
Moc::t
a
Icoco
I_J«a:

Science and Engineering Research Council

Rutherford Appleton Laboratory
Chilton DIDCOT axon oxn OQX RAL-88-043

Automated Equational Reasoning
and the Knuth-Bendix Algorithm:
An Informal Introduction

A J J Dick

June 1988

-
AUTOMATED EQUATIONAL REASONING
AND THE KNUTH-BENDIX ALGORITHM:

AN INFORMAL INTRODUCTION

A. 1. 1. Dick

Rutherford Appleton Laboratory
Chilton, Didcot

OXON OXII OQX

1. INTRODUCTION
Why reason with equations? The answer is that equality is a fundamental logic concept
of universal importance; equations are often a very natural way of expressing mathemati
cal knowledge, and the properties of the equality relation allow us to. reason by "replac
ing equals by equals" , a very powerful and general technique.
Particularly interesting to formal methods in computer science is the use of equations for
defining the properties of objects, relations or functions, and the use of equations as
rev/rite rules to model computation.
A comprehensive survey of the use of equations in compissr science has been published
in [HueOpp80b]. ---
Let us consider a typical example of equational reasoning.

•

Given the equations
~ -O+x = x ---'(1)

x.-irO = x (2)
---- ~(-x)+x = 0 (3)

(x+y)+z x+(y+z) (4)

prove that (-(-a»=a fDr any a.
We may use the ability to. freely interchange equal expressions in whatevercontext they

~0af0D' explorethe properties and imp1icatiDns of the given equations, and prove
the desired result. A typical human presentation of such a proof might be as fDrr~WS:-

Figure 1._
PrQQf :- i) (-(-a » = «~(-a»)+O by (2)

ii) = (-(-a» +«-a) +a) by (3)
iii) «-(-a» + (-a» +a by (4)
iv) = O+a by (3)
v) = a by (1)

ffow can we set about automating such reasoning?
A close examination of the reasoning process embodied in this human proof reveals that
there is-a great deal going on behind the scenes of an apparently simple proof, To. illus
trate just one aspect, consider the application of equation (3) in step ii), in which 0 is
replaced by -a +a. ~t this stage of the proof, the motivation for binding the variable x
to. a is not obvious. It's purpose is only revealed at step iv), where the second

lOne can envisage a strategy in which variables are only bound to existing elements of the origi
nal expressions. Such a technique would, it seems, work satisfactorily in this case, but it does not
provide a solution to the binding problem in general.

- 2-

application of equation (3) requires such a binding. Perhaps it is misleading to represent
the proof as a sequence of such steps when in reality the author of the proof may have
used a quite different intuition to derive it (from step iii) outwards, for instance). How
ever, a more accurate rendering of the step-wise proof may be.-
Figure 2.
Proof ;- i) (-(-a » = (-(-a »+0 by (2)

ii) (-(-a» +«-x) +x) by (3)
iii) = «-(-a» +(-x) +x by (4)
iv) O+a by (3) (with x bound to a)
v) = a by (1)

Such observations suggest that, in considering the automation of such reasoning, the fol
lowing basic processes are necessary:-
o Unification: Finding variable bindings that will unify an expression with one side

of an axiom. From thebrief discussion above, it is-clear that simple
matching of an axiom to an expression is not sufficient.. Embodied in
unification is the ability to rename variables to avoid confusion- __

oRewriting: Replacing one side of an axiom by the other side within the context of
an expression. (Replacing equals by equals).

o Strategy: This is where the major difficulty lies. Finding the sequence of axiom
applications that show two expressions to be equal, requires effec
tively a search of an infinite network representing the closure of the
equality relation. This search space is ridden with infinite sequences
and loops requiring a very cautious approach. At the very least, one
must
o record the path followed through the search space, and avoid

repetition.
o adopt a "breadth first" strategy which favours "less complex"

expressions, to avoid getting lost in ever divergent paths.
naive strategy such as this one is totally non-determinis-tic;and requires full backtrack

ing. For any non-trivial proof, a vast amount of searching is likely to be required before a
proof is found. It is desirable that any strategy chosen should be

o SOU!!:.4j.e_. any solution found must be correct; and
o complete, i.e. must be capable of traversing the entire search space, so that if

there is a solution, it will be found.
A large part of these notes will be concerned with a technique called the Knuth-Bendix
algorithm, which is a complete and sound strategy for solving the equality problem
expressed by a given set of axioms.

2. REWRITE RULES
A key idea in equational reasoning is to treat a set of equations as rules for rewriting
expressions. A rewrite rule, written E =>E', is an equation which is used in only one
direction, i.e. E may be replaced by E', but not vice versa. Thus in the context of the
example above, we can write the equations as

-
-3-

Figure 3.
O+x =>x
x +O=>x

-x +x =>0

CRl)
(R2)

(R3)

(R4)(x +y)+z =>x + (y +z)

A set of such rewrite rules we call a rewrite system.
We write E =>* F if E can be rewritten to F by a sequence of zero or more rules applied
one after the other in any order. We write E =>1F if E can be rewritten to F by the
application of a single rule. If none of a set of rewrite rules apply to an expression, E ,
then E is said to be in normalform with respect to that set.
Using axioms in only one direction greatly decreases the number of possible applica
tions. Whereas before the number of possible repeated applications of axioms was infin
ite (reflecting the infinite nature of the search space), in many cases (the most interesting
ones!), there is only a finite way of repeated applying rewrite rules. \Ve shall examine
how we can ensure this finiteness in a moment. The problem with restricting our use of
the axioms in this way, however, is that, although our deductions remain sound, we risk
losing completeness. Can we still ensure that it is possible to traverse the entire search
space? In relation to these ideas/problems, we now discuss two fundamentally important
properties of rewrite systems.

•

2.1. Finite Termination
A rewrite system is said to be finitely terminating or noetherian if there are no infinite
rewriting sequences E =>E ' =>E "=>
The importance of this property is that an algorithm that repeatedly applies rules to
expressions whenever possible will always terminate, leaving the normalform of the ori
ginal expression. It guarantees that every expression has a normal form. We have no
need to worry about loops or infinite sequences in the search space; they are all avoided.
How then can we ensure finite termination? Examine for a moment the rewrite rules Rl
to R3 above. It is clear that the right-hand side of each of them is in some respect
"simpler" than the left-hand side. Thus any application of these rules is going to "sim
plify" the expression they are applied to.
Let us therefore define an ordering on expressions, », which describes their "simplicity".
For example,

O+x »x (x "is simpler than" O+x)
x +0 »x (x "is simpler than" x +0)

-x +x »0 (0 "is simpler than" -x +x).
It is easy to see how "simplicity" could somehow be related to size. The associativity
axiom A4, however, is more difficult, since both sides appear to be of exactly the same
size. An expression could be regarded as being simpler if, viewing expressions as trees, it
has a bigger right than left subtree. i.e.

- 4-

+ +
/ \ I \I

+ z "is simpler than" x +
/ \ / \

x y y z

or (x +y)+z »x +(y +z).
So for each rewrite rule, E~E', we can insist not only that E =E', but also that E »E'.
But we must also require that, for every substitution o, cr(E) »cr(E '), because in the pro
cess of rewriting, we may may use any instance of the rule E ~E '.
If we insist on these properties, then we can say that the rewrite system is finitely ter
minating if and only if there is no infinite sequence E »E' »E" In the terminology
associated with partial orderings, if « has this property, it is called a well-founded order
mg.
Thus we can ensure finite termination of a rewrite system by associating a well-founded
ordering on expressions such that for every rule E ~E', and all substitutions c,
cr(E)>>cr(E').
An ordering on terms is said to be stable or compatible with term structure if E »E'
implies that

i) cr(E) » cr(E ') for all substitutions o: and
ii) f (... E ...) »f (... E' ...) for all contexts f (...).

With a stable, well-founded ordering, we can ensure finite termination by checking so
see that E »E' for all rules E ~E '.
There are, of course, many ways of defining such orderings. The reader is referred to
[HueOpp80b], [Der82] and[DerMan79]for a survey of various methods.

2.2. Unique Termination
Finite termination ensures that every expression has a normal form. Unique termination
together with finite termination ensures that every expression has just one normal form.
This is a very important property, becuase it ensures completeness; in fact, it tum~ out
that such a rewrite system provides a complete decision procedure for the equational
theory.
Consider a set of rules which rewrites an expression, C, to E or to F by different
sequences of applications. If for every such situation, there exist sequences of rules th~t
allow E and F to be rewritten to the same normal form, N, then the set of rules IS
uniquely terminating. This property is illustrated in Figure 5, and is often called conflu
ence, which means literally "flowing together"; intuitively, all rewriting sequences that
diverge from the same place eventually flow together again.

-
- 5 -

Figure 4. Confluence.

The following example shows that the set of rules Rl to R4 above are not confluent :-

byR2

(-0)+0

(~(\
o byR3

•

No further rules can be applied to 0 or (-0), showing that the expression (-0)+0 has
more than one normal form.

A rewrite system that is both confluent and ncetherian is said to be canonical. Canonical
rewrite systems enjoy the following Church-Rosser property, which characterizes the
completeness of reasoning with rewrite rules.-

A rewrite system is Church-Rosser if and only if, for all expressions E and F ,
E is equal to F if and only if there exists an N such that E =>* Nand

*F => N.
In other words, if a rewrite system is canonical, we can determine whether or not any two
expressions are equal in the equational system by seeing if those expressions have the
same normal form or not. What is more, confluence ensures that this is a decision pro
cedure, in the sense that we can apply rules in any order and still get the same result; no
backtracking or "undoing" of rule applications is required.
Later on we will consider how to check whether a rewrite system is canonical. In
essence, the Knuth-Bendix algorithm is a method of adding new rules to a ncetherian
rewrite system to make it canonical.

-6-

2.3. Proof Revisited
Now let us rearrange the proof of Figure 2 in a way that demonstrates changes in expres
sion complexity :-
Figure5. Proof showing changes in expression complexity.

«-(-a »+-a)+a
tf \\

byR4 (-(-a» +_(-a +a) <\//

J:::/
byR3 (-(-a»+O \.

,~

d' O+a byR3
', \

byR2 (-(-a» \
':.::i

a byRl

Viewed in this light, the whole essence of the proof seems to be the top, most complex
expression «-(-a » +-a) +a . Starting from (-(-a», the complexity of the expression
builds up to a peak, and is then simplified in another direction. All (non-trivial) proofs
contain at least one peak expression, called a criticalexpression,which can be rewritten
in two different ways. A proof that does not contain a peak expression is trivial, in that
both sides of the theorem simplify to the same normal form by simple application of the
rewrite rules. Note that the theorem being proved is represented by the normal form
expressions, (-(-a» and a.
The "eureka" step of devising a proof would seem to be the discovery of one or more
appropriate critical expressions, from which proofs could be constructed by simplifying
these expressions to alternative normal forms.
Here are some more examples :-

-
- 7-

Figure 6. Proof of commutativity of a group in which all non-neutral elements are
of order two.

Given the axioms

e .x =>x (R5)

(R6)
(R7)
(R8)

x .e =>x
x .x =>e

(x .y) . z => x . (y . z)

Proof :-

byR7

«(b. a) . a) .b) . (a .b)
t:I \\

«b . (a .a» .b) . (a .b) ~/fl «b .a).(a r: .b)

// ~.

0/ (b .a) . «a. b) . (a .b »
«b .e~:}) . (a .b) \~

.r. \\V \\
'~

•
byRS

byRS

byRS

byR6

byR7

byRS

(b .b).(a .b)
.. ;

(b .a). e byR7t:/
e . (a .b) \\0" , ,

a.b
....
b.a byR6

-
- 8 -

Figure 7.
Given axioms RI, R3 and R4,

prove axiom R2, i.e. that x +0=x .

Proof:-
«(-(-a »+-a)+a)+0I «-(-a))~(:-a +a))+O
/,' ~ ((-(-a »+-a)+a1/ ((-(-a»+O)+O d \~1/ '~ (-(-a»:t-(-a +a) \\\

. (-(-a»+(O+O) /) \\
(01;"a)+O ~ (L/ \\
V (-(-a»+O ~l

a +0 O+a
\\.
:"''1
a

3. RULE APPLICATION
The rewrite rule L =}R , in effect, specifies that any instance cr(L) of L can be replaced
by the corresponding instance cr(R) of R. So in applying the rule to an expression, E,
we must attempt to make substitutions in L which make it identical to any sub
expression of E. If we represent the substitutions by o, applying the rule is the same as

i) finding o such that cr(L) =E' where E' is a sub-expression of E ; then
ii) replacing E' by cr(R) in E.

For example, take L =}R to be x + 0 =}x and E to be y + (0+ 0). By letting o be
[x f-O], (i.e. the substitution of 0 for x), we have cr(L) = 0+ 0, a sub-expression of
y + (0+0). Then cr(R) = 0 and the rewritten expression is y +o.
Now the rule can be applied a second time to the (sub-)expression y +0 by letting o he
[x --v l.rewriting the expression again to y. No more applications are possible.

4. CRITICAL EXPRESSIONS
We have observed that one of the keys to reasoning with non-confluent sets of rules is
the discovery of appropriate critical expressions, which can be rewritten in two different
ways.
How can we generate these critical expressions? For an expression to be rewritten in two
different ways, there must be two rules that apply to it (or one rule that applies in two
distinct ways). In other words, a critical expression must contain two occurrences of
left-hand sides of rewrite rules.
Unification is the process of finding the most general common instance of two expres
sions. The unification of the left-hand sides of two rules (if successful) would therefore
give us a critical expression to which both rules would be applicable.
Simple unification, however, is not sufficient to find all critical expressions, because a
rule may be applied to any part of an expression, not just the whole of it. For this yea
son, we must unify the left-hand side of each rule with all possible sub-expressions of

I1npractice, we do not unify with a sub-expression if it is a simple variable, since this yields a
critical expression of no practical value. The two instances must overlap in the superposed form.

-
- 9-

left-hand sides. This process is called superposition.
For example, the critical expression « -(-a» +-a)+a in the proof of Figure 6 can be
generated by superposing rules R3 and R4; more particularly, by unifying the left-hand
side of R3 with a sub-expression of R4, so that

«-(-a»+(-a»+a is «x +y)+z) [x~(-(-a»] [y~(-a)] [z s--e]

and (-(-a»+(-a) is «-x')+x') [x'~(-a)].

It is easy to see that the set of critical expressions associated with a set of rewrite rules
may well be infinite. Generating and processing an infinite set of critical expressions
does not seem to offer any advantage over a "trial and error" strategy. However, it is a
well-known fact that, if the unification of two first order expressions is possible, it yields
a most general unified form, unique to within renaming [Rob65]. This most general uni
fied form is the one that subsumes all other unified forms. Superposition, being a form
of multiple unification, likewise yields a finite set of most general critical expressions.
Given a finite set of rules, then, we are able to generate a finite set of critical expressions
which subsume the entire infinite set. For the rewrite rules Rl to R4 above, this set is :-

•

0+0
-0+0

!
o+~)+z
x +O)+z
x +y)+O
-x +x)+z
(x +y)+z)+u

from R1 and R2
R2 R3
Rl R4
R2 R4
R2 R4
R3 R4
R4 R4

Note that the critical expression «-(-a» +(-a» +a used in the example proof is not
found in the above set, but is subsumed by «-x) +x) +z. Thus we will not be able to
find a proof for (-(-a»=a directly. However, application of rules to these critical
expressions enables us to derive two other simple theorerns.-

(-0)+0

J \\
(-0) ~ obyR2

byR3

i.e. (-0) =O.

byR4

«-x)+x)+z

! \\
(-x)+(x +z) \V

O+z byRl

i.e. (-x)+(x +z)=z.

Now let us consider these theorems as new rewrite rules.-

--
- 10-

(-0) =>0

(-x) + (x +z) =>z
We must expand our set of critical expressions by

-0)+0 from
-O)+(O+z)
-x)+(x+(J)

~

-x)+((-x)+x)
- x+y »+«x+y)+z)

)+(O+z)
-(-x)+«-x)+(x+y»

(R9)

(RIO)

and R9
RIO
RIO
RIO
R10
R10
R1O.

R3
Rl
R2
R3
R4
R9
RIO

Simplification of these new expressions allows us to derive more theorems, including the
one we want :-

byR3

byR2

(-(-x» +«-x) +x)
vi \\
. \\"(-(-x»+O ,0/ '\

(-(-x» \~
x by RIO

I.e. (-(-x»=x.

We have derived this proof, at best, after 2 successful superpositions, and 6 successful
rules applications; in practical terms, more probably after 12 successful superpositions,
and 10 successful rule applications.

5. CREATING A CONFLUENT SET
What exactly are we doing when we introduce new rewrite rules in this way? The pro
perties of equality ensure that these derived rules are true equations within the closure of
the equality relation defined by the original axioms. We are in some way extending the
repertoire of rewrite rules, and producing a more powerful simplifying machine.
Consider for a moment the critical expression ((x +y) + z)+ u derived from superpos
ing R4 of on itself. It can be rewritten by R4 in two ways, as follows :-

«x +y)+z)+u
p- '\.
I::.L ~

byR4 (x + (y + z » + u (x +y)+(z +u) byR4.

We shall call (x + (y + z » + u and (x + y)+ (z + u) a critical pair. The normal forms
derived from the critical pair are the same, showing no necessity for a new rule :-

-
- 11 -

(x +(y +z»+u (x +y)+(z +u)

~ IIbyR4 x +«y +z)+u)

\~
II

II
byR4 x+(y+(z+u» byR4.

Now consider the critical expression (-0)+0 derived from rules R2 and R3, with critical
pair (-0) and 0,which formed the new rule R9, (-0) =>O. When R9 was superposed on
R3, the same critical expression was derived. On processing (-0) and 0 the second time,
the new rule caused the pair to have the same normal form:-

(-0)+0

(-I ~\'\\
\~j

o

•

byR2

byR9 byR3.
If all critical pairs are reduced to unique normal forms in this way, we produce no new
rules, and the existing set of rules is said to be locally confluent.
Figure 8. Local confluence.

Here C' is a critical expression with critical pair <E',F'>, and it is easy to see that con
fluence is equivalent to local confluence as expressed in Figure 10.

- 12 -

Figure 9. Detail of confluence

The equivalence of confluence and local confluence in ncetherian rewriting systems was
first proved in [New42]. A key theorem by Knuth and Bendix[KnuBen70], section 5]
showed that to test for local confluence it is sufficient to consider only those critical
expressions found by the superposition of the left-hand sides of the rules. The reason for
this is clear when it is realised that superposition yields expressions of minimum interac
tion between rules, and that all other critical expressions are subsumed by these.

6. KNUTH·BENDIX COMPLETION.
The Knuth-Bendix completion algorithm attempts to transform a set of axioms into a
canonical set of rewrite rules. It uses precisely the method described above for finding
new rules from critical pairs. The algorithm may be summarized as follows :-

------------------
- 13 -

Figure 10. The Knuth Bendix Algorithm.
(Initially, the axiom set contains the initial axioms,
and the rule set is empty).

A while the axiom set is not empty do

B begin Select and remove an axiom from the axiom set;

C Normalise the axiom;

E

if the axiom is not of the form x =x then
begin

Order the axiom using the simplification ordering, «, to
form a new rule (stop with failure if not possible); •

D

F Place any rules whose left-hand side is reducible by the
new rule back into the set of axioms;

G Superpose the new rule on the whole set of rules to find the
set of critical pairs;

H Introduce a new axiom for each critical pair;
end

end.
The algorithm may behave in one of the following ways :

terminate with success. A finite canonical set has been found.
terminate with failure. This occurs at step E if a particular axiom cannot be
ordered by «, For example, the ordering we described in section 2 cannot order the
commutative axiom, a +b =b +a. If such an axiom is generated, the algorithm
fails.
loop without terminating. Certain canonical sets are infinite, and in attempting .to
complete them, the algorithm never terminates.. LP Step F ensures that all rewnte
rules are normalised with respect to each other. This means that the introduction of
a new rule may cause existing rules to disappear. Thus the set of rules does not
grow consistently with every iteration.

In the examples below, we show
a) the successful application of the Knuth-Bendix algorithm to a set of axioms

describing a semi-group.
b) a case where the algorithm terminates with failure.

- 14-

Figure 11. Operation of the Knuth-Bendix algorithm on semi-group axioms.
Given axioms :- Ai: O+x =x

A2: (-x)+x =0
A3: (x+y)+z =x +(y +z)

Operation of the algorithm:-

Derived rules :- Derivation :- Rules applied :-
Critical expression From LHS RHS

Rl: O+x =>x Ai

R2: -x +x =>0 A2

R3: (x + y)+ z =>x + (y + z) A3 •

R4: -x + (x + y) =>y «-x)+x)+y R3R2 R3 R2,Rl

R5: -O+x =>x (-O)+(O+x) Rl R4 Rl R4

R6: -(-x)+O=>x -(-x)+« -x)+x) R2R4 R2 R4

R7: -(-x)+y =>x+y -(-x)+«-x)+(x+y)) R4R4 R4 R4
R6 becomes R8

R8: x +O=>x -x+«-x)+x) R2R4 R2,R7 R4

R9: (-0) =>0 (-0)+0 R8R2 R8 R2
R5 disappears

RIO: -(-x) =>x -(-x)+O R8R7 R8 R7,R8
R7 disappears

Rll: x +(-x)=>O -(-x)+(-x) R7R2 R7 R2

R12: x+«-x)+y)=>y -(-x)+« -x)+y) R7R4 R7 R4

R13: x + (y +-(x +y)) =>0 (x+y)+-(x +y) R3Rll R3 Rll

R14: x +-(y +x) =>-y -y+(y+(x+-(y+x))) R4R13 R4 R13,R8
Ri3 disappears

R15: -(x +y) =>-y + (-x) -y +(y+-(x +y)) R4R14 R4 R14
Ri4 disappears
Terminates with success.

- 15 -

Complete set :-

Derived rules :- Derivation :- Rules applied :-
Critical expression From LHS RHS

RI: O+x~x Al
R2: -x +x ~O A2
R3: (x + y)+ z ~ x + (y + z) A3
R4: -x +(x +y)~y «-x)+x)+y R3R2 R3 R2,RI
R8: x+O~x -x+«-x)+x) R2R4 R2,R7 R4
R9: (-O)~O (-0)+0 R8R2 R8 R2
RIO: -(-x) ~x -(-x)+O R8R7 R8 R7,R8
Rll: x +(-x) ~O -(-x)+(-x) R7R2 R7 R2
R12: x+«-x)+y)~y -(-x)+«-x)+y) R7R4 R7 R4
R15: -(x +y)~-y +(-x) -y+(y+-(x+y» R4RI4 R4 RI4

Figure 12. Operation of the Knuth-Bendix algorithm on a commutative group.
Given axioms :- AI: e.x =x

A2: x.e =x
A3: x.x =e
A4: (x.y).z =x. (y.z)

Derived rules :- Derivation :-
Critical expression From

RI: e.x ~x Al

R2: x.e ~x A2

R3: x.x =>e A3

R4: (x.y).z ~x. (y.z) A4

R5: x. (x.y) ~y (x.x).y R4R3

R6: x. (y. (x.y) ~ e (x.y).(x.y) R4R3

R7: y. (x.y) ~x x. (x. (y. (x.y ») R5R6
R6 disappears

R8: y.x ? =? x.y x. (x. (y,x) R5R7
Terminates withfailure

Rules applied :-
LHS RHS

R4 R3,Rl

R4 R3

R5 R6,R2

R5 R7

•

At this stage, it is found that y.x and x.y cannot be ordered, and the algorithm terminates
with failure. We have, however, succeeded in proving that the group is commutative.

-
- 16-

7. FAIR STRATEGIES IN KNUTH-BENDIX COMPLETION
Efficiency is affected considerably by the order in which axioms are selected from the
axiom set for the formation of a new rule. Our choice has been to select the simplest or
shortest axiom first. This strategy is consistently better than selection on a first-come
first-served basis.
There are some strategies that would prevent a canonical rewrite systems from being
found, even if a finite system existed. For this reason, whatever strategy used should be
fair in the sense that

i) no axiom should be ignored indefinitely for consideration as a rewrite rule;
ii) no possible overlap between rules should be delayed indefinitely.

In the form of the algorithm described above, the actions of selecting an axiom and per
forming superpositions are connected events. So part i) of the fairness hypothesis above
covers part ii). In other forms of the completion algorithm, e.g.[HueS1], the formation of
rules from axioms is separated from the process of superposition, and fairness parts i) and
ii) must be ensured separately.

•

8. LIMITATIONS OF THE KNUTH-BENDIX ALGORITHM.
The limitations of the completion algorithm are in four main areas:-

o The simplification ordering, , is required to be a total ordering; i.e. expressions
cannot be considered as having the same order of simplicity. In practice, it
may be very hard to find a total ordering on expressions to suit particular
needs. It would be very useful to be able to say "I don't know which way to
order this axiom" and still be able to reason with it.

o Permutative axioms such as commutativity are of themselves themselves non
noetherian. For example, either side of the axiom a + b = b + a can be
matched with the other, and whichever way the rule is first applied, it is
immediately applicable again, thus generating an infinite rewriting sequence.
Special treatment is required for such axioms.

o Many important algebras have canonical sets of rewrite rules which are infin
ite. We need a way of representing such sets finitely.

o Algebraic structures involving partial functions require some form of condi
tional axiom to prevent the generation of meaningless expressions. For exam
ple, given the axioms describing part of a division ring

(l/x)'x =>I (R7)

x·O =>0 (R8)
the critical pair (1/0)'0 is found, which contains a division by zero. The criti
cal pair, as may be expected, causes problems :-

byR7 byRS

The new equality, 1=0 causes the equational theory to collapse.

Recent work has attempted to meet some of these problems in a variety of ways. For the

-
- 17 -

treatment of permutative axioms, three distinct approaches have developed:-
o by defining reduction on congruence classes of terms [LanBa177a]
o by defining critical pairs modulo special (commutative/associative) unification

algorithms; here distrib!ltive lattices and Boolean algebras, for example, can be
completed finitely[PetStJ.81]

o by using confluence of reduction modulo the congruence formed by the per-
mutative axioms; however, rules are required to left-linear.[Heu80a].

For the treatment of certain infinite confluent sets,[Ric83] uses two sets of rules with
slightly different simplification orderings.
Conditional rewriting systems have been developed by[LanBa179],[Rem82]and others, and
used in [Gog78]for handlingly partial algebras.
Special unification which takes into account ordered sorts is used in ERIL[Dic87]as
means of treating certain partial algebras.

•

9. THE KNUTH-BENDIX ALGORITHM AND THEOREM PROVING
In the case where a finite canonical set of rules can be generated, the importance to equa
tional reasoning is clear: an efficient decision procedure is found for solving the identity
problem. A possible strategy for proving theorems is in two parts. Firstly, the given
axioms are used to find a canonical set of rewrite rules (if possible). Secondly, new
equations are shown to be theorems by reducing both sides to normal form. If the normal
forms are the same, the theorem is shown to be a consequence of the given axioms; if dif
ferent, the theorem is proven false.
The complete set of rules in Figure 12 can be used to prove, for instance, that

-«(-y)+y)+ (x + (-x») = x +«-(y +x»+y).

The rewrite rules are used to find the normal forms of both expressions :-

-«(-y)+y)+(x + (-x»)
x + «-(y +x» +y)'-\-i__,

,r IbyR15 (-(x) + (-x»+-«-y)+y) V·-, x +«(-x)+(-y))+y) by R15
//

t:t
x +«-x)+«-y)+y» byR3

byRll (-O)+-«-y)+y) .1byR2 ~(-0)+(-0) /~ "-.byR9 0+(-0) (-:-y)+y byR12

by R11
~0'

0

Since the normal forms are the same, the theorem has been shown to be a consequence of
the given axioms after only 9 successful rule applications. Note that, due to confluence,
the normal forms found are independent of the order of rule application.
Here is an attempt to prove the theorem (-(-(-x») = (-(-x» + (-x) :-

- 18 -

byRlO

(-(-(-x »)
\\
(-x)

(-(-x» +(-x)

!
o byR2.

The different normal forms indicate that the theorem is not a consequence of the given
axioms.
Where, however, the canonical set is infinite, we have no decision procedure. At best we
can use the completion algorithm as a semi-decision procedure, because, given sufficient
time and space, it is possible to prove any valid identity by generating a sufficient
number of rules. That this is a complete process has been shown by[Hue81]. The invali
dity of an identity can never be proven.
A major problem is that the "proof" procedure is not goal oriented. The generation of
critical pairs is based on the rules formed, and not motivated by the identity we are seek
ing to prove. For this reason, the completion algorithm may not represent an efficient
proof method.
Interesting comparisons have been made [Kuc83] between the algebraic completion pro
cess and resolution theorem-proving, and recent work[pau85a], [HsIDer83]has proposed
ways of using superposition and the completion process to prove theorems in first-order
predicate logic. At heart of these techniques is the realisation that any clause P can be
made into an equality axiom of the form P = true. These methods seem to be consider
ably more efficient than resolution in many cases, especially where user defined func
tions and equality are imbedded in the logic. Two types of proof seem to be possible:
constructive proofs in which the completion process is used in an attempt to generate the
required result, and proofs by refutation in which the negation of the desired clause is
assumed (C =false) and included in the completion process in an attempt to generate a
contradiction (true =false). The advantage of the constructive proof is that the equa
tional theory is not disturbed by the proving process, and further proofs can be attempted
without having to repeat the work already done. By contrast, proof by refutation, in
effect, destroys the theory by generating consequences of a false assumpt~on, and every
proof must recommence from the start; however, the proof is to a certam extent goal
oriented, and experience in[Pau85a]suggests that contradictions are found very quickly if
the theorem to be proved is true. Both methods are likely to behave in an infinitary
manner if the theorem to be proved is false.
It is the implicit use of the properties of equality that make the Knuth-Bendix method of
superposition eminently more suitable for reasoning about equality than methods that
rely on resolution by unification, in which the axioms of equality, and in particular those
describing the well-definedness of every function and predicate symbol used, must be
explicitly stated.

10. REFERENCES

[DerMan79]. N. Dershowitz and Z. Manna, "Proving Termination with Multiset Order
ings," Com. a/the ACM 22(8), pp. 465-476 (1979).

[Der82]. N. Dershowitz, "Orderings for Term Rewriting Systems," J. of Theoretical
Computer Science 17, pp. 279-301 (1982).

[Dic87]. A. 1. J. Dick, "Order-Sorted Equational Reasoning and Rewrite Systems."
PhD Thesis (to appear), Imperial College, London (1987).

[Gog78]. J. A. Goguen, "Order sorted algebra," Tech. Report UCLA Computer Sci
ence Dept., Semantics and Theory of Computation, Report No. 14 (1978).

[HsiDer83]. J. Hsiang and N. Dershowitz, "Rewrite Methods for Clausal and Non
clausal Theorem Proving," pp. 331-346inProc.lOthICALP (July 1983).

[Heu80a]. G. Huet, "Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems," Journal 0/ the ACM 27 (4), pp. 797-821 (Oct.
1980).

[HueOpp80b]. ClHuel and-Di-C, Oppen, "Equations and Rewrite Rules - A Survey,"
STAN-CS-80-785 (1980).

[Hue81]. G. Huet, "A Complete Proof of Correctness of the Knuth-Bendix Comple
tion Algorithm," J. of Computer and System Science 23(1), pp. 11-21 (Aug.
1981).

[KnuBen70]. D. E. Knuth and P. B. Bendix, "Simple Word Problems in Universal
Algrebras," pp. 263-297 in Computational Problems in Abstract Algebra,
ed. 1.Leech, Pergamon Press (1970).

[Kuc83]. W. Kuchlin, "A Theorem-proving Approach to the Knuth-Bendix Comple
tion Algorithm," Lecture Notes in Computer Science 144 (1983).

[LanBaI77a]. D. S. Lankford and A. M. Ballantyne, "Decision procedures for simple
equational theories with permutative axioms: Complete sets of permutative
reductions," Rep. ATP-37, Univ. of Texas, Austin: Dep. Math. CompoSci.
(1977).

[LanBa179]._D. S. Lankford, "Some .new approaches to the theory and applications of
conditionalterm rewriting systems," Rep. MTP-6, Louisiana Tech. Univ.,
Ruston, Math. Dept. (1979).
M. H. A. Newman, "On Theories with a Combinatorial Definition of
'Equivalence' ," Annals of Mathematics 43,2, pp. 223-243 (1942).
E. Paul, "On Solving the Equality Problem in Theories Defined by Horn
Clauses," Proc. of EUROCAL'85, Linz, Austria, Springer Verlag LNCS
Vol. 203 (Apr. 1985).
G. E. Peterson and M. E. Stickel, "Complete Sets of Reductions for Some
Equational Theories," Journal of the ACM 28(2), pp. 233-264 (19tH).
J-L. Remy, "Etude des Systemes de Reecriture Conditionnels et Applica
tions aux Types Abstraits Algebriques,' Thesis, Centre de Recherche en
Informatique de Nancy, Nancy, France (July 1982).
M. M. Richter, "Complete and Incomplete Systems of Reductions," Infor
matik Fachlerichte 57, Springer GI-12 Jehreshagung (1983).
J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Prin
ciple," Journal of the ACM 12, pp. 32-41 (1965).

[New42].

[Pau85a].

[PetSti81].

[Rem82].

[Ric83].

[Rob65].

- 19 -

•

