
o.•...
o,
CO
ex),
...J
-c
a:

Science and Engineering Research Council

Rutherford Appleton Laboratory
CHILTON, DIDCOT, OXON, OX11 OOX

RAL-86-010

•

ERIL - Equational Reasoning:
an Interactive Laboratory

A J J Dick

March 1985

-

ERIL Equational Reasoning: an Interactive
Laboratory

A. J. J. Dick

Science and Engineering Research Council
Rutherford Appleton Laboratory

Informatics Division
Software Engineering Group

Chilton, Didcot, OXON OXIIOQX, U.K.

•

March 1985

ABSTRACT

ERIL is an experimental laboratory for equational reason
ing based on Knuth-Bendix superposition, designed specifically
with two features in mind:-

1) The dynamic configuration of completion/proof stra
tegies. ERIL supports a variety of types of equation, includ
ing rewrite-rules, undirected equations and hypotheses, whose
functions are controlled through attribute lists which describe
how sets inter-relate.

2) The treatment of certain classes of partial algebra by
use of lattice-structured typing. This method overcomes cer
tain problems that would otherwise require the use of condi
tional axioms.

Various forms of the Knuth-Bendix algorithm fall naturally into
the framework presented by ERIL, and it is possible to tailor
the system to perform completion modulo a set of equations,
inductive proofs, program transformations, priority rewriting
and other useful applications. Examples are given here of com
pletion of a simple partial algebra, a proof that a particular
group is commutative, and completion modulo a set of equations.

7 • 1WTROPUCTI ON

ERIL is an experimental interactive laboratory for equational reason
ing based on Knuth-Bendix superposition. A number of interactive facili
ties exist for the processing of rewrite-rules (e.g. REVE [Lescanne 83,
Forgaard and Guttag 8~J, RRL [Kapur and Sivakumar 8~]). Their emphasis
has been on the generation of confluent sets of rewrite rules~ ERIL is a
tool for investigating a wide range of strategies, not only for the

March 26, 1985

- 2 -

completion process, but for a number of other equational reasoning related
applications.

A feature of ERIL is the abil ity to dynamically alter the attributes of the
system. A variety of types of equation are permitted, including rewrite
rules, undirected equations and hypotheses to be proved. The whole equa
tion base is divided into sets, whose number and function are specified by
the user. The relationship between equations or rules within a set or
between sets of rules can be dynamically altered. The user may supply ord
erings to be associated with particular sets of directed rules, as well as
algorithms for sorting equations within a set. Various forms of the
Knuth-Bendix algorithm fall naturally into this framework, including com
pletion modulo a set of equations [Huet 80]. It is also possible to tailor
the system to perform inductive proofs [Huet and Hullot 82], program·
transformations, priority rewriting [Baeten et ale 84], and a number of
other useful applications.

•

Underlying ERIL is a lattice-structured typing method developed from
related work by [Walther 83,84] and [Shamir and Wadge 77], which allows the
treatment of certain classes of partial algebra, common in many applica
tions, that would otherwise require the use of conditional rewrite-rules
and a proliferation of error axioms. The undefined type is used to describe
the result of applying a function to an argument outside its domain of
definition, and superpositions that yield the undefined type are considered
as meaningless. This technique partly overcomes a limitation of the origi
nal completion algorithm noted by the original authors [Knuth and Bendix 70
(example 18)] exemplified by the superposition of the axioms

htv(a.).a. = (i)

a..O = 0 (i i)

which produces the critical pair <0,1>, causing the equational system to
degenerate. By defining the inverse function as partial, and in particular
undefined on 0, ERIL is able to reject the above superposition as invalid,
thus maintaining the consistency of the equational theory.

Section 2 describes the structure of ERIL, section 3 its procedures, and
examples are given in section 4 of using ERIL to complete a set of axioms
describing a partial algebra, to prove the commutativity of a particular
group, and for completion modulo a set of equations.

ERIL forms part of the algebraic tools developed in Waterloo Prolog
[Roberts] for the AVER project in the Department of Computing, Imperial
College. Sponsored by SERe grant B85838, this project is aimed at provid
ing an environment convenient for the specification and verification of
computer programs.

2. ERILIS PArA-BASE

At the lowest level, ERIL maintains a data-base of algebra definitions
including types and functions. Dependent on this is the data-base of
equalities and associated attributes; equalities are pairs of expressions
structured according to the rules of the algebra. At the top level, the

March 26, 1985

-

- 3 -

equalities are divided into sets with set attributes. In the following
sub-sections, each of these levels is considered in detail.

2.7. ALGEBRA VEFINITI0NS

2 • 7 • 7. Type.c

ERIL supports a lattice-structured type hierarchy which requires the
user to give a partial ordering on types. There is by default a bottom
type, 171, representing the undefined type, which closes the bottom of the
lattice. If necessary, a top type, ITI. is inserted to close the top of
the lattice. A type definition is given as a set of simple ordering state
ments. Example I shows two type orderings for the domains of i) the real
numbers and ii) stacks of elements.

•

Exampte. 7. Type definitions for the reals and stacks of elements.

i) i i)
non-zero-real < real.
zero < real.

non-empty < stack.
empty < stack.
7 < element.

The lattices corresponding to these type definitions are:-

i) i i)
real= >:

non-zero-real zero<. >:
?

~T
stack ~

~ ~ element

no~r/
1

The reader is referred to [Cunningham and Dick 84] for a detailed treatment
of lattice structured typing developed from related work by [Walther 83].
[Shamir and Wadge 77] and others. One advantage of such typing is that it
allows the treatment of some partial functions, which play an important
role in many useful algebraic structures.

Function signatures are defined in the conventional way using the x
and -> constructors on types; however, since the underlying type structure
is a lattice, each function has a composite signature which is itself a
lattice. Composite signatures are constructed from a set of templates
which define how the function behaves on arguments of selected types. For
example, consider function signatures for mult and inv which operate in the
domain of the reals with the type lattice defined in Example 1 i). The
templates shown in Example 2 are the smallest sets sufficient for the
definition of mult and inv. Other templates (e.g. mult: real x real ->

"'arch26, 1985

•••••

- 4 -

real) may be included to make the definition more intuitive.
is a partial function which maps anything of type zero onto
undefined type.

Note that inv
something of

Example 2. Function signatures for mult and inv on the reals.

mult: real x non-zero-real -> real.
mult: non-zero-real x real -> real.
mult: non-zero-real x non-zero-real -> non-zero-real.
mult: zero x real -> zero.
mult: real x zero -> zero. •

inv: non-zero -> non-zero.
inv: zero -> 1

A least-upper-bound interpretation of the template sets, which preserves
the monotonicity of ->, is used to construct the composite functi,onsigna
tures. In this example the signatures include 16 elements for mult and 4
elements for inv:-

mult: real x real -> real.
mult: real x non-zero-real -> real.
mult: non-zero-real x real -> real.
mult: non-zero-real x non-zero-real -> non-zero-real.
mult: real x zero -> zero.
mult: zero x real -> zero.
mult: non-zero-real x zero -> zero.
mult: zero x non-zero-real -> zero.
mult: zero x zero -> zero.
mult: real x 1 -> 1.
mult: 1 x real -> 1.
mult: non-zero-real x 1 -> 1.
mult: 1 x non-zero-real -> 1.
mult: zero x 1 -> 1.
mult: 7 x zero -> 1.
mult: 1 x 1 -> 1.

inv: real -> non-zero-real.
inv: non-zero-real -> non-zero-real.
inv: zero -> 1.
inv: 1 -> 1.

Constant symbols are treated as functions with no arguments, whose compo
site signatures contain just one element. For example, O:zero defines the
constant 0 to be of type zero.

For convenience, ERIL allows a single character prefix to
ated with each type, to be used in the naming of variables.
of having to explicitly label variables by their type, e.g.
y:non-zero-real, rand n can be declared, for example, as
real and non-zero-real variables respectivelYl any variable
begins with r is then known to be of type real, or with n

be associ
Thus instead

x:real or
prefixes for
whose name

of type non-

March 26, 1985

-

- 5 -

zero-real.

2.2. EQUALITIES AND THEIR ATTRIBUTES

An equality is a (possibly ordered) pair of expressions in the algebra
deemed to be equal in the equational theory. Associated with each equal ity
is a unique identifier formed from a label (indicating to which set of
equal ities it currently belongs) and a number. In addition, information
regarding the origin and derivation of both expressions is kept. The fol
lowing subsections describe expressions, the equality predicate, and
derivation history.

•

Expressions are built in prefix notation from function symbols and
variables in the conventional way; for example mult(nl,inv(nl» and
mult(O,x:real) are valid expressions in the context of Example 2. Variables
may be labelled with types if necessary; unlabelled variables are assumed
to follow the prefix conventions declared as part of the typing scheme.
The type of an expression can be uniquely determined from the types of its
primitive arguments according to the composite signatures of functions
appearing in the expression.

2. 2 •2 • The equaLity pJlecUc.a.te

There are constraints on the types of expressions that can be regarded
as being equal; these constraints correspond to a weak form of the equality
predicate, which is undefined on arguments of undefined type, a~d false if
the "meet" (or greatest lower bound) of the two argument types IS the unde
fined type. Hence any expression of undefined type cannot form part of an
equal ity pair, and the equality of two arguments whose "meet" type is unde
fined represents an inconsistency (the equality predicate is false). ~or
example, inv(O) ~ 0 is not a valid equality. becaus~ inv(O) is of unde
fined type. The equality inv(x:non-zero-real)· 0 IS actually false.
since the type of inv(x:non-zero-real) is non-zero-real, and the meet of
non-zero-real and zero is 111.

The derivation history of each expression is recorded as a list of
identifiers. maintained in strict order. of those equalities that have been
applied to the expression upto its current form. The initial item in the
list indicates where the expression originated. i.e. its original identif
ier and the name of the file from which it was read. or a reference to a
critical expression and the equalities from which it was formed. The
derivation history can be used to reconstruct proofs of hypotheses in terms
of the initial axioms provided.

2.3. SETS OF EQUALITIES AND THEIR ATTRIBUTES

In an equational reasoning environment. it is often desirable to
separate sets of equalities for documentational, algorithmic or other
theoretical purposes; for example. two sets of rewrite-rules which are

Karch 26. 1985

- 6 -

confluent within themselves. In addition, equalities may be grouped
together to fulfill various roles. For example, some may be ordered for use
as rewrite-rules; others may be unorderable, and thus only of use as
undirected, two-way equations. For these reasons, ERIL allows the user to
define any number of equal ity sets he chooses, identified by a unique label
consisting of a single capital letter, and a name. Associated with each
set are a number of attributes which describe the set itself, the ordering
on expression pairs in equalities, how equalities within the set relate to
one another, and how the set as a whole relates to other sets. The subsec
tions which follow describe the set attributes.

•

A set may be designated as containing one of (currently) four kinds of
equality listed in Figure 1, where they are characterised by symbols
representing the role that the equalities play.

Symbol Characterisation

= Unconsidered axioms (not yet formed into rules)
-> Ordered rewrite-rules (uni-directional)

<c> Equations (bi-directional rules)
_?E Hypotheses (to be proven)

F~gUAe 7. The four kinds of equality set

Amongst other things, the type attribute attaches to the set a particular
algorithm (described in Section 3) for "applying" the equalities. It may
be useful to define other kinds of equality with other forms of applica
tion, and ERIL is open to such extension at a future date.

Two other algorithms may be associated with a set, one for orderlng
the pair of expressions in each equality, the other for sorting equalities
within the set (e.g. into order of size). The ordering algorithm may
succeed or fail, thus providing a test of qualification for membership in
the set. Orderings are of course essential for rewrite-rules, and the
ability to sort equalities within a set provides a mechanism for control
ling the order in which rules are applied or selected. Any number of ord
ering and sorting algorithms could be invented, and ERIL is extendible in
this regard. The default sorting on equalities if none other is specified
is chronological order.

Four (possibly empty) lists are associated with a set which describe
how equalities in the set relate to each other and those in other sets.
These lists are as follows:-

1) A list of labels of sets that are applied to this set. All equalities
in the sets on the list are applied to those in the current set •

•
March 26. 1985

-
- 7 -

2) A list of labels of sets to which the current set is applied. The
equalities in the current set are applied to all equalities, in the
sets on the list.

3) A list of labels of sets on which the left-hand side of equalities in
the current set are to be superpos~d. Associated with each label is a
flag with values "left", "right" or "both" indicating which side of
the equality in the listed set is to be superposed.

4) A list of labels of sets on which the right-hand side of equalities in
the current set are to be superposed. Labels are flagged in the same
way as 3) •

•

Again, the precise meaning of "appl ied" in the above depends on the kind of
equalities involved as described in Section 3. It is possible for a set to
be appl ied to itself or superposed on itself by including its own label in
the appropriate action 1ist.

3. ER1L IS PROCEVURES

ERILls fundamental procedures are shown in Figure 3 in which arcs show
dependencies. The following subsections describe various key procedures in
more deta i1.

superposition reduction closure others? •••••

variable-

/
rule-application<,
sub-express ion- expression-

replacement matching
unification

~/nam;ng

substitution
<,

expression-typing

FigUAe 2. Dependency diagram for procedures in ERIL.

It is known that unification on hierarchical types has a finite set of
most general solutions [Walther 83], rather than the unique solution
offered by unification in discretely typed first-order logic [Robinson 65].
ERILls unification algorithm is an extension of that found in [~anna and
Waldinger 81], specially adapted for lattice-structured types and the mul
tiple solutions they entail. Details of these, as well as the expression
typing algorithm, may be found in [Cunningham and Dick 84].

~arch 26. 1985

-

- 8 -

3.2. Redu.ction

Reduction is the application of equalities of type -> (rewrite rules),
in other words the normalisation strategy. The two aspects are:-

the order in which rules are applied to an expression to be reduced.
This is controlled by the sorting algorithm placed on the set of
rules, the top-most rule being applied first, and so forth.

the order in which subexpressions are reduced by a rule.
ERIL adopts a strictly an outermost strategy.

Currently
•

3.3. ce.o~UJte.

Equal ities of type <=> (equations) are applied to pairs of expressions
to determine whether or not the two expressions are equivalent modulo the
equations. A val id sequence of rule applications in this context is non
repeating, i.e. the expressions E and Fare "closed" modulo a set of equa
tions if there exists a sequence of rule applications

where none of E, EI, ••• EI I are identical. This ensures that the search
space is finite. ERIL traverses the search space depth first.

3 .4 . OtheJt PJt.oce.dUJte.~

Equal ities of type • (unconsidered axioms) are applied simply by com
parison for identity modulo renaming. Hypotheses (~?c) cannot be appli~d.
ERIL is extensible in that other application procedures could be suppl led
and attached to new types of equality. Equally, new types of unification
algorithm could be supplied, for instance an associative-commutative ver
sion. although no such experimentation has yet been done on ERIL.

4. OPERATION OF ERIL

All work is performed in ERIL when a new equality is introduced into a
set, at which time the top level procedures hooked to the action lists on
the set attributes are activated in strict order, as follows:-

i) the equality sets in action list 1) are applied to the new equal ity;

ii) the new equality is ordered by the ordering algorithm;

iii) the new equality is applied to the equality sets in list 2);

iv) the new equality is superposed on the sets in lists 3) and 4).

A typical completion strategy consists of moving equalities from an "uncon
sidered" set of type • into an initially empty set of type -> which has
left-hand superposition as an attribute. Critical pairs generated from
superposition are replaced in the unconsidered set where they are reduced
w.r.t. the -> set. The operation stops when there are no more unconsidered
equalities.

March 26, 1985

- 9 -

-

Commands in ERIL fall into three main categories: configuration commands,
which allow algebras and set attributes to be established. movement com
mands, which actually cause the work to be done, and auxiliary commands for
displaying sets and their derivation histories. writing sets to files, and
other utilities.

The following three example applications will give a clear idea of the role
these commands play in building completion/proof strategies. Actual ses
sion logs are given for these examples in the appendix, which are results
from running a Waterloo Prolog version of ERIL on an IBM 4341 under VM/CMS.

4.1. KNUTH-BENDIX COMPLETION OF A PARTIAL ALGEBRA

•

Two equality sets are used in this example. a set of rewrite-rules, R,
and a set of unconsidered axioms, A, which have the following attributes:-

Iabe 1: R

~-------------------.---_'

name:
type:

ordering:
sorting:

act ion 1 ists:

label:
name:
type:

ordering:
sorting:

action lists:

Rewrite-rules
••>
kbord
bylhs
1) none
2) R A
3) R-left
4) none

(Knuth-Bendix style)
(smallest lhs sorted to the top)

The example is based on the algebra definitions of mult and inv given in
Section 2.1. The complete algebra definition is as follows:-

(R reduces itself and A)
(left-hand sides of R are superposed)
(no right-hand sides are superposed)

A
Unconsidered axioms
••
none
bysize
I) R
2) none
3) none
4) none

(smallest equality sorted to the top)
(A is reduced w. r•t . R)

non-zero-real < real.
zero < real.
one < non-zero-real.

0: zero.
1: one.

real

non-zero~ ~I zero

on'--1/

March 26. 1985

-

- 10 -

mult: real x real -> reaI.
mult: one x real -> reaI.
mult: real x one -> reaI.
mult: one x non-zero-real ->
mult: non-zero-real x one ->
mult: one x one -> one.
mult: one x zero -> zero.
mult: zero x one -> zero.
mult: zero x zero -> zero.

(Strictly speaking redundant)

non-zero-real.
non-zero-real.

inv: real -> real.
inv: non-zero-real -> non-zero-real.
inv: zero -> ?

•

x:rea1•
r:non-zero-real.

(Variable prefixes)

The initial axioms provided to A are :-

Al mult(O,xl)· 0
A2 mult(xl,O) K 0
A3 mu 1t (I,xl) - xl
A4 mu It {inv (x1)•xl) - 1
A5 mult{mult{xl.x2) ,x3) = mult{xl,mult{x2,x3»

The algebra definitions are loaded from file or console, and the initial
axioms to are loaded into set A. The entire completion process is now ini
tiated by the following "move" command, shown here as it might appear dur
ing the session:-

m
ENTER label of equality to move: A
ENTER number of equality to move: all
ENTER label of destination set: R
ENTER label of set to collect new equalities: A

As each equality from A is moved. it is ordered and sorted into R, applied
to all equalities in R and A, and superposed on equalities in R (including
itself). Any rules in R that are reduced by the new rule, and critical
pairs produced as a result of superposition, are fed back into A, where
they are fully reduced w.r.t R and sorted into order of size. The move
command finally terminates when there are no more equalities in A to be
moved.

The sorting algorithm placed on A increases efficiency by causing the smal
lest axioms or critical pairs to be chosen before the larger ones. The
sorting algorithm placed on R causes the smallest rules to be applied
first, thus reducing the number of attempted matches.

March 26, 1985

-

- 11 -

When the move commands terminates, the following confluent set of 12
rewrite-rules remains in R:-

R11 inv (1) => 1
R1 mu 1t (0,x 1) => 0
R2 mult(xl,O) ~> 0
R3 mu 1 t (1 , xl) -=> x 1
R10 mu 1t (x 1,1) => x1
R12 inv (inv (x1» -=> x1
R4 mu 1t (i nv (x1),x1) ~>
R 13 mu 1t (x1•inv (x1» ~>
R 17 inv (mu1t (x1,xz) -> mu 1t (inv (x2),inv (x1))
R5 mult(mult(xl,x2) ,x3) ••> mu lt Ix lsmu lt Ixz c xS)
R6 mu 1t (inv (x1),mu 1t (x1,xz) -> x2
R14 mu 1t (x1,mu1t (inv (x1),x2» ~> x2

•

These rules are sorted as specified by the size of the left-hand size, and
the missing numbers in the set represent intermediate rules that were redu
cible by later rules. In this example, the lattice-structured typing has
allowed us to recognise the critical expression mult(inv(O) ,0) produced
from superposing rules R2 and R4, as being invalid, because inv(O) is of
undefined type. Such critical expressions are discarded; in this case,
the critical pair, 1 ~ 0, that would have resulted speaks for itself!

4.2. PROOF OF A HYPOTHESIS

The next example shows how an equality set of kind -7= (hypotheses)
behaves. Such equalities are not moved from their set when reduced by an
equality from another set, but the lastest reduced form remains until
proved (when the pair of expressions are identical).

The example chosen is an attempt to prove that a group in which all non
neutral elements are of order two is commutative. We are not requireg to
produce a confluent set of rewrite-rules. but generate a set sufficient for
the purposes o·f the proof. We wi 11 use a set of hypotheses, H, two sets of
unconsidered axioms, A and B, and a set of rewrite-rules, R. The confi
gurations are as follows, where A and Bare identical:-

label: H
name: To be proved
type: -1=

ordering: none
sorting: none

action 1ists: 1) R A B
2) none
3) none
4) none

"'arch 26. 1985

- 12 -

-

label: A
name:
type:

ordering:
sorting:

action lists:

Unconsidered axioms
=
none
bysize
I) R
2) H
3) none
4) none

(smallest equality sorted to the top)
(A is reduced w.r.t. R)
(axioms are compared with H)

•

IabeI: R

~---

name:
type:

ordering:
sorting:

action lists:

Rewrite-rules
->
kbord
bylhs (smallest Ihs sorted to the top)
1) none
2) R H A B
3) R-Ieft
4) none

The algebra definition has a single type, with functions f and e, as
follows:-

? < s.

e: s ,
f: s x s -> s.

x:s.

Given axioms:-

Al f(e,xl) - xl
A2 f (x 1 , e) ., xl
A3 f (x1,xl) .,e
A4 f(f(xl,x2).x3)" f(xl,f(x2,x3»

Given hypothesis:-

HI f (x1•x2) -1- f (x2,x1)

So as to maintain control of the proof process. we proceed in stages in
which sets A and B alternate roles. First we move all of A into R. and
collect new equalities in B; then we move all of B into R and collect new
equalities in A. and so forth:-

March 26. 1985

-

- 13 -

m
ENTER label of equality to move: A
ENTER number of equality to move: all
ENTER label of destination set: R
ENTER label of set to collect new equalities: B

At the end of the first stage A is empty, and we have:-

Rl f(e,xl) "'> xl B5 xl 0: f(x2,f(x2,x1»
R2 f (x1 , e) "'> xl B4 f (x1,f (x2,f (x1,x2))) = e
R3 f (x1 , xl) => e
R4 f (f(xl,x2) ,x3) => f (x1,f (x2,x3» HI f (x1 , x2) 11&1= f (x2,xl)

m
ENTER label of equality to move: B
ENTER number of equality to move: all
ENTER label of destination set: R
ENTER label of set to collect new equalities: A

At the end of stage 2, B is empty, and we have:-

R1 f (e,xl) ""> xl
R2 f (x1,e) ••> xl
R3 f (x 1, xl) => e
R4 f(f(x1,x2),x3) -> f(x1,f(x2,x3»
R5 f (x1,f (x1,x2» -> x2
R6 f (x1,f (x2,f (x1,x2») -> e

A22 xl" f (x2,f (x1 , x2))
A9 xl - f (x2,f (x3,f (x2,f (x3,xl))
All f (x1.r (x2,f (x1,f (x2,x3))» 11&x3
A 17 e - f (x1, f (x2,f (x3,f (x1, f (x2,x3)))))

HI f (x1,x2) ••1- f (x2,xl)

m
ENTER label of equality to move: A
ENTER number of equality to move: all
ENTER label of destination set: R
ENTER label of set to collect new equalities: B

During this stage, a new equality, B15, is produced which is found to be
identical to HI, and HI is marked as proved, at which point we have:-

R1 f (e,x1) -> xl
R2 f (x1,e) -> x 1
R3 f (xI,xl) 11&>e
R4 f (f(x1,x2) ,x3) -> f (x1,f (x2,x3»
R5 f (x1,f (x1,x2» .,> x2
R7 f (xI•f (x2,xl)) -> x2

HI proved (identical to B 15)

A9 xl 11&f(x2,f(x3.f(x2,f(x3,x1»»
All f (x1,f (x2,f (x1,f (x2,x3»» ••x3
A 17 e 11&f (x1,f (x2,f (x3,f (x1,f (x2,x3» »)

B15 f (xl,x2) - f (x2,x1)
B13 f(x1.x2) •• f(x3.f(xl.f(x3.x2»)
B 14 f (x1,f (x2,f (x3,xl») - f (x2,x3)
B12 xl - f(x2,f(x3,f(xl,f(x2,x3»»

Using the IIdisplay derivationll facility, the following proof is given in
terms of the initial axioms:-

March 26, 1985

-

- 14 -

f (xl.x2) ••• f (x1•f (xz , e)) by A2
II: f (xl.f (x2,f(f(x2,xl),f (x2,xl»» by A3
••• f (x I , f (x2,f (x2,f (x I • f (x2,x 1))))) by A4
= f (xl,f (f(x2.x2).f (xl.f (x2.xl»» by A4
'" f (x I , f (e.f (xI , f (x2,x I)))) by A3
'" f (x I , f (xI ,f (x2,x 1))) by Al
II: f (f(xl,xl),f (x2,xl» by A4
II: f (e,f(x2,xl» by A3
••• f (x2,xl) by Al

4.3. COMPLETION MODULO A SET OF EQUATIONS
•

Here we demonstrate the completion of a set of axioms with commuta
tivity and associativity as equations. We use establish the following
sets:-

label:
name:
type:

ordering:
sorting:

action lists:

Iabe I:
name:
type:

ordering:
sorting:

action lists:

A
Unconsidered axioms
II:

none
bysize
1) R E
2) none
3) none
4) none

(A is reduced w.r.t. R and closed modulo E)

R
Rewrite-rules
->
kbord
none
1) none
2) REA
3) R-left E-both
4) none

(Superposed on equations as well)

March 26, 1985

--

Iabe I: E
name: Equations
type: <_.>

ordering: none
sorting: none

action lists: I) none
2) E A
3) R-Ieft (Equations do not need to be
4) R-Ieft superposed on themse Ives) •

The single-sorted algebra definition is as follows:-

? < s.

0: s
I: s
E: s -> s
+: s x s -> s. s x s -> s..
x:s

With initial axioms as follows:-

AlE (x1 + x2) ••E (x1)•E (x2)
A2 E (0) •• 1
A3 0 + xl ••xl
A4 I.x I .,xI

EI (xI + x2) + x3 - xl + (x2 + x3)
E2 (x1.x2) .x3 - xl. (x2.x3)
E3 xl + x2 .,x2 + xl
E4 xl.x2" x2.xl

The completion is performed with a single move operation:-

m
ENTER label of equality to move: A
ENTER number of equality to move: all
ENTER label of destination set: R
ENTER label of set to collect new equalities: A

When the move has finished, and A is empty, R contains the following 6
axioms:-

Rl E (x1 + x2) ••> E (xI)•E (x2)
R2 E (0) -> 1
R3 o + xl ••> xl
R4 I•x I -> xl
R5 xl + o ••> xl
R6 x1.1 -> xl

Karch 26, 1985

- 16 -

5. CONCLUS10NS

The architecture of ERIL seems to provide an
environment for a wide variety of appl ications
Its extensibility will allow room for much further
work will be directed to the following areas:-

interesting and useful
in equational reasoning.
experimentation. Future

incorporating an AC-unification algorithm in order to build Peterson
Stickel type completion strategies [Peterson and Stickel 81J.

extending to a higher order algebra like KRC or ML.

linking ERIL to a specification language, e.g. OBJ.

improving the efficiency of the current Waterloo prolog implementa
tion.

gaining experience with using ERIL in a wide range of applications,
particularly in program proving.

REFERENCES

[Baeten et al. 84J
J.C.M. Baeten, J.A. Bergstra, J.W. Klop
P~o~ Rew~e Sy~tem~
Report CS-R8407, Centre for Maths and Computer Science, P.O. Box 4079,
1009 AB Amsterdam

[Cunningham and Dick 84]
R.J. Cunningham, A.J.J. Dick
RewftiteSy~tem~on 4 L~ce 06 Type~
Report No. DOC 83/7, Imperial College, London SW7

[Forgaard and Guttag]
R. Forgaard, J.V. Guttag
REVE: A te~mRew~g Sy~temGene~o~ with Fai~e Reh~htant
Kn~h-Bendix
Proceedings of an NSF workshop on the rewrite rule laboratory,
Sept 6-9 1983, General Electric CRD Rep. No. 84GEN008 pp. 33-56

[Huet 80J
G. Huet
Con6luentReductionh:Ab~~ct P~opeAtie~and Appiication~to
Te~mRew~e Sy~tem~
JACM Vol. 27, No.4 Oct 1980 pp. 797-821

[Huet and Hullot 82J
G. Huet, J-M Hullot
P~006~ by 1nduction
JACM Vol. 25 No.2

~ EquationalTheo~e~~ Con~~o~~
1982 pp. 239-266

[Kapur and Sivakumar 84]
D. Kapur, G. Sivakumar
Exp~me~ w~th and ~ch~e~e 06 RRL, a Rew~e RuleLabo~o~y

March 26, 1985

--
- 17 -

Proceedings of an NSF workshop on the rewrite rule laboratory,
Sept 6-9 19B3, General Electric CRD Rep. No. B4GENOOB pp. 5-31

[Knuth and Bendix 70]
D. E. Knuth, P. B. Bendix
SimpleWo~d P~oblem~in Unive~~alAlgeb~
In "Computational Problems and Abstract Algebras", J. Leech, Ed.,
Pergammon Press, 1970, pp. 263-297.

[Lescanne 83]
P. Lescanne
Comp~e~ Expe~ment~ with the REVE Te~mRewAitingSy~temGen~o~
Proc. 10th Symp. on Principles of Programming Languages,
ACM Austin, TX, Jan 19B3 pp. 99-108

•

[Manna and Waldinger 81]
Z. Manna, R. Waldinger

VeductiveSynthe~i~06 the Uni6icationAlgo~m
Science of Computer Programming Vol. 1, 1981 pp. 5-48

[Peterson and Stickel 81]
G. E. Peterson, M. E. Stickel
CompleteSet~ 06 Reduction~6o~ Some EquationalTheo~e~
JACM Vol. 28, No.2, April 1981, pp. 233-264

[Roberts]
G. Roberts
Wat~oo P~ologU~e~~1 Manual
University of Waterloo, Ontario, Canada N2L 3Gl

[Robinson 65]
J. A. Robinson
A M4chine-O~entedLogic~~ed on the Re~o~on P~~pte
JACM Vol. 12, pp. 32-41

(Shamir and Wadge 77]
A. Shamir, W. W. Wadge
Vata Type~~ Object4
LNCS 52 July 1977, pp. 465-479

[Walther 83]
C. Walther
A Many-So~ed Calcutu~~ed on Re~o!utionand PaAamodu!ation
Proc. of the 8th International Joint Conf. on Artifical Intelligence,
Karlsruhe 1983

, [Walther 84]
C. Walther
Uni6icationin Many-So~ed Theo~e~
European Conference on Artificial Intelligence 1984

March 26. 1985

••••

APPENDIX A

The console log of the completion of a partial algebra, corresponding
to Section 4.1. The console output is a series of screens, initially show
ing the system configuration with each of ,the sets' attributes displayed in
turn, followed by the MOVE command which performs the completion. The
final screen shows some system statistics relevant to the run.

•

;

March 26, 1985

-
AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completionof a Partial Algebra------------------------
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y SET S Display Sort Order Equality count
Label..Name.••••••.••••.••Type•••••••.Trace•.••File•••••File•••••Total.•Current
R Rewrite-rules => On On bylhs kbord O· 0
A Unconsidered axioms = On off bysize 5 5

CONFIGURATION OPTIONS: Label change equality set defaults

n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f Finish configurations

ENTER option:
R

•

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completionof a Partial Algebra------------------------
Label R I CONFIGURATION OPTIONS
Name Rewrite-rules I (- change n
Type => I (- change t
Auto-display/trace ... On IOn I (- change d
Sort algorithm ••••••. bylhs I (- change s
Ordering algorithm ... kbord I (- change 0
Reduced by R I (- change r
Applied to R A I (- change a
LHS superposed with Rl I (- change p
RHS superposed with .. I (- change p

I f Finish

ENTER option:
f A

Name ••••••••••••••••• Unconsidered axioms

Imperial College • DoC Jun~1984
a Partial Algebra-----------------------

I CONFIGURATION OPTIONS
I (
I (-
I (
I (
I (
I (
I (
I (
I ' (
I

change
change
change
change
change
change
change
change
change

n
t
d

AVER Project - ERIL Prototype Tools
------------------------Completionof
Label ••.•.•.......... A

Type ••••••••••••••••• =
Auto-display/trace .••
Sort algorithm •••••••
Ordering algorithm •••
Reduced by •••••••••••
Applied to ••••.••••••
LHS superposed with
RHS superposed with ••

On /Off
bysize s

o
-R- r

a
p
P
f Finish

ENTER option:
f f

•

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completion of a Partial Algebra------------------------
R: Rewrite-rules 0

A: Unconsidered axioms S
AI: mult(O,xl) = 0
A2: mult(xl,O) = 0
A3: mult(l,xl) = xl
A4: mult(inv(xl),xl) = I
AS: mult(mult(xl,x2),x3} = mult(xl,mult(x2,x3})

ENTER command: (h for Help)
m
ENTER label of equality to move: (f to Finish, h for Help)
A all.
tlOVINGAall:
ENTER label of destination set: (f to Finish)
R
ENTER label of set to receive new equalities: (f to Finish)
A
MOVING AI: mult(O,xl} = 0 TO R.
Loading weight.....
RI: mult(O,xl) => 0
Loading matched .
Loading superpos .
MOVING A2: mult(xl,O) = 0 TO R.
R2: mult(xl,O) => 0
Loading replaced.....
MOVING A3: mult(l,xl) = xl TO R.
R3: mult(l,xl) => xl
MOVING A4: mult(inv(xl},xl} = I TO R.
R4: mult(inv(xl},xl) => I
MOVING AS: mult(mult(xl,x2),x3) = mult(xl,mult(x2,x3» TO R.
RS: mult(mult(xI,x2),x3} => mult(xl,mult(x2,x3»
MOVING AIO: xl = mult(inv(x2),mult(x2,xl» TO R.
R6: mult(inv(xl),mult(xl,x2» => x2
MOVING A13: mUlt(inv(I),xI) = xl TO R.
R7: mult(inv(l},xl} => xl
MOVING A14: mult(inv(inv(xl»,l) = xl TO R.
R8: mult(inv(inv(xl»,l) => xl
HOVING A17: mult(inv(inv(xl»,x2) = mult(xI,x2} TO R.
R9: mult(inv(inv(xl»,x2) => mult(Xl,XZ)
REDUCING R8: mult(xI,I} => xl
MOVING A23: mult(xl,l) = xl TO R.
RIO: mult(xl,l) => xl
MOVING A29: inv(l) = I TO R.
RII: inv(l) => I
REDUCING R7: mult(l,xl} => xl
MOVING A33: inv(inv(xl» = xl TO R.
R12: inv(inv(xI}) => xl
REDUCING R9: mult(xI,x2) => mult(xl,x2}
MOVING A2S: mult(xl,inv(xl» = I TO R.
R13: mult(xl,inv(xl» => I
MOVING A27: mult(xl,mult(inv(xl),x2» -= x2 TO R.
R14: mult(xl,mult(inv(xl),x2» => x2
MOVING A46: I = mult(xl,mult(x2,inv(mult(xl,x2»» TO R.
RIS: mult(xl,mult(x2,inv(mult(xl,x2»» => I
MOVING A70: inv(xl) = mult(x2,inv(mult(xl,x2») TO R.
R16: mult(xl,inv(mult(x2,xl») => inv(x2)
REDUCING RIS: mult(xl,inv(xl» => 1 .
MOVING A8S: mUlt(inv(xI),inv(x2» = inv(mult(x2,xl» TO R.
R17: inv(mult(xl,x2» => mult(inv(x2),inv(xl»
REDUCING R16: mult(xl,mult(inv(xl),inv(x2») ~> inv(x2)
MOVE FINISHED.

-
AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completionof a Partial Algebra---------------~--------
R: Rewrite-rules 12
R1l: inv(l) => 1
Rl: mult(O,xl) => 0
R2: mult(xl,O) => 0
R3: mult(l,x1) => xl
RlO: mult(xl,l) => xl
R12: inv(inv(xl» => xl
R4: mult(inv(xl),x1) => 1
R13: mult(xl,inv(x1» => 1
R17: inv(mult(x1,x2» => mult(inv(x2),inv(x1»
R5: mult(mult(x1,x2),x3) => mult(x1,mult(x2,x3»
R6: mult(inv(x1),mult(x1,x2» => x2
R14: mult(x1,mult(inv(xl),x2» => x2

A: Unconsidered axioms o
ENTER command:
d
Loading display•....

(h for Help) •

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completionof a Partial Algebra------------------------
DISPLAY OPTIONS: Label display equality set

a display Algebra definitions
1 display domain Lattice
d display Derivation
s display system Statistics
c display system Configuration
f Finish display option

ENTER option:
s

AVER Project - ERIL Prototype Tools Imperial College - DoC 3une 1984

------------------------Completionof a Partial Algebra························
NUMBER OF MATCHES Attempts 1859

Successful: 186

NUMBER OF UNIFICATIONS Attempts 178
Successful: 114

NUMBER OF CRITICAL EXPRESSIONS 92

DISPLAY OPTIONS: Label display equality set

a display Algebra definitions
1 display domain Lattice
d display Derivation
s display system Statistics
c display system Configuration
f Finish display option

ENTER option:
f b

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
------------------------Completion of a Partial Algebra------------------------
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y 5 E T 5 Display Sort Order Equality count
Label ..Name•......Type Trace File File Total ..Current
R Rewrite-rules => On On bylhs kbord 17 12
A Unconsidered axioms = On Off bysize 102 0

CONFIGURATIONOPTIONS: Label change equality set defaults

n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f Finish configurations

ENTER option:
f f
CONFIRM exit from ERIL (y/n):
y

-

APPENVIX 8

The console log of the proof of commutativity of the group in which
all non-neutral elements are of order two. corresponding to Section 4.2.
The console output is a series of screens, initially showing the system
configuration and the attributes of the four equality sets involved, fol
lowed the three MOVE commands which perform the proof.

•

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-----------------------
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y SET S Display Sort Order Equality count
Label..Name••.••••.••.•••.Type.•••.•..Trace.•••File.•..•File..•.•Total•.Current
A Unconsidered axioms = On Off bysize 4 4
B Unconsidered axioms = On Off bysize 0 0
R Rewrite-rules => On On bylhs kbord 0 0
H Hypotheses =?= On On 1 1

CONFIGURATION OPTIONS: Label change equality set defaults
n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f Finish configurations

ENTER option:
A

Auto-display/trace'••• On /Off
Sort algorithm •.••••. bysize
Ordering algorithm .••
Reduced by •••.•••••••-R
Applied to ••••.•••••.H
LHS superposed with
RHS superposed with ••

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-----------------------
Label ••••.•••••••••••A I CONFIGURATION OPTIONS

I <- change n
I <- change t
I <- change d
I <- change s
I <- change 0
I <- change r
I <- change a
I (- change p
I <- change p
I f Finish

Name •.•..•••.•.••••••Unconsidered axioms
Type =

ENTER option:
f B

-
AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proof that a group is commutative-----------------------
Label B I COI-lFIGURATIONOPTIONS
Name Unconsidered axioms I <- change n
Type = I <- change t
Auto-display/trace ... On /Off I <- change d
Sort algorithm bysize I <- change s
Ordering algorithm ... I <- change 0

Reduced by -R- I <- change r
Applied to H I (- change a
LHS superposed with I <- change p
RHS superposed with .. I <- change p

I f Finish

ENTER option:
f R

•

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proof that a group is commutative-----------------------
Label R I CONFIGURATION OPTIONS
Name Rewrite-rules I <- change n
Type => I <- change t
Auto-display/trace ... On IOn I <- change d
Sort algorithm ••••••• bylhs I <- change s
Ordering algorithm ... kbord I <- change 0
Reduced by R I <- change r
Applied to R H A B I <- change a
LHS superposed with Rl I <- change p
RHS superposed with .. I (- change p

I f Finish

ENTER option:
f H

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proof that a group is commutative-----------------------
Label •••.••••••••••.. H I CONFIGURATION OPTIONS

I <- change n
I <- change t
I <- change d
I <- change s
I (- change 0

I <- change r
I <- change a
I <- change p
I <- change p
I f Finish

Name •••••••••••••••.• Hypotheses
Type =?=
Auto-display/trace ••• On IOn
Sort algorithm •••••••
Ordering algorithm •••
Reduced by ••••••••.•• ~B
Applied to •••••••••.•
LHS superposed with
RHS superposed with ••

ENTER option:
f f

••••

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-----------------------
A: Unconsidered axioms 4
AI: f(e,xl) = xl
A2: f(xl,e) = xl
A3: f(xl,xl) = e
A4: f(f(xl,x2),x3) = f(xl,f(x2,x3»

B: Unconsidered axioms o

R: Rewrite-rules o
H: Hypotheses
Hl: f(xl,x2) =?=

~ f(xl,x2) =?=
1

f(x2,xl)
f(x2,xl) 1

ENTER command:
m
ENTER label of equality to move:
A all.
MOVING Aall:
ENTER label of destination set:
R

(h for Help)

(f to Finish, h for Help) •

(f to Finish)

ENTER label of set to receive new equalities: (f to Finish)
B
MOVING AI: f(e,xl) = xl TO R.
Loading weight..•..
Rl: f{e,xl) => xl
Loading matched...••
Loading superpos.....
MOVING A2: f(xl,e) = xl TO R.
R2: f(xl,e) => xl
Loading replaced.....
MOVING A3: f(xl,xl) = e TO R.
R3: f(xl,xl) => e
MOVING A4: f(f(xl,x2),x3) = f(xl,f(x2,x3» TO R.
R4: f(f(xl,x2),x3) => f(xl,f(x2,x3»
MOVE FINISHED.

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proof that a group is commutative-----------------------
A: Unconsidered axioms 0

B:
B5:
B4:

Unconsidered axioms
xl = f(x2,f(x2,xl»
f(xl,f(x2,f(xl,x2») = e

2

R: Rewrite-rules 4
Rl: f(e,xl) => xl
R2: f(xI,e) => xl
R3: f(xl,xl) => e
R4: f(f(xl,x2),x3) => f(xl,f(x2,x3»

H: Hypotheses
HI: f(xl,x2) =?=

~ f(xl,x2) =?=

I
f(x2,xl)
f(x2,xl) 1

••ENTER command: (h for Help)
m
ENTER label of equality to move: (f to Finish, h for Help)
Ball.
MOVING Ball:
ENTER label of destination set: (f to Finish)
R
ENTER label of set to receive new equalities: (f to Finish)
A
MOVING B5: xl = f(x2,f(x2,xl» TO R.
R5: f(xl,f(xl,x2» => x2
MOVING B4: f(xl,f(x2,f(xl,x2») = e TO R.
R6: f(xl,f(x2,f(xl,x2») => e
MOVE FINISHED.

AVER Project - ERIL Prototype Tools
-----------------------Proofthat a
A: Unconsidered axioms
A22: xl = f(x2,f{xl,x2}}
A9: xl = f(x2,f{x3,f{x2,f(x3,xl»»

.All: f(x1,f(x2,f(x1,f(x2,x3»» = x3
A17: e = f(x1,f(x2,f(x3,f(x1,f(x2,x3»»)

-
Imperial College - DoC June 1984

group is commutative--------------~--------
4

B: Unconsidered axioms o

R: Rewrite-rules (,
R1: f(e,x1) => xl
R2: f(x1,e) => xl
R3: f(xl,xl) => e
R4: f(f(xl,x2),x3) => f(xl,f(x2,x3»
R5: f(xl,f(xl,x2» => x2
R6: f(x1,f(x2,f(xl,x2») => e

H: Hypotheses
Hl: f(xl,x2) =?= f(x2,xl)

~ f(xl,x2) =?= f(x2,xl) i
1

ENTER command:
m
ENTER label of equality to move:
A all.
MOVING Aall:
ENTER label of destination set:
R
ENTER label of set to receive new equalities:
B
MOVING A22: xl = f(x2,f(x1,x2» TO R.
R7: f(xl,f(x2,xl» => x2
REDUCING R6: f(xl,xl) => e
PROVED Hl: f(xl,x2) =?= f(xl,x2)

•

(h for Help)

(f to Finish, h for Help)

(f to Finish)

(f to Finish)

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proof that a group is commutativ~----------------------
PAUSE:

PROVED Hl: f(xl,x2) =?= f(xl,x2)

ENTER Continue or Halt (c/h)
h
MOVE FINISHED.

--
AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-------~---------------
A: Unconsideredaxioms 3
A9: xl = f(x2,f(x3,f(x2,f(x3,xl»»
All: f(xl,f(x2,f(x1,f(x2,x3»» = x3
A17: e = f(xl,f(x2,f(x3,f(xl,f(x2,x3»»)

8: Unconsideredaxioms 4
815: f(x1,x2) = f(x2,xl)
813: f(xl,x2) = f(x3,f(xl,f(x3,x2»)
814: f(x1,f(x2,f(x3,xl») = f(x2,x3)
812: xl = f(x2,f(x3,f(xl,f(x2,x3»»

R:
Rl:
R2:
R3:
R4:
RS:
R7:

Rewri t.e+ru Ie s
f(e,xl) => xl
f(xl,e) => xl
f(xl,xl) => e
f(f(xl,x2),x3)
f(xl,f(xl,x2})
f(xl,f(x2,xl»

6

=> f(xl,f(x2,x3»
=> x2
=> x2

•

H: Hypotheses 1
HI: f(xl,x2) =?= f(x2,xl)

~ PROVED -i

ENTER command:
d
Loading display...••

(h for Help)

AVER Project - ERIL Protot~~e Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-----------------------
DISPLAY OPTIONS: Label display equality set

a display Algebra definitions
1 display domain Lattice
d display Derivation
s display system Statistics
c display system Configuration
f Finish display option

ENTER option:
s

-
AVER Project - ERIL Prototype Tools
-----------------------Proofthat a group
NUMBER OF MATCHES Attempts 424

Successful:48

Imperial College - DoC June 1984
is commutative-----------------------

NUMBER OF UNIFICATIONS Attempts 52
Successful:42

NUMBER OF CRITICAL EXPRESSIONS 37

DISPLAY OPTIONS: Label display equality set

a display Algebra definitions
1 display domain Lattice
d display Derivation
s display system Statistics
c display system Configuration
f Finish display option

ENTER option:
f b •

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
-----------------------Proofthat a group is commutative-----------------------
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y 5 E T 5 Display Sort Order Equality count
Labe1.•Name..•••.•••.••••.Type•..••...Trace.•..File...•.File.....Total..Current
A Unconsidered axioms = On off bysize 25 3
B Unconsidered axioms = On Off bysize 17 4
R Rewrite-rules => On On bylhs kbord 7 6
H Hypotheses =?= On On 1 1

CONFIGURATIONOPTIONS: Label change equality set defaults
n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f finish configurations

ENTER option:
f f
CONFIffi1exit from ERIL (y/n):
y

APPEM)IX C

The console log of a completion modulo a set of equations, correspond
ing to Section 4.3.

..

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
--------------------------Completionmodulo Equations--------------------------
SYSTEM CONFIGURATION: Console Log : on/OFF
E QUA LIT Y 5 E T 5 Display Sort Order Equality count
Label..Name.•••....••.•.••Type•••....•Trace.•••File.•.•.File••••.Total.•Current
A Unconsidered axioms = On Off bysize 4 4
R Rewrite-rules => On On bylhs kbord 0 0
E Equations <=> On On bysize 4 4

CONFIGURATIONOPTIONS: Label change equality set defaults
n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f Finish configurations

-------------------------~---
ENTER option:
A

AVER Project - ERIL Prototype Tools
--------------------------Completionmodulo
Label A

Type •.•••••••••.••••• =

Imperial College - DoC June 1984
Equations--------------------------
I CONFIGURATIONOPTIONS
I <- change n
I <- change t
I <- change d
I <- change s
I <- change 0

I <- change r
I <- change a
I <- change p
I <- change p
I f Finish

Name ...•••••••••.•.••Unconsidered axioms

Auto-display/trace ••• On /Off
Sort algorithm ••••••• bysize
Ordering algorithm .••
Reduced by .••••.••.•.~
Applied to ..••••..•••
LHS superposed with
RHS superposed with ••

ENTER option:
f R

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
--------------------------Completion modulo Equations--------------------------
Label •••••••• ~•••.••• R I CONFIGURATION OPTIONS
Name .•••.•.•••••••••• Rewrite-rules I <- change n
Type ••••••••••••••••• => I <- change t
Auto-display/trace ••• On tOn I <- change d
Sort algorithm .•••••• bylhs I <- change s
Ordering algorithm ••• kbord I <- change 0
Reduced by ••••••••••• REI <- change r
Applied to ••.••••.••• REA I <- change. a
LHS superposed with Rl El I <- change p
RHS superposed with •• I <- change p

I f Finish

ENTER option:
f E

•

AVER Project - ERIL Prototype Tools
--------------------------Completionmodulo
Label E

Auto-display/trace •••
Sort algorithm •••••••
Ordering algorithm •••
Reduced by •••••.•••••
Applied to •••••••••••
LHS superposed with
RHS superposed with ••

-R

REA
Rl

Imperial College - DoC June 1984
Equations--------------------------

I CONFIGURATION OPTIONS
I <- change n
I <- change t
I <- change d
I <- change s
I <- change 0

I <- change r
I <- change a
I <- change p
I <- change p
I f Finish

Type .
Equations
<=>
On tOn
bysize

Name ••.••••••••••••••

ENTER option:
f f

AVER Project - ERIL Prototype Tools
--------------------------Completion modulo
A: Unconsidered axioms 4
AI: i(0) = 1
A2: (s1+0) = sl
A3: sl.1 = sl
A4: i(sl+s2) = i(sl).i(s2)

Imperial College - DoC June 1984
Equations--------------------------

R: Rewrite-rules o

E:
El:
E2:
E3:
E4:

Equations
(sl+s2) <=> (s2+s1)
(sl.s2) <=> (s2.s1)
(sl+s2+s3) <=> «sl+s2)+s3)
(SI.52.s3) <=> «51.s2).s3)

4

ENTER command:
m
ENTER label of
A all.
MOVING Aall:
ENTER label of
R
ENTER label of
A

(h for Help)
•

equality to move: (f to Finish, h for Help)

destination set: (f to Finish)

set to receive new equalities: (f to Finish)

MOVING AI: i(O) = 1 TO R.
Loading weight.....
Rl: i(O) => 1
Loading superpos.••••
MOVING A2: (s1+0) = sl TO R.
R2: (s1+0) => sl
MOVING A3: s1.1 = sl TO R.
R3: (s1.1) => 51
MOVING AS: 51 = (O+sl) TO R.
R4: (0+51) => sl
MOVING A7: 51 = 1.51 TO R.
RS: (1.s1) => 51
MOVING A4: i(51+52) = i(sl).i(52) TO R.
R6: i(51+s2) => (i(51).i(52»
MOVE FINISHED.

AVER Project - ERIL Prototype Too15 Imperial College - DoC June 1984
--------------------------Completion modulo Equation5--------------------------
A: Unconsidered axioms 0
-------------------------------~---
R: Rewrite-rules 6
R1: i(O) => 1
R2: (51+0) => s1
R3: (s1.1) => s1
R4: (0+51) -=> s1
R5: (1.51) => s1
RG: i(51+52) => (i(s1).i(s2»

E:
£1:
E2:
E3:
E4:

Equations
(51+52) <=> (52+51)
(51.52) <=> (52.51)
(51+52+53) <=> «51+52)+53)
(s1.s2.s3) <=> «s1.52).s3)

4

ENTER command:
d
Loading display•....

(h for Help) •

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
--------------------------Completionmodulo Equations--------------------------
DISPLAY OPTIONS: Label display equality set

a display Algebra definitions
1 display domain Lattice
d .display Derivation
s display system Statistics
c display system Configuration
f finish display option

ENTER option:
s

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984

--------------------------Completion modulo EQuations--------------------------
NUMBER Of MATCHES Attempts 213

Successful: S1

NUMBER OF UNIFICATIONS Attempts 19
Successful: 16

NUMBER OF CRITICAL EXPRESSIONS 14

DISPLAY OPTIONS: Label display equality set
a display Algebra definitions
1 display domain Lattice
d display Derivation
s display system Statistics
c display system Configuration
f Finish display option

ENTER option:
f b

AVER Project - ERIL Prototype Tools Imperial College - DoC June 1984
--------------------------Completion modulo Equations--------------------------
SYSTEM CONFIGURATION: Console Log: on/OFF
E QUA LIT Y SET 5 Display Sort Order Equality count
Label ..Name•Type Trace .•..File .•..•File Total ..Current
A Unconsidered axioms = On Off bysize 18 0
R Rewrite-rules => On On bylhs kbord 6 6
E Equations <=> On On bysize 4 4

CONFIGURATIONOPTIONS: Label change equality set defaults

n create New equality set
r Reset configuration
h set screen Heading
c Console log on/off
f Finish configurations

ENTER option:
f f
CONFIRM exit from ERIL (y/n):
y

•

