946, 0.03582, 0., 0.99936,);
STREPRR (#N117, 1165.49, 142.758, 231.754, 0.99716,
-0.06841,-0.03141, 0.047, 0.23995, 0.96965,-0.0588,
-0.96837, 0.24249,);
CLOSEFERES (#FERES1);
CAD*I FORMAT END 19881031_ _ _
CAD*I_FORMAT_END_19851011

...

14 Exchange of Product Analysis Data

I
~,

,,

-
A.4 General File Structure 15

A.4 General File Structure

A.4.l Product Definition and Product Analysis Domains

The CAD*I project is dealing with two data domains; CAD systems containing
product definition data, and product analysis data in FEM and experimental
systems. The two domains have an overlapping area which contains a
geometrical description of an analytic model, see fig. 3. This is a subset
of the complete CAD representation of the structure. In the analysis
domain this subset produced by CAD is the basis for further processing.

CAD domain

~

-
over-

lapping
Analysis domain area

Fig. 3. CAD and Analysis Domains.

However, the FEM pre-processors often will require some structural changes
to the model provided by the CAD system. The geometric description of a
model, though part of the neutral file, is being designed by other working
groups of the CAD*I project and is therefore not covered in this document.
For the purpose of an analysis it is often required to change the geomet~·
(e.g. removal of irrelevant detail). If required the new geometry can be
described in the same neutral file. The description of the neutral file
allows for the analysis to point to a certain geometry description.

This is important because the CAD side must be able to read that part of
the file. So in the overlapping area all keywords and semantics have to be
checked mutually, whereas in the other areas the definitions of the
entities can be independent.

.."

-
16 Exchange of Product Analysis Data

A.4.2 Interaction between File and Processors

The neutral file can contain all information beginning with the geometrical
input in the overlapping area and ending with the optimization output.-.
This makes it possible to have exactly one file for one model and in that
way to enable easy comparison of results (e.g. between calculation and
measurement).

There will be no data base management system for the manipulation of the
neutral file. However, the interface to the applications program may be
divided into an application-independent part reading and writing the
neutral file and an application-dependent part which writes input files or
reads output files or communicates with the data base of the applications
program. This is shown in fig. 4.

•

) neutral file

interface
programs ~------- ~-------

appl1cat1on-
1naepenaent
part

applicat1on
dependent
part

input in
applications

program

output from
applications

program

Fig. 4. Interaction Between Neutral File and Applications.

The task of the CAD*I project is the definition of the neutral file as well
as the development of the interfaces

...

-
A.4 General File Structure 17

A.4.3 Internal Organisation of the File

The neutral file for product analysis data-is structured as shown below:

geometric model

FEM
model

FEM
modeL

anal~sis anal~sis

results results

Fig. 5. Structure of neutral file.

This can be expressed in the neutral file by open/close constructs, which
are not designed to be nested, but rather come one after another, each
referring to the next higher level. The relevant block of information is
always situated between the OPEN and the CLOSE statement. These keywords
are detailed in section B.2.

..•

•••••

18 Exchangeof ProductAnalysisData

•

A.5 External Envelope Concept 19

A.S External Envelope Concept

In the CAD*I environment files have to be transferred from one location to
another. Often several files containing different types of information
will be transmitted together. Then the problem occurs that the reading
processor will get not only those files which it can interpret, but also
files which were produced for being read by another processor.

In order to enable all processors at least to skip files which are unknown
to them, an envelope concept is defined for all files in the whole CAD*I
project. Each file gets a header and a trailer which indicates the area in
which a processor is working. One or several files (each with its own
header and trailer) form a so called metafile. That is the package which
is actually transmitted. It also has a header and a trailer indicating the
area where CAD*I files are stored. The header is dependent on the type of
neutral file. The general construction is:

metafile header
header of file 1

(content of file 1)

trailer of file 1
header of file 2

(content of file 2)

trailer of file 2
header of file 3

(content of file 3)

trailer of file 3
metafile trailer

This scheme is also used if there is only one file to be transferred.
Moreover, the concept allows different kinds of files, letters and even
comments to be combined in one file. The header is dependent on the type
of file. For the analysis data only the metafile header and a header for
the neutral file is used. They are:

metafile header CAD*I FORMAT BEGIN 19851011

metafile trailer CAD*I FORMAT END 19851011- -
neutral file header CAD*I FORMAT BEGIN 19881031

neutral file trailer: CAD*I FORMAT END 19881031

..,.

20 Exchange of Product Analysis Data

-
B.1 Syntax Definition 21

B Reference Section.

B.l Syntax Definition

At the lowest level the neutral file is considered a stream of characters.
The analysis of its actual contents takes place in two phases. The first
phase (the lexical analysis) has as input the character stream and combines
the characters into tokens, also it removes blanks and comments where
required. The second phase (syntactical analysis) has as input the token
stream produced by the lexical analyser and builds the syntax tree for the
complete file, and in doing so it also drives the checking and
interpretation of the file contents (semantic analysis). The basic
character set is discussed in section B .1.1, the lexical analysis in
section B.1.2 and syntactical analysis is the subject of section B.l.3.

B.l.l The Alphabet

The list of possible characters in the file is called the alphabet. As the
file is byte-oriented, the possible byte codes consist of the numbers 0 to
127. In this document these numbers are represented by graphical symbols
according to the following (customary) mapping. Byte codes not occurring in
this list (i.e. the numbers 0-31 and 127) are considered illegal in the
neutral file and are not part of the alphabet. The graphical representation
used in this document is given in the table.

32- 39
40- 47
48- 55
56- 63
64- 71
72- 79
80- 87
88- 95
96-103

104-111
112-119
120-126

(space)
()
o 1
8 9
@ A
H I
P Q
X Y
% a
h i
P q
x Y

"
*2
B
J
R
Z
b
j
r
z

#
+
3

C
K
S
[
c
k
s

$ % &

4
<
D
L
T
\
d
1
t

I

6
>
F
N
V

/
7
?
G
o
W

5

E
M
U
]
e
m
u

f
n
v

g
o
w

...

22 Exchange of Product Analysis Data

B.l.2 Token Definitions

The first scanning of the file combines, where possible, separate
characters of the alphabet into tokens (examples of tokens are identifiers
and numbers). All legal tokens that can occur in the file form an infinite
set. The elements of this set are defined using the notation of regular
expressions. The rules to go from the regular expression to the associated
sets are as follows:

If a is a character of the alphabet, then a used in a regular expression
stands for the set (a).

If Rand S are regular expressions denoting the sets LR and LS,
respectively, then R I S denotes the set LR U LS.

RS denotes the set of all strings from LR concatenated with all strings
from LS.

R* denotes the set formed by taking elements from R zero or more times. For
instance, if R consists of the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) then the
empty string and the strings 88, 8878 are all elements of R*.

R+ denotes the set formed by taking elements from R one or more times. For
instance, if R consists of the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) then the
strings 88, 8878 are elements of R+.

Finally, [R] denotes the set of strings that are in R together with the
empty string, i.e. it indicates that optionally one element of R is to be
taken.

r
In the following list of expressions the curly braces () are used as
metasymbo1s. They are used to describe features of the language that are
difficult or cumbersome to capture in formal language. The regular
expressions that define the tokens in the neutral file are: ,

I

..•

-
B.l Syntax Definition 23

lower - a I b I ... I z I @ I [I \ I] I " I ' I (I) I -
(and the vertical bar' I' character itself)

upper - A B Z I _

digit o 1 9

space (blank character)

special - { remaining characters in alphabet }

alphanum lower upper digit

alphabet lower upper digit special I space

non-q-char - {any character from the alphabet except the quote'

non-dq-char
quote "

(any character from the alphabet except the double
)

keyword - upper upper I digit]*

name - [alphanum]+

entityname - # name

entityreference - entityname

sign"" + I -

integer - [sign] digit+

real - sign] digit+ . digit* [E [sign] digit+]

string , [non-q-char I ' ,]* '

enumkeyword - upper upper digit]*

user-defined-name - " [non-dq-character I " "]* "

comment - (* (any sequence of characters not containing *) } *)

Additionally the following lexical conventions apply:

Spaces (blanks) separate tokens. Consecutive spaces can always be collapsed
into one. The only exception is when spaces occur in strings, they are
treated as any other character in a string.

Newlines are ignored altogether.

Comments can appear anywhere except within tokens. They are ignored except
that they act as a token separator.

...

-
24 Exchange of Product Analysis Data

B.l.3 BNF Description of the File

The BNF rules give a formal description of the syntax of the file. The
termdnaLs of the language are the tokens as recognised by the lexical
analyser. For convenience in running the parser an extra production (the
first) is added and the start symbol of the grammar is therefore <SYSTEM
GOAL SYMBOL>. Production no. 24 provides for the case of a missing or
default parameter, as for instance occurs in the following statement in the
neutral file:

I
I

~

NODE(#99: 15,4.4, 5.5, 6.6, , #FROOl);

The lexical analyser is assumed to return the special token eof when it
encounters the end of the neutral file. The productions are:

1<SYSTEM GOAL SYMBOL> ::- <neutralfi1e>
2 <neutralfile> ::- <file> eof
3 <file> ::- <statement list> ;
4 <statement list> ::- <statement>
5 / <statement list> ; <statement>
6 <statement> ::- <definition>
7 / <property>
8 <definition> ::- keyword (entityname : <parameter list>)
9 <property> ::- keyword (<parameter list>)

10 <parameter list> ::- <parameter>
11 / <parameter list>,<parameter>
16 <parameter> ::- real
17
18
19
20
21
22
23
24
25

/ string
/ integer
/ entityreference
/ enumkeyword
/ user-defined-name
/ <embedded entity>
/ (<parameter list>)
/

<embedded entity> : :- keyword (<parameter list>)

B.l.4 Description of EXPRESS for FE specification

The main part of this report is a description of all the keywords with
their parameters. Each keyword in section B.3 to B.S is described in the
same way: a header line (printed in bold) which gives a quick overview of
the keyword and its parameters, followed by an Express-like definition of
the entity type for giving a formal definition of its attributes, a
description of the entity being defined and the meaning of the entity and
the parameters. This is finally followed by an example of how an instance
of such an entity would look in the neutral file.

Express is a language being developed by the International Standards
Organisation. A full description of the language can be found in ISO
document ISO/TC184/SC4/WG1 and here will only be given a swnmary of the
aspects relevant for understanding the information in Part B. With the aim

...

-
B.1 Syntax Definition 25

of better serving the purposes of the CAD*I project the language has been
slightly modified as compared with the original version.

B.l.4.1 Entities and Attributes

An Express entity type definition consists of a name, a list of attributes
and optionally a where clause. The name, occurring after the keyword
ENTITY, allows references to the entity to be made by other entities in the
Express model and always corresponds with the name as used in the neutral
file. The list of attributes in the Express definition corresponds with the
parameters in the neutral file. The where clause puts restrictions on the
possible values of the attributes. Comments are allowed within the comment
delimeters '(*' and '*)'.

The attribute list immediately follows the entity name. For each attribute
a name and a type is given, separated by a colon ':'. 'Where consecutive
attributes have the same type their names can be combined into a list of
names with the names separated by comma's. A list of possible attributes
types, together with the way they are represented on the neutral file,
follows:

B.1.4.2 Base Types

An integer type means that the attribute is an integer and is represented
on the neutral file as such.

A real type means that the attribute is a real number and is represented on
the neutral file as a real.

A string type means that the attribute is a string and is represented on
the neutral file as a string.

B.1.4.3 Entity references

An entity type name means that the attribute is a reference to an entity of
that type. On the neutral file it is represented either by an explicit
reference to an entity or an embedded entity of the correct type.

A select means that the attribute is a reference to an entity the type of
which cannot be determined in advance. Instead, the possible types that can
be referenced are listed explicitly as parameters of the SELECT. On the
neutral file such a parameter is either an explicit reference or an
embedded entity.

B.1.4.4 Enumeration

An enumeration means that the attribute has a relatively small number of
values which are listed explicitly as the parameters of the enumeration. On
the neutral file it is represented by the name of the selected value.

...

-
26 Exchange of Product Analysis Data

B.l.4.5 Unique and Optional

The attribute types can be modified by the addition of the words unique or
optional. These have the following meaning:

If an attribute is labelled unique this means that the value of instances
of the attribute should be unique throughout the model.

An optional attribute does not need to be present in an instance of the
entity on the neutral file. If the attribute is not present then its place
on the neutral file is left empty. The separators for the attribute are not
deleted so an omitted attribute is characterised by two consecutive
comma's.

B.l.4.6 Aggregates

It is possible for the type of an attribute to be composite in the sense
that it is a number of values instead of a single value. Three aggregate
types exist: array, list and set. An array is used when the values can only
by addressed by their specific position in the array. An array attribute
can be thought of as providing 'slots' or placeholders for the values and
so an array has a field length which can be defined in the Express model
itself. A list is used when the collection of values is ordered but not
explicitly numbered. A set is used when the collection of values is
unordered and no duplication of values is allowed, which corresponds with
the mathematical concept of a set.

B.l.4.7 Other definition constructs !
In addition to entity type definitions the following Express constructs can
be used.

TYPE. A type definition is a convenient way of writing select clauses
outside the main body of the entity. The same select is often shared
between entities as the type of one of their attributes and a type
definition provides the facility for sharing selects between several entity
definitions.

1

r
\

PROPERTY. A property definition can be used to add information to an
already existing entity. The express syntax consists of the word PROPERTY,
an attribute list, followed by the keyword OF, and a reference (possibly a
select). The reference is used for stating which entity the property
attributes belong to.

LINK. A link can be used to mention facts that do not properly belong to a
single entity but to a combination of entities. A link can itself have
attributes.

•
. ..

-
B.1 Syntax Definition 27

B.1.4.S Constraints

The where clause puts restrictions on the values of the attributes. The
where clauses as used in part B have a relatively simple syntax and, with
one exception, the interpretation of their meaning should be obvious. This
exception is the use of the word 'NULL'. If an attribute A is optional it
is possible to formulate a constraint involving a test on the occurrence of
attribute A in the actual entity using the statement 'A-NULL' (which
returns a logical value).

It must be kept in mind that it is not intended to capture all possible
restrictions on all attribute values of the entities. This would be very
difficult to do as there is a gradual transition from direct constraints on
the file (example: NODAL, B.4.4, where type-code should be between 1 and
4), constraints that can be formulated in a simple manner as only one
attribute is involved (for example Poisson's ratio less than 1/2) to
complicated constraints that can only be checked by a full perusal of the
model (example: a model that is not sufficiently restrained so that its
stiffness matrix is singular). As a general rule only constraints that
exist for the purposes of the file itself are mentioned and simple other
constraints have been added where this seemed appropriate.

The implication of this is that not every neutral file which is legal under
the definitions of this report corresponds with a realistic analysis
problem: it is feasible (and, in fact, quite easy) to design a file which
fully complies with the formats and constraints on the values in the
neutral file, but which nevertheless does not represent a model which is
realistic in any sense.

...

••••

28 Exchangeof ProductAnalysisData

-
B.2 Levels of the Neutral File 29

B.2 Levels of the Neutral File

The neutral file is divided into four levels, corresponding to stages in
the design cycle of a product. The statements belonging to a particular
level are enclosed between OPEN and CLOSE keywords in the physical file to
separate them from the rest. This means that a neutral file may contain
many different types of information in an ordered block structure, rather
than an unorganised heap.

The following keywords are provided for these constructs:

FEM level 1 (geometrical structure)
this is provided by CAD (overlapping area, fig. 3.) and may begin
with OPENWORLD. This world has a name, which can be referred by
other levels. The appropriate keywords and statements are given in
the CAD*I specification of a neutral file for CAD geometry [31].

FEM level 2 (FEM model):
OPENMODEL (model_name:world_name,text_description);
CLOSEMODEL (model_name);

model name can be referenced by the following levels,
world_name is the name of the geometrical structure described
between OPENWORLD and CLOSEWORLD,it can be omitted (e.g.
because there is no product definition data)

text_description is a string constant.
The colon (:) indicates that in this statement a new entity is created
(defined).

FEM level 3 (analysis):

OPENANA (analysis_name:model_name,text_description);

CLOSEANA (analysis_name);
model name was defined in OPENMODEL, analysis_name may be
referenced by the result sets. The analysis is not placed inside
the model description, but in an unnested way after the CLOSEMODEL
statement.

FEM level 4 (FE results):

OPENFERES (set_name:analysis_name,text_description);

CLOSEFERES (set_name);
set name is a name for this special set of results (e.g.
displacements or stresses of one load case), the text may give
further information about this set (e.g. 7th eigenvector, frequency
- 254.3 Hz).

The structure explained here is applied to the example given in chapter
A.3.

...

30 Exchange of Product Analysis Data

••••

.,

-
B.3 Keywords for FE Model Description 31

B.3 Keywords for FE Model Description

B.3.l OPENMODEL (model_name:world_name,'TEXT_DESCRIPTION');

ENTITY openmode1;
world name
TEXT

END_ENTITY;

OPTIONAL openwor1d;
OPTIONAL string;

model name can be referenced by the following levels,

world name is the name of the geometrical structure described between
OPEN WORLD and CLOSE_WORLD; if no product definition data exist, world name
may be omitted.

TEXT DESCRIPTION is an optional string constant.

Example:

OPENMODEL (#testmodel: ,'This model has no world');

...

-
32 Exchange of Product Analysis Data

B.3.2 UNITS (modelname, LE, MA, TI,TE, TE_OFFSET, CU, LI, ANGLE);

PROPERTY units;
LE,MA,TI,TE
TE_OFFSET,CU,LI
ANGLE

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;

OF
MODELNAME

END_PROPERTY;
openmodel

modelname, name of the FEM model
LE, length units per meter
length in m - length in local units / LE
MA, mass units per kilogram
TI, time units per second
TE, temperature units per kelvin
TE_OFFSET, offset of zero point in temperature
temp. in kelvin - temp. in local units / TE + offset
CU, current units per ampere
LI, light units per candela
ANGLE, units per full circle

default value for LE, MA, TI, TE, CU, LI is 1
default value for TE OFFSET is 0, for ANGLE 6.2831853 ... (2 pi).

Examples:

UNITS (#testmodel,lOO. ,0.01",273.15" ,360.);
assigns a unit system with centimeters, tenth of a ton, seconds and
degrees Celsius to structure #testmodel. The angle unit is a
degree.

...

-
B.3 Keywords for FE Model Description 33

B.3.3 COORD (newcosys:oldcosys,Cl,C2,C3,PHI.THE,PSI,MIRROR,
TYPE_CODE) ;

ENTITY coord;
oldcosys
Cl, C2. C3
PHI.THE,PSI
MIRROR
TYPE

OPTIONAL coord;
real;
real;
OPTIONAL integer;
ENUMERATION OF (RECT,CYLN,SPHR);

WHERE
MIRROR >- 0 AND MIRROR <- 3;

END_ENTITY;

newcosys is the name of the coordinate system being defined.
oldcosys is the name of the referred (existing) coordinate system; if
omitted reference is made to the global (cartesian) coordinate system

Cl,C2.C3 are the coordinates of the origin of the new system relative to
the existing coordinate system 'oldcosys'. They may be x,y,z values,
r,theta,z or r,theta,psi depending on whether 'oldcosys' is a rectangular,
cylindrical or spherical coordinate system.

PHI,THE,PSI are the Euler angles describing the orientation of the new
coordinate system relative to the old system. These angles always refer to
an imaginary rectangular cosys thus fixing the orientation of any type of
cosys. Positive angles are clockwise when looking in a positive direction
along the rotation axis.

To obtain the new system the old system is rotated first about the x-axis
by an angle PHI producing new y and z axes. Then this intermediate
coordinate system is rotated by an angle THE about its intermediate y axis
producing new x and z axes. The last rotation is an angle PSI around this
new z axis (which is the final one) producing the final x and y axes. This
transformation, from the XYZ system to the new coordinate system xyz, is
given by the matrix below.

x
y
z

[matrix] *
x
y
Z

The elements of the matrix are:

cosTHE cosPSI cosPHI sinPSI + sinPHI sinPSI -
sinPHI sinTHE cosPSI cosPHI sinTHE cosPSI

- cosTHE sinPSI cosPHI cosPSI - sinPHI cosPSI +
sinPHI sinTHE sinPSI cosPHI sinTHE sinPSI

sinTHE - sinPHI cosTHE cosPHI cosTHE

MIRROR is an integer number denoting which axis of the newcosys shall be
inverted (mirrored). If omitted or set to zero then no mirroring is
performed.

...

-
34 Exchange of Product Analy~is Data

TYPE CODE can be RECT,CYLN or SPHR to specify the type of the new
coordinate system (rectangular, cylindrical, spherical respectively).

Example:

COORD (#co7: #co6, O.,1.,0., O. ,-90.,0., O,RECT);
defines a new coordinate system #co7, which relatively to the old
system #co6 is shifted in y-direction and rotated around the y
axis.

...

-
B.3 Keywords for FE Model Description 35

B.3.4 FREEDOM (name:DOFS,cosys);

ENTITY freedom;
DOFS
cosys

WHERE
(*DOFS has

END_ENTITY;

string;
OPTIONAL coord;

all sorts of constraints in it *)

Defines for three translations and three rotations which are fixed.

DOFS is a string constant of up to 6 numeric characters (1...6). Free
degrees-of-freedom are not mentioned.

Examples are:

'123456' fix all 6 degrees of freedom
'456' fix rotations
,3' fix z-direction, , all degrees of freedom are free

Degrees of freedom which will be condensed or will get prescribed
displacements must be declared free (this is the default value for not
mentioned degrees of freedom).

cosys is the name of a coordinate system

See note (1).

Example:

FREEDOM (#F35: '135',);
fixes directions x,z,phi-y in global coordinate system .

...

36 Exchange of Product Analysis Data

B.3.5 NODE (name:NODE_NUMBER,X,Y,Z,cosys,freedom);

ENTITY node;
NODE NUMBER
X, Y, Z
cosys
freedom

WHERE
NODE NUMBER> 0;

END_ENTITY;

UNIQUE integer;
real;
OPTIONAL coord;
freedom;

NODE NUMBER is the node number in the FEM programs,

X,Y,Z are coordinates of type real,

cosys is the name of a coordinate system; if omitted X,Y,Z are given in the
model coordinate system, if no model coordinate system is specified, it
defaults to a global cartesian system.

freedom is the name of a set of degrees-of-freedom.

See note (1).
t
•

Example:

NODE (#Nl17: 117,3.15,-2.52,-O.OS,#Col,#F3S);
defines node 117 with coordinates given in coordinate system #Col
and degrees of freedom given by #F3S.

t

...

B.3 Keywords for FE Model Description 37

B.3.6 ISO (name:E,NUE,RHO);

ENTITY iso;
E
NUE
RHO

END_ENTITY ;

real;
real;
real;

Defines a minimal set of properties of an isotropic material:

E
NUE
RHO

- elastic modulus
- Poisson's ratio
- density

Example:

ISO (#isl:2.1Ell, 0.3, 7850.);

...

-
38 Exchange of Product Analysis Data

B.3.7 ISOFULL (name:E,NUE,RHO,AL,BE,EPS,H,TREF,K,CP);

ENTITY isofull;
E real;
NUE real;
RHO real;
AL OPTIONAL real;
BE OPTIONAL real;
EPS OPTIONAL real;
H OPTIONAL real;
TREF OPTIONAL real;
K OPTIONAL real;
ep OPTIONAL real;

END_ENTITY;

Fully defines the properties of an isotropic material:

E
NUE
RHO
AL

BE

- elastic modulus
- Poisson's ratio
- density
- proportionality factor for damping

(stiffness contribution)
- proportionality factor for damping

(mass contribution) [e] - AL*[K] + BE*[M]
- critical damping ratio
- thermal expansion coefficient
- thermal expansion reference temperature

thermal conductivity coefficient
- heat capacity

EPS
H
TREF
K
ep

Example:

ISOFULL (#if2:2.lE11, 0.3, 78S0.0,o.S,0.S,1.3,12E-S,300. ,100.,3700.);
defines the properties of an isotropic material .

...

-
B.3 Keywords for FE Model Description 39

B.3.8 ANIS02D (name:EM,RHO,AL,BE,EPS,HM,TREF,KM,CP,cosys);

ENTITY aniso2d;
EM ARRAY [1 6] OF real;
RHO real;
AL OPTIONAL real;
BE OPTIONAL real;
EPS OPTIONAL real;
HM OPTIONAL ARRAY [1 3] OF real;
TREF OPTIONAL real;
KM OPTIONAL ARRAY [1 3] OF real;
ep OPTIONAL real;
cosys OPTIONAL coord

END_ENTITY;

Defines the properties of a 2D anisotropic material:

EM (3x3)
HM (2x2)
KM (2x2)

- Poisson's ratio
- density
- proportionality factor for damping

(stiffness contribution)
- proportionality factor for damping

(mass contribution) [e] - AL*[K] + BE*[M]
- critical damping ratio
- thermal expansion reference temperature

heat capacity
- reference to a coordinate system, if

this is omitted the default is the local
element coordinate system
2D elasticity matrix (6 values)
2D thermal expansion matrix (3 values)
2D thermal conductivity matrix (3 values)

NUE
RHO
AL

BE

EPS
TREF
ep
cosys

The matrices are given as lists of values row by row beginning in the main
diagonal:

AII,AI2,AI3, A1n,
A22,A23, A2n, with n - 2,3 or 6

.......... ,
Ann

The list of values is regarded as one parameter and is therefore included
in parentheses.

40 Exchange of Product Analysis Data

Example:

ANIS02D (#an2:(2.1ElO,2.2ElO,2.3ElO,2.4EIO,2.SElO,2.6EIO),
7000.,l.E-6,0.44,,(4.1E3,4.2E3,4.3E3),20. ,
(S.lE-2,S.2E-2,S.3E-2),0.341,,);

lists the properties of an anisotropic material for 2D elements in
the global coordinate system.

--
B.3 Keywords for FE Model Description 41

B.3.9 ANIS03D (name:EMM,RHO,AL,BE,EPS,HMM,TREF,KMM,CP,cosys);

ENTITY aniso3d;
EMM
RHO
AL
BE
EPS
HMM
TREF
KMM
CP
cosys

END_ENTITY;

ARRAY [1 : 21] OF real;
real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL ARRAY [1
OPTIONAL real;
OPTIONAL ARRAY [1
OPTIONAL real;
OPTIONAL coord

6] OF real;

6] OF real;

Defines the properties of a 3D anisotropic material:

RHO
AL

EMM (6x6)
HMM (3x3)
KMM (3x3)

- density
- proportionality factor for damping

(stiffness contribution)
- proportionality factor for damping

(mass contribution) [C] - AL*[K] + BE*[M]
critical damping ratio

- thermal expansion reference temperature
- heat capacity
- reference to a coordinate system, if

this is omitted the default is the local
element coordinate system

- 3D elasticity matrix (21 values)
3D thermal expansion matrix (6 values)

- 3D thermal conductivity matrix (6 values)

BE

EPS
TREF
CP
cosys

The matrices are given as lists of values row by row beginning in the main
diagonal:

A11,A12,A13, A1n,
A22 ,A23, A2n, with n - 2,3 or 6

.......... ,
Ann

The list of values is regarded as one parameter and is therefore included
in parentheses.

..•

-
42 Exchange of Product Analysis Data

Example:

ANIS03D(#an3:(2.lElO,2.2ElO,2.3ElO,2.4ElO,2.SElO,2.6ElO,
2.7EIO,2.7EIO,2.7EIO,2.7EIO,2.7ElO,2.7ElO,2.7ElO,
2.7EIO,2.7EIO,2.7EIO,2.7EIO,2.7EIO,2.7E10,2.7E10,
2.7E10,),7000. ,1.E6,0.44,,(4.lE3,4.2E3,4.3E3,
4.1E3,4.2E3,4.3E3),20.,
(S.lE-2,S.2E-2,S.3E-2,S.lE-2,S.2E-2,S.3E-2)
,0.341, ,);

defines the properties of an anisotropic material for 3D elements
in the global coordinate system.

-
B.3 Keywords for FE Model Description 43

B.3.10 MATERIAL (name:'TEXT'.mat_subkw);

ENTITY material;
TEXT
mat subkw

OPTIONAL string;
SELECT (iso,isofull,anis02d,

anis03d);
END_ENTITY;

Defines the material properties associated with an element. The material
may be designated isotropic or anisotropic depending on the keyword that is
referenced.

TEXT is an optional string, usually describing the material.

Example:

MATERIAL (#matl:'Structural Steel',#is04);
defines a material, matl, the properties of which are given in
#is04.

• '9

-
44 Exchange of Product Analysis Data

B.3.11 PBAR (name:A);

ENTITY pbar;
A

WERE
A > O.

END_ENTITY ;

real;

Defines the properties of a bar element:

A cross-sectional area

This may be referenced by elements of type BAR.

Example:

PBAR (#barl2:12.4E-4);

...

-
B.3 Keywords for FE Model Description 45

B.3.12 BEAMG (name:A,AIYY,AIZZ,AIYZ,AIP,SY,SZ,DY,DZ);

ENTITY beamg;
A
AIYY
AIZZ
AIYZ
AlP
SY
SZ
DY
DZ

WHERE
A > O.
AIYY > O.
AIZZ > O.
AIYZ > O.
AlP> O. ;
SY > O. ;
SZ > O. ;
NOT ((A-NULL) AND (AIYY-NULL) AND (AIZZ-NULL)
AND (AIYZ-NULL) AND (SY-NULL) AND (SZ-NULL));

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
real;
real;

Defines the properties of a general beam element:

A cross-sectional area; if omitted the beam has no
resistance against tension and compression

AIYY,AIZZ,AIYZ second moments of area; if omitted the beam has no
resistance against bending

AlP torsional constant; if omitted the beam has no
resistance against torsion

SY,SZ shear coefficients (cross-sectional area
divided by effective shear area); if omitted the
beam has no resistance against shear

DY,DZ local coordinates defining the point at which
stress is to be computated.

This may be referenced by elements of type BEAM2.

Example:

BEAMG (#bl:123. ,342. ,774.3,125.0,545.3,1.5,1.6,15.2,17.6);

...

-
46 Exchange of Product Analysis Data

B.3.13 BEAMI (name:H,W,HF,TW);

-_
ENTITY beami;

H
lJ
HF
TW

'WHERE
HF > 0.;
H > (2 * HF);
TW > 0.;
lJ > TW;

END_ENTITY;

real;
real;
real;
real;

Defines the properties of an I section beam:

TW

y
LL
I

z

I

t
w J

H

TW

height of a profiled beam (size in local
s' -direction)
width of a profiled beam (size in local
z ' -direction)
height of flange (measured in local y'
direction)
thickness of web (measured in local z'
direction)

HF

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAMI (#bIS:24.S,l3.7,l.2,4.S);

...

-
B.3 Keywords for FE Model Description 47

B.3.14 BEAML (name:H,W,HF,TW);

ENTITY beaml;
H
W
HF
TW

WERE
HF > 0.;
H > HF;
TW > 0.;
W > TW;

END_ENTITY;

real;
real;
real;
real;

Defines the properties of an L section beam:

TW

__ 1.i-----i1
y

LL
I

z
~ L ~I _&

l w J t
H height of a profiled beam (size in local

y' -direc tion)
width of a profiled beam (size in local
z '-direction)
height of flange (measured in local y'_
direction)
thickness of web (measured in local z'
direction)

HF

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAML (#bL7:24.5,13.7,1.2,4.5);

. .•

-
48 Exchange of Product Analysis Data

B.3.1S BEAMU (name:H,W,HF,TW);

ENTITY beamu;
H
W
HF
'N

WHERE
HF > 0.;
H > HF;

-'N>O.;
W > (2 * 'N);

END_ENTITY;

real;
real;
real;
real;

Defines the properties of a U section beam:

I

r- ~

l.L
I

,

y

I. w
z

H

'N

height of a profiled beam (size in local
y' -direction)
width of a profiled beam (size in local
z'-direction)
height of flange (measured in local y'
direction)
thickness of web (measured in local z'
direction)

W

HF

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAMU (#bUl:24.S,l3.7,l.2,4.S);

...

B.3 Keywords for FE Model Description 49

B.3.16 BEAMT (name:H,W,HF,TW);

ENTITY beamt;
H
W
HF
TW

WHERE
HF > 0.;
H > HF;
TW > 0.;
W > TW;

END_ENTITY;

real;
real;
real;
real;

Defines the properties of an T section beam:

...----r,....--~~I--LtI __ J----r

w

y

z
LL:r:

TW

height of a profiled beam (size in local
y I -direction)
width of a profiled beam (size in local
z I -direction)
height of flange (measured in local y'
direction)
thickness of web (measured in local z'
direction)

H

W

HF

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAMT (#bT9l:24.S,l3.7,l.2,4.S);

...

-
50 Exchange of Product Analysis Data

B.3.17 BEAMO (name:D,DI);

-_
ENTITY beamo;

D
DI

WHERE
D > 0.;
D > DI;

END_ENTITY;

real;
OPTIONAL real;

Defines the properties of an 0 section beam:

o -
y

o

z

D
01

outer diameter of a round beam
inner diameter of a round beam (may be
omitted or set zero in case of solid beam)

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAMO (#b065:99.9,43.5);

...

-
B.3 Keywords for FE Model Description 51

B.3.18 BEAMR (name:H,V,HI,VI);

ENTITY beamr;
H
W
HI
WI

WHERE
HI > 0.;
H > HI;
WI > 0.;
W > WI;

END_ENTITY;

real;
real;
OPTIONAL real;
OPTIONAL real;

Defines the properties of a rectangular section beam:

:r:

-
~

~

-:r:

WI

y

z
L w •. I

HI,WI

height of a profiled beam (size in local
y' -direction)
width of a profiled beam (size in local
z'-direction)
inner height, inner width of rectangular
beams (may be omitted or set zero in case
of solid beam)

H

The neutral axis is assumed to lie along the x-axis. This property may be
referenced by elements of type BEAM2.

Example:

BEAMR (#brOOl:33.4,SS.6,12.6,23.9);

-
52 Exchange of Product Analysis Data

B.3.19 STIFF (name:KX,KY,KZ,KXX,KYY,KZZ);

ENTITY stiff;
KX OPTIONAL real;
KY OPTIONAL real;
KZ OPTIONAL real;
KXX OPTIONAL real;
KYY OPTIONAL real;
KZZ OPTIONAL real;

END_ENTITY;

Defines the properties of a SPRING element:

KXX,KYY,KZZ

translational stiffnesses, valid for global
directions if auxiliary point is absent,
valid for local directions if local coordi
nate system is given (by ORIENT)
rotational stiffness around global or local
axes (depends on whether an aUXiliary point
is given or not)

KX,KY ,KZ

Example:

STIFF (#sti:9.1E6,7.1E6,S.lE6,O.O,8.1E6,O.O);
defines translational and rotational stiffnesses for a spring
element.

...

B.3 Keywords for FE Model Description 53

B.3.20 DAMP (name:CX,CY,CZ,CXX,CYY,CZZ);

ENTITY damp;
ex
ey
ez
exx
eyy
ezz

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;

Defines the properties of a DAMPER element:

eXX,eYY,ezz

translational damping coefficients, valid
for global or local directions
rotational damping coefficients around global
or local axes

eX,eY,ez

Example:

DAMP (#dmp: 1.5,2.4,0.0,12.9,0.0,11.1);
defines translational and rotational damping coefficients for a
damper element.

...

-
54 Exchange of Product Analysis Data

B.3.2l PMASS (name:MX,MY,MZ,MXX,MYY,MZZ);

ENTITY pmass;
MX
MY
HZ
MXX
MYY
HZZ

END_ENTITY ;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;

Defines the properties of a lumped mass element:

MXX,MYY,MZZ

translational mass (usually equal for all 3
directions) in global or local coordinates.
rotational moments of inertia around global
or local axes

MX,MY ,MZ

This property type may be referenced only by an element of type MASS.

Example:

PMASS (#pm85:2.4,3.l,82.4,2.7,45.3,44.9);

...

-
B.3 Keywords for FE Model Description 55

B.3.22 THICK (name:PURPOSE_CODE,T);

ENTITY thick;
PURPOSE CODE ENUMERATION OF (MEMBRANE,PLANESTRAIN,

PLATE,SHELL,AXISOLID,SHEAR);
T

'WHERE
T > 0.;

END_ENTITY;

real;

Defines the properties of a 2D element:

P

thickness of a 2D element (constant over
the whole element)
purpose code giving the type of 2D element
MEMBRANE - membrane element having plane stress
PLANESTRAIN - membrane element having plane strain
SHELL - thin shell element
PLATE - thin plate element
AXISOLID - axisymmetric ring element
SHEAR - a 2D element where transverse shear is important

T

This property may be referenced by TRI and QUAD type elements.

Example:

THICK (#thk4:MEMBRANE,l.OE-3);
defines the thickness of a membrane element.

...

-
56 Exchange of Product Analysis Data

B.3.23 THICKV (name:PURPOSE_CODE,Tl,T2,T3,T4);

ENTITY thickv;
PURPOSE CODE ENUMERATION OF (MEMBRANE, PLANES TRAIN •

PLATE.SHELL.AXISOLID.SHEAR);
Tl, T2. T3
T4

WHERE
Tl > 0.;
T2 > 0.;
T3 > 0.;
T4 > 0.;

END_ENTITY ;

real;
OPTIONAL real;

Defines the properties of a 2D element:

Tl.T2.T3.T4

P

thicknesses at the lst,2nd.3rd.4th corner
points of a 2D element (in case of
triangles T4 is omitted)
purpose code giving the type of 2D element
MEMBRANE - membrane element having plane stress
PLANESTRAIN - membrane element having plane strain
SHELL - thin shell element
PLATE - thin plate element
AXISOLID - axisymmetric ring element
SHEAR - a 2D element where transverse shear is important

This property may be referenced by TRI and QUAD type elements.

Example:

THICKV (#thkv2:PLATE.l.OE-3.2.0E-3,3.0E-3,4.0E-3);
defines the varying thickness of a plate element with four nodes .

..•

-
B.3 Keywords for FE Model Description 57

B.3.24 PROPERTY (name:prop_subkw);

ENTITY property;
prop_subkw SELECT (pbar,beamg,beami,beaml,beamu,

beamt,beamo,beamr,stiff,damp,
pmass,thick,thickv) ;

END_ENTITY;

This statement defines the element properties and gives them a name that
can be referenced by the element statement. This keyword references a
keyword containing the properties relevant to a particular type of element.

Example:

PROPERTY (#prop4:#thkv19);

. ..•

-
58 Exchange of Product Analysis Data

B.3.2S ORl (name:node);

ENTITY orl;
a node node;

END ENTITY

Specifies a node, referenced by the ORIENT keyword, to define a direction.

Example:

ORl (#or22:#n467);

B.3.260R3 (name:X,Y,Z);

ENTITY or3;
X,Y,Z

END_ENTITY;
real;

Defines a direction towards the coordinates given by X, Y, Z.

Example:

OR3 (#orll:-3.5,0. ,-0.5);

I

•

...

-
B.3 Keywords for FE Model Description 59

B.3.27 ORIENT (orient_name:direction_definition);

ENTITY orient;
direction

END_ENTITY ;
SELECT (OR1,OR3);

Defines the orientation of lD elements where necessary. orient name may be
referenced by BEAM2, SPRING, DAMPER and MASS.

The direction definition can be ORl (indicating that a node name is given
to specify the direction) or OR3 (indicating that 3 coordinates of an
auxiliary node are given).

Example:

ORIENT (#Or88:#Or22);
defines Orientation #Or88 in the direction towards the node given
in the ORl keyword #Or22.

-
60 Exchange of Product Analysis Data

B.3.28 MASS (name:ELEM_NUMBER,prop,pl,x-orient,y-orient);

ENTITY mass;
ELEM NUMBER
prop
pI
x orient
y_orient

'WHERE
(* the directions defined by X ORIENT and Y ORIENT *)
(* are at 90 degrees to each other.*)

END_ENTITY;

UNIQUE integer;
property;
node;
OPTIONAL orient;
OPTIONAL orient;

Defines a lumped mass at node pl; the values for mass and moments of
inertia are given in a property statement. ELEM NUMBER is the unique
element number used by the FEM programs.

For translatory masses or if moments of inertia are given in global
coordinates the orientations can be omitted, otherwise orientations must be
given to define the directions of the local x and y axes.

Example:

MASS (#Ee:l7,#P4,#Nl9,,);
defines a lumped mass in node #Nl9 whose coefficients are given in
#P4 in global coordinates.

, ..

B.3 Keywords for FE Model Description 61

-_

z·

x'

Local coordinate system .for all 10 elements

.Element is defined by nodes Pi and P2
The local x'-axis lies along the element
Auxiliary paint defines local y'-axis

Figure 6. Local Coordinate system for lD elements.

-
62 Exchange of Product Analysis Data

B.3.29 DAMPER (name:ELEM_NUMBER,prop,pl,p2,orientation);

ENTITY damper;
ELEM NUMBER
prop
pl,p2
orientation

END_ENTITY ;

UNIQUE integer;
property;
node;
OPTIONAL orient;

Defines a damper between nodes pL and p2; its damping coefficients are
given in the referenced property statement.

ELEM NUMBER is the unique element number used by the FEM programs.

If orientation is omitted the damper is defined in global coordinates,
otherwise the element x-axis goes from pI to p2 and the element y-axis is
defined by the referenced ORIENT statement.

The local element coordinate system is shown in figure 6.

Example:

DAMPER (#Ed:7,#PlO,#NI5,#Nl6,);
defines damper #Ed as element number 7 with damping coefficients
#PlO given in global coordinates.

...

-
B.3 Keywords for FE Model Description 63

B.3.30 SPRING (name:ELEM_NUMBER,prop,pl,p2,orientation);

ENTITY spring;
ELEM NUMBER
prop
pl,p2
orientation

END_ENTITY;

UNIQUE integer;
property;
node;
OPTIONAL orient;

Defines a spring between nodes pl and p2; its stiffnesses are given in the
referenced property statement.

elem number is the unique element number used by the FEM programs.

If orientation is omitted the spring is defined in global coordinates,
otherwise the element x-axis goes from pl to p2 and the element y-axis is
defined by the referenced ORIENT statement.

The local element coordinate system is shown in figure 6.

Example:

SPRING (#Ec:23,#P9,#N72,#N73,#OrS);
defines a spring element between nodes #N72 and #N73. The element
x-axis goes from #N72 to #N73, the element y-axis from #N72 to the
point given in #OrS. The stiffness coefficients are given in #P9.

• •

-
64 Exchange of Product Analysis Data

B.3.31 BAR (name:ELEM_NUMBER,mat,prop,pl,p2);

ENTITY bar;
ELEM NUMBER
mat
prop
pl,p2

END_ENTITY;

UNIQUE integer;
material;
property;
node;

Defines a bar element having stiffness only in longitudinal direction, ie.
it has no rotational degrees of freedom.

ELEM NUMBER is the element number used in the FEM programs, this number
must be unique for all elements.

pl and p2 are the names of the nodes at the ends of the bar;

mat and prop are the names of a material and of a property defined in
separate statements.

Example:

BAR (#Ea: 2l,#Ml,#P2,#N34l,#N12);
defines Element 21 as a bar (called #Ea) between nodes #N34l and
#N12 with material (#Ml) and properties (#P2) being defined
elsewhere.

...

--
B.3 Keywords for FE Model Description 65

B.3.32 BEAM2 (name:ELEM NUMBER,mat,prop,pl,p2,orientation);

ENTITY beam2;
ELEM NUMBER
mat
prop
pl,p2
orientation

END_ENTITY;

UNIQUE integer;
material;
property;
node;
OPTIONAL orient;

Defines a beam element between nodes pl and p2 with resistance against
tension/compression, bending, shear and torsion.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

orientation points to an ORIENT statement which defines the direction of
the element y-axis. (The element x-axis goes from pl to p2.)

The local element coordinate system is shown in figure 6.

Example:

BEAM2 (#Eb:22,#Ml,#P20,#N23,#N123,#Or88);
defines the 22nd element as a beam between nodes #N23 and #N123.
The element y-axis valid for properties (defined in #P20) goes from
#N23 to the point given in #Or88.

66 Exchange of Product Analysis Data

TRI3

7

142L- ~ ~

TRI7V

TRI6

Figure 7. Node Ordering for Triangular 2D elements

...

-

-
B.3 Keywords for FE Model Description 67

B.3.33 TRI3 (name:ELEM_NUMBER,mat,prop,pl,p2,p3);

ENTITY tri3;
ELEM NUMBER
mat
prop
pl ,p2,p3

END_ENTITY;

UNIQUE integer;
material;
property;
node;

Defines a triangular 2D element with three nodes. Material and properties
are given in separate statements.

ELEM_NUMBER is the unique element number used by the FEM programs.

Node ordering is shown in figure 7.

Example:

TRI3 (#Ef:24,#M2,#Pll,#Nl,#N2,#N3);
defines triangle 24 made from material #M2 between nodes #Nl, #N2
and #N3. Thickness and purpose of the element are given in #Pll .

."'

--
68 Exchange of Product Analysis Data

B.3.34 TRI6 (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5,p6);

ENTITY tri6;
ELEM NUMBER
mat
prop
pl,p2,p3,p4,pS,p6

END_ENTITY;

UNIQUE integer;
material;
property;
node;

Defines a triangular 2D element with six nodes.

Material and properties are given in separate statements.

ELEM_NUMBER is the unique element number used by the FEM programs.

Node ordering is shown in figure 7.

Example:

TRI6 (#Eg:28,#M2,#P4,#Nl,#N2,#N3,#N4,#NS,#N6);
defines element 28 with name #Eg between the listed nodes.
Thickness is given in #P4.

...

B.3 Keywords for FE Model Description 69

B.3.35 TRI7V (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5,p6,p7);

ENTITY tri7v;
ELEM NUMBER
mat
prop
(*variable number
pl,p2,p3
p4 ,pS ,p6 ,p7

END_ENTITY;

UNIQUE integer;
material;
property;

of nodes *)
node;

: OPTIONAL node;

Defines a triangular 2D element with up to 7 nodes. The 7th node is in the
middle of the element. Nonexistent nodes can be omitted. The corner nodes
(the first three) must always be supplied.

ELEM_NUMBER is the unique element number used by the FEM programs.

Material and properties are given in separate statements.

Node ordering is shown in figure 7.

Example:

TRI7V (#Eh:29,#M2,#P4,#Nl,#N2,#N3,#N4, ,#N6,);
defines element 29 with name #Eh between the listed nodes. The 5th
and 7th node are omitted. Thickness is given in #P4 .

...

70 Exchange of Product Analysis Data

~4~ ,3

~1~ ~2

QUAD4

~4~ ~7 -.3

9 68

~1~ ~5 ~2

QUAD9V

-

QUAD8

~4~ ~7 ~3

8 6

~1~ ~5~ ~2

Figure 8. Node Ordering for Quadrilateral 2D elements.

-
B.3 Keywords for FE Model Description 71

B.3.36 QUAD4 (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4);

ENTITY quad4;
ELEM NUMBER
mat
prop
pl,p2,p3,p4

END_ENTITY;

UNIQUE integer;
material;
property;
node;

Defines a quadrilateral 2D element with 4 nodes

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 8.

Example:

QUAD4 (#Ei:30,#M2,#P4,#Nl,#N2,#N3,#N4);
defines element 30 with name #Ei between the listed nodes.
Thickness is given in #P4.

...

--
72 Exchange of Product Analysis Data

B.3.37 QUADS (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5,p6,p7,p8);

ENTITY quadS;
ELEM NUMBER
mat
prop
pl,p2,p3,p4,pS,p6
p7,pS

END_ENTITY;

UNIQUE integer;
material;
property;
node;
node;

Defines a quadrilateral 2D element with S nodes.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure S.

Example:

QUAD8 (#Ej:31,#M2,#P4,#Nl,#N2,#N3,#N4,#NS,#N6,#N7,#N8);
defines element 31 with name #Ej between the listed nodes.
Thickness is given in #P4.

."'

-
B.3 Keywords for FE Model Description 73

B.3.38 QUAD9V (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4.pS.p6.p7.p8.p9);

ENTITY quad9v;
ELEM NUMBER
mat
prop
(*variable number
pl,p2 ,p3 ,p4
pS,p6,p7,pS
p9

END_ENTITY;

UNIQUE integer;
material;
property;

of nodes *)
node;
OPTIONAL node;
OPTIONAL node;

Defines a quadrilateral 2D element with up to 9 nodes. First the corner
nodes are given, then (optionally) the edge nodes, then (optionally) the
centre node.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure S.

Example:

QUAD9V (#Ek:32,#M2,#P4,#Nl,#N2,#N3,#N4" ",#N9);
defines element 32 with name #Ek between the listed nodes, 4 corner
nodes and one in the middle. Thickness is given in #P4 .

..•

74 Exchange of Product Analysis Data

4 4

I I

.l2 J2". - - 7.'" - - ..fi./ - 2 1 y 5 - 21 -
z zVL TETRA4 VL TETRA10X X

-

4

TETRA15V

Figure 9. Node Ordering for Tetrahedron solid elements

,..

-
B.3 Keywords for FE Model Description 75

B.3.39 TETRA4 (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4);

ENTITY tetra4;
ELEM NUMBER
mat
prop
pl,p2 ,p3•p4

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;
node;

Defines a tetrahedron volume element by its 4 corner nodes. The material
is given in a separate statement, prop may be omitted (later the property
statement may define an integration control parameter).

I

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 9.

Example:

TETRA4 (#El:33,#M2, .#Nl,#N2,#N3,#N4);
defines element 33 with name #El between the listed nodes. The
material is given in #M2.

...

-
76 Exchange of Product Analysis Data

B.3.40 TETRAIO (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5,p6,p7,p8,p9,plO);

ENTITY tetralO;
ELEM NUMBER
mat
prop
pl,p2,p3,p4,pS,p6
p7,p8,p9,plO

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;
node;
node;

Defines a tetrahedron volume element with one additional node on each edge.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 9.

Example:

TETRAIO (#Em:34,#M2,,#NIOl,#Nl02,#Nl03,#Nl04,#NlOS,#Nl06,#Nl07,
#NI08,#Nl09,#NllO);

defines element 34 with name #Em between the listed nodes. The
material is given in #M2.

-
B.3 Keywords for FE Model Description 77

B.3.41 TETRA15V (name:ELEM_NUMBER,mat,prop,pl,p2,p3, ...,pl5);

ENTITY tetralSv;
ELEM NUMBER
mat
prop
(*variable number
p1,p2 ,p3,p4
pS,p6,p7,p8
p9,p10,pll
p12,p13,p14
p1S

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;

of nodes *)
node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;

Defines a tetrahedron volume element with up to 15 nodes. First the 4
corner nodes are given, then (optionally) 6 nodes on the edges, then
(optionally) 4 nodes on the surfaces, then (optionally) 1 node in the
middle of the body.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 9.

Example:

TETRAl5V (#En:35,#M2, ,#N101,#N102,#N103,#Nl04""", ",,#Nl15);
defines element 35 with name #En between the listed nodes, 4 at the
corners and one in the middle. The material is given in #M2.

...

78 Exchange of Product Analysis Data

5 4 54

I
112

1
10 11I 1

1 I
1 1

fi ~'
J2 - 8".. --- -- -".. -- 1 ".. 7 - 21 ".. - 2 --

Z zVL PENTA6 VL PENTA15
X . X

-

112
19 121 18

10 I 17 11
I
I
~a' 1~ - .§ __

1
..•.•.

2

PENTA21V

Figure 10. Node Ordering for Pentahedron solid elements .

...

B ~3 Keywords fo'rFE Model Description 79

B.3.42 PENTA6 (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5,p6);

ENTITY penta6;
ELEM NUMBER
mat
prop
pl,p2,p3,p4,p5,p6

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;
node;

Defines a pentahedron volume element by its 6 corner nodes. The material
is given in a separate statement, prop may be omitted (later the property
statement may define an integration control parameter).

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 10.

Example:

PENTA6 (#Eo:36,#M2,,#N7l,#N72,#N73,#N74,#N75,#N76);
defines element 36 with name #Eo between the listed nodes.

...

-
80 Exchange of Product Analysis Data

B.3.43 PENTA15 (name:ELEM_NUMBER,mat,prop,pl,p2,p3, ...,p15);

ENTITY pentalS;
ELEM NUMBER
mat
prop
pl,p2,p3,p4,p5,p6
p7 ,p8,p9,plO,pll
p12,p13,p14,plS

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;
node;
node;
node;

Defines a pentahedron volume element with one additional node on each edge

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 10.

Example:

PENTAl5 (#Ep:37,#M2,,#N7l,#N72,#N73,#N74,#N75,#N76,#N77,#N78,#N79,#N80,
#N8l,#N82,#N83,#N84,#N85);

defines element 37 with name #Ep between the listed nodes .

..•

B.3 Keywords for FE Model Description 81

B.3.44 PENTA21V (name:ELEM_NUMBER,mat,prop,pl,p2,p3, ...,p21);

ENTITY penta21v;
ELEM NUMBER
mat
prop
(*variable number
pl,p2,p3,p4
pS,p6
p7,p8
p9,plO,pll
p12,p13,p14
plS,p16,p17
p18,p19,p20
p2l

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;

of nodes *)
node;
node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;

Defines a pentahedron volume element with up to 21 nodes. First the 6
corner nodes are given, then (optionally) 9 nodes on the edges, then
(optionally) S nodes on the surfaces, then (optionally) 1 node in the
middle of the body.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 10.

Example:

PENTA21V (#Eq:38,#M2, ,#N7l,#N72,#N73,#N74,#N7S,#N76,#N77,#N78,#N79,#N80,
#N8l,#N82,#N83,#N84,#N8S,#N86,#N87,#N88,#N89,#N90,#N9l);

defines element 38 with name #Eq between the listed nodes. All
nodes are given: on corners, edges, surfaces and in the middle.

...

82 Exchange of Product Analysis Data

I

~- - - --

ZL_
X

HEXA8

8 19

5 26
17 6

I
I
116 24 1525 27 2313 22 14
I
I~-- - 11

12 ,;' 21 3
7"

ZL_
HEXA27VX

8

13

I
116
I
I 14

3
~- 11

15.- ,;' -
,;'

ZL_
X HEXA20

Figure 11. Node Ordering for Hexahedron solid elements.

..•

-

15

-
B.3 Keywords for FE Model Description 83

B.3.45 HEXA8 (name:ELEM_NUMBER,mat,prop,pl,p2,p3,p4,p5.p6,p7,p8);

ENTITY hexa8;
ELEM NUMBER
mat
prop
pl,p2,p3.p4
pS.p6,p7,p8

END_ENTITY ;

UNIQUE integer;
material;
OPTIONAL property;
node;
node;

Defines a hexahedron volume element by its 8 corner nodes. The material is
given in a separate statement, prop may be omitted (later the property
statement may define an integration control parameter).

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 11.

Example:

HEXA8 (#Er:39.#M2 ••#N8l.#N82.#N83.#N84.#N8S.#N86.#N87.#N88);
defines element 39 with name #Er between the listed nodes.

-
84 Exchange of Product Analysis Data

B.3.46 HEXA20 (name:ELEM_NUMBER,mat,prop,pl,p2,p3, ...,p20);

ENTITY hexa20;
ELEM NUMBER
mat
prop
p1,p2,p3,p4,pS,p6
p7,p8,p9,p10,pll
p12,p13,p14,plS,p16
p17,p18,p19,p20

END_ENTITY ;

UNIQUE integer;
material;
OPTIONAL property;
node;
node;
node;
node;

Defines a hexahedron volume element with one additional node on each edge

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 11.

Example:

HEXA20 (#Es:40,#M2, ,#N71,#N72,#N73,#N74,#N7S,#N76,#N77,#N78,#N79,#N80,#N81,
#N82,#N83,#N84,#N8S,#N86,#N87,#N88,#N89,#N90);

defines element 40 with name #Es between the listed nodes .

..•

-
B.3 Keywords for FE Model Description 85

B.3.47 HEXA27V (name:ELEM_NUMBER,mat,prop,pl,p2,p3, ...,p27);

ENTITY hexa27v;
ELEM NUMBER
mat
prop
(*variable number
pl,p2,p3,p4
p5,p6,p7,p8
p9,p10,pll
p12,p13,p14
p15,p16,p17
p18,p19,p20
p21,p22,p23
p24,p25,p26
p27

END_ENTITY;

UNIQUE integer;
material;
OPTIONAL property;

of nodes *)
node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;
OPTIONAL node;

Defines a hexahedron volume element with up to 27 nodes. First the 8 corner
nodes are given, then (optionally) 12 nodes on the edges, then (optionally)
6 nodes on the surfaces, then (optionally) 1 node in the middle of the
body.

ELEM NUMBER is the unique element number used by the FEM programs.

mat and prop are the names of a material and of a property defined in
separate statements.

Node ordering is shown in figure 11.

Example:

HEXA27V (#Et:41,#M2, ,#N81,#N72,#N63,#N54,#N45,#N36,#N27,#N18,#N9,#N19,#N29,
#N39,#N49,#N59,#N69,#N79,#N89,#N99,#N109,#Nl19, "" ,,#N200);

defines element 41 with name #Et between the listed nodes. All
corner and edge nodes are given, but no surface node; the middle
node is given, too.

..•

-
86 Exchange of Product Analysis Data

B.3.48 CLOSEMODEL (model_name);

PROPERTY closemodel;
OF

model name
END_PROPERTY;

openmodel;

Closes the description of the finite element model.

Example:

CLOSEMODEL (#testmodel);

-
B.4 Keywords for the FE Analysis 87

B.4 Keywords for the FE Analysis ,
s

B.4.l OPENANA (analysis_name:model_name,'TEXT_DESCRIPTION');

ENTITY openana;
model name
TEXT

END_ENTITY;

openmodel;
OPTIONAL string;

Opens an analysis block belonging to a model. model_name was defined in
OPENMODEL, analysis_name may be referenced by the result sets. The text is
supplied by the user and may be omitted.

Example:

OPENANA (#ANALYl: #testmodel, ")

...

-
88 Exchange of Product Analysis Data

B.4.2 COLLECT (name:'OBJECT_DESCRIPTION',(list_of_elements));

ENTITY collect;
OBJECT DESCRIPTION
list of elements

END_ENTITY;

OPTIONAL string;
SET OF element;

TYPE
element = SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetra15v, penta6, penta15,
penta2lv, hexa8, hexa20, hexa2lv);

END_TYPE;

Forms an object from the elements contained in (list_of_elements). This
object can be manipulated as one unit for the purposes of copying,
assembling, condensation and analysis.

'OBJECT DESCRIPTION' is a string constant containing a textual description
of the object. This may be omitted.

Example:

COLLECT (#OBJ1: 'object from elements #Ea ...#Ej and #E5 ...
#E10' ,(#Ea,#Eb,#Ec,#Ed,#Ee,#Ef,#Eg,#Eh,#Ei,#Ej,
#E5,#E6,#E7,#E8,#E9, #E10));

. ..

-
B.4 Keywords for the FE Analysis 89

B.4.3 CDOFLIST (name:(nodel,node2....,nodeNN), (DOF1,DOF2....DOFNN»;

ENTITY cdoflist;
node list
DOFS LIST

WHERE
SIZEOF (NODE_LIST) SIZEOF (DOFS_LIST);
(* Also many restrictions on the contents of the strings *)

END_ENTITY;

,
,-

LIST [1 TO *] OF gnode;
LIST [1 TO *] OF string;

TYPE
gnode SELECT (node, trn);

END_TYPE;

Defines a list of degrees-of-freedom for the static condensation. NN is
the number of members of both the list of nodes and the list of degrees of
freedom. Only nodes from which degrees-of-freedom are to be removed must be
mentioned, so NN may be less than the number of nodes in the structure.

node is a node name or tree node name and DOFS is a string containing up to
6 numeric characters denoting the degrees-of-freedom to be removed.
Degrees-of-freedom which are already fixed should not appear in the
CDOFLIST statement. Note that degrees-of-freedom with prescribed
deformations or to which loads are attached must not be removed.

Examples:
'123456' remove all 6 degrees of freedom
'456' remove only rotational degrees of freedom
'3' remove only 3rd degree of freedom (usually z)

Example:

CDOFLIST (#list: (#N41,#N42,#N43,#N44,#N50,#N51,#N52,#N61),
('123456','123456','123456','123456',
'456','456','456','456'));

removes the rotations from nodes #N50,#N51,#N52 and #N61 and
removes nodes #N41, #N42, #N43, #N44 completely.

. ..

-
90 Exchange of Product Analysis Data

B.4.4 SCOND (new object:old object,cdoflist);- -

ENTITY scond;
old_object
cdoflist

END_ENTITY;
TYPE

object
END_TYPE;

object;
cdoflist;

SELECT (collect, assem, scond, copy);

Performs a static condensation (Guyan's reduction) on the old_object
yielding the new_object.

The list of degrees-of-freedom which will be removed by the static
condensation must be previously defined in a CDOFLIST.

SCOND (#OB2: #OBl, #list);
performs a static condensation on object #OBl. The list of freedoms
to be removed is #list. A new object #OB2 is created.

Example:

...

B.4 Keywords for the FE Analysis 91

B.4.S DCOND (new_object:eigname,(list_of_modes));

ENTITY dcond;
eigname
list of modes

END_ENTITY;

,,
SELECT (anreigv,anceigv);
SET OF integer;

Performs a dynamic condensation (i.e. removal of eigenvectors on the object
mentioned in the ANREIGV/ANCEIGV statement). eigname identifies the ana-id
of the real or complex eigenvalue problem.

list_of_modes is a sequence of integer numbers telling which eigenvectors
should be used in modal superposition.

Example:

DCOND (#OBS: #ana2,(1,2,3,4,S,6,7,8,9,lO,11,l2,l3,14,lS,16,17);
performs a dynamic condensation using the first 17 modes of
analysis #ana2 (based on the object mentioned there) and produces
object #OBS (which is not a physical object but only a set of
eigenvectors).

...

•••••

92 Exchange of Product Analysis Data

B.4.6 COUPLELIST (couple_list_name:(nodal,...nodaN), (nodebl,...nodebN»;

ENTITY coup1e1ist;
nodes a
nodes b

WHERE

LIST [1 TO *] OF gnode;
LIST [1 TO *] OF gnode;

t;

SIZEOF (nodes_a) ~ SIZEOF (nodes_b);
END_ENTITY;

TYPE
gnode ~ SELECT (node, trn);

END_TYPE;

Defines a list of N coupling point pairs for the assembling step. Normally
this is not necessary. It must be used only for those coupling nodes whose
coordinates differ more than the specified tolerance in the ASSEM
statement.

Example:

COUPLELIST (#listA: (#N1,#N2,#N3),(#N4,#N5,#N6»;
defines a list to be referenced by an ASSEM statement which tells,
that nodes #N1 and #N4, #N2 and #N5, #N3 and #N6 are to be coupled.

••••

B.4 Keywords for the FE Analysis 93

B.4.7 NOCOUPLE (nocouple name: (nodel,node2..nodeN), (DOF1,DOF2 ..DOFN»;

ENTITY nocouple;
nodes
DOFS

WHERE

LIST [1 TO *] OF gnode;
LIST [1 TO *] OF string;

,
i

SIZEOF (nodes) = SIZEOF (DOFS);
(*Also restrictions on contents of string *)

END_ENTITY;

TYPE
gnode SELECT (node, trn);

END_TYPE;

Flags nodes or treenodes of which the specified degree-of-freedom must not
be coupled in the assemble step. DOF is a string containing those degrees
of freedom which should not be coupled.

Example:

NOCOUPLE (#listB: (#N7,#N8,#N9,#N10), ('123456','123456','456', '456'»;
defines a list to be referenced by an ASSEM statement which tells,
that nodes #N7 and #N8 are never to be coupled, and that of nodes
#N9 and #N10 the rotations are not to be coupled.

-
94 Exchange of Product Analysis Data

B.4.8 COpy (new_object:old_object,cosys);

f-
ENTITY copy;

old_object
cosys

END_ENTITY;

object;
coord;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Creates a copy of an existing object which can be used in the substructure
assembly. The parameter cosys describes the transformation to be performed
(shift, rotation, mirroring). Note that this is not a geometrical
modelling but only a matrix transformation which is used for multiple
insertion of substructures into a main structure.

Example:

COpy (#OB3: #OB2,#coS);
creates the new object #OB3 from the old object #OB2, the geometric
transformation is defined by the coordinate system #coS .

...

-
B.4 Keywords for the FE Analysis 95

B.4.9 ASSEM (new obj:TOL,couple_list_name,nocouple_name,
(list_of_obj_names»;

ENTITY assem;
TOL
couple_list_name
nocouple_name
object_list

END_ENTITY;

,
,.

real;
OPTIONAL couplelist;
OPTIONAL nocouple;
SET OF object;

TYPE
object - SELECT (collect, copy, assem, scond);

END_TYPE;

performs a substructure assembly, the substructures given in the list of
obj_names are joined together forming the new (main) structure new_obj.

Nodes of the old objects having (within the given tolerance, TOL) the same
coordinates are coupled with all degrees-of-freedom. If this
desired, the respective nodes must appear in a nocouple
nocouple_name is omitted if no special uncoupling is required.

is not
entity.

The couple_list_name refers to a couple1ist entity which contains a list of
nodes which become identical between the substructures even if they are
further apart than the given tolerance (parameter TOL). The parameter
couple_list_name is omitted if no coupling outside tolerance is required.

Examples:

ASSEM (#OB6: 1.E-4,,,(#OB3,#OB4,#OB5);
creates the new object #OB6 from the existing objects #OB3, #OB4,
and #OB5. Common nodes will be recognized if they are not further
than l.E-4 apart.

ASSEM (#OB6: l.E-4, COUPLELIST«#N19),(#N222», NOCOUPLE«#N2,#N3,#N4),
('123456','123456','123456'», (#OB3,#OB4,#OB5);
performs the same assembly, but nodes #N19 and #N222 will be joined
in one node even if the given tolerance would be smaller than their
distance. Nodes #N2, #N3, #N4 will never be coupled, even if other
nodes are lying closer to them than the tolerance .

...

--
96 Exchange of Product Analysis Data

B.4.10 TRN (name:object,node);

ENTITY trn;
object
node

END_ENTITY;

SELECT (copy, assem);
gnode;

f-

TYPE
gnode SELECT (node, trn);

END_TYPE;

This keyword allows the possibility of referencing a node which has been
created using the copy and assembly commands and which, therefore, has been
given no name.

object is the name of an object formed from a copy or assembly.

node is either a node name or another trn, which allows for nesting of
objects.

Examples:

TRN (#NN15: #OB2,#Nl5);
defines a node #NNl5 in the copied object #OB2. It was created from
the node #Nl5 in the original object.

TRN (#NOl23: #OB3, TRN(#OB2, TRN(#OBl,#N2)));
shows how to identify nodes in objects copied from copied objects.

-
B.4 Keywords for the FE Analysis 97

B.4.11 TRE (name:object,element);

ENTITY tre;
object
element

END_ENTITY;

SELECT (copy, assem);
gelement;

TYPE
gelement - SELECT (element, tre);
element = SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetralSv, penta6, pentalS,
penta21v, hexa8, hexa20, hexa2lv);

I

END_TYPE;

This keyword allows the possibility of referencing an element which has
been created using the copy and assembly commands and which, therefore, has
been given no name.

object is the name of an object formed from a copy or assembly.

element is either an element name or another tre, which allows for nesting
of objects.

Examples:

TRE (#EL1S: #OB2,#E1S);
defines an element #EL1S in the copied object #OB2. It was created
from the element #E1S in the original object.

TRE (#ELE123: #OB3, TRE(#OB2, TRE(#OB1,#E2)));
shows how to identify elements in objects copied from copied
objects.

-
98 Exchange of Product Analysis Data

B.4.12 ALLNODES(name: (list_of_objects»;

ENTITY a11nodes;
list_of_objects

END_ENTITY;
SET OF object;

,
r

TYPE
object = SELECT (collect, assem, scond, copy);

END_TYPE;

Allows reference to be made to all the nodes contained in the objects
listed.

Example:

ALLNODES (#list3:(#OB1»;
defines a name (#list3) for all nodes of object #OB1.

B.4.13 ALLELEMS(name: (list_of_objects»;

ENTITY allelems;
list_of_objects

END_ENTITY;
SET OF object;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Allows reference to be made to all the elements contained in the objects
listed.

Example:

ALLELEMS (#list4:(#OB1,#OB2,#OB3»;
defines a name (#list4) for all elements of objects #OB1, #OB2, and
#OB3.

...

-
B.4 Keywords for the FE Analysis 99

B.4.14 NODELIST(name:(list_of_nodes»;

ENTITY nodelist;
list of nodes

END_ENTITY;

,
SET OF gnode;

TYPE
gnode SELECT (node, trn);

END_TYPE;

Allows reference to be made to a list of nodes.
The list_of_nodes may contain both nodes and treenodes. For sequencing of
matrices this statement may also occur in the result section of the neutral
file.

Example:

NODELIST (#listl: (#NS,#N6,#N7,#N8));
gives the listed nodes the name #listl which can be referenced .

...

100 Exchange of Product Analysis Data

B.4.15 ELEMLIST(name:(list_of_elements»;

ENTITY elemlist;
list of elements

END_ENTITY;
SET OF ge1ement;

TYPE
ge1ement = SELECT (element, tre);
element = SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetra10, tetra15v, penta6, penta15,
penta21v, hexa8, hexa20, hexa2lv);

END_TYPE;

Allows reference to be made to a list of elements.
List_of_elements may contain both elements and tree elements. For
sequencing of matrices this statement may also occur in the result section
of the neutral file.

Example:

ELEMLIST (#list2: (#E5,#E6,#E7,#E8));
gives the listed elements the name #list2 which can be referenced.

-
B.4 Keywords for the FE Analysis 101

B.4.16 NODAL (name:TYPE_CODE,nodal_reference,cosys);

ENTITY nodal;
TYPE CODE
nodal reference

INTEGER;
SELECT (gnode,nodelist,allnodes);
OPTIONAL coord;cosys

WHERE;
TYPE CODE >= 1 AND TYPE CODE <= 4;

END_ENTITY;

TYPE
gnode SELECT (node, trn);

END_TYPE;
I

Selects nodes for FE analysis output requests for stresses and strains.

cosys is the optional coordinate system in which results should be output.
The default is the global cartesian system.

type_code is an integer number to enable the choice between different
stress options;

1 6 stress components
2 principal stresses (3 stress values, 9 direction cosines)
3 von Mises equivalent stresses, one value per node
4 Tresca equivalent stresses, one value per node

For strains the same options apply.

Example:

NODAL (#nd13:3,#alll,);
allows a request for von Mises equivalent stresses for the nodes
referenced by #a111, in the global cartesian coordinate system.

..•

-
102 Exchange of Product Analysis Data

B.4.17 ELEMENTAL (name:TYPE_CODE,element_reference,cosys);

ENTITY elemental;
TYPE CODE
element reference
cosys

WHERE;
TYPE CODE = 1;

END_ENTITY;

f
:INTEGER;

SELECT(ge1ement,elemlist,allelems);
: OPTIONAL coord;

TYPE
gelement
element

SELECT (element, tre);
SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetralSv, penta6, pentalS,
penta2lv, hexa8, hexa20, hexa2lv);

END_TYPE;

Selects elements for FE analysis output requests for stresses or strains.

cosys is the optional coordinate system in which results should be output.
The default is the global cartesian system.

type_code is an integer number to enable the choice between different
stress or strain options (see NODAL, B.4.ll), however, only the option
TYPE CODE = 1 is currently used.

Example:

ELEMENTAL (#emntl:l,#box,#coor3)
allows a request for elemental stresses of the elements referenced
by the entity #box, in the coordinate system #coor3 .

..•

-
B.4 Keywords for the FE Analysis 103

B.4.18 PRESETl (nodal_reference,IDIR,DEF);

PROPERTY presetl;
IDIR
DEF

,
integer;
real;

OF
nodal reference

WHERE
:SELECT (gnode, nodelist, allnodes);

IDIR>= 1 AND IDIR <- 6;
END_PROPERTY;

TYPE I

gnode SELECT (node, trn);
END_TYPE;

Assigns a prescribed displacement DEF in direction IDIR to the nodes given
in nodal reference. This parameter may refer to a NODE, TRN, NODELIST or
ALLNODES statement.

The coordinate system is implied to be that referenced in the FREEDOM
statement for this node or set of nodes.

See note (1).

Example:

PRESETl (#N12,2,O.lE-S);
prescribes a displacement of O.lE-S in y-direction referred to in
the FREEDOM statement of node #N12.

..•

-
104 Exchange of Product Analysis Data

B.4.19 PRESET2 (nodal reference,DX,DY,DZ,DXX,DYY,DZZ);

PROPERTY preset2;
DX,DY,DZ
DXX,DYY,DZZ
OF
nodal reference

END_PROPERTY;
SELECT(gnode,nodelist,allnodes);

OPTIONAL real;
OPTIONAL real;

TYPE
gnode SELECT (node, trn);

END_TYPE;

Assigns prescribed displacements DX,DY, ... in several directions to the
nodes given in nodal_reference. This parameter may refer to a NODE, TRN,
NODELIST or ALLNODES statement (this may be embedded). If one of the
components is omitted, the respective degree-of-freedom is free. If one of
the components is set to zero, the effect is the same as if this degree of
freedom was fixed.

The coordinate system is implied to be that referenced in the FREEDOM
statement for this node or set of nodes.

See note (1).

Example:

PRESET2 (NODELIST(#Nl,#N2,#N3,#N4),1.,0.,1." ,);
prescribes for the listed nodes a displacement of 1.0 in x- and z
direction. The y-direction is fixed, the rotations are free.

...

B.4 Keywords for the FE Analysis 105

B.4.20 MPC (name: (list_of_nodes), (LIST_OF_DEGREES_OF_FREEDOM),
(LIST_OF_COEFFICIENTS));

,
ENTITY mpc;

list of nodes
LIST OF DOF
LIST OF COEFFICIENTS

END_ENTITY;

LIST [2 TO *] OF gnode;
LIST [2 TO *] OF integer;
LIST [2 TO *] OF real;

Enforces a linear relationship between two or more degrees of freedom.

The coordinate system is that referenced in the FREEDOM statement for each
node.

Example:

MPC(#mpcl:(#nl,#n2),(1,2),(l,-1»;

This statement imposes a multipoint constraint on
the y displacement of n2 is equal to the
i.e. lXnl - lYn2 = 0

nodes nl and n2 such that
x displacement of nl,

-
106 Exchange of Product Analysis Data

B.4.21 TEMP (nodal_reference,TE);

PROPERTY temp;
TE real;

OF
nodal reference

END_PROPERTY;
SELECT(gnode,nodelist,allnodes);

TYPE
gnode SELECT (node, trn);

END_TYPE;

Prescribes the temperature TE at the nodes given in nodal_reference. This
parameter may refer to a NODE, TRN, NODELIST or ALLNODES statement. This
is to be used only for applying a temperature constraint in thermal
analysis.

See notes (2) and (4).

Example:

TEMP (NODELIST«#N12,#N13,#N14,#N15)),35.);
prescribes a temperature of 35 temperature units at the given
nodes.

...

-
B.4 Keywords for the FE Analysis 107

B.4.22 LOADP1 (name:IDIR,cosys,F);

ENTITY loadp1;
IDIR
cosys
F

WHERE

integer;
OPTIONAL coord;
real;

,
,.

IDIR>= 1 AND IDIR <=6;
END_ENTITY;

Defines a static force (IDIR-1,2,3) or moment (IDIR= 4,5,6) of size F.
This load can be attached to a list of nodes or treenodes via a NODELOAD
statement. cosys is the name of a coordinate system.

See note (1).

Example:

LOADPI (#load3: 1,#co6,25.5);
defines a load 25.5 in x-direction of coordinate system #co6.

B.4.23 LOADP2 (name:FX,FY,FZ,FXX,FYY,FZZ,cosys);

ENTITY loadp2;
FX,FY,FZ
FXX,FYY,FZZ
cosys

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

Defines a load by its 6 components. Not existing components may be omitted
or set zero. cosys is the name of a coordinate system.

See note (1).

Example:

LOADP2 (#load4: ",1. ,1.,,);
defines moments around x- and y-axis of the global coordinate
system.

...

-
10S Exchange of Product Analysis Data

B.4.24 FREQRG (name:AM,PH);

ENTITY freqrg;
AM
PH

END_ENTITY;

real;
real;

f-

Defines a sinusoidal excitation in the frequency domain:

AM amplitude of a sinus
PH phase of a sinus

Example:

FREQRG (#f1:1000.0,lS0.0);

B.4.25 STEADY (name:AM,PH,FR);

ENTITY steady;
AM
PH
FR

END_ENTITY;

real;
real;
real;

Defines a sinusoidal excitation in the time domain for steady state
response:

AM amplitude of a sinus
PH phase of a sinus
FR frequency of a sinus

Example:

STEADY (#st1:0.2,lS0.0,20000.0);

...

B.4 Keywords for the FE Analysis 109

B.4.26 IMPULS (name:AI,TI);

ENTITY impu1s;
AI
TI

END_ENTITY;

real;
real;

Defines Dirac's impulse:

AI amplitude of an impulse (note, that dimension is
force*time or moment*time)

TI time for the impulse

Example:

IMPULS (#im1:100.0,O.02S);

B.4.27 RECTAN (name:AR,Tl,T2);

ENTITY rectan;
AR
Tl
T2

END_ENTITY;

real;
real;
real;

Defines a rectangular forcing function in the time domain:

Tl,T2
AR

time interval in which the load is acting
load value between T1 and T2 (outside it is zero)

Example:

RECTAN (#rect1:10000.0,O.OS,2.0);

110 Exchange of Product Analysis Data

B.4.28 SAYTOO (name:AS,Tl,T2);

ENTITY sawtoo;
AS
Tl
T2

END_ENTITY;

real;
real;
real;

Defines a sawtooth forcing function in the time domain:

Tl,T2
AS

time interval in which the load is acting
load value at T2 (load increases linearly from Tl
to T2; outside the interval it is zero)

Example:

SAWTOO (#saw1:12S.0,0. ,10.9);

...

-

,
r

-
B.4 Keywords for the FE Analysis 111

B.4.29 SINUS (name:AM,PH,FR,Tl,T2);

ENTITY sinus;
AM
PH
FR
T1
T2

END_ENTITY;

real;
real;
real;
real;
real;

Defines a sinusoidal function:
i

AM
PH
FR
Tl,T2

amplitude of a sinus
phase of a sinus
frequency of a sinus
time interval in which the load is acting

Example:

SINUS (#sin1:20. ,90.0,1020.0,0. ,3600.0);

-
112 Exchange of Product Analysis Data

B.4.30 SWEEPL (name:AM,FE,Tl,T2);

ENTITY sweep1;
AM
FE
T1
T2

END_ENTITY;

real;
real;
real;
real;

Defines a linear sweep in the frequency domain:

AM
T1,T2
FE

amplitude of a sinus
time interval in which the load is acting
frequency at T2 (frequency increases from T1 to T2)

Example:

SWEEPL (#lsl:0.9,20000.0,10.0,34.0);

...

-
B.4 Keywords for the FE Analysis 113

B.4.31 SWEEPE (name:AM,TC,FE,Tl,T2);

ENTITY sweepe;
AM
TC
FE
T1
T2

END_ENTITY;

real;
real;
real;
real;
real;

,
i

Defines an exponential sweep in the frequency domain:
I

AM
T1,T2
FE
TC

amplitude of a sinus
time interval in which the load is acting
frequency at T2 (frequency increases from Tl to T2)
time constant for exponential sweep or starting;
at time T1+TC the frequency has reached 1-lje
(approximately 63.21%) of the maximum value FE

Example:

SWEEPE (#sel:100. ,8.3,666. ,0.0,10.0);

...

-
114 Exchange of Product Analysis Data

B.4.32 STARTL(name:UB,FE,Tl,T2);

ENTITY startl;
DB
FE
T1
T2

END_ENTITY;

,
r

real;
real;
real;
real;

Defines a linearly starting unbalance force:

Tl,T2
FE
DB

time interval in which the load is acting
frequency at T2 (frequency increases from Tl to T2)
unbalance m*r (m-mass, r=radius),
the amplitude is UB*(2*pi*F)A2) with O<-F<-FE

Example:

STARTL (#st1:234.0,20. ,0.0,99.0);

...

-
B.4 Keywords for the FE Analysis 115

B.4.33 STARTE (name:UB,TC,FE,Tl,T2);

ENTITY starte;
UB
TC
FE
Tl
T2

END_ENTITY;

,
real;
real;
real;
real;
real;

Defines an exponentially starting unbalance force:

Tl,T2
FE
TC

time interval in which the load is acting
frequency at T2 (frequency increases from Tl to T2)
time constant for exponential sweep or starting;
at time Tl+TC the frequency has reached l-l/e
(approximately .6321) of the maximum value FE
unbalance m*r (m=mass, r-radius),
the amplitude is UB*(2*pi*F)~2) with O<=F<=FE

UB

Example:

STARTE (#ste:234.0,70. ,20.,0.0,99.0);

...

116 Exchange of Product Analysis Data

B.4.34 RANDOM (name:AP,SO,T1,T2);

ENTITY random;
AP
SO
T1
T2

END_ENTITY;

real;
real;
real;
real;

Defines random noise excitation:

AP
T1,T2
SO

peak amplitude
time interval in which the load is acting
starting value for random number generator;
equal SO in different random loads will produce
the same random excitations.

Example;

RANDOM (#rnd:10.8,2.0,O.O,120.0);

...

f·

I
!

•••••

B.4 Keywords for the FE Analysis 117

B.4.35 DYNLOAD (name:IDIR,cosys,dyn_subkw);

,
i

ENTITY dynload;
IDIR
cosys
dyn_subkw

integer;
coord;
SELECT (freqrg, steady, impuls, rectan,

sawtoo, sinus, sweepl, sweepe,
startl, starte, random);

WHERE
IDIR>= 1 AND IDIR <= 6;

END_ENTITY;

Defines a dynamic load in direction IDIR (of -if specified- the coordinate
system cosys). Size and time dependence are referenced in by dyn_subkw.

See notes (1) and (3).

Example:

DYNLOAD (#dynl:3,#coorl,#im2);
defines a dynamic load in the z-direction of coordinate system
#coorl, the type of load is referenced by #im2.

..

118 Exchange of Product Analysis Data

B.4.36 DISCRLOAD (name:IDIR,cosys,(Tl,T2,T3, ...,TN),(Vl,V2,V3, ...,VN»;

ENTITY discr1oad;
IDIR
cosys
TIMES
VALUES

WHERE

integer;
OPTIONAL coord;
LIST [1 TO *] OF real;
LIST [1 TO *] OF real;

,
r

It,

IDIR>= 1 AND IDIR <= 6;
SIZEOF (TIMES) = SIZEOF (VALUES);

END_ENTITY ;

Defines a dynamic load given in N discrete time steps, between these steps
linear interpolation is valid.

Both DYNLOAD and DISCRLOAD loads can be 'attached to a node (and a load
case) via the NODELOAD statement. For dynamic response analyses either a
frequency range or a time range is required.

See notes (1) and (3).

Examples:

DISCRLOAD (#loadD:3,,(0.0,0.1,0.2,0.3,0.8,0.9,1.0),
(0.0,75.,95.,100.,100., 80.,0.0));

describes a transient load in 7 time steps beginning and ending
with 0, with a peak value of 100 lasting from 0.3 to 0.8 .

...

B.4 Keywords for the FE Analysis 119

B.4.37 NODELOAD (load_name,LCASE,nodal_reference);

LINK node load;
LCASE integer;

,
i

OF
load name
nodal reference

END_LINK;

SELECT (loadp1,loadp2,dyn1oad,discr1oad);
SELECT (gnode, node1ist, a11nodes);

TYPE
gnode - SELECT (node, trn);

Assigns a point load for the loadcase number, LCASE, to the nodes given in
nodal reference. This parameter may refer to a NODE, TRN, NODELIST or
ALLNODES statement.

Example:

NODELOAD (#load3,1,#list3);
assigns load #load3 to a previously defined list of nodes (#list3),
valid for loadcase 1.

...•

---=---

120 Exchange of Product Analysis Data

B.4.38 LOADLl (name:IDIR,cosys,FL);

ENTITY loadll;
IDIR
cosys
FL

integer;
OPTIONAL coord;
real;

f-
i

WHERE
IDIR>- 1 AND IDIR <=6;

END_ENTITY;

Defines a line load of size FL (load per unit length) in direction IDIR (of
the given coordinate system if specified).

See note (1).

Example:

LOADLl (#load5: 1,#c06, 25.5);
defines a line load 25.5 in x-direction of coordinate system #c06.

B.4.39 LOADL2 (name:FLX,FLY,FLZ,FLXX,FLYY,FLZZ,cosys);

ENTITY load12;
FLX,FLY,FLZ
FLXX,FLYY
FLZZ
cosys

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

Defines a line load with components FLZ, FLY, ..(load per unit length).

See note (1).

Example:

LOADL2 (#load4: 1.1,1.2,1.3" ,,#co3);
defines a line load with components 1.1, 1.2, 1.3 in x-, y-, z-
direction of coordinate system #c03.

..

-
B.4 Keywords for the FE Analysis 121

B.4.40 EDGELOAD (load_name,LCASE,element,pl,p2);

LINK edgeload;
LCASE integer;

,
i

OF
load name
element
pl,p2

END_LINK;

SELECT (loadll, load12);
gelement;
gnode;

TYPE
gnode = SELECT (node, trn);
gelement = SELECT (element, tre);
element = SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetra15v, penta6, penta15,
penta2lv, hexa8, hexa20, hexa2lv);

i

END_TYPE;

Attaches a load to an edge of a 2D or 3D element. The edge is defined by
pI and p2. The element may be the name of an element or a tree element and
the nodes may be the names of nodes or tree nodes.

See note (2).

Example:

EDGELOAD (#load3,2,#E9,#N17,#N18);
assigns load #load3 for load case 2 to an edge of element #E9 given
by the two nodes #N17 and #N18.

...

-
122 Exchange of Product Analysis Data

B.4.41 LOADS1 (name:IDIR,cosys,FS);

ENTITY loadsl;
IDIR
cosys
FS

WHERE
IDIR >-= 1 AND

END_ENTITY;

integer;
OPTIONAL coord;
real;

f-

IDIR <-6;

Defines a surface load of size FS (pressure) in direction IDIR.

See note (1).

Example:

LOADS1 (#load3: 1,#co6, 25.5);
defines a surface load 25.5 in x-direction of coordinate system
#co6.

B.4.42 LOADS2 (name:FSX,FSY,FSZ,FSXX,FSYY,FSZZ,cosys);

ENTITY loads2;
FSX,FSY,FSZ
FSXX, FSYY
FSZZ
cosys

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

Defines a surface load with components FSX,FSY, ... (load per unit area).

See note (1).

Example:

LOADS2 (#load4: 1.1,1.2,l.3",,#co3);
defines a surface load with components 1.1, 1.2, 1.3 in x-, y-, z
direction of coordinate system #co3 .

...

-
B.4 Keywords for the FE Analysis 123

B.4.43 SURFLOAD (load_name,LCASE,element,pl,p2,p3,p4);

LINK surfload;
LCASE integer;

OF
load name
element
pl,p2,p3,
p4

END_LINK;

SELECT (loadsl, loads2);
gelement;
gnode;
OPTIONAL gnode;

TYPE
gnode - SELECT (node, trn);
gelement - SELECT (element, tre);
element - SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetralSv, penta6, pentalS,
penta2lv, hexa8, hexa20, hexa2lv);

END_TYPE;

Attaches a load to a surface of a 3D-element. The surface is defined by
all of its vertices; pl, p2, p3, p4. p4 is omitted if the surface is
triangular. The element and nodes may also be tree element and tree nodes.

.See note (2).

Example:

SURFLOAD (#load3,l,#E9,#Nl7,#Nl8,#Nl9,);
assigns load #load3 for load case 1 to a triangular surface of
element #E9 given by the three nodes #N16, #Nl7 and #N18.

..•

-
124 Exchange of Product Analysis Data

B.4.44 LOADVl (name:IDIR,cosys,FV);

ENTITY loadv1;
IDIR
cosys
FV

WHERE

integer;
OPTIONAL coord;
real;

IDIR>= 1 AND IDIR <=6;
END_ENTITY;

Defines a volume load of size FV (load per unit volume) in direction IDIR.

See note (1).

Example:

LOADV1 (#load3: 1" 25.5);
defines a volume load 25.5 in x-direction of the global coordinate
system.

B.4.45 LOADV2 (name:FVX,FVY,FVZ,FVXX,FVYY,FVZZ,cosys);

ENTITY loadv2;
FVX,FVY,FVZ
FVXX, FVYY
FVZZ
cosys

END_ENTITY;

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

Defines a line load with components FVX,FVY, ... (load per unit volume).

See note (1).

Example:

LOADV2 (#load4: 1.1,1.2,1.3", ,#co3);
defines a volume load with components 1.1, 1.2, 1.3 in x-, y-, z
direction of coordinate system #co3.

B.4 Keywords for the FE Analysis 125

B.4.46 ELEMLOAD (load_name,LCASE,element_reference);

LINK elem1oad;
LCASE integer;

OF
load name SELECT (loadll, loadl2, loadsl, loads2,

loadvl, loadv2);
SELECT(gelement, elemlist, allelems);element reference

END_LINK;

TYPE
gelement - SELECT (element, tre);
element - SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetral5v, penta6, pental5,
penta2lv, hexa8, hexa20, hexa2lv);

END_TYPE;

Assigns a distributed load (line, surface or volume) to one or more
elements of the same dimension as the load; i.e. line loads can be
attached to lD elements (e.g. BEAM2), surface loads can be attached to 2D
elements (e.g. QUAD8), volume loads can be attached to 3D elements (e.g.
REXA8) .

element_reference may refer to the name of an element or a tree element,
the name of an e1em1ist or the name of an a11e1ems which assigns the load
to all the elements in a list of objects. Any of these keywords may be
embedded.

See note (2).

Example:

ELEMLOAD (#load3,2,#list99);
assigns load #load3 to the elements of list #list99 for loadcase 2.

...

-
126 Exchange of Product Analysis Data

B.4.47 GRAVLOAD (name:LCASE,IDIR,cosys,ACCELERATION);

ENTITY gravload;
LCASE
IDIR
cosys
ACCELERATION

WHERE
IDIR >= 1 AND

END_ENTITY;

integer;
integer;
OPTIONAL coord;
real;

IDIR <- 6;

Defines a gravity load in direction IDIR with a loadcase LCASE. This load
is applied to the whole object referred to by the analysis statement where
this loadcase number is used. The coordinate system may be omitted.

See note (1).

Example:

GRAVLOAD (#load7;100,3,,-9.81);
defines a gravity load of 9.81 in the -z-direction .

...

-
B.4 Keywords for the FE Analysis 127

B.4.48 TEMPLOAD (nodal_reference.LCASE.TE);

PROPERTY temp1oad;
LCASE
TE

integer;
real;

OF
nodal reference

END_PROPERTY;
SELECT(gnode.nodelist.al1nodes);

TYPE
gnode SELECT (node, trn);

END_TYPE;

Prescribes for the loadcase LCASE the temperature TE at the nodes given in
nodal_reference. This parameter may refer to a NODE. TRN. NODELIST or
ALLNODES statement. This is used only for static analysis with thermal
loads.

See note (4).

Example:

TEMPLOAD (NODELIST«#N12.#N13,#N14,#N15»,2,35.);
prescribes a temperature of 35 temperature units for loadcase 2 at
the given nodes.

-
128 Exchange of Product Analysis Data

B.4.49 CONVEC (element,LCASE,H,AMBTE,(list_of_nodes));

PROPERTY convec;
LCASE
H
AMBTE
list of nodes

integer;
real;
real;
LIST [1 TO 4] OF gnode;

OF
element

END_PROPERTY;
gelement;

TYPE
gnode - SELECT (node, trn);
gelement = SELECT (element, tre);
element = SELECT (bar, beam2, spring, damper, mass, tri3,

'tri6, tri7v, quad4, quad8, quad9v, tetra4,
tetralO, tetral5v, penta6, pental5,
penta2lv, hexa8, hexa20, hexa2lv);

END_TYPE;

Specifies heat convection through one surface of a certain element or tree
element.

LCASE = load case.
H = convection heat transfer coefficient.
AMBTE = ambient temperature.
list of nodes - a list of 1 to 4 node names or tree node names
which specify the surface.

•
1

Note that the meaning of the word 'surface' here is slightly different from
the surface mentioned in connection with static loads. Here it is possible
to describe an edge of a shell element as a surface (with the area edge
length times element thickness).

Example:

CONVEC (#E15,2,l.56E-S,20. ,(#N23,#N25»;
specifies heat convection at one surface (this is here an edge of a
2D element) of element #ElS for loadcase 2.

...

-
B.4 Keywords for the FE Analysis 129

B.4.50 FLUX (element,LCASE,HEAT_FLUX.(list_of_nodes));

PROPERTY flux;
LCASE
HEAT FLUX
list of nodes

integer;
real;
LIST[1 TO 4] OF gnode;

OF
element

END_PROPERTY;
gelement;

TYPE
gnode - SELECT (node, trn);
gelement = SELECT (element, tre);
element = SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quadS, quad9v, tetra4,
tetralO, tetralSv, penta6, pentalS,
penta2lv, hexaS, hexa20, hexa2lv);

END_TYPE;

Specifies a prescribed heat flux through one surface of a certain element
or tree element. The parameters LCASE and list of nodes are the same as in
the CONVEC statement.

Example:

FLUX (#ElS,2,l.S6E-S,(#N23,#N2S,#N27,#N29»;
specifies heat flux through one surface of element #ElS for
loadcase 2.

..•

-_
130 Exchange of Product Analysis Data

B.4.51 QVOL (e1ement_reference,LCASE,HPV);

PROPERTY qvo1;
LCASE
HPV

integer;
real;

OF
element reference

END_PROPERTY;
SELECT (ge1ement,e1em1ist,a11e1ems);

TYPE
ge1ement - SELECT (element, tre);
element - SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quadS, quad9v, tetra4,
tetra10, tetra15v, penta6, penta15,
penta21v, hexaS, hexa20, hexa21v);

END_TYPE;

Establishes a heat source, for load case LeASE, distributed over the
elements or tree elements given in element_reference. This parameter may
refer to an ELEMENT, TRE, ELEMLIST or ALLELEMS statement.

HPV - heat generation per unit volume

Example:

QVOL (ALLELEMS«#OBl»,2,4.5);
specifies heat production in all elements of object #OBl for
loadcase 2.

..•

-
B.4 Keywords for the FE Analysis 131

B.4.S2 QVOLP (nodal_reference,LCASE,HEAT);

PROPERTY qvolp;
LCASE
HEAT

integer;
real;

OF
nodal reference

END_PROPERTY;
SELECT (gnode,nodelist,allnodes);

TYPE
gnode SELECT (node, trn);

END_TYPE;

Establishes a point heat source, for load case LCASE, at the nodes or tree
nodes given in nodal_reference. This parameter may refer to a NODE, TRN,
NODELIST or ALLNODES statement.

HEAT - rate of heat generation

Example:

QVOLP (#n4,4,O.5);
specifies heat production at node n4 for loadcase 4 .

...

-
132 Exchange of Product Analysis Data

B.4.S3 FREQRANGE(name:F1,DF,F2);

ENTITYfreqrange;
F1
DF
F2

END_ENTITY;

real;
OPTIONALreal;
real;

Defines a frequency range which is referenced by an analysis statement.
The frequency steps are F1, F1+DF, F1+2*DF, so far as F2 (maximum
frequency) is not exceeded. If the stepwidth (DF) is omitted then the
analysis program should select a suitable frequency step.

Example:

FREQRANGE(#ra1: 0., 1., 250.);
defines a frequency range from 0 ... 250 in steps of 1 frequency
unit.

...

-
B.4 Keywords for the FE Analysis 133

B.4.S4 TIMERANGE (name:Tl,DT,T2);

ENTITY timerange;
Tl
DT
T2

END_ENTITY;

real;
OPTIONAL real;
real;

Defines a time range which is referenced by an analysis statement.. The
time steps are Tl, Tl+DT, Tl+2*DT, ... so far as T2 (end time) is not
exceeded. If the stepwidth (DT) is omitted then the analysis program should
select a suitable time step.

Example:

TIMERANGE (#ra2: 0., 1., 250.);
defines a time range from 0...250 in steps of 1 time unit .

...

-I
134 Exchange of Product Analysis Data

B.4.55 MDCONST (md_name:D);

ENTITY mdconst;
D

END_ENTITY;
real;

Specifies the value for modal damping which can be used instead of
structural damping. The value D is the critical damping ratio and is valid
for all modes.

Example:

MDCONST (#damp, 0.05);
specifies a modal damping of 5 % of the critical damping constantly
for all modes.

...

•••••

B.4 Keywords for the FE Analysis 135

B.4.56 MODALDAMP(modaldamp_name:mddamp_spec);

ENTITY modaldamp;
mddamp_spec

END ENTITY
SELECT (mdconst);

Defines modal damping which can be used instead of structural damping. The
damping itself is defined in a MDCONST statement.

Examples:

MODALDAMP (#modamp, #con);
defines a modal damping which is specified in #con.

MODALDAMP (#modamp, MDCONST (0.05));
defines a modal damping of 5 % of the critical damping constantly
for all modes. It can be referenced by analysis statements.

-
136 Exchange of Product Analysis Data

B.4.57 ANSTATIC (ana-id:object,(LIST_OF_LOADCASES)):

ENTITY anstatic;
object
LIST OF LOADCASES

END_ENTITY;

object;
SET OF integer;

TYPE
object

END_TYPE;
SELECT (collect, assem, scond, copy);

Performs a static analysis on an object. The object must have been defined
in a collect statement or must have been derived from such an object (e.g.
via a condensation).

LIST OF LOADCASES is a sequence of integer numbers denoting the 10adcases
to be computed.

The ANSTATIC analysis is also valid in the case of thermal loads.

The name ana-id is to be referenced by result data.

Example:

ANSTATIC (#ana1:#OB1,(1,2,5,6»;
performs a static analysis on object #OB1 with 10adcases 1,2,5 and
6.

-
B.4 Keywords for the FE Analysis 137

B.4.S8 ANREIGV (ana-id:object);

ENTITY anreigv;
object

END_ENTITY;
object;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Performs a real eigenvalue analysis on an object. The object must have
been defined in a collect statement or must have been derived from such an
object (e.g. via a condensation or a copy).

Example:

ANREIGV (#ana2: #OB2);

-
138 Exchange of Product Analysis Data

B.4.S9 ANCEIGV(anceigv-name:object,ANCE_TYPE,dcond,modaldamp);

ENTITY anceigv;
object
ANCE TYPE
dcondname
dampname

END_ENTITY ;

object;
ENUMERATION OF (PHYS, REIG);
OPTIONAL dcond;
OPTIONAL modaldamp;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Performs a complex eigenvalue analysis on an object. The type indicates
the computation method:

PHYS analysis with physical matrices
REIG = analysis with matrices based on real eigenvectors

(for REIG a DCOND step is needed)

If REIG is specified, then the eigenvalue analysis is performed on the
object produced by the dynamic condensation pointed to by dcond.

modaldamp points to a modal damping specification. If present, the
structural damping matrix will be disabled.

Example:

ANCEIGV (#ana5: #OB2,REIG,#OB5,);
performs a complex eigenvalue analysis on the object #OB2. Modal
matrices (based on the dynamic condensation producing #OB5) and
structural damping are used.

...

-
B.4 Keywords for the FE Analysis 139

B.4.60 ANFRESP(anfresp_name:object,ANFR_TYPE,dcond,freqrange,modaldamp,
(LIST_OF_LOADCASES));

ENTITY anfresp;
object
ANFR TYPE
dcondname
freqrange
dampname
LIST OF LOADCASES

END_ENTITY;

object;
ENUMERATION OF (PHYS, REIG, CEIG);
OPTIONAL dcond;
freqrange;
OPTIONAL modaldamp;
SET OF integer;

TYPE
object ~ SELECT (collect, assem, scond, copy);

END_TYPE;

Performs a frequency response analysis on an object. The type indicates
the computation method:

PHYS analysis with physical matrices
REIG analysis with matrices based on real eigenvectors
CEIG analysis with matrices based on complex eigenvectors

(for REIG and CEIG a DCOND step is needed)
If REIG or CEIG is specified the frequency response is performed on the
object produced by the dynamic condensation pointed to by dcond. If PHYS is
specified DCOND is omitted.

The frequency range must be previously defined.

LIST OF LOADCASES is a sequence of integer numbers denoting the loadcases
to be computed.

modaldamp points to a modal damping specification. If present, the
structural damping matrix will be disabled.

Examples:

ANFRESP (#ana3: #OB2,PHYS,,#ral,,(l»;
performs a response analysis with one loadcase in the frequency
range #ral on the object #OB2. Physical matrices and structural
damping are used;

ANFRESP (#ana3: #OB2,REIG,#OBS,#ral,#modamp,(l»;
performs a response analysis with one loadcase in the frequency
range #ral on the object #OB2. Modal matrices (obtained from
dynamic condensation in object #OBS) are used. Structural damping
is disabled and modal damping is used instead.

...

-
140 Exchange of Product Analysis Data

B.4.6l ANTRESP(antresp_name:object,ANTR_TYPE,dcond,timerange,modaldamp,
(LIST_OF_LOADCASES));

ENTITY antresp;
object
ANTR TYPE
dcondname
timerange
dampname
LIST OF LOADCASES

END_ENTITY;

object;
ENUMERATION OF (PHYS, REIG, CEIG);
OPTIONAL dcond;
timerange;
OPTIONAL modaldamp;
SET OF integer;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Performs a transient response analysis of an object. The type indicates
the computation method:

PHYS analysis with physical matrices
REIG analysis with matrices based on real eigenvectors
CEIG analysis with matrices based on complex eigenvectors

(for REIG and CEIG a DCOND step is needed)

If REIG or CEIG is specified, the transient response analysis is performed
on the object produced by the dynamic condensation pointed to by dcond. If
PHYS is specified dcond is omitted.

The timerange must be previously defined.

LIST OF LOADCASES is a sequence of integer numbers denoting the loadcases
to be computed.

modaldamp points to a modal damping specification. If present, the
structural damping matrix will be disabled.

Example:

ANTRESP (#ana4: #OB2,REIG,#OB5,#ra2,,(1,2));
performs a response analysis with two loadcases in the time range
#ra2 on the object #OB2. Modal matrices (based on the dynamic
condensation producing #OB5) and structural damping are used .

• • '9

-
B.4 Keywords for the FE Analysis 141

B.4.62 ANSTEMP (ana-id:object,(LIST_OF_LOADCASES));

ENTITY anstemp;
object
LIST OF LOADCASES

END_ENTITY;

object;
SET OF integer;

TYPE
object - SELECT (collect, assem, scond, copy);

END_TYPE;

Performs a linear thermal analysis on an object.

LIST OF LOADCASES is a list of integers specifying the loadcases to be
computed.

See note (4).

Example:

ANSTEMP (#ana6: #OB3, (1,2));
performs a thermal analysis with two loadcases on object #OB3 .

..•

142 Exchange of Product Analysis Data

B.4.63 OUTDISP (ana-id,nodal_reference,cosys);

PROPERTY outdisp;
nodal reference
cosys

SELECT(gnode,nodelist,allnodes);
OPTIONAL coord;

OF
ana id SELECT (anstatic, anreigv, anfresp, antresp,

anceigv);
END_PROPERTY;

TYPE ~
gnode SELECT (node, trn);

END_TYPE;

Requests output of displacements for the node or nodes given in nodal
reference. This parameter may refer to a NODE, TRN, NODELIST or ALLNODES
statement.

See note (5).

Example:

OUTDISP (#anal,#listl,#col);
requests displacements output for
system #col. #listl was defined
statement.

analysis #anal in
in a NODELIST or

coordinate
ALLNODES

...

-
B.4 Keywords for the FE Analysis 143

B.4.64 OUTSTRESS (ana-id.OUTS_SUBKW);

PROPERTY outstress;
OUTS SUBKW SELECT (NODAL.ELEMENTAL);

OF
ana id SELECT (anstatic. anreigv. anfresp, antresp.

anceigv);
END_PROPERTY;

Requests output of nodal or elemental stresses for nodes (subkeyword NODAL)
or elements (subkeyword ELEMENTAL).

ana-id is the name defined in an analysis (e.g. ANSTATIC) command.

See note (1) and (5).

Example:

OUTSTRESS (#ana2,#a5);
requests stress output from analysis #ana2 at nodes or elements
referenced by #a5.

-
144 Exchange of Product Analysis Data

B.4.65 OUTSTRAIN (ana-id,outs_subkw);

PROPERTY outstrain;
outs subkw SELECT (NODAL,ELEMENTAL);

OF
ana id SELECT (anstatic, anreigv, anfresp, antresp,

anceigv);
END_PROPERTY;

Requests output of strains for certain nodes or elements. The parameters
are the same as for OUTSTRESS.

See notes (1) and (5).

Example:

OUTSTRAIN (#ana2,#al12);
requests strain output from analysis #ana2 for nodes or elements
referenced by #al12.

..•

-
B.4 Keywords for the FE Analysis 145

B.4.66 OUTFORCE (ana-id,ITYP,nodal_reference,cosys);

PROPERTY outforce;
TYPE CODE
nodal reference
cosys

INTEGER;
SELECT (gnode,node1ist,a11nodes);
OPTIONAL coord;

OF
ana id SELECT (anstatic, anreigv, anfresp, antresp,

anceigv)
WHERE;

TYPE CODE >= 1 AND TYPE CODE <= 3;
END_PROPERTY;

i

TYPE
gnode SELECT (node, trn);

END_TYPE;

Requests output of spring forces (ITYP - 1), damping forces (ITYP =
inertia forces (ITYP = 3) for the nodes given by nodal reference.
parameter may refer to a NODE, TRN, NODELIST or ALLNODES statement.
of these can be embedded.)

2) or
This
(Any

The optional cosys defines the coordinate system in which the results are
to be output.

See notes (1) and (5).

Example:

OUTFORCE (#ana5,3,#N25,);
outputs inertia forces of analysis #ana5 for node #N25 in global
coordinates.

...

-
146 Exchange of Product Analysis Data

B.4.67 FIRSTFR (name:N);

ENTITY firstfr;
N

END_ENTITY ;
integer;

Used in OUTEIGFR keyword to request output of the first N eigenfrequencies.

Example;

FIRSTFR (#f30:30);
asks for the first 30 eigenfrequencies .

...

-
B.4 Keywords for the FE Analysis 147

B.4.68 MODELIST (name:MODELIST);

ENTITY modelist;
MODELIST

END_ENTITY;
SET OF integer;

Used in OUTEIGFR keyword to request output of eigenfreq'uencies
corresponding to the modes listed.

Example:

MODELIST (#mod7:(l,3,5,7»;
asks for the eigenfrequencies of modes 1, 3, 5 and 7.

B.4.69 FREQOUT (name:FIRSTFREQ,SECONDFREQ);

ENTITY freqout;
FIRSTFREQ
SECONDFREQ

END_ENTITY;

real;
real;

Used in OUTEIGFR keyword to request output of eigenfrequencies between the
stated frequencies.

Example:

FREQOUT (#man:2000.0,20000.0);
asks for all eigenfrequencies between 2000 and 20000 frequency
units.

...

-
148 Exchange of Product Analysis Data

B.4.70 OUTEIGFR (ana-id,outeig_subkw);

PROPERTY outeigfr;
outeig_subkw SELECT (firstfr,modelist,freqout);

OF
ana id

END_PROPERTY;
SELECT (anreigv,anceigv);

Requests output of the computed eigenfrequencies.

If the analysis is ANCEIGV, i.e. complex, then the critical damping ratios
will also be output for the modes requested.

See note (5).

Example:

OUTEIGFR (#ana2,#ffr30);

-
B.4 Keywords for the FE Analysis 149

B.4.71 OUTMODESH (ana-id,(LIST_OF_MODES));

PROPERTY outmodesh;
LIST OF MODES SET OF integer;

OF
ana id

END_PROPERTY;
SELECT (anreigv,anceigv);

Requests output of the eigenvectors (modes) whose numbers are given in
LIST OF MODES.

See note (5).

Examples:

OUTMODESH (ana2,(l,2,3,4,5,6,7,8,9,lO,11,12,13,14,15,16,17»;
asks for the output of the first 17 modeshapes.

...

--
150 Exchange of Product Analysis Data

B.4.72 OUTTEMP (ana-id,nodal_reference);

PROPERTY outtemp;
nodal reference SELECT (gnode,nodelist,allnodes)

OF
ana id

END_PROPERTY;
anstemp;

TYPE
gnode SELECT (node, trn);

END_TYPE;

Requests output of temperature(s) for the node(s) given by nodal reference.
This parameter may refer to a node or to a TRN, NODELIST or ALLNODES
statement (these can be embedded).

See note (5).

Example:

OUTTEMP (#ana6,ALLNODES«#OBl)));
outputs temperatures of analysis #ana6 for all nodes of object
#OB1.

• '9

••••

B.4 Keywords for the FE Analysis 151

B.4.73 OUTFLUX (ana-id,element_reference);

PROPERTY outflux;
element reference SELECT (ge1ement,e1em1ist,a11e1ems);

OF
ana id

END-PROPERTY;
anstemp

TYPE
ge1ement - SELECT (element, tre);
element - SELECT (bar, beam2, spring, damper, mass, tri3,

tri6, tri7v, quad4, quadS, quad9v, tetra4,
tetralO, tetra15v, penta6, penta15,
penta2lv, hexa8, hexa20, hexa21v);

END_TYPE;

Requests output of heat flux over element boundaries.

The elements are those given in the element_reference, which may refer to
an element statement or to a TRE, ELEMLIST or ALLELEMS statement (any of
these may be embedded).

See note (5).

Examples:

OUTFLUX (#ana6,#E123);
asks for flux output for element #E123.

OUTFLUX (#ana6,#a111);
asks for flux output for all elements of objects mentioned in the
ALLELEMS statement defining #all1.

152 Exchange of Product Analysis Data

B.4.74 CLOSEANA (analysis_name);

PROPERTY c1oseana;
OF

analysis_name
END_PROPERTY;

openana;

Closes this analysis block.

Examples:

CLOSEANA (#ANALY1);

. ,
I

... , -

-
B.S Keywords for FE Results 153

B.S Keywords for FE Results

B.S.l OPENFERES (set_name:analysis_name,'TEXT_DESCRIPTION');

ENTITY openferes;
analysis_name
TEXT

END_ENTITY;

openana;
OPTIONAL string;

Opens one block of finite element results. Each block is related to one
load case number or mode number of a particular analysis. The set_name is
a name for this special set of results (e.g. displacements or stresses of
one load case).

The analysis_name was defined in the OPENANA block.
further information about the analysis.

The text can give

Example:

OPENFERES (#RESl: #ANALYl, 'the second load case of a static analysis');

...

-
154 Exchange of Product Analysis Data

B.S.2 ANCASE (anstep_id,ancase_type,LCASE,STEP);

PROPERTY ancase;
ancase_type

LCASE
STEP

ENUMERATION OF (STATA, REIGA, CEIGA,
FRESA, TRESA, TEMPA) ;

OPTIONAL integer;
OPTIONAL real;

OF
anstep_id SELECT (anstatic, anreigv,anfresp,

antresp,anceigv, anstemp);
END_PROPERTY;

Defines from which analysis step (anstep_id) the results are presented.
The subkeyword ancase_type explains the origin of the results, i.e.:

STATA denotes a static analysis
REIGA denotes a real eigenvalue analysis
CEIGA denotes a complex eigenvalue analysis
FRESA denotes a frequency response analysis
TRESA denotes a time (transient) response analysis
TEMPA denotes a temperature analysis

The list is extendible.

The parameter LCASE denotes the load case number. If the output is the
mode shapes from an eigenvalue analysis then LCASE is the corresponding
mode number. If the output is eigenfrequencies then the LCASE parameter is
omitted. For a response analysis STEP denotes time or frequency step.

Examples:

ANCASE (#ana3,STATA,1,);
indicates loadcase 1 of static analysis #ana3.

ANCASE (#ana4,REIGA,S,);
indicates mode 5 of eigen analysis #ana4.

ANCASE (#anaS,FRESA,1,65.42S);
indicates frequency step 65.425 for loadcase 1 of frequency
response analysis #ana5.

-
B.5 Keywords for FE Results 155

B.S.3 DISPR (node_name,VX,VY,VZ,RX,RY,RZ,cosys);

PROPERTY dispr;
VX,VY,VZ
RX,RY,RZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT (node,trn);

Outputs the translations VX,VY,VZ and the rotations RX,RY,RZ (real). E.g.
from a static analysis. They are calculated at the node named node_name
and given in the coordinate system named cosys (default allowed). Omitted
values are zero.

Example:

DISPR (#N17, 1.2345E-4, 2.3456E-4, 3.4567E-4"");
gives 3 translations and three rotations (default=O.0), in global
coordinates for node #N17.

-
156 Exchange of Product Analysis Data

B.S.4 DISPC (node_name,VX,VY,VZ,RX,RY,RZ,PVX,PVY,PVZ,PRX,PRY,PRZ,cosys);

PROPERTY dispc;
VX,VY,VZ
RX,RY,RZ
PVX,PVY,PVZ
PRX,PRY,PRZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT (node,trn);

Outputs the translations VX, VY, VZ and the rotations RX, RY, RZ as
amplitudes and the corresponding phases PVX, PVY, PVZ and PRX, PRY, PRZ,
e.g. from a static analysis. They are calculated at the node named
node_name and given in the coordinate system named cosys (default allowed).
Omitted values are zero.

Example:

DISPC (#N17,1.O,2.0,3.0,O.4,O.5,O.6,22.2,23.5,22.4,19.7,2l.9,22.0,#cosys3);
outputs all displacements of node #N17 in coordinate system cosys3.

..•

-
B.5 Keywords for FE Results 157

B.5.5 STRENOR (node_name,SX,SY,SZ,SXY,SXZ,SYZ,cosys);

PROPERTY strenor;
SX,SY,SZ
SXY,SXZ,SYZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the 6 nodal stress components SX,...,SYZ. They are calculated at
the node named node_name and given in the coordinate system named cosys
(default allowed). Omitted values are zero.

Example:

STRENOR (#N17, 3.523E2, -1.263E2, 5.674El, 6.599El, 2.162El, 7.773EO, ,);
outputs 6 real stress components in global coordinates for node
#N17.

-
158 Exchange of Product Analysis Data

B.S.6 STRENOC (node name,SX,SY,SZ,SXy,SXZ,SYZ,PSX,PSY,PSZ,
PSXy,PSXZ,PSYZ,cosys);

PROPERTY strenoc;
SX,SY,SZ
SXY,SXZ,SYZ
PSX,PSY,PSZ
PSXY,PSXZ,PSYZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the 6 nodal stress components SX,...,SYZ as amplitudes and the
corresponding phases PSX, ...,PSYZ. They are calculated at the node named
node_name and given in the coordinate system named cosys (default allowed).
Omitted values are zero.

Example:

STRENOC (#N17, 3.523E2,-1.263E2, 5.674El, 6.599El, 2.l62El,
7.773EO, 123.2, 97.5, 110.3, 99.5, 82.3, 101.1 ,);

outputs 6 complex stress components (phases in degrees) in global
coordinates for node #N17.

...

-
B.5 Keywords for FE Results 159

B.5.7 STREEQR (node_name,SE);

PROPERTY streeqr;
SE real;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the equivalent stress (real) SE for the node named node name. I

Example:

STREEQR (#N19, 56.74);
outputs equivalent stress for node #N19.

B.5.8 STREEQC (node_name,SE,PSE);

PROPERTY streeqc;
SE
PSE

real;
real;

OF
node name

END_PROPERTY;
node;

Outputs the equivalent stress (complex) SE as the amplitude and the
corresponding phase PSE for the node named node name.

Example:

STREEQC (#N19, 56.74, 1.25);
outputs equivalent stress with phase angle for node #N19 .

...

-
160 Exchange of Product Analysis Data

B.S.9 STREPRR (node name,Sl,S2,S3,C1X,C1Y,C1Z,C2X,C2Y,C2Z,
- C3X,C3y,C3Z,cosys);

PROPERTY streprr;
Sl,S2,S3
C1X,C1Y,C1Z
C2X,C2Y,C2Z
C3X,C3Y,C3Z
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the principal stress (real) Sl,S2,S3. The cosines C1X,C1Y,C1Z of
the angles between Sl and the X-, y- and z- axes, respectively, are given.
The cosines C2X, C2Y, C2Z of the angles between S2 and the X-, y- and z
axes, respectively, are given. The cosines C3X,C3Y,C3Z of the angles
between S3 and the X-, y- and z-axes, respectively, are given.

Example:

STREPRR (#N20, 3.523E2, l.263E2, 5.674E1, 0.23, 0.44, 0.11,
0.56, 0.88, 0.92, 0.13, 0.53, 0.02,);

outputs 3 principal stresses with 9 direction cosines for node #N20
in global coordinates.

...

-
B.5 Keywords for FE Results 161

B.S.10 STREPRC (node name,Sl,S2,S3,PS1,PS2,PS3,C1X,C1Y,C1Z,
- C2X,C2y,C2Z,C3X,C3y,C3Z,cosys);

PROPERTY streprc;
Sl,S2,S3
PS1,PS2,PS3
C1X,ClY,ClZ
C2X,C2Y,C2Z
C3X,C3Y,C3Z
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the principal stress (complex) Sl,S2,S3 as amplitudes and the
corresponding phases PSI,PS2,PS3. The cosines ClX,C1Y,C1Z of the angles
between Sl and the X-, y- and z-axes, respectively, are given. The cosines
C2X,C2Y,C2Z of the angles between S2 and the X-, y- and z- axes,
respectively, are given. The cosines C3X,C3Y,C3Z of the angles between S3
and the X-, y- and z-axes, respectively, are given.

Example:

STREPRC (#N20, 3.523E2, 1.263E2, 5.674El, 179.4, 209.4, 198.9,
0.23, 0.44, 0.11, 0.56, 0.88, 0.92, 0.13, 0.53, 0.02,);
outputs 3 principal stresses with phase angles and 9
cosines for node #N20 in global coordinates.

direction

, -

162 Exchange of Product Analysis Data

B.S.ll STREENR (element_name,node_name,SX,SY,SZ,
SXY,SXZ,SYZ,cosys);

PROPERTY streenr;
node name
SX,SY,SZ
SXY,SXZ,SYZ
cosys

SELECT(node,trn);
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT(element,tre);

TYPE
element - SELECT (bar, beam2, tri3, tri6, tri7v,

quad4, quad8, quad9v, tetra4,
tetralO, tetra15v, penta6, penta15,
penta2lv, hexa8, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related stress components SX, ...,SYZ. They are
calculated at the node named node name in the element named element name.- -
The values are given in the coordinate system named cosys (default
allowed). Omitted values are zero.

Example:

STREENR (#E123, #N20.,3.523E2, 1.263E2, 5.674El, 3.231El,
1.446El, 1.998El, #col);

outputs 6 stress components for element #E123 (location: node #N20)
in coordinate system #col.

.."

-
B.5 Keywords for FE Results 163

B.5.12 STREENC (e1ement_name,node_name,SX,SY,SZ,SXY,SXZ,SYZ,PSX,PSY,PSZ,
PSXY,PSXZ,PSYZ,cosys);

PROPERTY streenc;
node name
SX,SY,SZ
SXY,SXZ,SYZ
PSX,PSY,PSZ
PSXY,PSXZ,PSYZ
cosys

SELECT(node,trn);
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT(element,tre);

TYPE
element SELECT (bar, beam2, tri3, tri6, tri7v,

quad4, quadS, quad9v, tetra4,
tetra10, tetra15v, penta6, penta15,
penta21v, hexaS, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related stress components SX,...,SYZ as amplitudes
and the corresponding phases PSX, ...,PSYZ. They are calculated at the node
named node_name in the element named element name. The values are given in
the coordinate system named cosys (default allowed). Omitted values are
zero.

Example:

STREENC (#E123, #N20, 3.523E2, 1.263E2, 5.674E1, 3.231E1,
1.446E1, 1.99SE1, 0.012, -0.214, -0.03S, -0.037,
0.009, 0.155, #col);

outputs 6 complex stress components as amplitudes and phases (in
radians) for element #E123 (location: node #N20) in coordinate
system #co1.

-
164 Exchange of Product Analysis Data

B.S.13 STREEIR (element_name,X,Y,Z,SX,SY,SZ,SXY,SXZ,SYZ,cosys);

PROPERTY streeir;
X,Y,X
SX,SY,SZ
SXY,SXZ,SYZ
cosys

real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT(e1ement,tre);

TYPE
element SELECT (bar, beam2, tri3, tri6, tri7v,

quad4, quad8, quad9v, tetra4,
tetra10, tetra15v, penta6, penta15,
penta21v, hexa8, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related stress components SX,...,SYZ. They are
calculated at the internal element point X,Y,Z in the element named
element name. The values are given in the coordinate system named cosys
(default allowed). Omitted values are zero.

Example:

STREEIR (#E123, 1.0, 0.0, 2.5, 3.523E2, 1.263E2, 5.674E1,
3.231E1, 1.446E1, 1.998E1, #co1);

outputs 6 stress components for element #E123 (location given by
coordinates 1,0,2.5) in coordinate system #co1 .

...

-
B.s Keywords for FE Results 165

B.5.l4 STREEIC (element name,X,Y,Z,SX,SY,SZ,SXY,SXZ,SYZ,
- PSX,PSY,PSZ,PSXY,PSXZ,PSYZ,cosys);

PROPERTY streeic;
X,Y,Z
SX,SY,SZ
SXY,SXZ,SYZ
PSX,PSY,PSZ
PSXY,PSXZ,PSYZ
cosys

real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT(element,tre);

TYPE
element = SELECT (bar, beam2, tri3, triG, tri7v, quad4,

quadS, quad9v, tetra4, tetralO,
tetralsv, penta6, pentals, penta2lv,
hexaS, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related stress components SX,...,SYZ as amplitudes
and the corresponding phases PSX,...,PSYZ. They are calculated at the
internal element point X,Y,Z in the element named element_name. The values
are given in the coordinate system named cosys (default allowed). Omitted
values are zero.

Example:

STREEIC (#E123, 1.0, 0.0, 2.5, 3.s23E2, 1.263E2, s.674El,
3.231El, 1.446El, 1.99SE1, 0.012, -0.214, -0.03S,
-0.037, 0.009, 0.155,);

outputs 6 complex stress components as amplitudes and phases (in
radians) for element #E123 (location: coordinates 1,0,2.5) in
global coordinate system.

...

-
166 Exchange of Product Analysis Data

B.S.1S STRANOR (node_name,EX,EY,EZ,EXY,EXZ,EYZ,cosys);

PROPERTY stranor;
EX,EY,EZ
EXY,EXZ ,EYZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the 6 nodal strain components EX,...,EYZ. They are calculated at
the node named node_name and given in the coordinate system named cosys
(default allowed). Omitted values are zero.

Example:

STRANOR (#Nl7, 3.523E2, -l.263E2, 5.674El, 6.599El, 2.l62El,
7.773EO, .»

outputs 6 real strain components in global coordinates for node
#Nl7.

..•

-
B.5 Keywords for FE Results 167

B.S.16 STRANoe (node name.EX.EY.EZ.EXY.EXZ.EYZ.PEX.PEY.PEZ.
- PEXY.PEXZ.PEYZ.cosys);

PROPERTY stranoc;
EX.EY,EZ
EXY,EXZ,EYZ
PEX,PEY.PEZ
PEXY,PEXZ,PEYZ
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the 6 nodal strain components EX, ...•EYZ as amplitudes and the
corresponding phases PEX, ...,PEYZ. They are calculated at the node named
node_name and given in the coordinate system named cosys (default allowed).
Omitted values are zero.

Example:

STRANoe (#N17, 3.523E2, -1.263E2, 5.674E1, 6.599E1, 2.162E1,
7.773EO, 123.2, 97.5, 110.3, 99.5, 82.3, 101.1 ,);

outputs 6 complex strain components (phases in degrees) in
coordinates for node #N17.

global

, ..

.. _.__
168 Exchange of Product Analysis Data

B.S.17 STRAEQR (node_name,EE);

PROPERTY straeqr;
EE real;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the equivalent strain (real) EE for the node named node name.

Example:

STRAEQR (#N19, 56.74);
outputs equivalent strain for node #N19

-
B.5 Keywords for FE Results 169

B.S.1S STRAEQC (node_name,EE,PEE);

PROPERTY straeqc;
EE
PEE

real;
real;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the equivalent strain (complex) EE as the amplitude and the
corresponding phase PEE for the node named node name.

Example:

STRAEQC (#N19, 56.74, 1.25);
outputs equivalent strain with phase angle in radians for node #N19

...

170 Exchange of Product Analysis Data

B.5.19 STRAPRR (node name,El,E2,E3,ClX,ClY,ClZ,C2X,C2Y,C2Z,
C3X,C3y,C3Z,cosys);

PROPERTY straprr;
E1,E2,E3
ClX,ClY,C1Z
C2X, C2Y, C2Z
C3X,C3Y,C3Z
cosys

OPTIONAL real;
OPTIm~AL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the principal strain (real) El,E2,E3. The cosines ClX,ClY,ClZ of
the angles between E1 and the X-, y- and z- axes, respectively, are given.
The cosines C2X,C2Y,C2Z of the angles between E2 and the X-, y- and z-axes,
respectively, are given. The cosines C3X,C3Y,C3Z of the angles between E3
and the X-, y- and z-axes, respectively, are given.

Example:

STRAPRR (#N20, 3.523E2, 1.263E2, 5.674El, 0.23, 0.44, 0.11,
0.56, 0.88, 0.92, 0.13, 0.53, 0.02,);

outputs 3 principal strains with 9 direction cosines for node #N20
in global coordinates.

-
B.5 Keywords for FE Results 171

B.5.20 STRAPRC (node name,El,E2,E3,PE1,PE2,PE3,ClX,ClY,ClZ,
- C2X,C2Y,C2Z,C3X,C3Y,C3Z,cosys);

PROPERTY straprc;
E1,E2,E3
PE1,PE2,PE3
C1X,C1Y,C1Z
C2X,C2Y,C2Z
C3X,C3Y,C3Z
cosys

OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT(node,trn);

Outputs the principal strain (complex) El,E2,E3 as amplitudes and the
corresponding phases PEl,PE2,PE3. The cosines C1X,ClY,C1Z of the angles
between E1 and the X-, y- and z-axes, respectively, are given. The cosines
C2X,C2Y,C2Z of the angles between E2 and the X-, y- and z- axes,
respectively, are given. The cosines C3X,C3Y,C3Z of the angles between E3
and the X-, y- and z-axes, respectively, are given.

Example:

STRAPRC (#N20, 3.523E2, 1.263E2, 5.674E1, 179.4, 209.4, 198.9, 0.23,
0.44, 0.11, 0.56, 0.88, 0.92, 0.13, 0.53, 0.02,);

outputs 3 principal strains with phase angles and 9 direction
cosines for node #N20 in global coordinates.

...

-
172 Exchange of Product Analysis Data

B.S.21 STRAENR (element_name,node_name,EX,EY,EZ,
EXY,EXZ,EYZ,cosys);

PROPERTY straenr;
node name
EX,EY,EZ
EXY,EXZ ,EYZ
cosys

SELECT(node,trn);
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT(element,tre);

TYPE
element - SELECT (bar, beam2, tri3, tri6, tri7v, quad4,

quad8, quad9v, tetra4, tetralO,
tetra15v, penta6, penta15, penta2lv,
hexa8, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related strain components EX, ...,EYZ. They are
calculated at the node named node name in the element named element name.
The values are given in the coordinate system named cosys (default
allowed). Omitted values are zero.

Example:

STRAENR (#E123, #N20, 3.523E2, 1.263E2, S.674El, 3.231El,
1.446El, 1.998El, #col);

outputs 6 strain components for element #E123 (location: node #N20)
in coordinate system #col.

...

-
B.5 Keywords for FE Results 173

B.S.22 STRAENC (element name,node name,EX,EY,EZ,EXY,EXZ,EYZ,
- PEX,PEY,PEZ,PEXY,PEXZ,PEYZ,cosys);

PROPERTY straenc;
node name
EX,EY,EZ
EXY,EXZ ,EYZ
PEX,PEY,PEZ
PEXY,PEXZ,PEYZ
cosys

SELECT(node,trn);
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF i

element name
END_PROPERTY;

SELECT (e1ement,tre);

TYPE
element = SELECT (bar, beam2, tri3, tri6, tri7v, quad4,

quadS, quad9v, tetra4, tetralO,
tetra15v, penta6, penta15, penta2lv,
hexaS, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related strain components EX, ...,EYZ as amplitudes
and the corresponding phases PEX, ...,PEYZ. They are calculated at the node
named node name in the element named element_name. The values are given in
the coordinate system named cosys (default allowed). Omitted values are
zero.

Example:

STRAENC (#E123, #N20, 3.523E2, 1.263E2, 5.674E1,
1.99SE1, 0.012, -0.214, -0.03S, -0.037,

outputs 6 complex strain components as
radians) for element #E123 (location:
system #co1.

3.231E1, 1.446E1,
0.009, 0.155, #co1);
amplitudes and phases (in
node #N20) in coordinate

, -

---_
174 Exchange of Product Analysis Data

B.S.23 STRAEIR (element_name,X,Y,Z,EX,EY,EZ,EXY,EXZ,EYZ,cosys);

PROPERTY straeir;
X,Y,Z
EX,EY,EZ
EXY,EXZ ,EYZ
cosys

real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
element name

END_PROPERTY;
SELECT (element,tre);

TYPE
element = SELECT (bar, beam2, tri3, tri6, tri7v, quad4,

quadS, quad9v, tetra4, tetralO,
tetra15v, penta6, penta15, penta2lv,
hexaS, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related strain components EX, ...,EYZ. They are
calculated at the internal element point X,Y,Z in the element named
element name. The values are given in the coordinate system named cosys
(default allowed). Omitted values are zero.

STRAENC (#E123, #N20, 3.523E2, 1.263E2, 5.674E1,
1.99SE1, 0.012, -0.214, -0.03S, -0.037,

outputs 6 complex strain components as
radians) for element #E123 (location:
system #col.

3.231E1, 1.446El,
0.009, 0.155, #col);
amplitudes and phases (in
node #N20) in coordinate

...

-
B.5 Keywords for FE Results 175

B.S.24 STRAEIC (element name,X,Y,Z,EX,EY,EZ,EXY,EXZ,EYZ,
-PEX,PEY,PEZ,PEXY,PEXZ,PEYZ,cosys);

PROPERTY straeic;
X,Y,Z
EX,EY,EZ
EXY,EXZ,EYZ
PEX,PEY,PEZ
PEXY,PEXZ,PEYZ
cosys

real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

IOF
element name

END_PROPERTY;
SELECT (element,tre);

TYPE
element - SELECT (bar, beam2, tri3, tri6, tri7v, quad4,

quad8, quad9v, tetra4, tetralO,
tetra15v, penta6, penta15, penta21v,
hexa8, hexa20, hexa27v);

END_TYPE;

Outputs the 6 elemental related strain components EX, ...,EYZ as amplitudes
and the corresponding phases PEX, ...,PEYZ. They are calculated at the
internal element point X,Y,Z in the element named element_name. The values
are given in the coordinate system named cosys (default allowed). Omitted
values are zero.

Example:

STRAEIC (#E123, 1.0, 0.0, 2.5, 3.523E2, 1.263E2, 5.674El,
3.231E1, 1.446El, 1.998E1, 0.012, -0.214, -0.038,
-0.037, 0.009, 0.155,);

outputs 6 complex strain components as amplitudes and phases (in
radians) for element #E123 (location: coordinates 1,0,2.5) in
global coordinate system.

-
176 Exchange of Product Analysis Data

B.5.25 NODFORCER(node_name,ITYp,RX,RY,RZ,MX,MY,MZ,cosys);

PROPERTY nodforcer;
ITYP
RX,RY,RZ
MX,MY,MZ
cosys

integer;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF
node name

END_PROPERTY;
SELECT (node,trn);

Outputs the 3 force components RX,RY,RZ and the 3 moment components
MX,MY ,MZ calculated at the node named node_name. They are given in the
coordinate system cosys. The type of the force is given by the parameter
ITYP where;

ITYP 1
2
3

indicates a spring force
indicates a damping force
indicates an inertia force.

Example:

NODFORCER (#NS23, 2, 3.S23E2, 1.263E2, S.674El, 3.23lEl,
1.446El, 1.998El, #col);

outputs 6 damping force components for node #ES23 in coordinate
system #col.

...

-
B.5 Keywords for FE Results 177

B.S.26 NODFORCEC (node name,ITYP,RX,RY,RZ,MX,MY,MZ,PRX,PRY,PRZ,
PMX,PMY,PMZ,cosys);

PROPERTY nodforcec;
ITYP
RX,RY,RZ
MX,MY,MZ
PRX,PRY,PRZ
PMX,PMY,PMZ
cosys

integer;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL real;
OPTIONAL coord;

OF I

node name
END_PROPERTY;

SELECT (node,trn);

Outputs the 3 force components RX,RY,RZ and the 3 moment components
MX,MY,MZ as amplitudes and the corresponding phases PRX, ...,PMZ calculated
at the node named node name. They are given in the coordinate system
cosys. The type of the force is given by the parameter ITYP where

ITYP 1 indicates a spring force
2 indicates a damping force
3 indicates an inertia force.

Example:

NODFORCEC (#N523, 2, 3.523E2, 1.263E2, 5.674El, 3.231El,
1.446El, 1.998El, 123.2, 97.5, 110.3, 99.5,
82.3, 101.1, #col);

outputs 6 complex damping force components with phase angles in
degrees for node #E523 in coordinate system #col.

-
178 Exchange of Product Analysis Data

B.S.27 EIGFR «LIST_OF_EIGENFREQ»;

PROPERTY eigfr;
LIST_OF_EIGENFREQ

END_PROPERTY;
SET OF real;

Outputs a list of calculated eigenfrequencies.

Example:

EIGFR «11.224, 17.995, 25.381, 25.386,49.921, 60.801));
outputs the first 6 eigenfrequencies as a list.

B.S.28 DAMPRAT «LIST_OF_DAMPRAT»;

PROPERTY nodflux;
LIST OF DAMPRAT

END_PROPERTY;
SET OF real;

Outputs a list of calculated damping ratios, i.e. parts of the critical
damping.

DAMPRAT «0.0224, 0.0995, 0.0381, 0.0386, 0.0921, 0.0801));
outputs the damping ratios of 6 eigenfrequencies as a list .

..•

-
B.5 Keywords for FE Results 179

B.5.39 NODTEMP (node_name,TE);

PROPERTY nodtemp;
TE real;

OF
node name

END_PROPERTY;
SELECT (node,trn);

Outputs the calculated temperature TE at the node named node name.

Example:

NODTEMP (#N99, 82.35);
outputs the temperature for node #N99.

... , -

-
180 Exchange of Product Analysis Data

B.5.30 NODFLUX (element_name,(list_of_nodes),HF);

PROPERTY nodflux;
list of nodes
HF

LIST [1 TO 4] OF gnode;
real;

OF
element name

END_PROPERTY;
SELECT (element,tre);

TYPE
element SELECT (bar, beam2, tri3, tri6, tri7v, quad4,

quad8, quad9v, tetra4, tetralO,
tetralSv, penta6, pentalS, penta2lv,
hexa8, hexa20, hexa27v);

END_TYPE;

TYPE
gnode select (node, trn);

END_TYPE;

Outputs the calculated heat flux HF over the defined element surface given
by up to four node names, in list_of_nodes, in the element named
element name.

Example:

NODFLUX (#E77, (#N9,,#N10,#Nll,#N12),9.333SE-03);
outputs heat flux through one surface of element #E77 described by
nodes #N9,#N10,#Nll,#N12.

...

-
B.S Keywords for FE Results 181

B.5.31 RC (rcname:ICR,(LIST_OF_ROWCOL_PAIR), (LIST_OF_NUM_PAIR));

ENTITY rc;
ICR
LIST OF ROWCOL PAIR_ _ _
LIST OF NUM PAIR

END_ENTITY;

integer;
SET OF integer;
SET OF integer;

Defines one row/column specification which is used in the MATSHP statement.
ICR is the row/column number for which the non-zero element positions are
given. The two list parameters LIST_OF_ROWCOL_PAIR and LIST_OR_NUM_PAIR
define the non-zero positions. The first list indicates the starting
column/row position of the sequences of non-zero elements in this
row/column. The second list indicates the lengths of the sequences.

I

It is recommended to use RC as an embedded entity.

Example:

MATSHP (#FormS: 8,8, ROWW,COMP,FULL, (RC(l,(l,S),(l,l», RC(2,(2,6),(1,1»,
RC(3,(3,7),(1,1», RC(4,(1,6,8),(4,1,1»,
RC(6,(4),(1», RC(8,(2),(S»));
defines the form of a complex 8x8 sparse matrix with the following
appearance:

x x
x x

x
x x x x

x
x x

x

x x x x x .

...

182 Exchange of Product Analysis Data

B.S.32 MATSEQ (name:n/e_list_ref);

ENTITY matseq;
n/e_list_ref

END_ENTITY;
SELECT (node1ist, e1em1ist);

Defines the relationship between internal and external node or element
numbering when matrices have been stored in an order to minimise solution
time (in an FE analysis program).

The referred NODELIST or ELEMLIST statement may appear in the result
section of the neutral file.

Example:

MATSEQ (#seq1: NODELIST «#1,#2,#3,#5,#6,#7,#8,#9,#4,#10,#11,#12,
#13,#14,#15,#16,#17,#18,#19,#20»);

defines a sequence of nodes (to be used in a matrix definition)
with node #4 moved behind node #9.

..•

-
B.5 Keywords for FE Results 183

B.S.33 MATBAND (form:NR,NC,ROWCOL_TYPE,RECO_TYPE,STORE_TYPE,IBWLOW,IBWUP);

ENTITY matband;
NR
NC
ROWCOL TYPE
RECO TYPE
STORE TYPE
IBWLOW
IBWUP

END_ENTITY;

integer;
integer;
ENUMERATION OF (ROWW,COLW);
ENUMERATION OF (REAL,COMP);
ENUMERATION OF (FULL,SYMM,LOTR,UPTR,DIAG);
integer;
integer;

I

Defines the form of a band matrix with NR rows and NC supplied. The next
three arguments are subkeywords. The first type indicates row- or
columnwise storage of the matrix. The second type indicates a real or a
complex matrix. The third type indicates the storage mode (or the type of
the matrix), where

FULL a full matrix
SYMM a symmetric matrix but all the elements are given
LOTR a lower triangle matrix, i.e. symmetric
UPTR an upper triangle matrix, i.e. symmetric
DIAG a diagonal matrix

IBWLOW and IBWUP denote the lower and upper bandwidth (including the main
diagonal) .

Example:

MATBAND (#Form3: 389,389, ROW'W,REAL,SYMM,lO,lO);
defines the form of a real band matrix of size 389. For each row 19
values are stored (9 values left of the main diagonal, the main
diagonal, 9 values right of the main diagonal) .

..•

184 Exchange of Product Analysis Data

B.S.34 MATGEN (form:NR,NC,ROWCOL_TYPE,RECO_TYPE,STORE_TYPE);

ENTITY matgen;
NR
NC
ROWCOL TYPE
RECO TYPE
STORE TYPE

END_ENTITY;

integer;
integer;
ENUMERATION OF (ROW, COLW) ;
ENUMERATION OF (REAL,COMP);
ENUMERATION OF (FULL,SYMM,LOTR,UPTR,DIAG);

Defines the form of a general matrix with NR rows and NC columns, i.e. all
the components of the matrix have to be supplied. The last three arguments
are subkeywords. The first type indicates row- or columnwise storage of
the matrix. The second type indicates a real or a complex matrix. The
third type indicates the storage mode (or the type of the matrix), where

FULL a full matrix
SYMM a symmetric matrix but all the elements are given
LOTR a lower triangle matrix, i.e. symmetric
UPTR an upper triangle matrix, i.e. symmetric
DIAG a diagonal matrix

Example:

MATGEN (#Form2: 6,6, COLW,REAL,SYMM);
defines the form of a real matrix with 6 rows and columns where
only the upper triangle is given columnwise. The following scheme
shows the distribution of the 21 input values in the matrix:

1 2 4 7 11 16
2 3 5 8 12 17
4 5 6 9 13 18
7 8 9 10 14 19

11 12 13 14 15 20
16 17 18 19 20 21

...

-
B.5 Keywords for FE Results 185

B.5.35 MATSHP (form:NR,NC,ROWCOL_TYPE,RECO_TYPE,STORE_TYPE,
(list_of_rowcol_spec»;

ENTITY matshp;
NR
NC
ROWCOL TYPE
RECO TYPE
STORE TYPE
list_of_rowcol_spec

END_ENTITY;

integer;
integer;
ENUMERATION OF (ROWW,COLW);
ENUMERATION OF (REAL,COMP);
ENUMERATION OF (FULL,SYMM);
SET OF rc;

I

Defines the form of a sparse matrix with NR rows and NC columns. The next
three arguments are types. The first type indicates row- or columnwise
storage of the matrix. The second type indicates a real or a complex
matrix. The third type indicates the storage mode (or the type of the
matrix), where

FULL a full matrix
SYMM a symmetric matrix but all the elements are given

The parameter list_of_rowcol_spec specifies the non-zero matrix element
positions. The specification is given separately for each row/column by
the RC statement.

Example:

MATSHP (#Form4: 19,19, COLW,REAL,UPTR, (#rc1, #rc2, #rc3, #rc4,
#rc5, #rc6, #rc7, #rc8, #rc9));
defines the form of a sparse matrix of size 19. The upper triangle
is given columnwise. There are 9 locations with non-zero elements.
These are described by separate RC statements.

... , -

•••••

18G Exchange of Product Analysis Data

B.S.36 MATDEF (name:PURPOSE,shape ,'TEXT',PARTITION,seq,e/o_ref);

ENTITY matdef;
PURPOSE
shape
T~T
PARTITION
seq
e/o_ref

END_ENTITY;

ENUMERATION OF (XSTIFF, XDAMP, XMASS, XGEN);
SELECT (matshp,matband,matgen);
OPTIONAL string;
OPTIONAL ENUMERATION OF (PARTITION);
OPTIONAL matseq
SELECT (element, object);

TYPE
object = SELECT (collect, assem, scond,copy);
element - SELECT (bar, beam2, tri3, triG, tri7v, quad4,

quad8, quad9v, tetra4, tetra10,
tetra15v, penta6, penta15, penta21v,
hexa8, hexa20, hexa27v);

END_TYPE;

A matrix definition keyword. Gives a name by which a matrix may be
referenced, and associates it with an element or object.

PURPOSE XSTIFF a stiffness matrix
XDAMP a damping matrix
XMASS a mass matrix
XGEN a general matrix

shape a reference to a previously defined form

'TEXT' an optional text description

PARTITION if this parameter is omitted, then the
matrix is not partitioned.

seq a reference to a MATSEQ statement

e/o_ref a reference to the element or object this
matrix should be applied to

Example:

MATDEF (#[K]: XSTIFF, #Form2, 'Stiffness Matrix of part # 2', , ,#OB2);
defines for the structure #OB2 the stiffness matrix #[K] with its
form given by #Form2. No partitioning was applied and the sequence
defaults to the natural sequence (1,2,3,...).

••••

B.5 Keywords for FE Results 187

B.S.37 MATVAL (name,form,(LIST_OR_REAL_VALUES), (LIST_OF_IMAG_VALUES));

PROPERTY matva1;
form
LIST OF REAL VALUES
LIST OF IMAG VALUES

SELECT (matgen, matband, matshp);
LIST OF real;
OPTIONAL LIST OF real;

OF
name

END_ENTITY;
matdef

Assigns to a defined matrix the values of the components. If the matrix is
real the list of imaginary values is omitted.

Example:

MATVAL (#[K], #Form2, (3.456789E8, -2.876543E8,3.918473E8,0.,
3.216392E7, 6.649921E8, 0. ,0.,1.875391E8,5.251892E8,
9.432198E7,0. ,0., 3.543213E7,9.765246E8) ,);

outputs 15 values of the 5x5 stiffness matrix #[K] .

188 Exchange of Product Analysis Data

B.S.38 CLOSEFERES (set_name);

PROPERTY closeferes;
OF

set name
END_PROPERTY;

OPENFERES;

Closes this result block.

-

. .•

-
B.6 Notes 189

B.6 Notes

Note (1)
Unless stated otherwise, wherever a reference is made to a
coordinate system (COORD keyword) this may be omitted, indicating
that all coordinates are in the global cartesian coordinate system.

Note (2)
A load of dimension n cannot be attached to an element of dimension
n-l, but it can be attached to an element of dimension n+l (or n+2)
if edges or surfaces of the element are specified. ~

Note (3)
Dynamic loads are defined as point loads with one component. A load
which acts in a direction not parallel to a coordinate axis must be
given as two (or three) dynamic loads.

Note (4)
The term 'thermal analysis' refers to that type of analysis where
temperatures and heat flows can be considered the output of that
analysis. The term 'static analysis' refers to that type of
analysis where stresses and strains can be considered the output of
the analysis.

Note (5)
All output requests imply a request for computation. It is not
possible at present to request computation but no output.

...

190 Exchange of Product Analysis Data

••••

..

-
B.7 Keyword Cross Reference 191

Keyword Section

COLLECT B.4. 2

CONVEC B. 4 . 49

COORD •................. 3.3

COpy B.4. 8

COUPLELIST B. 4.6

DAMP B. 3 ..20

DAMPER B. 3 . 29

DAMPRAT B.5.28

DCOND B. 4 . 5

DISCRLOAD B. 4.36

DISPC B. 5 .4

DISPR B. 5 . 3

DYNLOAD ...•............ B.4.35

EDGELOAD B. 4 . 40

EIGFR B. 5.27

ELEMENTAL B.4.17

ELEMLIST B. 4 . 15

ELEMLOAD B. 4.46

FIRSTFR B. 4 . 67

FLUX B. 4 . 50

FREEDOM B. 3 .4

FREQOUT B. 4 . 69

FREQRANGE B. 4.53

FREQRG B. 4 . 24

GRAVLOAD B.4.47

HEXA20 B.3.46

HEXA27V B. 3 . 47

HEXA8 B. 3 .45

IMPULS B. 4 . 26

B.7 Keyword Cross Reference

ALLELEMS B. 4.13

ALLNODES B.4.12

ANCASE B. 5 . 2

ANCEIGV B.4.59

ANFRESP B. 4.60

ANIS02D B.3.8

ANIS03D B. 3.9

ANREIGV B. 4.58

ANSTATIC B.4.57

ANSTEMP B.4.62

ANTRESP B.4.61

ASSEM B.4.9

BAR B.3.31

BEAM2 B . 3 . 32

BEAMG B. 3 . 12

BEAMI B. 3 . 13

BEAML B. 3.14

BEAMO B . 3 . 17

BEAMR B.3.18

BEAMT B. 3 . 16

BEAMU............•...... B . 3 . 15

CDOFLIST B.4.3

CLOSEANA B.4.74

CLOSEFERES B.5.38

CLOSEMODEL B.3.48

... , -

-
192 Exchange of Product Analysis Data

ISO B.3.6

ISOFULL B. 3.7

LOADLl. B. 4.38

LOADL2 B.4. 39

LOADP1 B. 4.22

LOADP2 .•................ B.4. 23

LOADS1 B.4.41

LOADS2 B.4.42

LOADV1 B.4.44

LOADV2 B. 4.45

MASS B. 3 . 28

MATBAND B. 5.33

MATDEF B. 5 . 36

MATERIAL B.3.10

MATGEN B.5.34

MATSEQ B. 5.32

MATSHP '.' B. 5.35

MATVAL B. 5.37

MDCONST B. 4.55

MODALDAMP........•...... B.4.56

MODELIST B.4.68

MPC B.4. 20

NOCOUPLE B.4. 7

NODAL B.4.16

NODE B. 3.5

NODELIST B.4.14

NODELOAD B.4.37

NODFLUX B.5.30

NODFORCEC B.5.26

NODFORCER B. 5.25

NODTEMP B.S. 29

OPENANA B.4.1

OPENFERES B. 5 . 1

OPENMODEL B. 3 . 1

OR1 B.3:25

OR3 B. 3.26

ORIENT B.3.27

OUTDISP B. 4.63

OUTEIGFR B. 4.70

OUTFLUX '" B.4. 73

OUTFORCE B. 4.66

OUTMODESH B. 4. 71

OUTSTRAIN B. 4.65

OUTSTRESS B.4.64

OUTTEMP B. 4 . 72

PBAR B. 3 .11

PENTA15 B. 3 .43

PENTA21 V B. 3 . 44

PENTA6 B. 3 .42

PMASS B. 3 . 21

PRESET1 B.4.18

PRESET2 B.4.19

PROPERTY B. 3 . 24

QUAD4 B. 3 . 36

QUAD8 B. 3 . 37

QUAD9V B. 3.38

QVOL B.4.51

QVOLP B. 4 . 52

...

-
B.7 Keyword Cross Reference 193

RANDOM B.4. 34

RC B. 5.31

RECTAN B. 4 . 27

SAWTOO B. 4.28

SCOND B. 4.4

SINUS B. 4.29

SPRING B.3.30

STARTE B.4. 33

STARTL B.4. 32

STEADY B. 4.25

STIFF B.3.19

STRAEIC B. 5.24

STRAEIR B.5.23

STRAENC B.5.22

STRAENR B.5.21

STRAEQC B. 5 . 18

STRAEQR B.5.17

STRANOC B. 5 . 16

STRANOR B. 5 .15

STRAPRC B.5.20

STRAPRR B. 5 .19

STREEIC B.5.14

STREEIR B.5.13

STREENC B. 5 . 12

STREENR B. 5.11

STREEQC B. 5 . 8

STREEQR B. 5 . 7

STRENOC B.S.6

STRENOR B.5.5

STREPRC B.S.10

STREPRR B.S. 9

SURFLOAD B. 4 . 43

SWEEPE B. 4 . 31

SWEEPL B.4.30

TEMP B.4.,21

TEMPLOAD B. 4 . 48

TETRA10 B.3.40

TETRA1SV B. 3 .41

TETRA4 B. 3 . 39

THICK B. 3 . 22

THICKV B.3.23

TIMERANGE B. 4 . 54

TRE B.4.11

TRI3 B. 3 . 33

TRI6 B.3.34

TRI7V B. 3.35

TRN B.4.10

UNITS B. 4.2

•••••

194 Exchangeof ProductAnalysisData

-
C.I Processors for FE data 195

C Implementation

C.I Processors for FE data

Several interfaces are needed for storage and transfer of FE data. The
origin of all data to be used in the FE world is in the design process. So
we must base our first interface on product definition data coming out of
CAD systems. These data are available on CAD*I neutral files of CAD type
and have to be transferred to a FEM preprocessor.

The FEM preprocessor generates meshes, completes them with additional data
and allows manipulation and checks. At last it formats the data for one of
the various FEM analysis programs. Here we introduce our next interface
which allows to store FE input data on a neutral file. The respective
interface processors belong either to one of the FE preprocessors or to one
of the FE analysis programs. The former writes a CAD*I neutral file of FEM
type, the latter reads it.

The analysis program produces an output file which can again be converted
to a neutral file. This is our next interface. Its preprocessors belong
either to one FE analysis program or one FE postprocessor. The neutral file
for FE output data may also contain FE input data. Also possible is to
extend an FE input neutral file with FE output data.

The three interfaces described here are shown in fig. 12.

The neutral files are represented by data base symbols, the interface
processors by arrows and the FE programs by boxes.

The concept of neutral files helps to mi.mmi se the number of necessary
interface processors. Instead of combining each package with each other we
need only combine each package to a neutral file processor, see fig. 13.

...

196 Exchange of Product Analysis Data

neutral
file from
CAD

neutral
file for
FEM

neutral
file for
FEM

Figure 12. Interfaces to FE Processors.

B

E

A

F

Figure 13. Reducing the Number of Interfaces.

. ..

FEM pre
processor

FEM computa
tion program

FEM post
processor

B

CAD*I

E

-

c

o

-
C.2 Software Developed by the Partners 197

C.2 Software Developed by the Partners

In order to prevent CAD*I from being a theoretical project, tasks which
require realization and tests are included in the work-programme. This
means that WG6 develops programs that read, write and handle the neutral
files. These programs are described in this section and illustrated
graphically in figure 14.

C.2.l Software developed by NEH

C.2.l.l Program File Handler

Purpose: To read a CAD*I metafile which contains multiple neutral files ego
letters, CAD and FEM neutral files: These files are identified and split
into separated files. On demand from the user they may be translated into
either PIGS or PAFEC input files.

The program detects via the file header the type of the neutral file. When
a letter file is detected the user is asked if he wants to see the letter.
If yes, the letter is shown on the screen. The letters are stored in a list
file.

When a WG2 CAD file is detected the user is asked if he wants to translate
the file into PIGS input. If yes, the program NEH6l is called to perform
the task. When a WG6 FEM file is detected the user is asked if he wants to
translate the file into PAFEC input. If yes, the program NEH63 is called to
perform the task.

Language: Fortran 77
Operating system: Apollo
Size: object code

source code
Machine dependencies: Unit numbers for terminal I/O

Computer Aegis reI. 9.7
21 Kb
36 Kb

open statements

Status (per 1.8.1988): The program is ready for use. The program uses the
programs NEH6l and NEH63 (and therefore also RDNF and NF2FG from RAL).

Input: CAD*I metafile
Output: letter files, PIGS journal files (ie. PIGS commands) and PAFEC
input files.

Extendability: -

Ownership: NEH Consulting Enginners ApS, Denmark
Author Jes Mou Jessen, NEH Consulting Engineers

, -...

198 Exchange of Product Analysis Data

C.2.1.2 Program NEH61

Purpose: To read and interpret a CAD*I WG2 neutral file (version 3.3) and
produce a corresponding PIGS level 4.1 (Pafec FE preprocessor) input file.
I.e. a file which contains PIGS commands. The program translates the WG2
CAD information into appropriate PIGS commands.

Language: Fortran 77
Operating system: Apollo computer Aegis rel 9.7
Size: object code 30 Kb

source code 35 Kb
Machine dependencies: Unit numbers for terminal I/O

open statements I(

Status (per 1.8.1988): The program is ready for use.
Currently, the program covers some WG2 primitives such as

BOX,
SOLID_SPHERE,
SOLID_CYLINDER,
TRUNCATED_CONE,
TRUNCATED PYRAMID
REGULAR_PRISM,
SOLID TORUS

Input: CAD*I neutral file version WG2 3.3
Output: PIGS input file, ie. the xxxx.jnl file
They are translated into FE nodes, replicas, and FE ele
ments.
Extendability: -

Ownership: NEH Consulting Engineers ApS, Denmark
Author Jes Mou Jessen, NEH Consulting Engineers

The program uses RDNF and NF2FG which are programs written by RAL.

C.2.1.3 Program NEH62

Purpose: To access the database of the FEA system PAFEC (Pafec Ltd., UK)
and extract the relevant information. Then a neutral file is produced.

The program is divided into three parts. Part No.1 handles the model
definition, part No.2 handles the analysis definition and part No.3 handles
the computed results. The program generates automatically the necessary
references between these parts.

Status (per 1.8.1988): The program is ready for use.
Currently, program part No.1 covers most of the functionality in the
keyword definition for model description. Program part No.2 covers the

Language: Fortran 77
Operating system: Apollo Computer Aegis reI. 9.7
Size: Object code 101 Kb

Source code 340 Kb
Machine dependencies: Unit numbers for terminal I/O

open statements

••••

C.2 Software Developed by the Partners 199

static load cases different analysis requests, output requests. Program
part No.3 covers the displacements, mode shapes and eigenfrequencies.

Input: PAFEC Internal database, level 6.2, ie. the xxxx.bs file Output: WG6
CAD*I neutral file with FE information Extendability: The program is able
to interface both the pre-processor program PIGS and the analysis program,
because they share a common database.

Ownership: NEH Consulting Engineers ApS, Denmark
Author Jes Mou Jessen, NEH Consulting Engineers

C.2.1.4 Program NEH63

Purpose: To generate a PAFEC input data file, level 6.2 from the CAD*I WG6
neutral file. The program handles the keywords concerning the model and
analysis definitions.

Language: Fortran 77
Operating system: Apollo Computer Aegis reI. 9.7
Size: Object code 105 Kb

Source code 126 Kb
Machine dependencies: Unit numbers for terminal I/O

open statements

Status (per 1.8.1988): The program is ready for use.
Currently, the program covers most of the functionality in the keyword
definition for model description. The static loads are covered and some of
the analysis requests.

Input: WG6 neutral file with FE information
Output: PAFEC input data, ie. xxxx.dat file
Extendability: -

Ownership: NEH ConSUlting Engineers ApS, Denmark
Author Troe1s Ladefoged, NEH Consulting Engineers

In the program is used the parser and scanner program RDNF which is written
by RAL.

-
200 Exchange of Product Analysis Data

RAL GFS ERDISA/
INITEC NEH

CAD*I

FEMVIEW IGFS-EPILOGI PIGS

RAL GFS ERDISA/
INITEC NEH

Figure 14. Software developed by the partners .

..•

-
C.2 Software Developed by the Partners 201

C.2.2 Software developed by RAL

C.2.2.l Program RDNF

Purpose: Program RDNF can be used to read the neutral file as defined in
the CAD*I project for exchanging information between CAD or finite element
systems. RDNF reads the neutral file, checks for syntactical and semantical
errors and stores. the information from the neutral file in an easily
accessible data structure. RDNF uses an LR(l) parser and a lexical ana1yser
for syntax checking and organising the reading of the file. The syntax of
the neutral file is described in Backus-Naur Form notation in section
B.l.3. These BNF productions are read by the parser generator program and
transformed into a set of tables used by RDNF. While reading the
information from the neutral file all information is checked for
correctness as far as possible and then stored in a database. To facilitate
the use of the database special access routines are provided with the
program.

The semantica1 information on keywords and their parameters is maintained
in the keyword description file which is separate from program RDNF. This
file is read at the beginning of the run of RDNF and its information is
internally stored. This has the advantage that the program is independent
from any particular application area as each application can have a keyword
description file of its own. Also, if the description of a single keyword
is changed it is not necessary to modify the program RDNF as all relevant
information is stored outside the program.

If the physical file has been read successfully, control at the end of the
run is passed to a subroutine which is to be provided by the user. It is
envisaged that this subroutine will interrogate the database and pass the
data from the database on to the applications program.

Status: The program is currently under test by the partners in the CAD*I
project.

Size: source 80k

object, depends on the size of the model

Machine Dependencies: use of certain file units for terminal I/O.

Author: Jan Van Maanen, RAL.

Implementation: Standard Fortran77

C.2.2.2 PRENAS

Purpose: To read a CAD*I neutral file containing model and analysis data
and to write out a complete Nastran input deck. It uses RDNF to read the
neutral file and store the data, it then accesses this data, performs
various transformations and writes out the data in a form suitable as input
to Nastran.

...

202 Exchange of Product Analysis Data

Status: This program is currently under development. Already implemented
are executive and case control for simple static analyses, coordinate
systems, grid cards, elements, material and physical properties, single
point constraints, preset displacements and point loads. Work is in
progress on surface and body loads.

Implementation: Fortran-77 on PRIME.

Author: Debbie Thomas, RAL.

C.2.2.3 PRE-NF

Name: PRE-NF.FTN77

Purpose:
To write a neutral file from information in a FEMGEN (or FAMbuild)
database.
Author: Michael Mead, Rutherford Appleton Laboratory.
Size: 178 kbytes
Machine Dependencies:
1. Use of escape code in subroutine BELL;
2. Offset of 176 used when converting integers to character and back. This
may easily be changed by altering the assignment of variable ICOFF in the
main program.
Development Status:
Ready to be used.
Language: Fortran-77

C.2.2.4 NF2FG

Name: NF2FG.FTN77
Purpose:
To write a FEMGEN (or FAMbuild) input file from a geometry neutral file.
Author: Michael Mead, Rutherford Appleton Laboratory.
Size:
NF2FG.FTN77 134 kbytes
USERRD.FTN77 3 kbytes
SFOPEN.FTN77 1 kbytes
(Also requires RDNF)
Machine Dependencies:
1. Use of escape code in subroutine BELL;
2. Offset of 176 used when converting integers to character and back in
subroutine I2CCON.
Development Status: Ready for use.
Restrictions:
Supports a subset of a modified CAD*I neutral file for CAD geometry,
version 3.2.: only geometry levels 3a, 3b, 3c are allowed.
Some of the major modifications are;
1. scoping of entities is not recognised;
2. parameters of type LOGICAL and ARITHMETIC EXPRESSION are not permitted;
3. entities with scope have modified forms: they are not named.

B REP models:

...

-
C.2 Software Developed by the Partners 203

These arrive in FEMGEN as sets of surfaces, not as solid objects.
Only EDGE_CURVEs of type LINE are permitted. Boolean operations are
not possible.

POLY HEDRON models:
These arrive in FEMGEN as sets of surfaces, not as solid objects.
Boolean operations are not possible.

CSG models:
Primitive types LINEAR_SWEEP, ROTATIONAL_SWEEP and PLANAR_HALFSPACE
are not permitted. Primitive types TRUNCATED_PYRAMID,
REGULAR_PRISM, and TRUNCATED_CONE are not made into solid 'bodies.
The SOLID_SPHERE primitive turns out an odd shape- this is being
looked into. Boolean operations are not possible.

Language: Fortran-77

... , -

·_
204 Exchange of Product Analysis Data

C.2.3 Software developed by GfS

C.2.3.1 Program NFUTIL

Purpose: Utility program for manipulating, copying, sorting and merging
CAD*I files and metafiles.

input: any CAD*I
output: a CAD*I

file / neutral file / metafile
file / neutral file / metafile

features: list contents
copy without change
copy with blank and linefeed removal
copy with pretty print
switching between different files (enables merging)

version 2/88
language: FORTRAN77

size: executable 25 kB
source 36 kB

machine dependencies: unit numbers for terminal in/output
program runs on any machine

status: distributed and tested

author: Helmut Helpenstein, GfS

C.2.3.2 Program FERE,AD

Purpose: program for reading a neutral file with FEM input/output data
connecting the common data base to GfS-FEM (pre-processor, computation part
and postprocessor). Uses the scanner/parser program RDNF (see above).

- nodes

features:
FEREAD can evaluate the following FEM input data:

- discrete elements: springs, dampers, masses
- ID elements: bars, beams (general and profile)
- 2D elements: shells, membranes, plates with 3 or 4 vertices,

with or without additional nodes on edges
and/or faces

- 3D elements: hexahedrons, pentahedrons, tetrahedrons with
or without additional nodes on edges, faces
and/or bodies

- static loads
- boundary conditions, degrees-of-freedom
- material (isotropic)

FEREAD can evaluate the following FEM output data:
- results of static analysis,

eigenvalue analysis
frequency response analysis

...

••••

C.2 Software Developed by the Partners 205

transient response analysis
- real or complex
- displacements
- stresses (component, principle, equivalent)

strains (component, principle, equivalent)

input: RDNF data base for which RDNF had used
1. Keyword Definition File
2. CAD*I neutral file of FEM type containing

FEM input and/or output data
output: FEM input/output data for GfS-FEM system in formats

suitable for FE pre/post-processor TRANET

version 2/88
language: FORTRAN77

size: executable 100 kB
source 75 kB

machine dependencies: - unit numbers for terminal in/output
- bit manipulation routines
- Ascii code
- record structure of data base

program is available for almost any machine.

status: distributed and tested

author: Helmut Helpenstein, GfS

C.2.3.3 Program FEINW

Purpose: Write FEM input data from GfS pre-processor PROLOG to
a CAD*I neutral file (model and analysis part).

features:
- nodes
- discrete elements: springs, dampers, masses
- ID elements: bars, beams (general and profile)
- 2D elements: shells, membranes, plates with 3 or 4 vertices,

with or without additional nodes on edges
and/or faces

- 3D elements: hexahedrons, pentahedrons, tetrahedrons with
or without additional nodes on edges, faces
and/or bodies

- table of degrees-of-freedom
- material (isotropic, including dynamic and thermic

properties)
- static point loads
- distributed loads (edge, surface, volume)
- preset displacements
- dynamic loads (steady state or transient)

time or frequency ranges
- prescribed temperatures
- heat sources
- heat transfer

FEINW deals with

206 Exchange of Product Analysis Data

- ambient temperature
_ analysis control for static, dynamic and thermic analysis
- substructure technique
- static condensation
- dynamic condensation
- output requests for displacements, stresses. strains

input: FEM input data from FEM pre-processor TRANET,
dialogue for analysis requests

output: CAD*I neutral file with FEM input data, i.e.
model and analysis part

limitations: max. 50 substructures allowed
max. 1024 elements per substructure

version: 2/88
language: FORTRAN77

size: executable 74 kB
source 128 kB

machine dependencies: - unit numbers for terminal in/output
- bit manipulation routines

program is available for almost any machine.

status: distributed and tested

author: Helmut Helpenstein, GfS

C.2.3.4 Program FEOUTY

Purpose: Write FEM output data (FE result part) to a CAD*I neutral file. To
establish a proper relation between FEM input and results, FEOUTW reads the
analysis part of a CAD*I neutral file; if this is not available, the user
can specify the relation by dialogue.

features:
FEOUTW takes data from:

- static analysis
- real eigenvalue analysis
- complex eigenvalue analysis
- frequency response analysis
- time (transient) response analysis

It transfers the following data:
- displacements
- mode shapes (real or complex)
- eigenfrequencies
- stresses (component, principle, equivalent)

input: 1. FEM output data from GfS-FEM (GFSSAP or DYNA)
2. a neutral file with FEM input data (model and

analysis part)

...

-
C.2 Software Developed by the Partners 207

output: CAD*I neutral file with FEM output data, i.e.
FERES part. On user's request this part can be
appended to the input neutral file.

extendibility: Only one routine is responsible for the format of the
results to be read. It can easily be changed or adjusted, thus linking
results of other FEM programs to the neutral file.

version 1/88
language: FORTRAN77,

size: executable
source

41 kB
73 kB

machine dependencies: - unit numbers for terminal in/output
- bit manipulation routines

program is available on almost any machine.

status: distributed and tested

author: Helmut Helpenstein, GfS

...

--
208 Exchange of Product Analysis Data

C.2.4 Software developed by ERDISA

C.2.4.1 Program CADMOD

Purpose: To transfer CAD models stored in a file of CAD*I format to an
input file of the MSC/MOD FEM preprocessor (of McNeal Swend1er Corp.).

Language: Fortran 77.

Size: Source 160 kB approx. Executable 920 kB approx.

Machine dependencies: Developed on a workstation with Unix (HP9000~300).
MSC/MOD runs on a PC with MS/DOS.

Status: First version developed and tested.

Input: A neutral file of CAD*I format with CAD data.

Output: An input file for MSC/MOD of type "neutral".

Features: The CAD models that can be transferred are of type wireframe,
surface, polyhedron, B-rep and CSG with the format defined in the CAD*I
specification, version 3.2. MSC/MOD has the linear segment as its only
geometric entity so CADMOD converts or approximates the CAD models into
sets of linear segments. Some information is lost but it passes enough to
make the FEM mesh using the MSC/MOD facilities. The parsing and scanning
steps of this postprocessing are done by RDNF, written at RAL.

Restrictions: It does not consider the scoping of the entities. The
parameters of type arithmetic expression are not permitted. B-sp1ine
curves and surfaces will be implemented in the next version.

Extendabi1ity: Modular development. Easy implementation of new entities.
Easy adaptation to other FEM preprocessors of similar characteristics.

Authors: Luis Delgado and Jose L. Navarro, ERDISA .

...

-
C.2 Software Developed by the Partners 209

C.2.5 Software developed by INITEC.

C.2.5.l Program IENF

Purpose: The Insert Eproperty Neutral File program (IENF) has been
conceived as an auxiliary program in the interface between CADD-FEM, FEM
preprocessor of Computervision, and the CAD*I Neutral File. It facilitates
the insertion of element properties in the computervision data base
according to the CAD*I specification.

Language: NEWVAR (Computervision special language to access its data base).

Size: executable 7kB. Source 6kB

Machine dependencies: CADDS-4X environment with CGOS-200 Operating System.

Status:First version developed and tested.

Input: Parameters of the new element property interactively provided by the
user who is addressed by the menus of the program.

Output: The CADDS-FEM internal data base stores a new EPROPERTY of CAD*I
type. This follows the special CADDS-FEM philosophy to handle this kind of
data.

Extendability: New element properties defined in the CAD*I specification
can easily be included in the modular program where the first steps in the
addressing menu are cornmon.

Author: Javier Moldes, INITEC.

C.2.S.2 Program CVNF

Purpose: Enables the transfer of a FEM model created by the Computervision
CADDS-FEM preprocessor to the CAD*I Neutral File.

Language: Formatter (Computervision specific language for data base
reading).

Size: Source l7kB

Machine dependencies: CADD-4X environment with CGOS-200 Operating System

Status: First version developed and tested.

Input: CADDS-FEM data base with the model and some data provided by the
user by means of menus.

Output: The CAD*I Neutral File of the WORLD and FEM model required.

Extendability: New data to be passed to the Neutral File from the model
data base will require new subroutines.

...

210 Exchange of Product Analysis Data

Author: Javier Moldes. INITEC.

C.2.S.3 Program NFAN

Purpose: This program reads a neutral file of FEM data and produces the
corresponding ANSYS input file.

Language: FORTRAN 77.

Size: Source 180 kB approx. Executable 220 kB approx.

Machine dependencies: The first version has been developed in a PC-AT with
MS/DOS.

Status: First version developed and tested.

Input file: ASCII file of FEM data in CAD*I ver 3.1 format.

Output file: An input file of ANSYS.

Features: This first version only transfers FEM data for static linear
analysis.

Extendability: Next versions will consider the data for modal and dynamic
analysis.

Author: Javier Mo1des, INITEC.

• '9

-
D.1 Introduction 211

Discussion of the CAD-FEM Data Transfer

D.1 Introduction

Computer Aided Design (CAD) and the Finite Element Method (FEM) are very
different fields. Their respective objectives are:

- Designing the shape of objects by means of geometrical data

Modelling the physical behaviour of objects under some given
conditions, (physical means: mechanical, thermal, etc). The
geometry is only a part of this modelling. It is very important but
not the essential matter.

The geometry is the cornmonbasis of these two techniques. Geometrical data
are used in FEM. In industry, FE analysis results validate a CAD design or
they imply changes to it. This requires exchanging data transformed to fit
for each technique. These transformations are currently made by experts in
a way that is almost an art. The FEM experts use some rules that come from
their knowledge, experience and intuition. These are the "Heuristic rules
of the CAD/FEM data transfer".

The geometric design and FEM techniques are computer aided. The exchange of
data between them requires software interfaces between packages. The
automation of this interfacing leads to the inclusion of rules in the
interface software. Regarding this objective the heuristic rules currently
are influenced too much by the human element. This task of the CAD*I
project is intended to make some initial considerations about how these
rules might be developed in an objective manner and included into the
interfaces.

212 Exchange of Product Analysis Data

-
D.2 CAD/FEM interchange environment 213

D.2 CAD/FEM interchange environment

The CAD and FEM techniques are parts of the whole design procedure of a
product. In this procedure the following phases can be considered [1]:

- Collection of Requirements: performance,
loads, environmental conditions, etc.

physical dimensions,

- Overall design sketch: process description, concepts, external
geometry, etc.

- Assembly structure: materials, components, modules, interfaces,
etc.

- Detailed design of new components: Detailed geometry of components,
load cases, analysis, results, verification, etc.

- Evaluation of prototypes: performance test results, dynamic
analysis, experimental verification, suggested changes, etc.

CAD and FEM participate and are influenced by several factors from each one
of these phases.

The FEM part itself consists of the following phases:

- Preparation of data: dimensioning criteria, external influences,·
functional description, design geometry and expected/estimated
results.

- Input data: element distribution and connectivity, element type and
geometry, material properties, boundary conditions, loads, analysis
cases and required output data.

- Calculation: Displacements, stresses, eigenfrequencies, etc.

- Evaluation: accuracy of the results, comparison with the expected
results, evaluation of the assumptions of the preparation and input
data phases, etc.

- Action: The results are translated to design suggestions and new
analysis may be necessary.

These phases are illustrated in Figure 15.

The CAD/FEM transfer is influenced by the five phases of FEM but it has
most importance in the preparation and input data phases [2). In these the
FEM preprocessor programs are currently used. The basic data manipulated by
these programs are geometric, as the CAD data. The geometric data for FEM
preprocessing is available either as

- a traditional drawing, (on paper media), or

- as a CAD data set, (on a magnetic tape or similar media)

...

-
214 Exchange of Product Analysis Data

The main subject of the CAD/FEM data exchange is the transfer of the CAD
data set into the geometric FEM preprocessor data. However, from this brief
explanation of the whole environment, it is obvious that a FEM model
includes many other factors besides the geometry. These also determine the
criteria to be taken into account in the development of the CAD/FEM
heuristic rules.

-
D.2 CAD/FEM interchange environment 215

Geometry model

Identification of
a roblem

Idealization

Transformation of
CAD model into

an appropriate FE model

Addition of extra
information

yes

Appropriate
design changes

yes

Other design
tasks

Figure 15. Connection between Modelling and Analysis.

...

yes

, -

216 Exchange of Product Analysis Data

...

-
D.3 The CAD*I approach to the CAD/FEM interface 217

D.3 The CAD*I approach to the CAD/FEM interface

The CAD to FEM interface has already been approached in the CAD*I project
[1 through 7]. It has been made considering two basic data references:

- The CAD*I neutral file as the source data of CAD models, and

- the "FEM preprocessor" programs to make all the FEM· model
preparation.

Three conceptual phases are considered to convert the CAD geometrical data
into FEM suitable data, these are:

- Geometric idealisation,

- mathematical transformation of geometric entities,

- discretisation of the model (mesh generation).

The geometric idealisation means the simplification of the complete CAD
model to be used by the FEM preprocessors. This is based on the approximate
nature of the FEM method. Different kinds of transformations of geometry
can be made to obtain the idealised model, all of them require human
intervention:

- removal of unnecessary details,

- idealisation of geometric dimensions,

- elimination of a part that is symmetrically equivalent to another.

The mathematical transformation of geometric entities means the
transformation of CAD entities into other equivalent and simpler ones which
are understandable to the FEM preprocessor. These transformations can be
made automatically by means of currently available software and some
interfaces have already been developed in the CAD*I Project. These apply
mathematical and geometrical transformations to the CAD entities of the
CAD*I neutral file to obtain the equivalent ones in different FEM
preprocessors, e.g.:

- NF2FG: interface to FAMbui1d of FEGS Ltd., written at RAL.

- GEOREAD: interface to the GFS-PROLOG of GfS mbH, written at GfS.

- NEH61: interface to PIGS of PAFEC Ltd, written at NEH.

- CADMOD: interface to MOD of MSC Corp., written at ERDISA.

With respect to the discretisation of the model, the mesh generation can be
done by modern mesh generating tools almost automatically. However, the
mesh is not the only step to reach a FEM model; as was shown in the
previous chapter, many other factors have to be added to this mesh to have
a model which will simulate the behaviour of the product under some given
set of conditions. These other factors and their influence on the geometric

...

-_
218 Exchange of Product Analysis Data

shape of the object cannot be dealt with automatically. The human
intervention to complete the FE data cannot be avoided. Very often, the
suitable FE model is not produced in the first attempt. The first results
of the analysis may show that modifications are necessary.

The division of the CAD/FEM transformation flow into these three phases can
give the impression that it can be easily structured and programmed. This
is not true because human intervention guides the process from the
beginning to the end; the experts have in mind all the phases of the whole
process and its environment. The model idealisation is affected by the mesh
that will be used and this depends on the loads, boundary conditions and
the other additional factors that are not present in the CAD model; also
the experts' background experience can introduce new considerations almost
"intuitively", and other ones that come from economical factors.

To reach a FEM model starting from a CAD one can be quite difficult;
although the CAD*I project has produced some CAD to FEM interfaces they are
limited to a particular aspect of the FEM model construction. Human
intervention, using the heuristic rules of the experts, is still essential
to handle other aspects.

...

-
D.4 Guidelines for FE modelling 219

D.4'Guidelines for FE modelling

D.4.l The complexities involved

Most finite element practitioners would agree that designing an efficient
finite element model for a given problem is as much an art governed by
intuition as a skill acquired by experience. Significantly, the most common
treatises on FE technique [8 through 12) do not include any section
specifically devoted to defining general rules or guidelines for this
purpose of developing efficient FE models; only Taig and the NAFEMS
institution [13) have published a set of guidelines to the FE practice in
general, that includes some subjective rules to take into account within FE
modelling.

I

Of course, there is a general rule that the finer the mesh the more
accurate the results, but it could lead to prohibitively high computation
costs, even if a solution could be found with the computer power available.

In order to come up with a cost effective FE model the experts weigh, among
others, the following factors:

a) the requirements of the solution,

b) the nature of the problem,

c) the mechanics of the problem,

d) the geometry or domain where the solution is sought,

e) the applied loads (or excitation functions) and constraints,

f) the analysis computer code.

However, these factors are not to be considered independent of one another,
as they are highly interrelated. These factors are to be taken into account
throughout the CAD to FEM data transformation.

A brief explanation on each one of these factors is given in the following
sub-chapters.

We shall speak in terms of displacements, stresses or forces as in the more
conventional structural analysis. The corresponding terms in thermal or
fluid mechanics should be understood.

D.4.l.1 The requirements of the solution

In most cases the goal of the finite element analysis is to validate a
design, and the designer has previously come up with a gross estimate of
what the safety margins are. If the design margins are expected to be
considerable, there is no need for a very detailed model: a coarse model,

...

220 Exchange of Product Analysis Data

as long as it is conservative, might do. The analyst must reme~ber,
however that finite elements normally yield solutions that are approx1mate
on the 'unconservative side, so enough conservatism must be introduced in
the model by some other means (neglecting to account for certain material
contributions, conservative boundary conditions, overestimating the loads,
etc.).

The opposite happens when the design margins are very narrow. In this case
the sources of conservatism must be carefully trimmed down, and the model
needs in turn to be very accurate so as not to smooth the stresses and miss
the peaks. One must keep in mind that the stress results for an elem~nt are
some sort of average values of the actual stresses within the element.

D.4.1.2 The nature of the problem

The analyst in charge of designing a FE model for a problem normally knows
beforehand the type of solution to be performed and designs the mesh
accordingly. A thermal problem, for example, is a well-behaved problem that
smooths out discontinuities. Some problems in fluid mechanics, on the other
hand, have a tendency to generate discontinuities in the solution that
cause large inaccuracies throughout the domain, unless the grid is well
refined in the affected areas. Also, whether the problem is static or
dynamic has important consequences on the modelling as we shall see in the
next subsection.

D.4.l.3 The mechanics of the problem

For a given problem, it is of advantage to assess previously how the
individual components of the system will contribute to the overall
solution. For example, if a structural engineer knows that a shell
component of a structure will be not subjected to significant bending in
regions far from the supports, then he will use large elements there where
the stress fields are expected to be of membrane type, and will concentrate
small elements near the supports in order to capture the local bending in
those regions.

Sometimes the critical areas can be easily pinpointed. Then the mesh needs
to be refined only in those regions, and a coarse grid might be sufficient
for adequately modelling the stiffnesses of the remaining parts of the
system.

The influence of the boundary conditions must also be considered. In fact,
sometimes the boundary conditions are the cause that complicates the
problem to the point of requiring numerical modelling. The first difficulty
with the boundary conditions frequently arises from the fact that they are
not easy to define even for the mathematically exact model. Once the
mathematical boundary conditions are established, they need to be
discretised. This discretisation is very much problem-dependent.

For static problems, the boundary conditions usually affect only the local
areas. The situation is very different for dynamic problems. In these, the
boundaries cause reflections and refractions in the wave propagation
patterns that significantly affect the response of the system. Adequate

...

-
D.4 Guidelines for FE modelling 221

modelling of the actual boundaries and the artificial ones is essential in

this case.

D.4.l.4 The geometry

The geometry of the region has a definite influence in the sizes and types
of the finite elements to be used in the model. However, in most cases it
is not required that the finite element model be a detailed replica of the
component under analysis. What counts, after all, is that the mechanical
behaviour of the component be modelled faithfully. For this reason
sometimes whole portions of the system can be either totally eliminated
from the model or represented by simple elements like springs and masses. A
knowledge of the substructuring techniques is of value to reduce the size
of the problem.

I
The geometric idealisation of the system may be much simpler than the
actual geometry, but this idealization must retain the essentials of the
mechanical behaviour. Discontinuities are always a source of concern.
Holes, for example, always have to be considered due to the stress
concentrations that occur around them. Only when small and located away
from the critical areas the holes may be omitted in the model and their
influence considered a posteriori by applying a stress intensification
factor to the computer results. Re-entrant corners or edges are another
source of errors in the approximation. Szabo [14] describes how it may be
more effective to round the sharp edges with cylindrical or spherical
fillets than to refine the mesh around.

When the component under analysis has symmetry properties the size of the
problem can be greatly reduced. For linear problems, asymmetric loads can
be dealt with by superposition of symmetric and asymmetric loading
conditions. It is necessary, however, to make separate analysis runs for
the two sets of boundary conditions, and, frequently, to double the number
of loading combinations. For small problems these burdens may offset the
advantage of the reduced computation cost.

For dynamic problems, it is often important to make use of the symmetry
properties. Otherwise round-off errors may result in several closely spaced
vibration frequencies where the real object has only one.

D.4.l.5 The loads

The type of loads acting on the model has to be considered when designing
the finite element mesh. Concentrated loads normally require refined
meshes, due to the steep stress gradients that the solution has to capture.
Well distributed loads over large portions of the structure, on the other
hand, normally allow for coarser meshes. One has to remember, also, that
concentrated loads will appear at the boundary nodes.

In addition, the nature of the load, static or dynamic, also has an
influence on the modelling. In dynamics it is important that the mesh size
be a fraction of the wave length for the numerical wave to propagate
correctly. In dynamic problems the masses, in addition to the stiffnesses,
have to be properly distributed. If the load frequencies are close to the

, -

222 Exchange of Product Analysis Data

resonant frequencies of the system it is important to deter~ine how sm~ll
changes in the model affect the model frequencies, to avoid overl.ookf.ng
resonant conditions.

0.4.1.6 The computer code

Finally, the library of elements available in the code to be used for the
analysis has an obvious influence in the design of the finite element mesh.
If the library contains high order elements, the analyst has the freedom to
decide on whether to use large high order elements or small simple
elements. Otherwise the choice is limited. This choice of h- or p-e1ements
with a coarse or refined mesh is never obvious and must be considered on a
case by case basis [15].

A thorough understanding of the capabilities and peculiarities of the code
library elements to be used in the model is essential.

* * *
The above discussion represents an effort to classify the rules for finite
element modelling in six groups or sets, however interrelated. It also
reveals the complexity of the task of defining heuristic rules to help the
practitioner develop efficient finite element models. Currently, however, a
lot of effort is being spent for this purpose, as is shown in the next
section.

D.4.2 Advanced FE Modelling.

D.4.2.1 The state of the art of automatic FE modelling

In recent times the advent of the microcomputer has spread the use of
finite elements into every corner of industrial manufacturing and design
and into every field of research and development. This phenomenon, in turn,
has caused the development of a large number of finite element computer
programs, some of very general applications, others orientated to very
specific tasks.

This abundance of finite element codes and the large number of users have
given rise to two types of concerns in the scientific community:

1) the quality assurance of the circulating computer programs, and,

2) the user qualification to operate the codes with knowledge, in
view of the complexity of the object.

The scientific community is addressing the concern on the reliability of
commercial finite element codes by issuing calls for the development of
standards in the performance of codes [16] and of the tests to subject them
to [17]. Calls are also made for standard methods of testing individual
finite element models [18] such as requesting them to pass the Iron's [19]
patch test [20].

. ...

-
D.4 Guidelines for FE modelling 223

The concern about finite element user's qualification is being aggressively
addressed by both the research community and industry. The quantity of
information required to assimilate for efficiently using finite element
codes amounts in many cases to thousands of pages. It is recognized,
moreover, that this information alone will not provide the user with the
skills that are normally acquired only through insight and experience. For
this reason a lot of work is currently being done towards the development
of expert systems that bring together the knowledge and experience of
finite element experts and make them available to the practitioner.

The expert system sought will help the user decide on the kind 'of the
analysis to be performed, the proper idealization of the geometry, the
discretisation parameters, the types and shapes of the elements to employ,
the anticipated cost of the run and the accuracy to expect from the model.
It will also monitor the progress in the development of the model, will
offer advice when requested and will reason about its own advice. In the
next step the expert system will be able to acquire information on the
geometry of the mechanical body from a CAD/CAM file and build the finite
element model with minimum user assistance.

Such a goal is not far-fetched. Actually, if such an expert system is not
available yet on a commercially useful basis, many prototypes have already
been developed and are being tested for the limited purpose of offering
assistance to the user.

Table 1 is a compilation of the various prototype expert systems described
in the literature. The best description of what one such prototype
encompasses is perhaps that of FEMOD [21], which is also the latest
reference found on the subject.

The most basic expert system consists of two modules [22]: a knowledge base
and an inference engine. The next upgrading is obtained by adding an
explanation facility that allows the system to reason about its own
decisions. The most sophisticated expert systems also incorporate a
knowledge acquisition facility as a fourth module.

Typically, an expert system is built with the help of a commercial shell.
These expert tools provide an empty knowledge base, a domain independent
inference engine and offer a user friendly interface for the builder to
develop the knowledge base [13].

...

224 Exchange of Product Analysis Data

TABLE 1

EXPERT SYSTEMS FOR FE MODELLING FOUND IN THE LITERATURE

NAME

SAGON

(Not given)

ESSDAN

SPERIL-I
and II

HI-RISE

FEASA

ADEPT

(Not given)

(Not given)

FEMOD

ESA

YEAR
[Ref.]

1978
[23]

1980
[24]

1985
[25]

1985
[26]

1985
[26]

1986
[27]

1986
[28]

1986
[29]

1987
[15]

1988
[21]

1988
[30]

FEATURES

- For users of the MARG code

- For USA Air Force

- For users of the FIPTIP code

- Structured damage assessment

- Design of hi-rise buildings

- Incorporates an explanation facility

- To be integrated with a CAD solid
modelling system

- Optimisation based on a weighted error
computation

- Incorporates empirical data base for
standard subregions

- Incorporates an explanation facility
Optimisation based on a-priori error
estimation

- For hp-e1ements

- Knowledge acquisition facility under
development

- For users of the EAL code

- For nonlinear analysis

...

-
D.4 Guidelines for FE modelling 225

D.4.2.2 An expert system for the CAD/FEM interface

Fro~ the last chapter, it can be concluded that a CAD/FEM interface that
incorporates the heuristic rules has to be an expert system. Some expert
systems have been developed along more or less the same lines. To
accomplish a good expert system, the most fundamental part is to define the
rules that will be incorporated into the knowledge base. As is known, this
is not a trivial point but the most difficult part of such systems. The
other part (inference engine) is already available on the market as a
standard piece of software.

To build the knowledge base of an expert system usually requires some FEM
experts and AI experts working together for a long period, in order to
express the human intuitiveness and skill as objective rules (often with a
weight or probability factor assigned to each one), structure them into
levels and hierarchies, and determine the non-structurable interconnections
between them if required.

The next chapter will attempt to offer a possible model of the knowledge
base for FE Modelling. It does not try to be exhaustive but to present a
possible method to form the first levels of a tree of decision rules and
show how this tree could integrate some FEM heuristic knowledge in a
network of objective rules, which appear mutually influenced almost from
the root levels.

To increase the precision of such a knowledge base, the concepts and their
connections must be deepened from this superficial level down to almost the
levels that belong to the intuition of the experts. But we judge that this
deepening can be useful before becoming infinite.

Other aspects of the expert system implementation are of minor importance
but they could connect the system to other tasks of the CAD*I project, as
for instance:

- The additional factors to build the model can be provided to the
expert system interactively, by means of a dialogue with the user
addressed by the system. Some of them could be included in the
original CAD model. This would reduce the human intervention. To
have this data together with the geometric model, the CAD system
should include advanced features (similar to those being studied by
WGS of CAD*I) which would allow the inclusion of loads, boundary
conditions, and other factors as part of the CAD description.

- The expert system should be completed with a module for automatic
mesh generation on 3D structures as part of a complete interface,
or it could just pass some instructions to a classical FEM
preprocessor program. The automatic mesh generation, following
user's instructions, is already provided by some FEM preprocessors,
in the most advanced ones only the mesh density has to be provided
by the user.

- Successful expert systems were achieved by a reduction of the scope
of the matter into well defined sub-fields. The first step on this
way could be to separate the human expertise fields (mechanical,
static, dynamic, modal, thermal, etc) in different modules .

...

--
226 Exchange of Product Analysis Data

- Some mechanism of reference from the geometric parts of the FE
model back to the original CADones have to be provided to allow
for recovering the original data during the modelling approximate
cycles.

, ..

-
D.S Heuristic rules for FE modelling 227

D.S. Heuristic rules for FE Modelling

The term heuristic is used in the theory of education as an adjective
regularly applied to the rules that a learner should discover for himself.
It is also used as a name to describe the method of solving problems by
inductive reasoning, by evaluating past experience and moving to a solution
by trial and error.

As described before, expert systems consist, basically, of an inference
engine that accesses a knowledge base. This knowledge base contains a large
number of heuristic rules that may be applied at anyone time to solving
the problem at hand. While the inference engine is problem independent, and
many are commercially available, the kernel of each expert system is its
own knowledge base.

I

If the rules that apply to a particular knowledge are essentially
heuristic, as most frequently they are, the way to formulate such a base
knowledge is to enlist the help of a domain expert. By the very heuristic
nature of the rules, however, it turns out to be very difficult to
formulate the knowledge base in a systematic way. Recent advances in
Artificial Intelligence are making it possible to develop knowledge
acquisition facilities to the expert systems that enable them to learn by
experience, as the domain experts do.

D.S.l Development of a model of heuristic rules set

In this section we will propose heuristic rules that apply to the domain
knowledge of finite element modelling in continuum mechanics. The
methodology will be such that each rule applies a certain weight factor to
the output variables.

The output variables for the problem of finite element modelling are taken.
to be the degrees of mesh refinement for the various regions of the model.
The way a model is to be subdivided into regions will also be a subject of
heuristic reasoning. The final weight for each variable will determine the
starting overall mesh density required for the particular region of the
model. With this information a potent mesh generator may be called into
action to develop a possible mesh pattern.

The method described below has the advantage of being very general, and
suitable to be incorporated into a knowledge acquisition module. As
adaptive mesh refinement codes are widely available today, it appears to be
at least conceptually simple to develop a statistical data base to optimize
the wei.ghts originally assigned to each output variable by each of the
heuristic rules invoked. This point will be reconsidered later.

D.S.l.l Heuristic Rule Set 1 (HRSl): Model regions

A general model will have regions of the following types:

, -

-
228 Exchange of Product Analysis Data

_ areas where concentrated loads are applied or other conditions are
present, such as geometry discontinuities, boundar~es, etc. which
make them candidates for stress concentrations (Reg~on 3),

- areas where stress gradients are expected to be moderate (Region
2),

- areas not included above with distributed loads applied (Region 1),

- areas with none of the above conditions (Region 0).

The model is thus divided in four regions where the output variable (mesh
refinement) will take on different values. In general, the higher the
number assigned the more complex the solution will be in that region and,
consequently, the mesh will be more refined there.

An Ita priori" determination of these regions may not be simple, as a
certain degree of expertise may be required. If automation of this task is
required, it will have to come from preliminary analyses that detect the
problem areas. (see Heuristic Rule Set 2, level 0).

, ..

-
D.s Heuristic rules for FE modelling 229

D.5.1.2 Heuristic Rule Set 2: Required overall accuracy

- Gross estimate suffices or preliminary analysis (0),

- standard accuracy (1),

- refined accuracy (2),

- high accuracy required (consistent with the limitations of the
finite element technique) (3).

Each one of the above requirements will impose a degree of refinement in
every region of the model. This is accomplished by the weights that each
requirement assigns to the output variable (mesh refinement index)
associated with each region. One proposed set of weights (dimensionless) is
shown in Table 2.

I

TABLE 2

Weights for modelling refinement assigned by Heuristic Rule Set 2

Required overall accuracy

Regions
of 0 1 2 3

Analysis

0 1. 1. 1. 2.

1 1. 2. 2. 3.

2 2. 3. 4. 5.

3 3. 5. 8. 10.

...

230 Exchange of Product Analysis Data

0.5.1.3 Heuristic Rule Set 3: Type of analysis

- Linear, static (time independent) (0),

- nonlinear static (1),

- linear dynamic (time dependent) (2),

- nonlinear dynamic (3).

The proposed weights are listed in Table 3.

TABLE 3

Weights for modelling refinement assigned by Heuristic Rule Set 3

Type of analysis

I
I Regions (*) (*)
I of 0 1 2 3
I Analysis
I
I
I 0 1. 1. 1. 1.
I
I
I
I 1 1. 1. 1. 1.
I
I
I
I 2 1. 2. 1. 2.
I
I
I
I 3 1. 3. l. 3.
I
I

(*)Use of the Guyan reduction technique may be required

."'

-
D.5 Heuristic rules for FE modelling 231

D.S.1.4 Heuristic Rule Set 4: Type of problem

- Heat transfer (0),

- structural mechanics (1),

- fluid mechanics (2).

The proposed weights are listed in Table 4.

TABLE 4

Weights for modelling refinement assigned by Heuristic Rule Set 4

Type of problem

Regions (*)
of 0 1 2

Analysis

0 1. 1. 3.

1 1. 2. 3.

2 2. 3. 5.

3 3. 5. 7.

(*) Regions of steep temperature gradients should be understood here

...

-
232 Exchange of Product Analysis Data

D.S.l.S Heuristic Rule Set 5: Geometry type

- Assembly of regular lD(*) elements (0),

- assembly of 2D(*) flat elements (1),

- assembly of 2D(*) non-flat elements (2),

- assembly of 3D(*) elements (3).

(*) It is recognised that elements will always be three-dimensional.
What we are trying to evaluate here is their suitability to be
represented by one-dimensionally dominant elements like slender
prisms (beams) or by thin plates (considered 2D elements).
Otherwise the complexity of the structure requires modelling the
behaviour independently in all three dimensions.

The weights assigned in each case are listed in Table 5.

-
D.5 Heuristic rules for FE modelling 233

TABLE 5

Weights for modelling refinement assigned by Heuristic Rule Set 5

I
I Geometry type
I
I I

Regions I (1) (2) (2,3)I
of I 0 1 2 I

Analysis I I
I I
I I

0 I 1. 1. 2. I
I I
I I
I I

1 I 1. 2. - 4. 4. - 8. I
I I
I I
I I

2 I 1. 4. - 8. 8. - 16. I
I I
I I
I I

3 I 1. 4. - 8. 8. - 16. I
I I
I I

(4)
3

1.

1.

2.

3.

(1) 1D elements are exact and therefore require no additional
refinement.

(2) Typically, the use of triangular elements will require twice as
much refinement as the use of quadrilateral elements. Shapes and
aspect ratios must also be considered.

(3) Double weight is assigned here for non-flat elements. This value.
however, should depend on the actual degree of warping in the
element.

(4) 3D element refinement cannot be increased at leisure due to the
high number of degrees of freedom of each of these elements.

...

234 Exchange of Product Analysis Data

D.5.1.6 Heuristic Rule Set 6: Geometry complexity

This set of rules somehow overlaps with HRSS and is also related to HRS1.
It is however considered independently in order to minimize the complexity
of the work. In the most general case, this set of rules should interact
with HRS6 to define a three dimensional matrix of weights.

- Highly regular distribution of elements; no singularities (*)
present (0),

- few singularities (*) present (1),

- many singularities (*) present (2),

(*) By singularities we mean complex details, boundaries, re-entrant
corners, etc.

The associated weights are listed in Table 6.

TABLE 6

Weights for modelling refinement assigned by Heuristic Rule Set 6

(**)
Geometry complexity

1
1
1
1

________________________ --------_1----------
1
1
1

__________________________ ----------1-----------
1
1
1

________________________ --------_1----------
1
1
1

________________________ --------_1----------
1
1
1

________________________ --------_1----------

Regions
of

Analysis
o 1

o 1.

1 1.

2 1.

3 1.

1.

1.

2.

4.

2

1.

2.

4.

8.

(**) In many cases the complexity of the geometry will impose rather
than require the degree of mesh refinement. One consideration
should be given to whether small geometrical details must be
represented or could be smoothed.

-
D.S Heuristic rules for FE modelling 235

D.5.1.7 Heuristic Rule Set 7: Load time distribution
(applicable to dynamic analysis only)

The effect of the load spatial distribution was already taken into account
when the model regions were defined. However, the definition of the model
regions defined for static analysis must be revised on account of the
following.

In dynamic analysis the masses become sources of loads. As a consequence,
when defining model regions based on external loads the distribution of
masses must be taken into account. Concentrated masses will give rise to
concentrated loads, etc. However, the need for accurate modelling of the
masses is not as acute as for the modelling of stiffnesses.

Besides the load spatial distribution, the discretisation in time must be
considered. In dynamic analysis the load time distribution affects
primarily the part of the analysis concerned with the time dimension
parameters, which is not considered here. However, it affects the
geometrical model as well. If waves are generated that propagate with a
velocity c (which is a function of the elastic constants), in order to
capture the wave propagation patterns properly it is required that the
spatial discretisation mesh size, h, be such that h<c*Dt, Dt being the time
increment used in the discretisation analysis.

This effect is independent of the model regions and the consequence of it
is that for region 0, that of mimimum discretisation refinement, the size
of the element be less than c*Dt, for the smallest Dt considered in the
analysis.

This heuristic rule will be implemented by requiring a maximum element size
in all regions of the model.

D.S.1.8 Heuristic Rule Set 8: Program analysis capabilities

Many programs nowadays combine the h- and p-element capabilities. The p
element allows for the use of higher order interpolation functions. In
general, a p-element will require a lower degree of mesh refinement,
proportional to its interpolation order. .

When the program to be used in the analysis incorporates p-elements, the
user has the choice of reducing the mesh refinement by increasing the
interpolation order accordingly.

The effect of this capability would be to apply a weight factor less than 1
there where the interpolation order is increased.

D.5.2 Suggestions on how the heuristic rules might be implemented in an
expert system

In the preceding subsection we have tried to identify the various sets of
heuristic rules that govern the design of a finite element model. We have
also proposed a methodology for a first order approximation to the problem
of quantifying the impact of the various heuristic rules on the final

...

-
236 Exchange of Product Analysis Data

model. This methodology consists of correlating the rules with some weight
factors assigned to the output variables, which are the mesh refinements at
each model region.

In the procedure proposed the effect of each set of heuristic rules has
been decoupled from the rest. The matrix of heuristic rule interdependence
has been diagonalised. In a more accurate approach this interdependence of
heuristic rules must be included. The following discussion is an attempt to
anticipate how this can be accomplished.

Finite element codes exist today which include the adaptive mesh refinement
capability. What the program does is to evaluate a certain norm of the
error in the approximation within each finite element. Where the error
estimate exceeds a certain threshold the program automatically refines the
interpolation. This can be accomplished by subdividing the mesh (h
elements), increasing the interpolation order (p-element), or both. This
type of finite element code may be a basic tool for 'breaking in' of expert
systems, as envisioned next.

In a first set of numerical experiments, the code with adaptive mesh
refinement capabilities may be used to come up with more realistic
estimates of the weights proposed in tables 2 through 6. By changing the
conditions that govern the heuristic rules one at a time and evaluating the
program final mesh one could determine the appropriate weights.

The interdependence of sets of heuristic rules may be evaluated by changing
two, or more, conditions simultaneously. By performing enough numerical
experiments a statistical data base could be established that allowed for
certain functions to be interpolated which could, in turn, be used in the
future for evaluating output weights taking into account the
interdependence of the heuristic rules.

...

-
D.6 The FEM to CAD interface 237

D.6 The FEM to CAD interface

This other side of the complete product design cycle has been studied in
less depth that the previous one. This does not mean the usual FE
postprocessing tasks where the FE results can be translated into graphics.
The geometric deformations of the object are not useful to the CAD design
directly. The FE results answer to the physical behaviour of the complete
system that was modelled, and they are expressed in terms of values of
physical variables, not just geometry.

How to translate the analysis results into modifications of the CAD design
is something made by human experts. Only the optimisation techniques, that
some FEM packages include, can be considered a first help to them.
Optimisation in FEM means that some of the input variables of the FE
modelling are left as parameters without a concrete value. Therefore the
results are expressed as a function of these parameters and, knowing the
required behaviour of the product one can estimate the optimum values of
the parametrised variables.

Optimisation is not enough to make automatically the way back from the
analysis results to the geometric design. Again the experts are
indispensable. Their knowledge, experience and intuition determine which
variables have to be parametrised or how the rough results have to be
interpreted. Also, the initial conditions and general environment of the
product design intervene here. A deep study of the relations between these
data will help to develop tools to make the FEM/CAD interface more or less
automatic. The impression is that the expert system technique will also
have to be used in this other side of the cycle.

...

••••

238 Exchangeof ProductAnalysisData

-
D.7 Conclusions 239

D.7 Conclusions

The report describes an approach to the CAD/FEM interface with a possibly
automatic FEM modeller which takes its basic input data from a CAD
geometric model. Many factors have to be taken into account besides the
sole geometry. They are currently handled by human experts who use
heuristic rules, i.e., rules from their knowledge, experience, and
intuition. The interrelations among these factors, and the transformations
of the geometric model that they mean, are very complex and the classical
software does not seem useful.

The expert system technique appears to be the only means to include
heuristic transformations in an interface between CAD and FEM programs.
Some expert systems have already been developed, a general review of the
state of the art of this matter has been shown.

A structured set of heuristic rules for FE modelling and a method to
include them in a future intelligent interface have been offered as an
example. This represents a first view of a knowledge base. Achieving a
more complete description would require a team of FEM and AI experts to
work intensively on this problem.

, -..•

240 Exchange of Product Analysis Data

-
References 241

References

[1] T. Ladefoged and A.M. Spliid, "Scheme for a Report Concerning the Task
Heuristic Rules of the CAD/FEM Interface," report CAD*I.WG6 .NEH.005 .88,
NEH, Broendby, Denmark. (1988).

[2] C.J. Petersen, H. Kullmann, B. Pa1strom and A.M. Spliid, "Design -
Finite Element Analysis - Design," report CAD*I.WG2jWG6-7.NEH.001.86, NEH,
Broendby, Denmark. (1986).

[3] T. Ladefoged and A.M. Spliid, "Relations Between CAD Models and FEM
Models," report CAD*I.WG6 .NEH.010.87, NEH, Broendby, Denmark. (1987).

[4] M. Peralta and L. Delgado, "Approaching the CAD/FEM Interface," report
CAD*I.WG6.ERDISA.003.87, ERDISA, Madrid, Spain. (1987).

[5] M. Peralta
Preprocessors,"
(1987).

and L. Delgado, "Geometric Features
report CAD*I.WG6.ERDISA.002.87, ERDISA,

of Current FEM
Madrid, Spain.

[6] M. Mead, "Interfacing Geometry to FEM Using CAD*I. Examples of
Practical Problems," report CAD*I.WG6.RAL.009.87 , RAL, Chilton, Didcot,
Oxon, U.K. (1987).

[7] H. He1penstein, "Some Rules for Data Transformation from CAD to FEM,1t
report CAD*I.GfS.WG6.007.88, GfS, Aachen, F.R.G. (1988).

[8] O.C. Zienkiewicz, "The Finite Element Method," 3rd ed., McGraw-Hill,
1977 .

[9] R.H. Gallager, "Finite Element Analysis Fundamentals," Prentice-Hall,
1975.

[10] K.J. Bathe, "Ff.nd te Element Procedures in Engineering Analysis,"
Prentice-Hall, 1982.

[11] B. Irons and S. Ahmad, "Techniques of Finite Elements," Ellis Horwood,
1980.

[12] T.J.R. Hughes, "The Finite Element Method. Linear Static and Dynamic
Finite Element Analysis," Prentice-Hall, 1987.

[13] I.C. Taig, "NAFEMS Guidelines
Department of Trade Industry, National
Kilbride, Glasgow, Scotland. (1984).

to Finite Element Practice,"
Engineering Laboratory, East

[14] B.A. Szabo, "Geometric Idealizations in Finite Element Computations,"
Communications in Applied Numerical Methods, Vo1.4, 393-400 (1988).

[15] E. Rank and 1. Babuska, "An Expert System for the Optimal Mesh Design
in the hp-Version of the Finite Element Method," International Journal for
Numerical Methods in Engineering, Vol. 24, 2087-2106 (1987).

--
242 Exchange of Product Analysis Data

[16] W.M.Mair, "The Objectives of the National Agency for Finite Element
Methods and Standards," Computers and Structures, Vol.21, 875-879 (1985).

[17] R.H. Macneal and R.L. Harder, "A Proposes Standard Set of Problems to
Test Finite Element Accuracy," Finite Elements in Analysis and Design, Vol.
1, 3-20 (1985).

[18] H.D. Hibbit, "Some Issues Associated with the Validation of Finite
Element Analysis," Finite Elements in Analysis and Design, Vol. 2, 119-124
(1986).

[19] B.M.Irons, "Engineering Applications of Numerical Integration in
Stiffness Methods," AIAA J., Vol. 4, 2035-2037 (1966).

[20] R.L. Taylor, J.C. Simo, O.C. Zienkiewicz and C.H. Chan, "The Patch
Test - A Condition for Assessing FEM Convergence," International Journal
for Numerical Methods in Engineering, Vol. 22, 39-62 (1986).

[21] J .L. Chen and P. Haje1a, "FEMOD: A Consultative Expert System for
Finite Element Modelling," Computers and Structures, Vol. 29 99-109 (1988).

,
1

[24] J.M. Rivlin, M.B. Hsu and P.V. Marca1, "Knowledge Based Consultation
for Finite Element Structural Analysis," U.S Air Force Flight Dynamics
Laboratory Report AFWAL-TR-80-3069, Wright-Paterson Air Force Base, Ohio
(1980).

[22] C.L. Dym, "Expert Systems. New Approaches to Computer Aided
Engineering," Engineering with Computers, vol. 1, 9-25 (1985).

[23] J. Bennett, L. Creart, R. Englemore and R. Melosh, "SACON: a Knowledge
Based Consultant for Structural Analysis," Technical report STAN-CS-78-699,
Standford University (1978).

[25] S.C.-Y. Lu, "A Consultative Expert System for Finite Element Modelling
of Strip Drawing," presented at the XIII North American Manufacturing
Research Conference, University of California at Berkeley, (May 1985).

l
I
I
I

[27] I.C. Taig, "Expert Aids to Finite Element System Applications,"
Proceedings of the 1st. International Conference, Southampton University,
U.K. (edited by D.Sriram and R. Adey) , 759-770 (1986).

[26] H. Furuta, K.S. Tu and J.T.P. Yao, "Structural Engineering
Applications of Expert Systems," Computer Aided Design, vol. 17, 410-420
(1985).

[28] R.H. Holt and U.V.L. Narayana, "Adding Intelligence to Finite Element
Modelling," proceedings of the Expert Systems in Government Symposium,
(edited by K.N. Karna, K. Parasaye and B.G. Silverman), pp. 326-337, IEEE,
New York (1986).

[29] A. Kissi1 and H .A. Kamel, "An Expert System Finite Element Modeler,"
Proceedings of the 1st. International Conference, Southampton University,
U.K. (edited by D.Sriram and R. Adey) , 1179-1186 (1986).

[30] B.W.R. Forde and S.F. Stiemer, "ESA: Expert Structural Analysis for
Engineers," technical note in Computers and Structures, Vol. 29, 171-174
(1988).

••••

References 243

[31] E.G. Schlechtendahl, "Specification of a CAD*I Neutral File for CAD
Geometry" Version 3.2, Springer-Verlag, 1987.

••••

244 Exchangeof ProductAnalysisData

