
Seier .ce and Engineering Research Council

~ Rutherford Appleton Laboratory
~ CHILTON, DIDCOT, aXON, OX11oax
...J
~ RAL-84-068

Formal Specification and Graphics Software

o A Duce E V C Fielding L S Marshall

August 1984

•

-
i
I

Formal Specification and Graphics Software

DA Duce, Eve Fielding

Rutherford Appleton Laboratory. Chilton. Didcot. Oxon OXII OQX

L SMarshall

Department of Computer Science. University of Manchester. Manchester M13 9PL

•

1. Introduction
This paper examines the application of one particular technique for formal
specification. the Vienna Development Method [1.2]. to a small part of GKS[3.4].
the description of implicit regeneration. From the specification. properties of
implicit regeneration are formulated and proved. showing that the behaviour
conforms to that expected intuitively.

2. Formal Specification
The purpose of a specification is to state what a system is to do. not how it is to
work. One starting point is to consider a system as a "black box" - whose inter
nal workings cannot be observed and to describe the system in terms of the
relationship between input and output. There are. however. limitations to this
approach - often the output depends not only on the last input received. but
also on the internal state of the system when that input arrives. It is not always
realistic to specify the output sequence in terms of all possible input sequences.
The solution is to introduce the notion of internal state. but in a carefully con
trolled way so that only the essential characteristics of the state are modelled.
This is done through abstract data types. a data type characterized only by the
operations allowed over it.
The axiomatic or algebraic methods are one approach to the definition of such
data types [5.6]. The aim of an algebraic specificaticn is to define abstract data
types without saying anything about representations of the associated classes of
objects. This is done by giving a set of axioms which the operations over the
dala type must satisfy. Such specifications are termed property-oriented
specifications. A good introduction to this method of specifying abstract dala
types appears in [7]. To give the flavour of this approach. we consider the
specification of a UFOstack.

-
- 2 -

type Stack

operators
Newstack : ..•Stack

Push : Stack x Element ..•Stack

Inspect : Stack ..•Element

Remove : Stack ..•Stack

Is_Empty : Stack ..•Boolean

axioms

Remove(Push (st. el }) = st

Inspect (Push (st. el)} = el

Is_Empty (Push (st. el}) = false

•

end type

The operations for manipulating a stack are: Newstack which produces an
instance of the empty stack. Push which adds an element to a stack and returns
a new stack. Inspect which returns the top element of a stack (without altering
the stack). Remove which discards the top element of a stack and returns the
resulting stack. and Is_Empty which tests if a stack is empty. The types of these
operations are shown in the section of the specification headed operatora. Note
that the possibility of errors is ignored completely.
Axioms such as those under the heading axioms can completely characterize
Stack without committing to a model. Note that the axiom set above is not
complete.
An alternative approach is to provide a model for the abstract data type in
terms of mathematically tractable entities, for example, sets, lists and map
pings. This is termed the constructive or model-based approa~h. This paper
describes and applies the constructive method known as the Vienna Develop
ment Method (VDM).The method and applications are described. in delail 1ft

[1.2.8].
Continuing with the UFO stack example, a stack could be modelled as a list of
elements. In VDMthis is written as:

Stack = list of Element

which defines the data type Stack to be a list of entities of type Element.
Operations then have the general form:

Inputs x State •• Outputs x State'

i.e. operations can both modify the state and produce outputs. The effect of
operations is described in terms of their inputs. outputs and effect on the
underlying state. VDMconveniently describes these effects by two predicates. a
pre-condition and a post-condition. The former is a predicate over Inputs and
State which defines the conditions under which the operation will produce a
valid result. In other words. the pre-condition restricts the domain of the
operation. thus making it a partial function. The post-condition is a predicate
over Inputs. Outputs. State (the initial state) and State' (the final state)

I
-+
I

-
--=-- I

I

-3-

defining the effect of the operation. Nowconsider the specification of the Push
operation for Stack in this approach.

Push :element :Element
ext wr stack :Stack
post stack' = element ::stack

The operation takes a single argument. element. of type Element. The ext state
ment is used to indicate what components of the state are accessed and perhaps
altered by the operation. rd indicates read-only access and wr write access.
Here the state has only one component. a variable named stack of type Stack.
which is modified by the Push operation. post is the post-condition for the
operation which says that the effect of the operation is to add element to the
head of stack. (In this context '::' is used in infix form to denote the operator
cons .)
The definitions of the other operations will not be described here. as they follow
fairly readily. Amore detailed explanation of the notation used in VDMis given in
section 4.2.
The specification of the data type provides a way of determining what the effects
of its operations will be. by showing how to derive them. It is likely that a realiza
tion built in the same way 'Wouldbe inefficient in that the operations would take
a long time to compute. except on hardware directly supporting the data types
(e.g. lists. sets and maps) used in the specification.
Parallels exist between axiomatic and constructive approaches in mathematics.
Agood example is group theory. Abstract groups can be elegantly described by
a small number of axioms. For some parts of group theory. the most con
venient exposition is in terms of the axiomatic description. An alternative way
to discuss the structure of an abstract group is in terms of its representation
by. say. matrices. For some areas of the theory. representations rather than
axioms are the most convenient exposition. The same is true in the definition of
abstract data types - some are more conveniently discussed in an algebraic
style. others in a constructive style. Each has its own insights to offer and limi-
tations to bear.
This paper uses the constructive approach. Previous work on the specification
of graphiCS software seems to have been based on the algebraic approach _[9. 5].
Th@ use of the constructive approach is explored here ClnQ it i~ felt ttuat It nas
produced a clear. readable specification of the problem which serves well as a
basis from which to reason about the behaviour of the system. It is hoped that
good insights into the structure of the problem have been offered and a descrip
tion produced which is intuitively appealing to graphics workers.

•

3. The Problem
The specification of a simplified version of implicit regeneration in GKS is now
considered.
The appearance of output primitives in GKS is determined by their aspects. For
the remainder of this paper we will restrict ourselves to one output primitive.
polyline. The aspects of a polyline are:

linetype
linewidth scale factor
polyline colour index

(

-
•

-4-

The values of these aspects are determined by a single attribute. the polyline
index. Polyline index is in fact an index into a table. the polyline bundle table.
each entry in which specifies values for each of the aspects.
The physical output device on which the pictures will be displayed is presented
to the applications programmer through a workstation. A workstation
represents zero or one display surfaces and zero or more input devices. The
point of interest here is that each workstation has its o.••.n polyline bundle table.
Thus the appearance of a given polyline can be different on different worksta
tions. in that the values of the aspects may be set differently.
GKSprovides the function:

SETPOLYUNEREPRESENTATION(WKID.PU. LTYPE.LWIDTH.COU)

where the arguments are:
WKID
PU
LTYPE
LWIDTH
COLI

•
workstation identifier
polyline index
linetype
linewidth scale factor
colour index

Consider the program fragment:
SETPOLYUNEREPRESENTATION(1. 1. 1. 1.0. 1)
SETPOLYUNEINDEX(1)
POLYUNE(N,x. Y)

The polyline defined by the N data points in the arrays X. Y will be drawn wilh
polyline index 1. which corresponds to linetype 1. linewidth scale faclor 1•.0 and
colour index 1 on workslation 1.
Whal happens if lhe representation of polyline index 1 on workslation 1 is sub
sequently changed?
Before this question is answered. two digressions are made. the first to discuss
picture structuring in GKS and the second to discuss the classes of device
hardware that GKShas to address.

9.1. Picture Structure
Output primitives may be grouped together in segments. Pictures may thus
consist of primitives and segments. This leads lo the silualion depicled below.

Picture to be
Displayed

Primitives Inside
Segments

I

Primitives Outside
Segments

Display

-
j,

I

-5-

There are cases in GKSwhere primitives inside segments are treated differently
from primitives outside segments; an exa.mple of this follows shortly.
Some mention needs to be made here of coordinate systems. Three coordinate
systems are discernible in GKS:

world coordinates
normalized device coordinates
device coordinates

World coordinates are the cartesian coordinate system in which the coordinates
of output primitives are specified. These are transformed to an intermediate
cartesian coordinate system called normalized device coordinates by a normali
zation transformation. which is a standard window-to-viewport transformation.
Normalized device coordinates are restricted to the unit square. [0. 1] x [0. 1].
The mapping from normalized device coordinates to the coordinate system of
the output device (device coordinates) is controlled by a second window-to
viewport transformation. the workstation transformation.
Each workstation has a segment store in which primitives in segments are held.
The coordinates of these primitives are stored in normalized device coordinates.

•

3.2. DeviceHardware
For the present purposes. two classes of graphics device are distinguished:
1. those which allow the representation of a component of a picture to be

changed dynamically:
2. those which do not.
Consider changing the colour of a polyline. If the output device is, say a .colour
raster scan display, the colour of the polyline may be changed dynamically by
changing the colour of the pixels that comprise the polyline. If the output dev
ice is. say. a pen plotter. the colour can only be 'changed' by advancing the
frame and redrawing the polyline using a different pen. The idea should be
clear. even if the example is slightly contrived.

3.3. Implicit Regeneration
We return to the question posed at the beginning of section 3. If 8 polylin@
representation is changed. what happens to the appearance of polyline:>Cllready
drawn with the old representation? The GKSmodel stipulates that their appear
ance should change.
For devices of class (1) above. this poses no problems since appearance may be
changed dynamically. For devices of class (2) appearance can only be altered by
redrawing the complete picture from a stored representation. The only stored
representation in GKS.is the representation of the picture in segment storage.
Since. however. not all of the picture may be stored in segment storage (primi
tives outside segments are not so stored). parts of the picture may be lost when
this is done. When a change to the picture is requested, the workstation checks
if the change can be made dynamically. if so. the change is made. If not. an
implicit regeneration is signalled. GKSprovides control over when the regenera
tion will occur. through the setting of implicit regeneration mode. The possible
values are:

-I
I"

-6-

SUPPRESSED

regeneration will be performed immediately

regeneration will be postponed until one of
the functions REDRAWALL SEGMENTSON
WORKSTATION,UPDATE WORKSTATIONor
CLOSEWORKSTATIONis invoked.

ALLOWED

For each possible change that can potentially require a regeneration each
workstation has a flag to indicate whether the change may be performed
immediately (lMM)or requires a regeneration (IRG).
The next section addresses the problem of how implicit regeneration can be
specified.

..
4. Overview ot the Specification ot a Simplified Model of Regeneration

4.1. Simplifications
For illustrative purposes the following simplifications are made:
1. The only output primitive is polyline.
2. Only a single workstation is considered.
3. Only changes in polyline representation are considered. Thus for example,

the workstation transformation is regarded as fixed.
4. The polyline bundle is restricted to line type and linewidth scale factor.

Colour is ignored.
5. Segment attributes are not considered.
6. The functions UPDATEWORKSTATIONand CLOSEWORKSTATIONare not con-

sidered.
7. Buffering of picture changes and deferral mode are ignored.
8. Initialization of the state is not described, as this is straightforward.
9. World coordinates, individual attributes and clipping are ignored.
For this example only REDRAWALLSEGMENTSON WORKSTATIONneed be con
sidered.

4.2. VDM
Before the specification is described in detail, the notation used in the following
sections is summarized.
A VDMspecification has three components:
(a) a model of the state;
(b) invariants on the state;
(c) operations over the state.

4.2.1. Notation used in describing the state
Aparticular state is modelled by a structured object, whose components may be
basic objects (integers, reals etc.), or other structured objects ultimately built
using objects of these types. Sets, lists and mappings may also be used in the
construction process. A mapping is similar to a function except that it has a
(possibly sparse) finite domain and the pairing of domain and range elements is
constructed rather than being defined by an expression. Sets and lists should
not require further explanation. For further details, see [1].

i-r

-
I
I

-7-

The first section of a VOMspecification describes the structure of the class of
objects representing the state. If X is some class of objects, objects belonging to
this class are said to have type X.
In the simplest case, a state has only one component. VDMthen uses the equal
ity sign '='. For example:

NDC_PictuTe = list of Component

defines the type NDC_Picture to be a list, each of whose elements is an object of
type Component. The definition of the type Component might be:

Component = Segment 1 NDC_Polyline

meaning that Component is either ('I' denotes alternation) of type Segment or
NDC_Polyline.
More oflen a slale is a composite object. consisting of lhe Carlesian producl of
several componenls. VOMuses lhe sign '::' to define a composite object. For
example:

GKS :: ndcJJicture : NDC_Picture

dc_picture : DC_Picture

polyLine_bundLe_table : PoLyLine_BundLe_Table

defines an object of type GKS to have three components, named ndc_picture (of
type NDC_Picture), dc_picture (of type DC_Picture) and polyline_bundle_table
(of type Polyline_Bundle_Table). Ascan be seen, componenl definitions lake the
form:

•

component_name : Component_Type

The convention adopted is that type names have initial upper case letters and
the names of components of composite objects and of specific instances of
objects are the lower case equivalents of their type names.
An example of how to construct composite objects and access their components
is given later.
The type PolyLine_BundLe_Table is defined as:

Polyline_Bundle_Table = map Polyline_lndez to Bundle

which introduces the VOMnotation for a mapping.

4.2.2. Notation used in describing the invariants
Data type invariants are constraints on the components of the state which must
be preserved by the operations. They restrict the class of states to a valid sub
set.
The invariants which are necessary over the state GKS are listed in section 5.2.
The notation used in expressing these predicates will not be discussed as it is
self -explana tory.

4.2.3. Notation used in describing the operations
To illustrate the notation for defining operations consider the definition of
add_polyLine. This is: .

add_polyLine : (ndc_points : NDC_Points))((poLyline_index: Polyline_lndex)

ext rd polyline_bundle_table : Polyline_Bundle_Table

wr ndc_picture : NDC_Picture

-
- B -

wr dc_picture :DC_Picture
pre polyline_indez e: dom poLyLine_bundLe_tabLe
post ndc_picture' = < ndc_points, polyline_indez > :: ndc_picture "

let e = < transform (ndc_points), polyline_index,

polyline_bundLe_table (polyline_indez) >
in dc_picture' = e :: dc_picture

The first line of the definition states that the arguments of add_polyline are of
types NDC_Points and PolyLine_lndez. The next three lines define the com
ponents of the state used by the operation. The state here is actually the state
CKS introduced in section 4.2.1; when referring to a component of CKS the
notation that should strictly be used is:

CKS.nde_Pieture
However, this becomes cumbersome and so the first component of the name for
the top level components is dropped and this is written as:

nde _picture

Only the components of the state (and their types) actually used in the
definition of the operation need to be introduced in the ext statement. rd indi
cates read only access and wr indicates write access. Thereafter,
component_name may be used to refer to that component of the state.
The pre-condition says that the polyline index supplied as argument must be
valid, i.e. within the domain of the polyline bundle table mapping. The operator
dom applied to a mapping or function yields its domain.
The post-condition says that the effect of the operation is to add the list of
points and polyline index to the ndc_picture, and the representation of the
polyline (linewidth, linetype and list of points) to the dc_picture. '::' is used in
infix form to denote the operator cons. The infix operator 'II' denotes append.
polyline_bundLe_tabLe (poLyLine_indez) illustrate,s the appl~cation o~ the map
ping of type Polyline_Bundle_Table to an object from lt~ dcmain. of t~pe
PolyLine_lndez, which produces a result of type Bundle. ThIS follows funcl10n
application.
An example of the notation for constructing a composite object is:

<nd.c_points, polyline_indez >
The constructed object is of type NDC_Polyline having two components:
ndc_points of type NDC_Points, and polyLine_indez, of type Polyline_lndez.
An example of the notation for accessing the components of a composite object
is the let clause:

let <ndc_points, poLyline_indez > = nd.c_polyline

Here the names ndc_points and polyline_indez are declared to refer to the two
components of the object ndc_polyline .
Finally, an example of the construction of a mapping is shown. Mappings are
constructed using the operator '+'. Thus:

polyline_bundle_table = polyline_bundle_table + [polyline_indez ~ bundle]
adds [poLyline_indez ~ bundle] to the mapping, overriding any previous value

-
1
.L
t --

-9-

associated with polyline_index.

4.3. Description of the State
The operations that are defined later. rely on the concepts of:

1. the picture in NDCspace;
2. the segment store;
3. the picture in DCspace;
4. the polyline bundle table.

Following the description of picture structure in section 3.1 the following types
are defined:

NDC_Picture = list or Component

Component = Segment I NDC_Polyline
Segment = list or NDC_Polyline

A polyline in NDC-space·is represented as a list of components and a polyline
index (a natural number). This is written:

NDC_Polyline :: ndc_points : NDC_Points

polyline_index: Polyline_lndex

NDC_Points = list or NDC_Point
NDC_Point :: x : R

y:R

Polyline_lndex : N

The segment store is represented as:

Segment_Store = list or Segment

At the DCpicture level. the appearance of a polyline is bound to the polyline.
Thus at the DC level a polyline is described by a list of points. a linetype and
linewidth. DC pictures are represented as:

DC_Picture = lisl or DC_Polyline
DC_Polyline :: dc_points : DC_Points

polyline_index : Polyline_lndex

bundle : Bundle

DC_Points = lisl or DC_Point
DC_Point :: x : R

y:R

Bundle :: line type : Linetype

linewidth : Linewidth

Linetype : N

Linewidth : R

•

This DCpicture description has been designed so that it is possible to compare
the equality of pictures at the DClevel. It is a representation of the essential

1~
i

--,
- 10 -

features of the displayed picture (list of points, linetype. linewidth). Two pic
tures are said to be equal if they contain exactly the same polylines (in turn
implying that corresponding polylines have equal lists of potn t.s. line types and
linewidths).
Note that this design is not concerned with modelling particular physical display
devices; some devices for example would actually represent the segment struc
ture at the device level (e.g. a refresh display driven from a display file). others
would have no stored representation whatsoever. other than the picture on the
physical display surface (e.g. a pen plotter). For our present purposes it is not
necessary to discuss the segment structure of a picture below NDClevel. For
other purposes (e.g. discussion of input). it will probably be necessary to model
device level segment storage. However. the analysis presented here will not be
affected. since a segmented DCpicture model can be mapped down to the non
segmented model used here.
The polyline bundle table is modelled as a mapping from a polyline index to a
bundle:

Polyline_Bundle_Table = map Polyline_lndex to Bwndle

Finally. two flags are required.

Implicit_Regeneration = IALLOWED.SUPPRESSEDI
which specifies the setting of implicit regeneration mode. and

Bundle_llodification_Flag = IIMM. IRG f
which specifies whether or not dynamic modification is possible for a bundle
representation change.
The complete state is listed in section 5.1.

4.4. Operations
The following operations over this state are considered:

add_polyline
add_segment
redraw _all_segments
set_poLyline_representa.tion

The first two operations do not correspond directly to anyone ot the OKS func
tions. They are. rather. abstractions of GKS functions which help to clarify our
presentation. The operation add_polyline is roughly equivalent to:

SET POLYUNE INDEX(... }
POLYUNE(...)

..
and add_segment to:

CREATESEGMENT(.., }
SET POLYUNE INDEX(... }
POLYUNE('")

SET POLYUNE INDEX(...)
POLYUNE(...)

CLOSESEGMENT(.., }

I+r
i

-
_l
I

- 11 -

Full specifications of the operations are given in section 5.3.

5. The Complete Specification

5.1. GKSSlate
The complete state is:
CKS :: ndc_picture : NDC_Picture

dc_picture : DC_Picture

segment_store : Segment_Store

polyline_bundle_table : Polyline_Bundle_Table

bundle_modification J lag : Bundle _Modif ication_Flag

implicit_regeneration : Implicit_Regeneration

•

NDC_Picture = list of Component

Component = Segment I NDC_Polyline
Segment = list of NDC_PoLyline
NDC_Polyline :: ndc_points : NDC_Points

polyline_index : Polyline_lnde%

NDC_POints = list of NDC_Point
NDC_Point :: % : R

y:R

Polyline_lnde% : N

DC Picture = list of DC Polyline- -
DC_Polyline :: dc_points : DC_Points

polyline_index : PolylineJndex

bundle : Bundle

DC_Points = list of DC_Point
DC_Point :: % : R

y:R

Bundle :: linetype : Linetype

lineuruith. :Linewidth
Linetype : N

Limeuruith. : R

-
- 12 - .

Segment_StOTe = list of Segment
Polyline_BundLe_Table = map Polyline_lndex to Bundle

Bundle_Modification_Flag = lIRe. IMMI
Implicit_Regeneration = IALLOWED, SUPPRESSED ~

5.2. Invariants

Auxiliary DeCinitions
The functions defined below ore used in the specification of the invariants. The
symbol '~' denotes 'is defined to be'.

flatten: list of (list I atom) .• list

flatten(l) ~ if 1 = < > then < >
else if atom (hd l) then hd 1 :: flatten (Ul)

else hd L IIfLatten (tl l)

•

is_subList_of : lisl x lisl .• Boolean

LI is_sublist_of lz ~ len LI , len lz A

elems LI , elems l2 A

(Vi, j Hi, j e: 11 .. len 1d Ai. i)
«3 m, n Hm, n e: 11 .. len l21 A m ~n)

(ll(i) = lz(m) A ll(j) = lz(n) A

i < j => m < n Ai> j => m > n »

ma.p_to_NDC :DC_Picture .• list of NDC_PolyLine

ma.p_to_NDC(dcJJicture) ~
if dc_picture = < > lhen < >
else let <dc_points, polyline_index, bundle> = hd dc_pictu.re

and e = «transform. -I (dc_points), polyline_inde% >
in e :: map_to_NDC (ll dCJJicture)

tra.nsform :NDC_Points .• DC_Points

In addition invariant (2) uses the infix operator' r', which given a list and a set
produces a list whose members are those elements of the original list (in the
same order) which are contained in the set, i.e. it is a restriction operator.
r : List x Set .• List

l r s ~ if 1 = <> then <>
else if hd L e:s lhen hd L :: (u l r s)

else tll r s

-I
-'"i

- 13 -

Invariant (1)
Allpolyline indices used in the NDC picture must be within the domain of the
polyline bundle table:
(..•.polyline_index)(< . polyline_index> € elems flatten (ndc_j)icture)) (1)

(polyline_index € dom polyline_bundLe_table)

Invariant (2)
Allsegments in the NDC picture must be stored in the segment store:
segment_store = nde_pieture r [c lee: elems nde_picture "Segment (c H (2)

Invariant (3)
Allpoint-list (after inverse transformation) and polyline index pairs which are in
the de_picture are also in the ndc_pieture :
map_to_NDC (de_picture) is_sublist_of flatten (nde_picture) (3)

•

Invariant (4)
All point-list (after transformation) and polyline index pairs in segment_store
are also contained in the de_pieture :
flatten (segment_store) is_sublist_of map_to_NDC(de_pieture) (4)

Invariant (5)
NDC coordinates are in the range [0. 1] x [0. 1]:

let <x. y> = NDC_Point in

0.0 =a x =a 1.0A 0.0 =a y =a 1.0 (5)

5.3. Operations

add_j)oLyLine : (ndc_points :NDC_Points) x (polyline_index :Polyline_lndex)

ext rd polyline_bundLe_table :PolyLine_Bu:ndle_Table

wr ndc_picture :NDC_Picture
wr dc_picture :DC_Picture

pre polyline_index € dom polyline_bundLe_table
post ndc_picture' = < ndc_points. poLyline_index > :: ndc_picture A

let e = < transform (ndc_points). polyline_index.
polyline_bundle_table (polyline_index) >

in dc_picture' = e ::dc_picture

,-
- 14 -

add_segment: segment: Segment

ext rd polyline_bundle_table : Polyline_Bundle_Table

wr ndc_pictuTe : NDC_PictuTe

wr segment_stoTe : Segment_StoTe

WT dc_pictuTe : DC_PictuTe

pre ('Vpolyline_index)(< ,polyline_index > e: elems segment)

(polyline_index e: dom polyline_bundle_table)

post ndc_pictuTe' = segment :: ndc_pictuTe "

segment_stoTe' = segment :: segment_stoTe "

dc_pictuTe' = applypbt (segment, polyline_bundle_table) IIdc_pictuTe •

where applypbt : Segment)(Polyline_Bundle_Table ..•DC_PictuTe

applypbt (segment, polyline_bundle_table) .i

if segment = < > then < >
else let <ndc_points, polyline_index> = hd segment

and e = «transf orm. (ndc_points). polyline_index,

polyline_bundle_table (polyline_index»

in e :: applypbt (tl segment. polyline_bundle_table)

redrau:_all_segments

ext rd segment_stoTe : Segment_StoTe

rd polyline_bundle_table : Polyline_Bundle_Table

wr dc_pictuTe : DC_PictuTe

post dc_pictuTe' = reqenerate (segment_store. polyline_bundle_table)

where regeneTate : Segment_Store)(Polyline_8u.ncJ.'e_Ta.tJ'e..•DC_f'l,'lJ,Te

TegeneTa.te(segment_stoTe . polyline_bundle_table) .i

if segment_stoTe = < > then < >
else applypbt (hd segment_stoTe. polyline_bundle_table) II

TegeneTate(tl segment_stoTe. polyline_bundle_table)

I
I"

- 15 -

set _polyline_representation : (polyline_index :Polyline _Index) x (line type :Linetype) x

(linewidth :Linewidth)

ext rd segment_store :Segment_Store
rd bundle_modificationJlag :Bundle_Modification:_Flag
rd implicit_regeneration: Implicit_Regeneration
wr dc_picture :DC_picture
1fr polyline_bundle_table :Polyline_Bundle_Table

post polyline_bundle_table' = polyline_bundle_table +
[polyline_index ..•<linetype. linewidth >] "

(bundle_modificationJlag = IMM =>
dc_picture' = recreate (dc_picture. polyline_bundle_table'»"

(bundle_modificationJlag = IRC /I.. implicit_regeneration = ALLOWED=>
dc_picture' = regenerate (segment_store. polyline_bundl~_table'» /I..

(bundle_modificationJlag = IRC /I.. implicit_regenera.tion = SUPPRESSED =>
dc_picture' = dc_picture)

•

where recreate: DC_Picture x Polyline_Bundle_Table ..•DC_Picture

recreate (dc_picture. pblyline_bundle_table) ~

if dc_picture = < > then < >
else let <dc_points. polyline_index. bundle> = hd dc_picture

and e = <dc_Points. polyline_index.
polyline_bundle_ta.ble (polyline_inde:r)>

in e ::recreate (ll dc_picture. polyline_bundle_table)

6. Behaviour
The behaviour of the system which has been specified is now examined and com
pared with our intuitive understanding.
Suppose there is one workstation which can support dynamic modification for
changes to polyline bundle representations and a second which requires a pic
ture regeneration. Suppose that for the second workstation. implicil regenera
tion mode is ALLOWED(i.e. regeneration lakes place immediately). Then if the
same picture is drawn on each workstation wilh the same polyline representa
tions and lhe representation of the same polyline index is changed in each in
the same way. we would expect to end up with the same picture on each. if the
picture consisted only of primitives inside segments. If the picture contained
primitives outside segments. we would not expect to get the same picture.
because such primitives would be lost in the regeneration of lhe picture on the
second workstation. but retained on the first.
If regeneration mode for the second workstation were SUPPRESSED.we would
expect to achieve the effect described above after the function REDRAWALLSEG
MENTShas been invoked. (the effect of which is to perform the regeneration).

i-

-+=

- 16 -

It will now be shown that the specification does indeed conform to this intuitive
behaviour. Because the model does not incorporate multiple workstations.
instead three GKS systems with appropriate settings of the dynamic
modification and implicit regeneration mode flags are considered.
The theorem below is a statement of the intuitive behaviour described above. It
is phrased in terms of relationships between states; in order to do this. the ini
tial and final states of each operation are explicitly included as arguments of
the operation.

Abbrevia lions
To aid readability the following abbreviations are used in the statement and
proof of the theorem.
dcp dc_picture
pbt polyline_bundle_table
ss segment_store
It line type
lw linewidth
pl polyline
pi polyline_indez
s segment

•

Theorem:
Consider states gkso -.gks 1 and gks2• such that:

gkso·bundle_modificationJlag = IMM
gks I. bundle_modificationJ lag = IRe 1\gks 1.implicit_regeneration = ALLO WED

gksz· bundle_modificationJlag = IRe 1\gksz.implicit_regeneration = SUPPRESSED

but are otherwise identical. Then. (apart from the settings of
bundle_modificationJlag and implicit_regeneration, which will remain
unchanged):

post_set_polyline_representation (gkso. pi. It. lw. gkso') E

post_set_polyline_representation (gks 1.pi. It, lw, gks 1') (6)

and
post_set_polyline_representation (gkso. pi. It. lw. gkso') E.

post_redraw_all_segments (gks2', gks2")

where post_set_polyline_representation(gks2• pi. It. lw. gksz')

iff ndc_picture = segment_store

(7)

Proof:
Consider the post-condition of set_polyline_representation. For state gkso.
where bundle_modificationJlag = IMM. this takes the form:

pbt' = pbt + [pi ~ <it. lw >] 1\ dcp' = recreate (dcp. pbt')

For state gks 1.where
bundle_modificationJlOtl} = IRe 1\ implicit_regeneration = ALLOWED

I

I

-t

- 17 -

it becomes:
pbt' = pbt + [pi .• <It. lw >] 1\ dcp' = regenerate (ss , pbt')

For the state gks2• where
bundle_modificationJlag = IRe 1\ implicit_regeneration =SUPPRESSED

it has the form:
pbt' = pbt + [pi ..•<It. lw >] 1\ dcp' = dcp

hence. post_redraw_all_segments (gksz'. gksz") also has the form:
pbt' = pbt + [pi ..•<It. lw >] 1\ dcp' = regenerate (ss. pbt')

Thus the truth of equation (7) follows immediately from the truth of equation
(6).
To show the equivalence of lhe final slales and hence lhe truth of (6). it is
sufficienl lo consider the equivalence of lhe DC picture components of the state.
The e1Tect on the polyline bundle table is the same in each case and both
ndc_:picture and segment_store are una1Tected by lhe . operation
set_:polyline_representa.tion.
There are 2 cases to consider.

Case 1

ndc_:picture = segment_store

The truth of (6) can be shown by structural induction on the data type list.
Basis:

ndc_:picture = segment_store = < >
In this case dcp = < > by invariant (3) and il follows from the definitions of
recrea.te and regenera.te that:
recrea.te « >, pbt') = regenera.te « >, pbt') = < >

Assume:
recreate (dcp, pbt') = regenera.te (55 I pfJe')

for the case where neilher ndc_:picture nor segment_store is empty.
To Prove:

As by invariant (2) and lhe definitions of the operations. ndc_:picture and
segment_store are created in lhis case by lhe same sequence of
a.dd_segment operations. So denoting lhe segment lhat is added by s. what
must be shown is: .

recreate (a.pplypbt (s , pbt') II ticp , pbt') = regenera.te (s :: ss , pbt') (9)

The RHS of (9) expands to:
a.pplypbt (hd(s :: ss). pbt') II regenera.te (U(s :: ss). pbt')

= a.pplypbt (s , pbt') II regenera.te (ss . pbt')
= a.pplypbt (s. pbt') II recrea.te (dcp. pbt') by (8)

= LHS of (9)

.L
!

-~- •

- 16 -

The last step can be shown formally by proving the lemma:
recreate (applypbt (s , pbt '). pbt ') = applypbt (s , pbt ')

This is not presented here; the truth of the lemma can be seen informally
from the function definitions since recreate applies the same polyline bun
dle table as applypbt .

Case 2

ndc_picture ~ segment_store

There are 3 sub-cases to consider:
Case 2a:

segment_store = < > 1\ ndc_picture ~ < >

In this case invariant (2) and the definitions of the operations show that
ndc_picture is created by a sequence of add_polyline operations. Consider:

dcp' = recreate (dcp, pbt')

It follows from the definition of add_polyline that dcp ~ < > and hence,
from the definition of recreate that dcp' ~ < >. Nowconsider:

dcp' = regenerate (ss. pbt')

Since ss = < > it follows that dcp' = < >.
Case 2b:

segment_store ~ < > 1\ ndc_Picture ~ < >

In this case we know from the invariants and the definitions of the opera
tions that ndc_picture is created by a sequence of both add_segment and
a.dd_polyline operations. Suppose that ndc_picture = segment_store. They
both start empty and suppose that a sequence of add_segment operations
only has been performed. From case 1we know:

recreate (dcp, pbt') = regenerate (ss, pbt') (10)

Now suppose that an add_polyline operation is performed. If lhe polyline
added to dcp is denoted by <pl. pi, b>. after this operation. we have:

dcp' = <pl. pi. b> ::dcp "ss' = ss
Adding this polyline has added another point-list, polyline-index pair to
ndc_picture and dcp , but has not altered segment_store.
Then:

recreate «pl , pi. b> ::dcp. pbt')
= <pl , pi, pbt '(pi) > :: recreate (dcp . pbt ')

By (10)

= <pl. pi. pbt '(pi) > :: regenerate (ss, pbt')
~ regenerate (ss', pbt ')

-+

-t-

- 19 -

Case 2c:
segment_store ;t < > 1\ ndc_:picture = < >

This case is ruled oul by invariants (4) and (3).

Acknowledgements
We wish lo thank Bob Hopgood. Dale Sutcliffe and Julian Gallop for their many
useful comments on an earlier draft of this paper. and Alan Kinroy for his. assis
tance with proof-reading.

References

1. C. B. Jones. Software Development: A Rigorous Approach. Prentice-Hall.
Englewood Cliffs. NJ (1980).

2. C. B. Jones. Systematic Proqram. Development. Department of Computer
Science. University of Manchesler (1984).

3. F. R. A. Hopgood. D. A. Duce. J. R. Gallop. and D. C. Sutcliffe. Introduction to
the Graphical Kernel System (GKS). Academic Press (1983).

4. Graphical Kernel System (GKS) 7.2 Functional Description. ISO/DIS 7942.
Information Processing (4 November 1982).

5. R. Gnatz. "An Algebraic Approach to the Standardization and the
Certification of Graphics Software." Computer Graphics Forum' 2(2/3)
(1983).

6. J. A. Goguen. J. W. Thatcher. and E. G. Wagner. "An Initial Algebra Approach
to the Specification. Correctness. and Implementation of Abstract Data
Types." in Current Trends in PTogramming Methodology Volume IV. ed. R. T.
Yeh. Prentice-Hall (1978).

7. J. V. Gultag. E. Horowitz. and D. R. Musser. "The Design of Data Type
Specifications." in Current Trends in PTogramming Methodology Volume IV.
ed. R. T. Yeh. Prentice-Hall (1978).

8. Elizabeth Fielding. "The Specification of Abstract Mappings and their Imple
mentation as B+-Trees." Technical Monograph PRG-18. Oxford University
Computing Laboralory. Programming Research Group (September 1980).

9. C. S. Carson. "A Formal Specification of the Programmer'! Minimallnl@r'A.~@
to Graphics." ANSIX3H34 Working Document (1982).

•

