
~ Science and Engineering Research Council

~ Rutherford Appleton Laboratory
J CHILTON, DIDCOT, OXON, OX11 oax
~ RAL-87-024

.-

A Kernel for a Generator of
Syntax Driven Editors for
Dimensional Designs

Prof. M Bertran-Salvans

April 1987

-

TABLE OF CONTENTS

1. INTRODUCTION AND OVERVIEW 1

2. EDITABLE GRAMMAR FORMAT 1
2.1 Example of a grammar in editable format. 2

•
3. ABSTRACT TYPES AND THEIR OPERATIONS 3
3.1 Grammar syntax tree. 4
3.2 Grammar. 5
3.3 Rule. 6
3.4 Rule alternative. 7
3.5 Text line. 7
3.6 DD. 10
3.7 Character attribute. 12
3.8 Line attribute. 13
3.9 Character. 14

4.EXTERNAL FORMAT OF ADD 15

APPENDIX I: PLOTTING DD'S WITH PIC 16
1. Primitives available. 16
2.Macrodermitions. 16
3. An example. 18

APPENDIX II: FORMAL SPECIFICATIONS AND DIMENSIONAL DESIGNS 19

1. Introduction. 19
2. Grammar specification of dimensional layout. 20
3. Internal representation of DD's. 21
4. Some simple operations for the internal construction of DD's. 24
5. Some operations to analyse DD's. 25
6. A set of constructors. 27
7. DD representation of terms and equations. 28
8. DD points. 32
9. Searching, prunning and attaching DD's. 32

A KERNEL FOR A GENERATOR OF SYNTAX DRIVEN
EDITORS FOR DIMENSIONAL DESIGNS

Miquel Bertran-Salvans"

Rutherford Appleton Laboratory, Chilton, Didcot, UK (Visiting)

1. INTRODUCTION AND OVERVIEW
The present document has as a primary purpose the provision of the necessary information for understand
ing, usage and continuation of a library of procedures which forms the nucleus of a generator of syntax
driven editors for dimensional designs [1],[2]. This represents a fundamental step towards the fulfilment of
the requirements for a Dimensional Design Environment [8].
The relation of DD's and formal specifications is explored as well, and examples of readability enhance
ment in displaying abstract syntax trees as DD's are given. In addition, the abstract type DD, needed for the
generator, is specified formally. All this is done in Section 6. Subsections 6.1 and 6.2 give an introduction
to DD's and their grammars. Readers not familiar with DD's are advised to read these sections fmt.
The key idea for the generator is the construction of syntax trees. If this process is done by substitution of
non-terminals, then the corresponding DD phrase will be syntactically correct, with respect to the grammar.
In addition to the routines for the construction of syntax trees, input and output functions for grammars and
DD's are provided as well. They involve the corresponding external representations, which are also
defmed. The input functions constitute non-baCktracking parsers for grammars and DO's, involving error
generation.
Finally, some macrodefinitions for plotting DO's in documents, like the ones in this one, are also available
and explained.

•

2. EDIT ABLE GRAMMAR FORMAT
The editor is grammar dependent. By changing the grammar, syntax-driven editing of different dimen
sionallanguages can take place. In the current version, grammars are edited with any normal text edilor.
This section gives information and an example about the format of the editable grammars.
As a general comment, this metalanguage corresponds to a simple extension of BNF. Of course, it accounts
for the four dimensions: cuboid (c), diagonal(d), vertical(v), and horizontal(h); which are not present in
BNF. Therefore, four dimensional terminals have been added. They are formed by two characters, the
IlI'St is one of the dimensional letters (c.d.v.h), The second one denotes the font for the corresponding
cuboid lines or edges.
The following line fonts are available in the current implementation: normal (n), invisible normal line (i),
grammar line (g), invisible grammar line (r), and dashed line (d).
The specification of DD stuctures is done in levels. Each DD level starts with a cuboid and ends with the
end character 'e'. In between both, there may exist diagonal, vertical, and horizontal DO's, preceded by
their corresponding dimensional terminals. Their presence is optional, but if present, they should appear in

• On leave of absence from Escola T Superior E Telecomunicacio, Universitat Politecnica de Catalunya, Barcelona, Spain.

-
-2-

the above order.
As an additional restriction, non-terminals within rule bodies (primitive or not) should have empty diagonal
DO's. According to the expansion conventions for the formation of syntax trees, this restriction amounts to
saying that non-terminal references should be unexpanded.
In addition to terminals and non-terminals, which are represented as usual in many BNF versions, a new
kind of non-terminal has been added. It is referred here as primitive non-terminal, and corresponds to fre
quently used non-terminals. The motivation being the avoidance of providing rules for them. Their names
are prefixed with a semicolon. The current version has three of them: itexiline, .identifier, and :nil. Non
terminals and terminals, primitive or not, are equivalent to complete cuboids starting a DO level. There
fore, for anyone of them an end character will have to be provided.
Rules may be either selection or non-selection rules. The bodies of the last ones start with the character
'?'. Independently, they may also be either recursive on non-recursive. The former have the character 'r'
before the equal sign separating the heading from the body of any rule.

2.1. Example of a grammar in editable format.
A simple Pascal-like language has been chosen. Programs are now dimensional design representations, as
defined by the grammar rules.
The first rule defines the global structure of any program in the language. Any program should have a
name, inserted within a cuboid, and its diagonal DD will correspond to the body of the program, which
may have a global comment.

«sddp» =(en tidentifier e dn -coptionailycommented bodys-ee)

This first rule can be represented as the following equivalent DO:

~ddp

optionally_commented_body

The second rule is an example of a selection type rule.

<optionaUy_commented_body> =?(en «comment>e dn-cbodyc-ee/ «body>e]

It corresponds to the following DD representation.

l?ptionally_commented_body

?
(}·· ·.. ·.. ·.. ·.... o. .. .
comment

"body
body

The rest of the rules are the following:

<comment> r=?(:textline vn-ccommentz-ee / :nil e)
<body> =('var' dn cn-cvariable declarationss-ee

-
_3 _

vn 'algor' dn cn« statements-e e e e)
<variable_declarations> r=?(cn-ccomments-e dn-cvariable_declarationss-ee

I <actual_variable_declarations>e)
<actual_variable_declarations> r=?(cncidentifier _list>e dnctypes-e vncvariable _declarations>ee

I tnil e)
<identifier_list> =(iidentifier hn <rest_of_identifier_list>ee)
<rest_ol_identifier_list> r=?(',' hn :ide hn <rest_of_identifier_list>eee

I mil e)
<type> e?(,boolean' e I' character' e I 'integer' e I 'real' e)
<statement> r=?(en «commenc-e dn «statemeno-e e I «statemenisequencez-e)
<statement_sequence> r=?(«basic statement» vn «suuementse e I :nil e)
-cbasic statement» r=?(<if_statement>e I <while_statement>e I «assignmenis-e I 'skip' e)
<if_statement> r=('if' dn '0' vn «boolean expression» vn «statements-ee

hn 'else' vn <statement> e e e e)
<while_statement> r=('while' dn «boolean expression» vn «statementseee)
<assignment> =(tide hi' :=' hi «expressionoeee)
<expression> =?(«booleanexpressions-e I «aritnmetic expressions-e)
«booleanexpression» =?('not' hi :ide e e

I :ide hi <logical_binary_operator> hi tide eee
I <arithmetic_expression>

hi <logic_comparison_operator>
hi <orithmetic_expression>e e e)

<arithmetic_expression> =J(:ide e I •_'hi tide ee
I tide hi <arithmetic_operator> hi :ide eee)

dogical_ binary_operator> =?('anti e I .or' e)
«logic_comparison_operator> =?('='e/,«'eJ'»' eJ'<»' e]'<='eJ'>=' e)
<arithmetic_operator> =?('+'e]'_'eJ'·' el'! el' exp' e)

•

3. ABSTRACT TYPES AND THEIR OPERATIONS

The procedures and functions of the library are grouped around types. In general, any of them is imple
mented in terms of procedures or functions of other types; this defines a dependancy hierarchy among
types, going from the most basic ones at the bottom to the more global ones at the top.
This section describes the current implementation of the types; i.e. their functions and procedures. It starts
with the grammar syntax-tree, the topmost type, and ends with line attribute and character as the bottom
most ones. Their presentation ordering corresponds to their hierarchical ordering. Functions and pro
cedures of any given type do not depend on the ones of the precedeeng ones.

-4-

3.1. Grammar syntax tree abstract type.

The abstract type grammar syntax tree (ddgstree) is represented internally as a del, type ddgstree = dd. It
depends on the abstract type grammar. Syntax trees are constructed by expanding non-t~rminals of gr~
mar rules with copies of their rule bodies, taken from the grammar. The process starts with the first rule m
the grammar. This gives rise to syntax trees having selection constructs; in other words undecided selec
tions. Strictly speaking, they represent collections of syntax trees. Therefore, it is mandatory to select one
alternative for each of the selections.
When all non-terminals have been expanded, and there remains no undecided selection, one has a proper
syntax tree. It will be the syntax tree of a syntactically correct program. This is true when no primitive
non-terminal is involved in the syntax tree. When they are present, they have to be expanded with the help
of appropriate input routines of the text line abstract type. This process is covered at the last section.

Boolean functions.
Is valid unexpanded non-terminal occurrence in st ?
function isunexpoiddginst:ddgram;stinst:ddgstree;nontinst:textln):boolean;
True if the non-terminal instance within the syntax tree is not expanded yet

Is valid alternative top of a syntax tree ?
function isaltop(altop: dd): boolean;
True if the given dd is a valid alternative top of a syntax tree. It should correspond to the structural dot of
an alternative.

Selection functions
Alternative embedding non-terminal dd
function altnontiahop: dd): dd;
Gives the least non-terminal dd in a syntax tree containing the given alternative. The non-terminal
corresponds to the selection rule of the alternative. Altop is a character dd whose character corresponds to
the structural dot of the alternative.

Constructor functions
Make nil ddg syntaxtree
function mnilst (ddginst: ddgram): ddgstree;
Takes the value of the empty syntaxtree of the given grammar instance (ddginst}. Such a nil syntax tree is,
by definition, an unrefined non-terminal copy of the goal non-terminal of ddginst .

Make expanded non-terminal ddginst syntaxtree
function mexpntst (ddginst.ddgram; stinst:ddgstree; nontinst: textln): ddgstree;
Gives the syntaxtree resulting from expanding the given non-terminal instance within the given syntax tree.
It is assumed that isnilddidiagddtnontinsti), i.e. that the non-terminal has an empty diagonal dd in the
grammar and that it has not been expanded yet within the syntax tree. Expansion involves the attachment of
a diagonal dd, the body of the corresponding ddginst rule.

Make alternative selection
function mselalt(ddginst:ddgram;stinst:ddgstree ;altop:dd): ddgstree;
Given a syntax tree, stinst , in a given grammar, ddginst, and a dd part, altop ; of the syntax tree

-
- 5-

corresponding to an alternative of one of the still undecided selections, the function takes the value of the
syntax tree resulting from selecting the given alternative for the selection nonterminal. Altop is a character
dd whose character corresponds to the structural dot of the alternative.

Derived constructor functions
Recursively expanded ddg syntax tree
function recexpstiddginst tddgramtstinst.ddgstree .nontinst ttextln)tddgstree;
Gives the syntax tree resulting from expanding the given non-terminal instance, within the given syntax
tree; and , if non-recursive, of iteratively expanding the non-terminals of the rule body expansion as well.
The same assumptions, as in mexpntst, about nontinst are made.

Expand rule body within ddgram syntax-tree
This is a function internal to recexpst . This is due to the Pascal nesting of functions.
function exprlbdylddginsuddgramtstinst tddgstree;rlbdy:dd): dd;
Gives the syntax tree with the expansion of the dd part corresponding to one of its unexpanded rule bodies,
rlbdy. Thus, the cuboid part of rlbdy does not have to be a non-terminal, as is the case in recexpst , The
implementation algorithm searches the rule body for unexpanded non-terminals, as candidates for expan
sion. It assumes that all non-terminals which are encountered are unexpanded.

•

3.1. Gnuamar abstract type.

It is represented internally as a dd, type ddgram = dd. One of the external codings of grammars has
already been covered in Section 2. A different coding can correspond to a DD, as a copy of its internal
IepI'eSeIltabon;this format is covered in Section 4. The internal representation is organised as a vertical
chain of rules, each rule being a non-terminal DD with a diagonal DD corresponding to the body of the
rule.

Selector functions.
First rule.
function frstrule(ddgrmi: ddgram): rule;
Gives the first rule in the grammar. It corresponds to the first within its list of rules.

Next rule.
function nextruleiruleinst: rule): rule;
Given a rule, it gives its next rule within the list of rules of the grammar.

Named grammar rule.
function gramruleiddginst: ddgram; nontinst: textln): rule;
Gives the grammar rule, within ddginst grammar, of the given non-terminal nontinst .

Input functions.
Input grammar.

-6-

function inddgrm: ddgram;
Inputs a DD grammar coded in linear editable format (Section 2.). Maps it into its internal dd representa
tion. The external coding is editable with standard editors, it is distinct from the external coding of dd's.
However, since this implementation represents grammars internaly as dd's, they can be written and read as
dd's using the input-output functions of the dd abstract type. It invokes the rule input function, and
assumes that new rules start at new lines.

Output procedures.
Output a grammar.
procedure outddgrm(ddgrmi: ddgram);
Outpus a dd grammar in readable linear form using standard tabulation conventions.

3.3. Abstract type rule.
The abstract type rule (rule), is represented internally as a dd, type rule = dd, It corresponds to a non
terminal DD having an empty vertical DO. The body of the rule is the diagonal DO.

Boolean functions.
Is valid rule ?
function isrule(posrule:dd): boolean;
True if the dd argument starts with a non-terminal whose diagonal edge attribute is a grammar line. The
vertical OD is not checked for emptyness since the rule may be embedded within another DD, as for
instance in grammars.
Is a selection rule 'l
function isselrul(posrule :dd):boolean
True if dd argument is a rule and its diagonal dd corresponds to a character dd with the character '1'.
Is recursive rule ?
function isrecrul(posrule :dd): boolean
True if dd argument is a rule and its horizontal dd is an isolated character dd with the character Y and nor
mal italic character attribute, nrmitlcr .

Selector functions.
Rule body.
function rulebody(ruleinst:rule):dd
Takes the value of the body of the given rule, assuming a dd representation for rules. Prints error if invalid
rule.
First alternative of a selection rule.
function firstalt(selrule:rule): rulealt
Gives the first alternative of the argument rule. Prints error message if the argument is not a selection rule.
Next alternative of a selection rule.
function nextaltirulealti:rulealt) :rulealt;
Given a parameter alternative, gives its next alternative in its rule. Returns the empty 00 if the given alter
native was the last one. Assumes the parameter to be a valid alternative, i.e. the vertical DO of the

-
- 7 -

structural dot 00 of a selection rule.

Input functions.
Input grammar rule function.
function inrule: rule;
Inputs a grammar rule, coded in linear form, mapping it into its internal dd representation. Admits two
types of rules: selection and non-selection rules. Also, a rule may be either of recursive or of non-
recursive type. Prints error messages if the global rule structure, < =() or « ;.. =?(/), is
unsuccessfully parsed. It invokes the rule alternative input function.

Output procedures.
Output grammar rule.
procedure outruletruleinsttrule);
Outputs a grammar rule, coded in linear form and with standard tabulation; starting at a new line. Prints an
error message if the internal rule to be printed is not a valid rule. It invokes the rule alternative output pro
cedure.

•

3.4. Abstract type rule alternative.
The rule alternative type is represented internally as a dd. type rulealt = dd, Any rule has at least one
alternative. Thus, the body of a non-selection rule is an alternative. Isolated character DO's are allowed in
a rule body only as parts of terminals. non-terminals, or primitive non-terminals. Thus its 00 levels should
start with any of these metasymbols.
Input fUlKtions.
Input rule alternative.
function inrlalt: ,u1ealt;
Inputs a rule alternative, coded in linear form, mapping it into its internal dd representation. This linear
coding has cuboid, diagonal, vertical and horizontal dd parts, in that order. Grammar terminals. non
terminals or primitive non-terminals may stand at the cuboid part, instead of ~ expli~it c~~id. An .'~'
character is expected as an end symbol, in order to close all 00 levels started With an implicit or explicit
cuboid. Error messages are printed if either no cuboid or no end symbol can be detected.

Output procedures.
Output a rule alternative.
procedure outrlalttalttrulealt; coltinteger);
Outputs a rule alternative, coded in linear form and with standard tabulation. The value of col should equal
the current column number. Assumes internal representation as a dd. Prints an error message if any 00
level starts with a cuboid which is invalid for a rule alternative.

3.5. Textline abstract type.
This type (textln) is represented as a dd, type textln = dd, It contains the following subtypes: identifier
string (idstr), grammar terminal, grammar non-terminal, grammar primitive non-terminal. Primitive non
terminals are built in into the library; thus, they need not be further expanded with a grammar rule. The

-
- 8 -

current subtype corresponds to their names only. There exist three primitive non-terminals in the current
version: identifier, textline, and nil.
In addition, the string of blank characters is also considered as a subtype, even when more than one line is
involved. This helps to view the input text as a continuous string of characters within the implementation.

Constant functions.
They are constants of the primitive non-terminal subtype.
Primitive non-terminal identifier.
function prmntide: textln;
Internally represented as an horizontal chain of single character dd's corresponding to the string ':ide',
where the symbol ':' stands for the primitive non-terminal delimiter (primntdl), which can be changed (see
type character). The string dd is enclosed within a cuboid. All lines and edges are grammar lines (gram
line) but the characters have the normal italic character attribute (nrmitlcr), with the exception of the delim
iter which has a normal character attribute (normchar).
Primitive non-terminal text line.
function prmnttex: textln;
The same as the first function but with the string ':tex'.
Primitive non-terminal nil.
function prmntnil: textln;
The same as the first function but with the string "mil'.

.'

Boolean functions.
Is a valid text-line?
function istextlnivar text: textln): boolean;
True if parameter dd corresponds to a textline, perhaps connected to other dd's. In other words, if cuboid
dd is a linear horizontal dd of characters. Notice that only the cuboid dd of the parameter enters in the
checking, therefore the cuboid enclosing the textline may be connected to diagonal, vertical, and horizontal
dd's. This definition is motivated to facilitate the search of textlines embedded in larger dd's.
Is valid identifier string?
function isidstr (text: textln): boolean;
True if text line is a valid identifier. In other words a texline, as in the last function, but consisting of valid
identifier characters, isidencriddchar) (see character type).
Is grammar non-terminal ?
function isnoterm (text: textln): boolean;
True if text is a valid identifier textline of normal italic characters (nrmitlcr).
Non-terminal equality.
function eqnontrminontlnonti: textln): boolean;
True if both parameters are valid nonterminals, isnoterminonti), and if they are equal. If at least one of
them is not valid, then an error message is printed.
Is grammar terminal ?
function istermnl(text: textln): boolean;
True if textline is a valid textline of characters, the attribute of none of which corresponds to a normal italic
character (nrmitlcr), and also, none of which is a standard terminal delimiter (stermldl).
Is a valid primitive non-terminal ?
function isprmnt (tdd: dd): boolean;

-
-9-

True if the cuboid of tdd, including its contents, equals one of the defined primitive non-terminals. The
diagonal, vertical, and horizontal dd's are irrelevant for the test

Input functions.
Input text line.
function intxtln: textln;
Maps the remaining text in the current input line into its internal dd representation as a text line. This func
tion uses normal characters and invisible normal lines for edges and cuboids. Prints error in case of empty
line.
Input identifier or non-terminal string
function inidstr (selector:notermsl): textln;
Assumes a valid identifier in the next input, i.e. a string starting with an alphabetic character and consisting
of alphanumeric characters plus '_' and ':. Maps this identifier to an internal textline, newly created
When the selector value is 'noterm', the dd attributes of grammar line and italic character are selected for
the internal text line, otherwise the normal text line attributes are selected. Prints error in case of empty
identifier. Any character which does not satisfy isidencr, is identifier character, for instance a blank, will
be taken as the right delimiter, which will be lost.
Input a grammar terminal
function intermnl : textln;
Maps the following input text up to, but not including, the next terminal delimiter (istermdl), into an inter
nal text line, using normal characters and invisible normal lines for edges and cuboids. The terminal delim
iter is lost Also it cannot appear in the terminal string. Prints error in case of an empty terminal string, or if
an end of line is encountered before the terminal delimiter. Therefore, it assumes that the left terminal del
imiter has just been parsed.
Input primitive non-terminal.
function inprmnt: textln;
Inputs one of the defmed primitive non-terminal names. Maps the first three characters of the input, pre
ceded by a primitive non-terminal delimiter, into an internal textline, of four characters. The remaining
identifter-type characters are input but lost. The first character after them which is riot an identifier charac
ter is also input and lost. Prints error if the internal textline matches no primitive non-terminal. Thus, it
assumes that the starting primitive non-terminal delimiter has just been parsed in the input.

Input next non-blank character.
function nextnbcr: char;
Maps an input string of blanks terminated with a non-blank character, into the terminating character (as an
internal char). Skips blank lines of input if necessary.

•

Output procedures.
Output an internal textline.
procedure outtxtln (text.textln};
Maps a non-empty internal textline into the next positions of the output, as regular text. Prints an error
message in case of an empty textline.
Output identifier or terminal string.
procedure outidstr (selector:notermsl; identifuextln);
Maps an internal identifier textline into the next positions of the output, as regular text in the current imple
mentation. If the selector denotes a non-terminal, then the textline is enclosed within angular brackets, and
an error message is printed in case of an invalid internal non-terminal. Prints an error message in case of
an empty textline.

- 10-

Output grammar terminal.
procedure outermnl (text: teuln);
Outputs an internal text line as a grammar terminal, enclosed within terminal delimiters. Prints an error
message in case of an invalid non-terminal.
Output a primitive non-terminal name.
procedure outprmnt (text: textln);
Maps an internal primitive non-terminal reference into the next position of the output, as regular text, Prints
error in case of invalid primitive non-terminal.
Output blanks and blank lines.
procedure outblncst iniblncsnlines .endblncs:integer);
Outputs a number of blanks equal to iniblancs in the current line of output, a number of blank lines equal
to nlines-I , and if nlinesz-O, a last line with a number of blanks equal to endblncs.

3.6. Abstract type DD.
The internal representation of DO's is detailed in Appendix II, Section 6.3. This appendix specifies the
constructors, selectors, and booleans given below. However, the present implementation does not make
copies of the parameter DO's when constructing a new DO, or when selecting a DO part

Constructors.
Make nil DO.
function mnildd: dd;
Gives the empty DO.
Make character DD.
function mchardd (cd:char: chaticharaur): dd;
Make cuboid DO.
function mcubdd (ddc: dd; lat: lineaur); dd;
Given a DO and a line attribute. surrounds it with a cuboid rectangle, of the given attribute, thus making a
complete cuboid.
Make diagonal DO.
function mdiagdd (ddg.dddtdd; lat: lineattr): dd;
Given a DO with empty diagonal DO, a second DO, ddd, and a line attribute, mdiagdd attaches the second
DO as the diagonal DO of the first one, with an edge having the given line attribute.
Make vertical DO.
function mvertdd (ddg.ddv: dd; lat: lineaur); dd;
As mdiagdd but for the vertical DO.
Make horizontal DO.
function mhordd (ddg.ddh: dd; lat: lineaur): dd;
As mdiagdd but for the horizontal DO.

Selectors.
DO character.
function ddchar (ddchidduchar;

- 11 -

The parameter should be a character DO. Its character is returned.

Cuboid DO.

function cubdd (ddc: dd): dd;
The parameter should be a cuboid DO which is not a character DD. It returns the DD within the cuboid.

Diagonal DO.
function diagdd (ddd: dd): dd;
The parameter should be a non empty DO. It returns its diagonal DO.
Vertical DD.
function vertdd (ddv: dd): dd;
Similar to diagdd,

Horizontal DD.
function hordd (ddh: dd): dd;
Similar to diagdd,
DD character attribute.
function ddcrattr(ddn: dd): charaur;
The parameter should be a character DO. It returns the character attribute. which contains the character
font and the line attribute of the cuboid rectangle.
Cuboid line attribute.
junction cubattr(ddc: dd }: lineaur;
The parameter should be a cuboid DD which is not a character DD. It returns the line attribute of its cuboid
rectangle.
Diagonal edge attribute.
function deganr(ddd: dd): lineattr;
For a non empty DD. it returns the line attribute of its diagonal edge.
Vertical edge attribute.
function vegatlr(ddv: dd): lineattr;
Similar as in degaur,
Horizontal edge atttibute.
function hegattr(ddh: dd): lineaur;
Similar as in deganr ,

Least embedding DD.
function lstembdd(ddinst:dd):dd;
Takes the value of the father dd of a given dd • a dd instance of a 'larger' dd. Takes the nildd value when
the given dd has no father.

•

Boolean operations.
function isnildd (ddc: dd): boolean;
Is a character DO ?
function ischardd (ddc: dd): boolean;
True if the cuboid of the parameter DD corresponds to a character.
DO equality function
junction eqdd (ddl , dd2: dd]: boolean;

- 12-

Derived constructor operations.
Copydd.
function copyddiinidd: dd): dd;
Obtains a copy of the parameter dd. Needed since the present implementation of the constructors uses their
parameter dd's as parts of their resulting dd's.
Detach a ddpart from a given dd.
function mdetchdd (ddg.dds: dd): dd;
Disconnects the dd at a ddpoint (dds) of a given dd. The implementation assumes that a ddpoint is
represented as a pointer into a dd. It is not checked whether or not the ddpoint is pointing to a part of the
given dd (i.e. ddg).

Input functions.
function inddtdd;
Inputs a DD coded in its external format (see Section 4).

Output procedures.
procedure outdd(odd:dd),·
Outputs a DD coded in its external format.

3.7. Character attribute abstract type.
It is implemented as a pointer to record, as the following Pascal declaration shows:
type charattr = "chatnode;

char/ant = (ncitbl);
chatnode = record car/ant: char/ant;

eclat : lineattr
end;

It depends on the abstract type lineaur . The type char/ant is used as an abstract type which needs no
explicit definition; due to its Pascal representation.

Constants.
Normal character.
function normchar: charattr;
Normal character font (nc) and normal invisible cuboid line, nrminvln .
Normal italic character.
function nrmitlcr: charattr;
Used for grammar non-terminal names. Italic character font (it), and invisible grammar line for its cuboid
rectangle, invgrmln .
Normal boldface character.
function nrmbldcr: charattr;
Boldface character (bl) with normal invisible line for its cuboid rectangle, nrminvln,

..

- 13 -

Constructors.
Make character attribute.
function mchat (cf: charfont; lat: lineattr): charattr;

Selectors.
Character cuboid attribute.
function ccubattr (chat: charattr): lineattr;
Character font attribute.
function cfntattr (chat: charattr): charfont;

Boolean functions.
Character attribute equality.
function eqchat (chat! ,chat2: charattr): boolean;

•

Input functions.
Input character attribute.
function inchat: charattr;
Coded within one external character. The implemented codings are: 'n' for normal character, 'i' for normal
italic character, and 'b' for normal boldface character. Prints an error if none of the above characters is at
the current input location.

Output procedures.
Output character atttibute.
procedure oiucba: (chat: charattr);
Outputs the external coding of a character attribute, as detailed in the input function. Codes with a blank
any invalid internal character attribute; it prints an error message as well.

3.8. Line attribute abstract type.
It is represented as an enumerated type:
type lineattr = (n/,i[,g/,ig,ds);

Constants.
Normal line.
function normline: lineattr;
Normal invisible line.
function nrminvln: lineattr;
Grammar line.
function gramline: lineattr;
Invisible grammar line.
function invgrmln: lineattr;
Normal dashed line.

- 14 -

function nrmdshln: lineaur;

Boolean functions.
Line attribute equality.
function eqlat (latl.lat2: lineaur): boolean;

Input functions.
Input line attribute.
function inlat: lineattr;
Inputs one character as the external coding of a line attribute. The implemented codings are the following:
'n' for normal lines, 'i' for invisible lines (used for character cuboids or length zero edges.), 'g' for gram
mar lines (grammar cuboids and edges), 'r' for invisible grammar lines (within non-terminals), 'd' for
dashed lines. Prints an error message for any other character.

Output procedures.
Output line attribute.
procedure outlat (lat: lineattr);
Outputs the external coding of an internal line attribute, as in the input function. Prints an error message
for an invalid internal line attribute.

3.9. Character abstract type.
Although the current implementation is based on the Pascal character type, this type collects a set of func
tions and procedures dealing with single characters which are specific to the generator.

Grammar terminal standard delimiter. Corresponds to the Pascal constant: const stermldl = ••••;

Primitive non-terminal delimiter. Corresponds to the Pascal constant const primntdl = ':';

Boolean functions.
Is decimal digit ?
function isdecdig (c:char): boolean;
Is alphabetic character?
function isalphcr (c:char): boolean;
Is arithmetic operator ?
function isaritop (c:char): boolean;
Is a valid identifier character ?
function isidencr (c:char): boolean;
Alphanumeric character plus ': and '_'.
Is a punctuation character ?
function ispuntcr (c:char): boolean;
True for any of the following characters: { .• : ; ? ! }
Is terminal delimiter (standard or non-standard) ?
function istermdl (c tchar}: boolean;

- 15-

True if character is equal to stermldl, or '" .
Is non-terminal delimiter ?
function isntrmdl (c: char): boolean:
True for the characters '<' and '>'.
Is primitive non-terminal delimiter ?
function isprmntd (c: char): boolean;
True if character is equal to primntdl,

4. EXTERNAL FORMAT OF A DD
The extenal coding of a DO has a resemblance with the format of the alternatives of grammar rules. As
there, there are DO levels here. However, the format is more rigid now, and blanks are not allowed.
Each DO level starts with either the character '@' or with any other character. In the fonner case, the level
srtarts with a cuboid, otherwise it corresponds to a character DO with the same character. The font of the
cuboid line is coded at the character next to '@'. Similarly for the DO character attribute.
After each complete cuboid (cuboid plus cuboid DO, or isolated character DO), exactly three DO's should
follow: diagonal, vertical, and horizontal, in this order. Should any of them be empty, then the character 'I'
has to occur instead. Otherwise the DO's have to be prefixed by their corresponding dimensional terminals.
They are the same ones explained in the editable grammar section.
As an example, the following linear coding:

•

@n @n cn!!! dndn!!!vnvn!!!hnhn!!! I!!

where the blanks have been inserted for readability reasons, corresponds to the DO:

v

-
- 16-

APPENDIX I: PLOTTING DD'S WITH PIC

In order to draw DD's within documents, for illustrative purposes, the primitives given in this section could
be used. All the illustrations within the present document have been plotted using them.

1. Primitives available.
The two primitives that should start any DD level are the text and cubst ones, for a string of characters and
for starting a cuboid respectively. For the three edges one has the primitives: diag, hor, and vert. Also,
there are three primitives to plot the iterators: diaiter , horiter , and veriter (see Section 7.). The cuboid DD
has to be closed with the cuboid primitive, which defines the labels of the three continuation points of the
DD. and the font and size of the cuboid rectangle.
As a general principle, sizes are not computed automatically. There are some general rules for this compu
tation: the vertical dimension unit is the distance between lines, and the horizontal dimension the approxi
mate width of eight characters. However, for text related horizontal displacements, character width units
are used. A trial and error process has to be followed, but in practice and with some expertise a single itera
tion suffices.
Labels are attached to some points, for instance the cuboid continuation points already mentioned. Two
other points to be labeled are the start of cuboids, cubst, and the text primitive. The last is optional. The
primitive backto is provided for moving the pen to any textline starting point or cuboid continuation point
The following is a brief description of the primitive parameters:
texu], The text as such goes within the parentheses. When italics is desired, it could be enclosed within
the mathematics delimiter.
cubst. Has no parameter, but a label should be attached to it, as in the example below.
cuboid(_,_,_,_,_,_,_). Firstparameter: the label of its corresponding cubst.
Second and third parameters: horizontal and vertical dimensions; the first one in units of four character
withs each.
Fourth: the font of the cuboid rectangle: dotted, dashed, invis, or empty for normal.
Fifth, sixth, and seventh parameters: Three distinct labels for the diagonal, horizontal, and vertical con
tinuation points of the cuboid respectively.
diag(_). Font of the edge, as in cuboid.
vert! ,). Length of the edge in normal units, and its font, as in cuboid.
hor(~ ~). Horizontal displacement, with respect to the current point (either a text or a cuboid horizontal
contiiiiicition label), usualy zero for the cuboid case and the number of characters in the text for the text
case. The second parameter defines the horizontal length of the line in horinc units (four characters
approximately). The third gives the font as in cuboid.
horiter(_). Expects the horizontal displacement of the dotted line, as in hor.
backto(_). The only parameter gives the label of the text point or cuboid continuation point where the pen
should move to.
The remaining primitives have no parameters.

•

2. Macro definitions
The following listing corresponds to the macro definitions of the above primitives and the actual settings of
the dimensional variables. It should precede, together with the PIC starting line' .PS' , and the mathematics
delimiter defmitions, any PIC program to plot a DD. The ending line' .PE' should close the PIC code. It is
not necessary to repeat the macro definitions and variable settings at each DD. It suffices to do it for the
first picture and to enclose any DD picture code within the PIC starting and ending lines.

- 17-

define text X line right invis

"$1" at last line.w Ijust X

define diag X line at last line.w + (tdx,-tdyd) down d right d $1
move to last line.s + (-tdx,-tdyu) X

define hor X line at last line.w + ($1 * chwid, O.Oi)right $2*horinc $3
move to last line.e + (O.03i,O.0)X

define vert X line at last line.w + (tdx,-tdyd) down d + $1*lhigth $2
move to last line.s + (-tdx,-tdyu) X

define backto X move to $1 j line invis X
define horiter X line at last line.w + ($1 * chwid, 0.0) right d dotted

"." at last line.e + (0.06,-0.03i) IjustX
define veriter X line at last line.w + (tdx,-tdyd) down d dotted

move to last line.s + (-tdx,-tdyu)
line right invis
"*" at last line.w + (0.01,-0.03) ljust X

define diaiter X line at last line.w + (tdx,-tdyd) down d right d dotted
move to last line.s + (-tdx,-tdyu)
line right invis
" ." at last line.w IjustX

define cubst X line right invis
move to last line.w + (cdx.tdyu - cdy) X

defme cuboid X move to $1 + (O.•tdyu - $3 • Ihigth)
line up $3· Ihigth $4
line right $2 • horinc $4
line down $3 • Ihigtb $4
line left $2 • borinc $4

$6: line at 2nd last line.n - (O.,tdyu) right invis
$7: line at 2nd last line.w + (O.O,tdyd)right invis
$5: line at 3rd last line.w + (cdx.tdyd) right invis X
tdx".0.02
tdyd".0.07
tdyu".O.09
cdx".O.1
cdy".0.15
d".O.1
Ihigtb = 0.23
chwid ". 0.059
horinc e D.S

•

About the meaning of the dimension variables at the end, and as a general consideration, each text string
has an invisible line reference along it Its left point is a reference with respect to which the three possible
edges continuing the DD are positioned.
tdx, Horizontal displacement between vertical edges and the text reference point. It also applies to the top

- 18 -

end of the diagonal edge, and to the vertical and diagonal iterators.

tdyu, tdyd. Up and down vertical sizes of text characters; with respect to text reference line.
cdx, cdy. Horizontal and vertical displacements of cuboid DD's. With respect to a cuboid starting point
near the upper left comer of the cuboid rectangle.
d. Horizontal and vertical displacement for the diagonal edge.
lhigth. Vertical unit of length. Corresponds to the distance between consecutive lines of text within aDD.
horinc . Horizontal length unit. Approximately eight character widths.
chwid. Character width. Some mean value.

3. An example
In order to plot the following DD : •

v

the following PIC program could be used:

Cl: cubst
C2: cubst

text(#c#)
cuboid(C2,0.5,1.2"C2d,C2h,C2v)

backto(C2d)
diagf)
text(#d#)
backto(C2v)
vert(l,)
text(#v#)
backto(C2h)
hor(O,O.5,)
text(#h#)
cuboid(Cl,1.8,3.8"Cld,Clh,Cl v)

where the delimiters for equations have been set to the symbol '#' in order to obtain the italic font for text
lines. Explicit font changes can be made as well, as in 'text("\fld\fp r.

- 19-

APPENDIX II: FORMAL SPECIFICATIONS AND DIMENSIONALDESIGNS
The specification of the internal representation and operations of Dimensional Designs (DO's), a sys
tematic technique for the graphic display of binary trees, is discussed. Different kinds of specification
notations are experimented with; thus, grammatical, algebraic, and functional type notations are used. The
specification has been one of the initial steps in the development of a syntax-driven editor generator of
DO's.
The DO technique is also used for the graphical representation of the specifications themselves, in cases of
poor readability due to expression length and parenthesis nestings. This serves as an illustration of the rea
dability enhancement obtained with the application of DO's, and suggests its possible application to the
specification area in general.
Grammars for the specification of DO's are introduced; they correspond to an extension ofBNF type nota
tion.

1. Introduction
The readability enhancement of many notations for formal specification is a widely recognised area where
much needs still to be done. The problem appears especially in the case of large expressions, where their
decomposition into smaller ones provides no satisfactory solution, since the unified or integrated view that
the original large expression intended to convey is lost in its fragmentation.
One obvious way to improve readability is to represent expression abstract syntax trees. However, a sys
tematic way for the layout of n-ary trees is needed. Dimensional Design (DO) [1],[2] is a systematic layout
technique for arbitrary n-ary trees. It is very convenient to enhance presentation and readability of specifi
cations, programs, expressions, etc..• One of the purposes of this work is to provide some examples in this
direction; thus, DD representations of data type definitions, terms and equations in formal specifications,
de..will be given.
An earlier version of the dimensional technique has been used extensively in practice. An initial set of
tools for the use ofDD's for program development were developed at Rutherford Appleton Laboratories by
R.W.Witty and D.ADuce. They were extensively used in the development of a major real-time computer
ised telecontrol system at a power utiliiy in Barcelona [3]. The first version of it was put in operation in
1982. Further tools have been developed by the telecontrol system development team, and the dimension31
approach is still being used there with success, in connection with both maintenence and new function
development
Although a more formal definition of a DO will emerge gradually in this work, the following simple illus
tration may serve to introduce the concept informally:

•

v

The characters c, d, v, h stand either for themselves or for DO's. The rectangle represents a cuboid,
whose interior may contain either a DO or a single character; there are two cuboids in the example. The
three edges, diagonal (\), vertical (I), and horizontal (-) connect cuboids to their three DO sons. Since the
sons of the outer cuboid of the example are empty, the corresponding edges are not represented; they could
be if so desired.
The following DO, representing a text word, gives another illustration.

- 20-

Usually, in text examples, cuboids and edges would be invisible and edges would have zero length. Thus,
in general, lines and characters will have attributes.
When a DO is used, its edges should be given specific meanings; for instance, the horizontal edge in the
last example could stand for a character connector operator. Much more about possible meanings for edges
can be found in [2]. DO's with different sets of edge meanings will be used in this document
The specification of some of the types needed for the construction of a syntax-driven editor of DO's will be
commented on in this work. Various notations will be used, and sample large expressions in all of them
will be represented as DO's. In this way, both the illustration of expression readability enhancement and
the specification of the DO and other types needed in the editor will be accomplished. •

2. Grammar specification of dimensional layout
DO's are diagrams to be represented in the two dimensional plane, therefore BNF type grammar notation
would not be the best choice for the specification of their forms, to appear for instance on a screen; only a
linearly coded representation of DO's could be specified in this form. One way to approach the specifica
tion is to introduce some new notation first, and then use it for the specification of DO's. It will be referred
to as DO Grammar (DOG) notation, an introduction to an extended version of it is given in Section 7.
However, the conventions needed for this work will be introduced at the appropriate points. Usually, the
word grammar will denote a DO grammar in the present document.
A grammar (DDG) is represented itself as a DO. Its cuboid and edge lines are of two types: terminals and
metasymbols. The former ones denote concrete structures of the DO being defined by the grammar.
Metasymbollines are represented in dotted form. There are metasymbols other than lines. Metasymbols are
grammar auxiliary notation corresponding to the symbols' <"'>"'::=" etc... in BNF.
The selection, or choice, among alternate structures at a given point will be denoted by the metasymbol '7',
which will be diagonally connected to a structural dot '0' whose vertical DO son specifies the first alterna
tive. The other alternatives are connected to their corresponding structural dots in the same manner; all the
dots are connected horizontally. The following is an example of a selection

name

-,
(} . ··..·..····0
al an

where name would denote a non-terminal of the grammar and the ai's would stand for dimensional struc
tures (DO's) specifying the alternatives which may substitute the non-terminal. Non-terminals are
represented in italics.
All edges in the above DO are metasymbols; the horizontal dotted edge denotes a connection operator
among alternatives. The diagonal dotted edge denotes an equality definition relation of its upper DO in
terms of its lower DO. For instance, name is defined as a selection; the symbol '1',meaning this selection,
is defmed in terms of its alternatives as well. The vertical dotted connection has no special meaning in this
case, it is used as a convenient way to separate the alternatives from the horizontal line.
Grammars specify in general subsets of DO's, for instance one may be interested in specifying with them

- 21 -

only the class of DD's representing the usual text; notice that there are DD's which do not represent text.
Therefore, the motivation for DD grammars is the specification of theform, or layout, of sets (subsets) of
~O's, in other words languages of DD's. The set of all DD's can also be specified by a grammar; the fol
lowing is one way to do it

dd

?

() ••••••••••••••••••••••••••••••••••••••• 0(}. .. .

(}··········o
dd char

•

? f-dd ~ildd

'dd

dd

Non-terminals char and nildd would specify the set of valid characters and the empty DO respectively. A
recursive definition is involved. As a convention, when a DD son connected to an edge is empty, the edge
is not drawn. This grammar gives a visual picture of the structure of any DO and it will be used often in
this document.

3. Internal representation of DD's
This section goes further into the description of DO's. The goal is here to obtain an internal representation
of DD's, i.e. to construct an internal type 00. Auxiliary types are needed and introduced, they correspond
to the parts of a DO which are displayed graphically in the grammar, but that have to be detailed in order to
obtain a working internal type specification. For instance, the types cuboid, diagcont for diagonal con
tinuation, vertcont, horcont correspond in the internal representation to the four DD's which are specified
in the grammar as parts of a nonempty DO, together with their edge attributes. In addition, fatherdd, to
denote the inverse of the 00 son relation, and attributes such as character and line font are introduced as
well.
A linear notation will be used for the definition of internal types and their associated operations. Transla
tion to DD representation will be done from time to time, especially for long expressions, or to provide a
more unified presentation of a fragmented set of expressions. Details of such a linear notation are reported
in [4], but it will be explained as needed within this document. It will be referred to as functional type
notation. The arrow (-7) will denote definition equality. Juxtaposition of two types denotes their cartesian
product type (record). The disjoint sum type (variant record, enumerated type) is denoted by the selection
symbol '?', the disjoint components are enclosed within parentheses and separated by the symbol",". A
motivation for this notation is to highlight the similarities with BNF grammar notation. BNF defines sets
(types) of strings. Here types of internal objects are defined. A linear model for the store will help to link
the two cases.
The following is a possible internal representation of DO's.

type (dd -7 ?(nildd / fatherdd cuboid diagcont vertcont horcont);
cuboid -7 reetattr ?(cdd / ch cfont);
diagcont -7 dedgattr diagdd •.
vertcont -7 vedgattr vertdd •.

- 22-

horcont -+ hedgattr hordd;
fatherdd, cdd, diagdd, vertdd, hordd -+ dd;
rectaur, dedgaur, vedgattr, hedgattr -+ lineaur ;
ch -+ char; cfont -+ charfont;)

This type defmition depends on the types charfont , and lineattr . A possible definition for them is the fol
lowing

type (lineattr -+ ?(nl/il/gl/ds))
type (charfont -+ ?(nc/it/bl))

Notice that four line attributes are defined: normal, invisible, grammar line, and dashed; also, the defmed
character fonts are the following three: normal, italics, and boldface. They are enough for the current pur
poses of representing grammars; more types can be introduced if needed. An invisible line attribute could
be associated, for instance, to the cuboids of text characters.
DD notation can be introduced in order to obtain a more integrated form for the above type definition. Let
the diagonal edge stand for definition equality, the vertical edge for cartesian product of types, and the hor
izontal one, in combination with the selection symbol '?', for the disjoint sum of types. Then the following
is a DD presentation of the above type definition.

•

·23·

dd-,
?-,
0-------------------------0
I I
fatherdd nildd

Idd
cuboid

rectattr

Itineattr
?-,
0------------ 0
I I
cdd ch

'dd IChar

cfont-,
charfont

•

diagcont

dedgaur

Itineattr
diagdd-,
dd

vertcont

vedgattr

Itineattr

vertdd
<,
dd

horcont
<,
hedgattr

Itineattr
hordd-,
dd

where the following types have been used

- 24-

charfont-,
?-,
0---0---0
I I I
nc it bl

lineaur-,
?-,
0-- 0--- 0--- 0
I I I I
nl il gl ds

Finally, a possible translation into Pascal of the above DD type definition is the following

type dd = "ddnode;
hordesc = record hedgattr: lineaur; hordd: dd end;
vertdesc = record vedgattr: lineattr; vertdd: dd end;
diagdesc = record dedgattr: lineattr; diagdd: dd end;
cubdesc = record rectattr: lineattr;

contents: record case ischar: boolean of
false:(cdd: dd);
truest ch: char;

cfoni: charfont
)

end
end;

ddnode = record fatherdd: dd;
cuboid: cubdesc;
diagcont: diagdesc;
vertcont: vertdesc;
horcont: hordesc;

end;

Notice that new auxiliary names have been introduced, such as cubdesc , diagdesc , vertdesc , and hordesc .

4. Some simple operations for the internal construction of DD's
A dynamic, rather than structural or static, view is taken in this section. The type DD is considered now to
be a set whose elements will be DD's but which is initially empty. The operations which inject elements
into this set will be defined. The valid DD's will be the results of such operations only. Both functional
and algebraic specifications will be used. The underlying concepts for the algebraic specifications of this
and the following sections may be found in [5],[6]. An interesting application of algebraic specifications to
graphics is reported in [7].

- 25-

4.1. Make nil DD
The first operation has no parameter, its result is the empty DD; i.e. it would correspond to the second
alternative of the global selection of the grammar given earlier in this document for the definition of aDD.
Since the operation has no input, its result is a constant; it is a nullary function, a function without parame
ters (arguments). The following notation specifies the parameters and results of this operation
mnildd ~ res (ddr ~ dd) par ()
This would correspond to the signature of the operation, which contains the name of the operation and the
parameter (domain) and result types. The arrow means definition equality in the notation. A general opera
tion would be defined in terms of parameters, results, and either a constructive or an equational definition
body. Since there are no parameters the construct' par ()' could have been omitted. In the present case,
the result type ddr, is defined to be equal to dd. A similar thing will be done for parameter types. The
names of these new types introduced in the parameter and result type definition will be used as variables
within the definition body, to denote either the corresponding parameters or result. This is not required in
the case of mnildd since the function is a nullary function, i.e. a constant, needing no definition body. It is
hoped that this form of introducing variables causes no confusion. Whenever a type needs to be denoted
within a definition body, which is not the case for the present work, an explicit indication will be used.
Further details on the notation are given in [4].

•

4.2. Make character DD
A character within a cuboid is the simplest non-empty DD structure, as specified by the above grammar.
The operation which constructs such a DD, denoted as mchardd, will have as parameters a character, and a
character attribute, defined as follows
type (charattr ~ charfont lineattr)
The following is the parameter and result specification for the operation
mchardd ~ res (ddc ~ dd) par (cd ~ char; chat ~ charattr)
Now the operation has a nonempty parameter list. Here is an example of an invocation to it
mchardd (cdO,chatO)
where the variables hold values of the respective types. The whole expression would be of type DO.

4.3. Make character headed DD's
The following three operations, paralleling the construction of lists from heading atoms and lists, .couldbe
considered in principle
mchdddd ~ res (ddc ~ dd) par (ddd ~ dd; cd ~ char; chat ~ charattr; lat ~ lineaur)
mchdvdd ~ res (ddc ~ dd) par (ddv ~ dd; cd ~ char; chat ~ charattr; lat ~ lineaur]
mchdhdd ~ res (ddc ~ dd) par (ddh ~ dd; cd ~ char; chat ~ charattr; lat ~ lineattr)
They construct the DD which consists of a heading character DD with either a diagonal, vertical, or hor
izontal DD son, the other remaining two DD sons being empty.
Notice that the operations informaly defined up to now allow the construction of DO's whose cuboids
enclose characters only, and which are linear in structure; i.e. their character DD's have only one DD son.
An arbitrary DD cannot be constructed yet.

s. Some operations to analyse DD's
Before going into the complete set of operations to construct DD's, which is still needed, let us introduce
some operations which construct no DD, but whose purpose is to analyze the parts of already constructed
DD's. The main intention is not to define them formally, since the set of constructors to be introduced in
the next section would be needed for that, but to introduce some of their properties only. In doing so, we
can rely, for the moment, on the DD representation given in Section 6.3.
Some boolean operations come first. In order to test whether a DD is empty the following function may be
invoked:

- 26-

isnildd _. res (b _. boolean) par (ddc _. dd)

For a nonempty DD, the following function will take the value true if its (heading) cuboid contains a char
acteronly:
ischardd _. res (b _. boolean) par (ddc _. dd •.-, isnildd (ddc)
Observe the notation to formulate the nonemptyness requirement for the parameter.
Equations will be introduced now in order to formulate properties holding on operations. They will state
the equality among two terms, i.e. two expressions involving the operations introduced so far and variables.
As stated earlier, the names of types used in the equations will denote variables of the corresponding types,
which will be assumed universally quantified. Equality among boolean, character, and other simple types
will be used without definition. Later, equality between DD's will be defined as a boolean operation on
DD's. The following are equations formalising some properties already noted:
isnildd (mnildd) = true

ischardd (mchardd (cd, chat» = true

The following also holds:
ischardd (mchdddd (ddd, cd, chat. lat)) = true,

and similarly for mchdhdd and for mchdvdd, In fact, for all nonempty DD's constructed with the opera
tions given so far, ischardd would take the value true.
Some selector operations will be given next; they take the value of the components of a DD. In order to
access a character within a DD, one has the operation
ddchar _. res (c _. char) par (ddch _. dd ; -, isnilddiddch) ischarddtddch)

Notice that juxtaposition denotes logical conjunction in the logic expression.
For accessing the diagonal, vertical, and horizontal DD sons of a nonempty DD, the following selector
operations are provided
diagdd _. res (ddn _. dd } par (ddd _. dd ; -, isnildd(ddd))

vertdd _. res (ddn _. dd) par (ddv _. dd ; -, isnilddiddv}
hordd _. res (ddn _. dd) par (ddh _. dd •.-, isnildd(ddh))

The value of these functions is the empty DD when the corresponding DD son is empty.
Since, with the operations given so far, a DD within a cuboid cannot be constructed, the selection operation
whose result is the cuboid DD could not be applied yet. However, since a set of constructors will be given
in the next section, this fourth DD son selector operation, cubdd, can be introduced now in advance
cubdd _. res t ddn _. dd) par (ddc _. dd •. -sisnilddiddc) -sischarddtddc))

Note the formulation of the above restriction on the parameter. The result may be the empty DD.
Here are some equations formulating some of the above properties
isnildd(diagdd(mcharddi cd, chat))) = true
isnildd(diagdd(mchdddd(ddd, cd, chat. lat ») =false
ismldd(diagdd(mchdvddi ddv, cd, chat. lat))) = true

and similarly for vertdd, and hordd,

The following equation
diagdd(mchdddd(ddd, cd, chat. lat)) = ddd

and the parallel ones for mchdvdd and mehdhdd involve equality between DD's, which has not been
defined yet. In order to do so, the following selectors for the character and edge attributes are needed
ddcrattr _. res (chat _. charattr) par (ddeh _. dd •.-, isnildd(ddch) ischarddiddch)

cubattr _. res (Ia: _. lineattr) par (ddc _. dd •.-,isnildd(ddc))

degattr _. res (lat -s lineaur) par (ddd _. dd •.=dsnilddiddd)

and similarly for vegattr and hegattr . The following is a functional definition of equality among DD's

-
- 27-

which assumes that equality predicates among line attributes and among characters and character fonts
have been defined.

eqdd ~ res (b ~ boolean) par (ddl , dd2 ~ dd)
?(isnilddiddl] isnildd(dd2)
/ (-,isnildd(ddl » (-,isnildd(dd2»

?(ischardd(ddl)ischardd(dd2)
(ddchar(ddl) = ddchar(dd2»
(ddcrattriddl) = ddcrattr(dd2))

/ (-,ischardd(ddl) -,ischardd(dd2»
eqdd(cubdd(ddl),cubdd(dd2»

) (cubattr(ddl) = cubattriddl]
eqdd(diagddiddl], diagdd(dd2» (degattr(ddl) = degattr(dd2»
eqdd(vertddiddl), vertddtdds) (vegattrtddl} = vegattr(dd2))
eqdd(horddiddl), hordd(dd2» (hegaurtddl) = hegattrtddl)

•

)

This is the first complete definition using a functional type notation,[4]. A logical expression using the
same conventions which have already been used in earlier parameter specifications constitutes the main
body of the defmition. Its value is the value of the result. It depends on the definitions of the operations
introduced earlier rather informally.

6. Aset of constructors
The operations to form linear DD's :mchdddd,mchdvdd,mchdhdd are now going to be replaced by a new
set, referred to as a set of constructors. It will be a complete set in the sense that any DD which could be
generated with the grammar given earlier, could also be generated by the application of operations of the
set. Therefore, a correspondence between the elements of the grammar and the new constructors has to be
established.
The first two members of the set have already been defined: mnildd and mchardd . They correspond to the
second (right) alternatives of the global and cuboid selections of the grammar respectively. Therefore, only
the four operations corresponding to the four references to dd need to be introduced. The cuboid rectangle
and the three solid edges in the grammar will be associated to one operation each.
Given a DD and line attributes, the constructor mcubdd
mcubdd ~ res (ddn ~ dd) par (ddc ~ dd •.lat ~ lineattr)
gives as result a new DD consisting of the given DD enclosed within a cuboid with the given line attri
butes. The following equations can now be established:
cubdd(mcubddi ddc, lat)) = ddc
cubattr(mcubdd(ddc, lat)) = lat
The following also holds
isnilddi diagdd(mcubddi ddc, lat) = true
and similarly for vertdd and hordd, In addition one has that
ismldd(mcubddi ddc, lat)) = false
ischardd(mcubddi ddc, lat)) = false
The remaining three operations attach a DD son to a cuboid or character DD having an empty diagonal,
vertical or horizontal DD son respectively
mdiagdd ~ res (ddn ~ dd) par (ddg ~ dd; isnilddidiagddiddgj); ddd ~ dd; lat ~ lineattr)

- 28-

mvertdd -+ res (ddn -+ dd) par (ddg -+ dd; isnildd(vertdd(ddg»; ddv -+ dd; lat -+ lineattr)
mhordd -+ res (ddn -+ dd) par t ddg -+ dd; isnilddihorddiddgj}; ddh -+ dd; lat -+ lineattr)
Here are some properties:
diagdd(mdiagdd(ddg, ddd, lat) = ddd
degattrt mdiagdd(ddg, ddd, lat » = lat
and the parallel equations for mvertdd and mhordd,
The following expression takes the value of a DD and involves the complete set of constructors, its com
ponents can be put in a one to one correspondence with the components of the grammar. Its variables ddc,
ddd, ddv, and ddh denote the four DD sons; late, latd, latv and lath correspond to the cuboid rectangle
and the three solid edges; cd and chat correspond to the character
?(mhorddimvertddimdiagddi ?(mcubddiddcIaic) / mcharddicd.chatu.dddlatduddvlatv).ddh.lath)
/ mnildd)
The cuboid rectangle attributes of a cuboid containing a character are implicit in chat. Any DD can be
constructed now by proper application of the constructors.
The above expression defines an order for the construction of DD's, which starts from its innermost level.
First, a cuboid with either a DD or a character within it is constructed; then a diagonal son is appended to
it, continuing with a vertical, and finishing with a horizontal son. This will be referred to as canonical
order, and the corresponding expression canonical term.
Observe that there are other orders for constructing the same DD. This fact may be expressed with equa
tions. Let ddd denote a DD such that
-,isnildd(ddd) isnilddivertddi ddd} isnilddihorddiddd)
then one has that
mvertddi mhorddi ddd, ddh, lath). ddv, latv] = mhorddi mvertddi ddd, ddv, latv), ddh, lath)
which expresses the equivalence. Two parallel equations involving the operation pairs mhordd, mdiagdd
and mvertdd, mdiagdd can be established as well. Then, given a term involving the constructors, these
three equations can be used as rewrite rules to obtain an equivalent canonical term, since the constructors
appear in canonical order in their right hand sides. A term subexpression matching a left hand side would
be substituted by the corresponding right hand side.

7. DD representation of terms and equations
The readability of terms and equations may be enhanced if they are representd as DO's. Many po~sibi1ities
for such a representation exist, depending on the meanings assigned to the edges. One of them tnt.erprets
the vertical edge as denoting a 'brother' relation; where actual parameters (operands) of an operauon are
considered to be brothers. Furthermore, the horizontal edge would still connect alternatives for a parameter
occurrence, in combination with the symbol"?' standing at the parameter location. The diagonal edge
would connect the operation name (operator) to its first operand (son).
The following is a DD representation of the term which involved, above, the complete set of constructors,
in accordance with the given interpretation for edges.

- 29-

?
.J' -,

0
I I
mhordd mnildd-,
mvertdd

mdiagdd

?

0 0
I I
mcubdd mchardd-, -,
ddc cd
I I •late chat

ddd
I
latd

ddv
I
latv

ddh
I
lath

Finally, in order to express equality among terms, they will be enclosed within cuboids, and the cuboids
will be connected with an horizontal edge which, outside cuboids, will denote equality among terms. As an
illustration, the last equation of the last section could be represented as follows:

mhorddmvertdd-, <,
mhordd mvertdd

Ii~ IiMdI
ddh ddv

~ath
I
latv

ddv ddh
I I
latv lath

As it can be appreciated, readability is enhanced considerably; at the expense, however, of an increase in
paper space.
An interesting equation involving the operations introduced so far, with the exception of mchdddd,
mchdvdd , mchdhdd which were already discarded, is the following

- 30-

?(.....,isnildd(ddg)mhordd{ mvertdd(mdiagddi
?(ischarddiddg) mchardd(ddchar(ddg),ddcrattr(ddg)
/.....,ischardd(ddg)mcubdd(cubdd(ddg),cuballr(ddg)))

,diagdd(ddg), degattr(ddg)), vertddiddg), vegaurtddg)), hordd(ddg), hegattr(ddg))
/ isnilddiddg) mnildd) = ddg

It expresses the inverse annihilation between suitable pairs of operations. The same expression can be
presented more legibly as

- 31 -

?
<,
0------------------0
I I
=isnildd (ddg) isnildd (ddg)
I I
mhordd mnildd
<,
mvertdd

I'-mdiagdd
f'.?
f""0------------ 0
I I
ischardd (ddg) -ischardd (ddg)
I I
mchardd mcubdd

" "ddchar cubdd

Iddg Iddg
ddcrattr cubattr

" "ddg ddg

diagdd

Iddg
degattr-,
ddg

-

vertdd

Iddg
vegattr-,
ddg

•

Notice that the meaning of the vertical edge has been extended to the case where a boolean operator stands
at its upper end as the upper item of an alternative. Should its value be true, then the construct is equivalent
to the 00 at the lower end of the vertical edge; otherwise, the OD is replaced by the empty DD, and the
alternative is not selected.

hordd

Iddg
hegattr
<,
ddg

- 32-

8. DD points
Some DD operations, still to be defined, will have to be of 'random access' type. They will have an
'address' within a DD as parameter; or, more technicaly, a DD occurrence point, more succinctly aDD
point. This section introduces the specification of this concept as a type, ddpoint. It has five constructors

nilpt ~ res (ddpt ~ ddpoint)

cpt ~ res (ddpt ~ ddpoint) par (ddptO ~ ddpoint)

and the three constructors, dpt, vpt, and hpt, having the same type of signature as cpt,
The boolean operation
isnilpt ~ res (b ~ boolean) par (ddpt ~ ddpoint)

such that isnilpt(nilpt) = true, and taking the valuefalse otherwise, decides whether a point is nilpt .
Equality among DD points can be defined as follows:
eqddpt ~ res (b ~ boolean) par (ddptl , ddpt2 ~ ddpoint)
with the equations
eqddptt ddptl,ddp(2) = eqddpti ddpt2 ,ddptl)

eqddptinilpt.ddpt] = isnilptiddpt)

eqddpti cpt(ddptl),cpt(ddpt2» = eqddpti ddptl ,ddpt2)

with three similar equations for dpt, vpt, and hpt . The remaining twelve combinations would give afalse
value.
A DD point may denote a part of a given DD, i.e. a sub DD. The function pointed DD
ptddd ~ res (ddp ~ dd) par (ddg ~ dd ; ddpt ~ ddpoint)

gives such a part. It is defined as follows :
ptddd(ddn,nilpt) = ddn

-,isnilpt(ddpt) (ptdddimnildd.ddpt} = undefined)

-,isnilpt(ddpt) (ptddd(mchardd(ch,chat),ddpt) = undefined)

ptddd(mdiagdd(ddn,ddd,lat),dpt(.ddpt} =ptddd(ddd.ddpt)

and similarly for the pairs (mvendd, vpt }, (mhordd, hpt), and (mcubdd, cpt },

Lists ofDD points will be needed as well. A new type, ddptlist, will be introduced for them. The operation
cons will give the list obtained by appending a given list to a given point The operation mnilddpl will take
the value of the empty DD point list. Also, mlist will put together two lists to form a new one.

9. Searching pruning and attaching DD's
The first operation to involve points searches for a DD, dds, within another DD, ddg.
searchdd ~ res (ddplst ~ ddptlist) par (ddg, dds ~ dd)
It takes the value of the list of all the points of ddg, at all of which dds occurs within ddg. The following
equations define this operation
=isnikidtdds} (searchdd(mnildd,dds) =mnilddpl)

searchddidds.dds) = const nilpt, mnilddpl)

-eqddiddn.dds) (searchddiddn.dds) =mlisl(oplist(hpt,searchdd(hordd(ddn),dds»,

mlist(oplistivpt.searchddivertddi ddn} .ddst),

mlist(oplist(dpt.searchddi diagdd(ddni.ddsi},

?(ischarddiddn) mnilddpl

f-,ischardd(ddn)

mlist(oplist(cpt,searchdd(cubdd(ddn),dds»,mnilddpl»»)

The last two equations can be expressed in DD notation:

-
- 33-

searchdd ?
<, -,
ddn ~ 0

I I I
dds -eqdd(ddn,dds) eqdd(ddn,dds)

I I
mlist cons-, -,
oplist nilpt
~- I
hpt mnilddpl
I
searchdd-,
hordd

~ddn
dds

mlist
<,
oplist
\..
vpt
I
searchdd
<,
vertdd

~ddn
dds

mlist-,
oplist-,
dpt
I
searchdd
<,
diagdd

~ddn
dds

?
<,

0

I I
-ischardd (ddn) ischardd (ddn)
I I
mlist mnilddpl-,
oplist
\..
cpt
I
searchdd
<,
cubdd

~ddn
dds

mnilddpl

•

-
- 34-

where the function oplist has been assumed to exist. It gives the list resulting from the application of its
first argument to each element in the list at its second argument. Also, the lastly used conventions about
edge meanings have been used.
The list of terminating points of a DD, say ddg, is defined as searchddi ddg, mnildd). The empty DD has
only one terminating point, nilpt,
Now, the operation to prune DD's can be introduced. Given a nonempty DD and a point within it, the func
tion
mprundd ~ res (ddn ~ dd) par (ddg ~ dd; =isnilddiddg}; ddpt ~ ddpoint)
takes the value of the DD equating the given one except at the given point, where the empty DD occurs
now. The following equations define the new operation
mprunddiddnnilpt) =mnildd
mprunddimnildd.ddpt) =mnildd
=dsnilptiddpt} (mprundd(mchardd(ch.chat).ddpt) = mcharddich.chat))
mprunddimdiagddi ddn.ddd.lat).dpt(ddpt) =mdiagdd(ddnmprunddi ddd.ddptrlat)
and a similar equation for the cuboid, vertical, and horizontal cases. The following will hold as a conse
quence, wherever mprundd is defmed.
ptdd(mprundd(ddn.ddpt).ddpt) = mnildd
Finally, an opperation to attach a DD at a terminating point of another DD can be introduced
mattachdd ~ res (ddn ~ dd) par (ddo.ddnw ~ dd; ddpt ~ ddpoint)
which could be defined recursively in a similar manner as mprundd, The following property will hold.
wherever mattachdd is defmed
mprundd(mattachdd(ddo.ddnw.ddpt).ddpt) = ddo

-
- 35-

APPENDIX In: SOME FURTHER FUNCTIONS
Some comments about functions, which are not yet available but which are either desirable or needed, are
given in this section.

1. Detach and attach parts of syntax-trees.
They are required in order to implement the delete operation. A complete version of this function needs
temporary storage of parts of syntax trees for their later attachement, for instance when a part of a DD
which is not a subtree has to be deleted.
In order to preserve syntactic correctness, the only valid detachement points are the non-terminals, primi
tive or not. Their names are left unexpanded in the syntax tree, but are copied at the head of the detached
parts. These parts are labelled with the name of the grammar, which happens to be the heading non
terminal in the syntax tree. Attachment is done in the obvious inverse way, checking both grammar and
expanded non-teminal names.
One way to proceed in the implementation is to introduce a new type for a detached syntax tree, type
detstree = dd;. It could be implemented as a DD in order to reuse the already available DD operations,
especially the input-output ones. For instance, the grammar name could stand as a non-teminal DD as the
cuboid, and its vertical DD, connected with a grammar edge, could contain the non-terminal continued with
a diagonal DD, consisting of the dettached DD.
The following could be the two function signatures in Pascal notation:
function mdetchstiddginst iddgram.stinsttddgstree montinst :ddgstree): detstree;
function mauchsti ddginst.ddgram.stinsttddgstree montinst :ddgstreemewpart :detstree): ddgstree;
By properly applying these functions, many global functions for the user interface can be constructed, and
the syntactic correctness of the implied DD will be preserved. Like the following ones: delete, add, insert,
copy, move, permanent storage of parts, etc...

•

2. Expansion of primitive non-terminals.
Something about this topic has already been mentioned in the introduction. When such an expansion has to
take place, the expansion DD should be constructed by a built-in function. For instance, the ttex primitive
has to be expanded by ftrst invoking the inixtln input function of the abstract type textln, The invocation
should be done by the interactive program once it has detected that the user wants to expand an instance of
such a non-terminal. The user will then be expected to input the textline from the keyboard, a carriage
return character will be interpreted as the end of the text line.
At this point, the internl DD representation of the line of text is available. It ha~ to be ~ttached as the.diago
nal DD of the unexpanded non-terminal in the syntax tree, with a grammar hne attnbute for the diagonal
edge.
The primitive non-terminal :ide should be expanded with the function invocation inidstr(normid). The
value used for its selector type parameter will have the effect of interpreting the character string, input by
the user, as an identifter; any non-identifier character will be interpreted as its end character.
The :nil case involves no function for the construction of internal DD's. Other primitive non-terminals
could be added. For instance, since the functions intermnl, inidstrinoterm), and inprmnt are available, the
following primitive non-terminals :terminal, :nonterminal, and tprimnonterminal could be incorporated.
They are going to be used in the next subsection.

3. Guided editing of grammars.
Up to this point, the grammars for the generator should be edited with a normal text editor with the format
explained in Section 2. However, it may be tempting to try to deftne the metalanguage with a grammar and,
by feeding it to the generator, obtain a syntax driven editor for the grammars themselves.
The main lines for the introduction of this new function are covered now. A problem is the ambiguity
between grammar lines of the grammar deftning grammars and grammar lines of the grammar which is
being edited with the syntax driven editor. A way to overcome the ambiguity is to use a different line font

-_
- 36-

for the latter, like the dashed line font
Once the editing process is complete, the grammar is extracted from its syntax tree. Such a grammar cannot
be used to drive the syntax driven editor due to the dashed lines. However, a suitable procedure can be
coded for their change to grammar lines. A level of indirection in the representation of fonts can avoid this
process.
Since procedures for inputing terminal and non-terminal names are available within the type textln, the
addition of the primitive non-terminals :ter, tnon, and :pri, as detailed in the last subsection, will make the
coding of the grammar defining grammar shorter. The following is a possible one:

<grammar>
(

<rule>
vd <rule list>

e
e

)

<rule list>
r =?(

<rule>
vd <rule list>

e
e

/
:nil
e

)

<rule>
(

:non

dd «rule body»
e

hd «recursive pption»
e

e
)

«recursive option»
=?(

'r'
e

/
:nil

-
- 37-

e
)

«rulebody»
=?(

<rule alternative»
e

/
<selectionbody»
e

)

<selection body»
(•
'?'

dd <alternative>
hd <more ails>

e
e

e
)

<alternative>
(
'0'

vd <rule alternative>
e

e
)

<more alts»
r =?(

<alternative>
hd <more alts»
e

e

/
:nil
e

)

<rule alternative>

-
- 38-

:non
vn <rule alternative>

e
hn <rule alternative>

e
e

/
:pri
vn <rule alternative>

e
hn <rule alternative>

e
e

/
:ter
dn <rule alternative>

e
vn <rule alternative>

e
hn <rule alternative>
e

e

/
en <rule alternative>
e

dn <rule alternative>
e

vn <rule alternative>
e

hn <rule alternative>
e

e
)

It has been printed with the standard tabulation implicit in the outddgnn procedure.

4. Extraction of senfences from syntax trees.
This is a required function, since the user is ultimately interested in a DD rather than in its syntax tree. A
draft of a Pascal function for the extraction of a DD sentence from a syntax tree will be given. The main
intention is to convey an initial idea of the algorithm for its further improvement.
The function, sentence, will extract the sentence from a syntax tree without destroying it, and assuming
that it contains no undecided selections. However, some of its non-terminals may not be expanded.
The main idea is to process the syntax tree recursively. The sentences of the DD sons are obtained first,

- 39-

when this makes sense. Then the sentence of the syntax tree is obtained depending on the type of the
current level: terminal, non-terminal, or cuboid. This is done by properly connecting the sentences and for
getting about the non-terminal.
The following is a sketch for the function:
sentencet stinst:ddgstree): ddgsentn;
var cuboiddd: dd; diagsent.vertsenthorsent: ddgsentn; cubedg.diagedgvertedghoredg: lineattr;
begin
ifisnildd(stinst) then sentence :» stinst

else if ischardd(stinst) then {error}

else

begin
cuboiddd := cubddistinst); cubedg := cubattristinst];

diagsent := sentenceidiagddistinstt); diagedg := degattr(stinst);

vertsent := snetencetvertddistinstj}; vertedg := vegattristinst};

horsent := sentencethorddistinstj); horedg := hegattrtstinst};

if { stinst is a grammar terminal DD }

then sentence: =mhorddtmvertddi mdiagddi copydd(mcubdd(cuboiddd.cubedg)

.diagsent.diagedg}
•vertsent, vertedg)

.horsenrhoredg}

else if { stinst is non-terminal. primitive or not} then

begin
if isnildd(diagsent} then { unexpanded }

sentence := mhorddtmvertddi copydd(mcubdd(cuboiddd.cubedg)

»ensent.vertedg)
horsem.horedg}

else { form sentence by attaching vertsent at the

first empty vertical DD of diagsent, and

attaching horsent at the first empty

horizontal DD of the resulting DD. }

•

end
else { stinst is a terminal cuboid DD. }

sentence := mhorddimvertddimdiagddimcubddi sentencei cuboiddducubedg)
.diag sent .diagedg)

.vensent.vertedg]

.hor sent horedg)

end
end

ACKNOWLEDGEMENTS
Many people have contributed directly or indirectly to the work reported in this document. I would like to
thank all of them: Dr R W Witty for inviting me to spend my sabbatical at RAL, and for his comments,

-
-40 -

criticisms, and corrections. Tom Povey for his criticisms and encouraging comments on the work. Dr D A
Duce for his reading and encouragement on parts of this work. A J J Dick for reading and correcting some
sections. D Gibson for his interest in incorporating the library of functions into his man machine interface
system.

BIBUOGRAPHY

[1] R W Witty, "Dimensional Flowcharting", Software Practice and Experience, vol 7, pp 553-584,
1977.

[2] R W Witty, Small Scale Software Engineering, PhD Dissertation, Brunel University, Dept of Com
puter Science, September 1981.

[3] M Bertran and J Xampeny, "A Computerized Power Network Telecontrol Center: Environment and
Solution Framework", IEEE Power Engineering Society Summer Meeting, Vancouver, Canada, July
1979.

•

[4] M Bertran-Salvans, "System rules: A Linguistic Approach to Distributed System Design", Research
Report, Escola T Superior E Telecomunicacio, uPc,Barcelona, Spain, March 1986.

[5] J A Goguen, J W Thatcher, E G Wagner, "An Initial Algebra Approach to the Specification, Correc
ness, and Implementation of Abstract Data Types". In Raymond T Yeh (Ed), Current Trends in Pro
gramming Methodology. Vol. IV, Data Structuring, Prentice-Hall, 1978, pp 80-149.

[6] G Huet, DC Open, Equations and Rewrite Rules, A Survey. Stanford Verification Group, Computer
Science Department, Rep. No. STAN-CS-80-785, 1980.

[7] D A Duce, E V C Fielding, Formal Specification - A Comparison of Two Techniques. Rutherford
Appleton Laboratory, Chilton, Didcot, UK, RAL-85-051, July 1985.

[8] Dimensional Design, Requirements Specification for Prototype, issued by D R Gibson, SE Group
note 111, RAL Informatics Division, revision Apri11986.

