
b; Science and Engineering Research Council
o~ Rutherford Appleton Laboratory
I

<i. Chilton DIDCOT axon OX1l OQX RAL-89-097
a:

Second Generation Computer
Graphics Standards

KW Brodlie, F R A Hopgood and 0 A Duce

September 1989

Second Generation Computer Graphics Standards

K.W. Brodliei, F.RA Hopgoodi andD.A.Ducet

:j:Schoolof Computer Science, University of Leeds, Leeds, U.K.

tInformatics Department, Rutherford Appleton Laboratory, Chilton, Didcot, OXON OX11 OQX,U.K.

1. The First Generation
Standardization activities have existed in computer graphics since the early 1970's and a family
of standards for computer graphics is now emerging from the International Organization for Stan
dardization! International Electrotechnical Commission (ISO/IEC). This family of standards cov
ers a broad range of graphics requirements from application program interfaces for the generation
and interactive manipulation of 3D graphics, to device level interfaces for the transfer of graphi
cal information.

The major standards in progress are:
(1) GKS (Graphical Kernel System) - a set of basic functions for 2D device-independent com

puter graphics programming.
(2) CGM (Computer graphics metafile for transfer and storage of picture description informa

tion) - a device independent data exchange format for computer graphics pictures.
(3) CGI (Interface techniques for dialogues with graphical devices) - a set of basic elements for

the control and data exchange between device-independent and device-dependent levels in
graphics.

(4) GKS-3D (Graphical Kernel System for 3 Dimensions) - an extension ofGKS to provide the
basic functions for computer graphics programming in 3D.

(5) PHIGS (Progammer's Hierarchical Interactive Graphics System) - a set of functions for
computer graphics programming in environments requiring rapid modification of graphical
data that describes geometrically related objects.

(6) Language Bindings - bindings of the functions and data types of the functional standards to
standardized programming languages.

(7) Registration - a registration mechanism is being set up to deal with the standardization of
primitive aspects, generalized primitives, escape functions and other graphical entities.

(8) Conformity Testing of Implementations of Graphics Standards - the purpose of this
project is twofold: first to specify the characteristics of standardized test sets for use in
determining the conformance of implementations of graphics standards and second to pro
vide direction to developers of functional standards concerning conformance rules.

In order to describe the status of the various standardization projects, it is necessary to define the
various stages a standards document goes through within ISO/IEC before becoming an interna
tional standard. These are:
(1) Workitem. An official project with agreed scope and goals and timescales. When an area

has been identified for standardization, a proposal for a project is prepared. There is a bal
lot on the proposal within the appropriate joint technical committee (JTC) and, if success
ful, the workitem is assigned to a particular Subcommittee, who manage the project and
assign it to a particular Working Group (WG) to carry out the technical work. The Subcom
mittee for computer graphics is SC24, within JTC1,designated JTC lISC24. The WG struc
ture of SC24 is outlined below. A rapporteur (manager) and document editor are appointed
for the project by the SC.

•

- 2-

(2) Draft Proposal (DP). The WG produces successive Working Drafts (WD) of the standard
until the document is sufficiently mature that it can be submitted to the SC for registration
as a DP. The DP is then circulated within the SC for technical review and ballot. Com
ments submitted with the votes are addressed and resolution of them is sought. If sufficient
agreement is reached the document proceeds to the next stage. If not, or if the document
has undergone substantial change, then it has to be circulated for a further DP ballot.

(3) Draft International Standard (DIS). When sufficient agreement is reached on the DP docu
ment, the revised document is registered as a DIS. The publication of a DIS should indicate
that technical agreement has been reached. The document is then circulated within the JTC
for review and ballot. Comments submitted are addressed and resolution sought. Any
remaining disagreements at this stage can cause another DIS ballot, but normally the docu
ment proceeds to the next stage.

(4) International Standard (IS). The DIS revised in the light of comments received becomes
the Final Text. A final ballot within ISO/IEC Council ensures that all members are satisfied
that the ISO/IEC procedures have been followed by the project. Eventually the standard is
published and the text is available from ISO/IEC Central Secretariat, or through national
standards bodies. It is common for international standards to be issued as national stan
dards, under a national number, possibly in translation. Standards are reviewed 5 years
after publication, at which time they may be endorsed, revised or abandonned.

(5) Addenda. A mechanism exists for enhancing a standard prior to the five year review. This
is done by publishing an Addendum to the standard. Addenda are progressed through simi
lar phases to standards themselves.
The computer graphics subcommittee, SC24, has five working groups:

(1) WGl: Architecture. Charged with developing a computer graphics reference model, soli
citation of user requirements in the area of computer graphics and currently with the revi
sionofGKS.

(2) WG2: Application Program Interfaces. Standardization of functional specifications for
application program interfaces.

(3) WG3: Metafiles and Device Interfaces. Standardization for graphical information
exchange, including computer graphics metafile and device interfaces.

(4) WG4: Language Bindings. Standardization oflanguage bindings for functional standards.
(5) WG5: Validation, Testing and Registration. Development of methods and procedures

for testing and validation of implementations of computer graphics functional standards and
development of methods and procedures for the registration of graphical items.
Voting is a slow process and consequently the development of standards takes a long time.

The documents tend to be long and intricate and the commenting process demands a large
amount of, usually, volunteer labour. The status of the projects referred to above is shown in
table 1.

•

- 3 -

Project Ref Doc Availability of text for:
WD DP DIS IS

GKS IS07942 IS (1985)

OKS Language bindings
Fortran IS08651-1 IS(1988)
Pascal IS08651-2 IS(1988)
Ada DIS8651-3 IS(1988)
C DP8751-4 6/88
OKS-3D DIS8805 IS(1988)
OKS-3D Language bindings
Fortran DIS8806-1 4/89
Pascal SC24/N190 7/88
Ada SC24/N189 7/88 2/89 6/90
C SC24/N181 7/88 3/89 12/89
PHIOS
Functional description DIS9592-1 IS(1989)
Archive file format DIS9592-2 IS(1989)
Archive file clear text encoding DIS9592-3 IS(1989)
PHIGS Language bindings
Fortran DIS9593-1 7/87 11/87 12/88
Extended Pascal DP9593-2 5/89 12/89
Ada DIS9593-3 9/87 1/89 8/89
C DP9593-4 5/89 12/89
COM
Functional description IS08632-1 IS (1987)
Character encoding IS08632-2 IS (1987)
Binary encoding IS08632-3 IS (1987)
Clear text encoding IS08632-4 IS (1987)
CGM Addendum 1
Functional description IS08632-11 ADD.1 10/88 10/89
Character encoding IS08632-21 ADD.1 10/88 10/89
Binary encoding IS08632-3/ ADD.1 10/88 10/89
Clear text encoding IS08632-4/ ADD.1 10/88 10/89

COM Addendum 2
Functional description N23 3/88 5/89 10/89 10/90
Character encoding N24 10/89
Binary encoding N25 10/89
COI DP9636 11/88 10/89 2191
CGI Character encoding SC24/N209 3/89 10/89
COI Binary encoding SC24/N210 3/89 10/89
CGI Library language binding
Fortran SC24/NI92 1/89 8/89 4/90 6/91
C SC24/N19 1 1/89 8/89 4/90 6/91
Conformity Testing SC24/N185 8/88 3/89 12/89 10190

•

Table 1

- 4-

1.1. GKS
The Graphical Kernel System (GKS) was published as an ISO Standard on 15August, 1985. The
Standard itself is defined in.8 A more detailed introduction and primer are given in6 while a full
and comprehensive treatment may be found in.S The following sections briefly describe the key
concepts in OKS.

1.1.1. Dimensionality
GKS is a two-dimensional graphical system and provides no support for three dimensions. The
extension of GKS to 3D is described later.

1.1.2. Primitives
The six basic output primitives are polyline, polymarker, fill area, text, cell array and generalized
drawing primitive (GDP). The polyline primitive draws a set of lines between a sequence of
points. The polymarker primitive is similar but marks the sequence of points with a specified
symbol. The text primitive provides considerable flexibility in defining the quality of the text, its
size and orientation, the origin etc. It also supports the text path being in any of the major direc
tions providing support for those languages not writing from left to right. The fill area primitive
is defined in terms of a set of points which specify a polygon. The primitive fills the enclosed
area with a solid colour or a specified pattern or hatch style.

The cell array primitive is specifically aimed at the image processing community where the
cell array defines the colour or grey level to be associated with individual cells of a rectangular
array.

GDP provides a controlled method of adding more exotic primitives. Particular implemen
tations are free to add to the basic primitive set by specifying particular GDP types as producing
higher level shapes such as ellipses etc.

The GKS output primitives have a rich set of aspects, allowing a high degree of control over
the way primitives are rendered on displays. The aspects of a polyline primitive, for example,
allow control over the linetype (solid, dotted etc.), linewidth and colour. The mechanisms by
which the values of aspects are determined are described shortly.

•

1.1.3. Coordinate Systems and Device Independence
The GKS concept of a workstation is the key to device independence in GKS. A workstation
consists of zero or one display surface and zero or more input devices plus associated software.
The GKS idea of a workstation is an abstraction from physical hardware.

A major difference from many earlier graphics systems is that OKS allows more than one
workstation to be in use simultaneously. For example, an operator may be interacting with a
design through an interactive display, while taking copies of completed parts of the design on a
plotter.

Output primitives are specified in a cartesian world coordinate system. Applications that
require other user level coordinate systems, for example, polar or logarithmic coordinates, must
first transform these user coordinates to world coordinates.

Transformation to the coordinate system of the display device is accomplished in two
stages. First, world coordinates are transformed to an intermediate coordinate system called nor
malized device coordinates (NDC) by a window to viewport mapping termed a normalization
transformation. Then a second window to viewport mapping, the workstation transformation,
transforms these coordinates to device coordinates.

The purpose of the normalization transformation is to facilitate the composition in NDC

- 5 -

space of pictures defined in different world coordinate system spaces. Different device coordi
nate systems are accommodated in the workstation transformation. Thus to use an application
program with different devices, it is only necessary to change the workstation transformation.
The composition of the picture in NDC space does not need to be changed.

The workstation transformation may be set differently for different workstations, thus
allowing different regions of the virtual picture to be displayed on different workstations.
Through the workstation activation and deactivation mechanism, not all primitives need be
displayed on all workstations.

The aspect ratios of window and viewport may differ in the normalization transformation,
but the workstation transformation maps the workstation window to the largest possible region of
the workstation viewport with the same aspect ratio.

1.1.4. Aspects
The appearance of primitives on the display surface of a workstation is controlled by their
aspects. GKS distinguishes two types of aspects, workstation independent aspects which have the
same value on all workstations on which the primitive is displayed, and workstation dependent
aspects which may have different values on different workstations.

The values of aspects are controlled by attributes. For workstation independent aspects,
there is one attribute per aspect. These attributes are termed geometric attributes. For worksta
tion dependent aspects, two methods of specification are possible, bundled specification and indi
vidual specification. Bundled specification uses a lookup table approach. A single attribute for
each primitive, the primitive index, controls the values of all the workstation dependent aspects
of the primitive.

The polymarker primitive will be used as an example. The values of all the aspects of a
polymarker (marker type, markersize scale factor and polymarker colour index) are determined
by the value of the polymarker index attribute. A polymarker index defines a position in a table,
the polymarker bundle table. Each entry in this table specifies values for all the non-geometric
aspects of a polymarker. Each workstation has its own bundle table and so a polymarker in the
virtual picture may be displayed with different representations on different workstations.

In the case of individual specification, there is one attribute for each workstation dependent
aspect and thus each aspect has the same value on each workstation on which the pri~itive is
displayed. How each workstation approximates this value is dependent on the workstatton and
the implementation.

A set of aspect source flags controls the mode of specification of each aspect. Some aspects
may be specified individually, whilst others are specified by a bundle.

Bundled specification is a powerful tool for achieving application program portability
between different workstation environments. If carefully constructed, moving a program to a dif
ferent environment will merely mean defining new representations for the different indices used
in the picture, to employ, in the best way possible, the characteristics of the workstations in the
new environment. The bundled scheme is important when it is necessary to ensure that primi
tives with different attributes can be differentiated on different workstations; whilst the individual
scheme is important when primitives with specific aspects are to be represented on each worksta
tion as closely as possible to the specification.

•

- 6-

1.1.5. Graphical Input
A major innovation in GKS is the model of input. The aim was to specify a set of virtual input
devices onto which real input devices could be mapped.

All input devices are formalized as having a measure and a trigger. The measure describes
the type of input value returned by the device, while the trigger is the event which causes the
measure value to be returned to the application program in certain styles of input.

The data that can be entered into an application program by the operator are divided into six
different types, and six classes of logical input device are defined corresponding to these. The
data types are:

LOCATOR: a position in world coordinates and the associated number of the normaliza
tion transformation used to convert back from device coordinates via NDC to world coordi
nates. The normalization transformation used is that whose viewport contains the data
point. Conflicts are resolved by a priority mechanism.
STROKE: similar to LOCATOR except that it represents a sequence of world coordinate
positions rather than a single position.
VALUATOR: a real number in some range.
CHOICE: an integer that represents a selection from a set of choices.
PICK: the name of a selected segment and an identifier that indicates which set of primi
tives in the segment has been picked.
STRING: a character string.

The three operating modes in which GKS input devices may be set of provide input are:
REQUEST: rather like FORTRAN READ. A request is made by the application program
for a measure of the specified device to be returned. GKS will wait until the operator has
set the measure to the desired value and activated the trigger.
SAMPLE: the current measure value is returned whenever requested by the application
program. The trigger is not used by SAMPLE input.
EVENT: a number of input devices may be active together. Each time the trigger for a par
ticular device is activated, the current measure value and data that identify the device are
added to a single queue of input events for all the devices used in event mode. The applica
tion program can interrogate the queue to retrieve the input events. It is possible to couple
more than one input device to the same trigger so that multiple events can be generated
from a single trigger event. Unfortunately, this coupling is not under application program
control.

Some degree of control over logical input devices is provided to the application program through
device initialization functions. These enable the program to define the initial value for the dev
ice, the prompt/echo type (for example a LOCATOR device may be echoed as a rubber band line,
tracking cross etc.), the area of the display to be used for displaying the echo, and further device
dependent data.

•

1.1.6. Segments
Associated with each workstation is a segment store in which segments consisting of sets of GKS
primitives and associated attributes can be stored. Functions exist to create, delete, rename and
manipulate segments. Associated with each segment is a set of attributes which control visibility,
highlighting, priority for output and detectability from a pick device. It is also possible to
transform segments such that the picture defined by the segment can be scaled, rotated, translated
etc.

-7 -

There is also a workstation independent segment storage which is used as a central library.
Additional operations are available for segments stored in this storage, for instance to enable
them to be moved to other workstations.

1.1.7. Levels
Rather than insist that all facilities in GKS are supported by every implementation, GKS is
defined as a set of levels on two orthogonal axes, output and input. There are nine levels in total,
ranging from level 2c which includes everything, to level Oawhich has no input facilities and
only simple output facilities.

1.2. GKS-3Dand PInGS
The two functional standards that extend GKS to 3 dimensions are GKS-3D and PHIGS. GKS-
3D is a minimal extension to GKS to allow 3D working. GKS-3D provides application programs
with the capability to define and display 3D graphical primitives specified using 3D coordinates.
The GKS input model is also extended to provide 3D locator and stroke input. A major goal in
the design of GKS-3D was that existing GKS programs should run, as far as possible, without
change.

Neither GKS or GKS-3D satisfy the requirements of application programs where modifica
tion of the graphical data is required in an efficient manner, where the objects to be displayed
consist of geometrically related parts and where rapid dynamic articulation of graphical entities is
required. PHIGS aims to address applications with these requirements. The main features of
these two systems are now described.

•

1.2.1. Storage
The segment store in GKS-3D is identical to that in GKS except for the extension to 3 dimen
sions. Segments are normally stored on workstations and there is a centralized workstation
independent segment store to allow movement of segments from this storage to other worksta
tions as required.

The major difference between PHIGS and GKS is that in PHIGS the creation and display of
a picture are very explicitly independent phases. At the heart of PHIGS is a single centralized
structure store (CSS), which has greater functionality than the GKS-3D segment store and
appears at a different (higher) place in the viewing pipeline.

A structure consists of a number of structure elements which can be both graphical and
non-graphica1. Thus it is possible to keep application data associated with graphics in the same
database. PHIGS provides facilities for creating and editing structures held in the CSS.

PHIGS provides a set of functions which define structure elements. There is a 1-1
correspondence between primitives and structure elements. In addition, PHIGS has structure ele
ments for attribute setting and specification of application data. A major feature of CSS is that it
is hierarchica1. Structure elements are provided which call other structures.

Structures are displayed when they are posted to a workstation. Posting causes the structure
to be traversed and interpreted. A complex modelling transformation is applied to coordinates in
the structure elements as they are interpreted and an equally complex modelling clipping opera
tion may also be applied.

The primitives generated by PHIGS enter the viewing pipeline immediately prior to the
viewing operation. The modelling transformation provides a similar function to the normaliza
tion transformation and the modelling clip represents a generalization of the normalization clip.

- 8 -

1.2.2. Structures
Particular features of the PRIGS structure facility are:

(1) Hierarchy. Structures can call other structures and the same structure may be called more
than once from a higher level. Thus a car may need only a single wheel structure which is
called four times (five including the spare!).

(2) Modelling coordinates. Structure elements contain positional information in modelling
coordinates, a cartesian coordinate system. Each structure has a global and local modelling
transformation which are concatenated to produce the transformation to be applied to the
points to turn the modelling coordinates into the world coordinates to be passed to the view
ing pipeline. Modelling clipping regions may be defined in modelling coordinates as the
intersection of a collection of half-spaces. These regions are then transformed to world
coordinates and combined, using standardized or implementation dependent combinators, to
produce a composite modelling clipping region which may be applied to graphical output.

(3) Inheritance. Substructures inherit attributes, modelling transformation and modelling clip
ping from the calling structure. Thus the global modelling transformation for a structure
will be that passed in by the calling structure. When a structure has been completely
traversed, control reverts to the higher structure that called it and the attributes, transforma
tions etc. are reset to those in force on entry to the substructure. Thus a substructure has no
effect on the calling structure.

(4) Editing. Labels can be placed in structures and there is a structure element pointer. Conse
quently, it is possible to move around a structure and edit it after initial creation. This is
unlike GKS segments which cannot be changed after creation.

•

1.2.3. Viewing
Viewing consists of projecting the 3D image onto a 2D projection plane. The viewing pipeline is
given in Figure 1. Functions are provided to assist with the definition of this viewing operation.
The initial coordinates are changed to Viewing Coordinates by defining a View Reference Point
and a set of axes associated with it. The intention is that this point has some relationship to the
object to be viewed and makes the setting up of the projection transformation that much easier.

Once the Viewing Coordinates are established, Front and Back Planes are defined which
specify the limits of the object to be viewed. A Projection Reference Point can be specified and a
Projection Plane which allows the object to be viewed by projecting it onto the projection pl~ne.
The View Window specifies that part of the projection plane to be output to the workstation.
Both parallel and perspective projections are provided.

Each primitive has a View Index associated with it which defines the view bundle table
entry on the workstation to be used. This contains details of the viewing transformation and clip
ping to be applied. It was believed that, unlike GKS, there is a need for more than one view to be
available at a time on a workstation. This would, for example, allow titles to be output using a
parallel projection while a 3D object to which the titles are associated is output using a perspec
tive transformation. The view bundle is analogous to the polyline bundle in that it allows views
to be different on different workstations.

Support is provided for Ridden Line and Hidden Surface removal in both GKS-3D and
PRIGS. Associated with primitives is an attribute defining which method of rendering is to be
used on the workstation. The workstation can be asked to render or not and it has flexibility in
how it does the rendering. Consequently, a variety of workstations can choose the most appropri
ate methods depending on their hardware characteristics.

A

- 9-

View Orientation Transformation

..................... ····VRC

View Clip

View Mapping Transformation

························NPC
•Workstation Clip

Workstation Transformation

························DC3

Figure 1

1.2.4. Primitives
OKS-3D and PHIOS provide the same basic primitive set as OKS except that they are extended
to work in the 3D environment. Existing GKS functions can be called an produce the equivalent
OKS-3D primitive on the Z=Qplane (effectively a Z=Qcoordinate is added to each position in a
GKS function call).

In OKS-3D and PHIOS, text, fill area and cell array remain planar primitives, but can be
positioned in an arbitrary plane. Polyline and polymarker become genuine 3-dimensional primi
tives with no constraints on the positions used in the function call.

One additional primitive has been added to both OKS-3D and PHIOS, FILL AREA SET,
which specifies a set of fill areas all of which will be rendered together as a single entity. For
rendering 3-dimensional objects, it was believed that this extension was necessary. For the same
reason FILL AREA SET has more control on how the boundary edge is rendered than the origi-, .
nal fill area primitive. There are some subtle, annoying, differences between the rules govermng
the rendering of the primitive in OKS-3D and in PHIOS.

A further primitive has been added to PHIOS, ANNOTATION TEXT RELATIVE. The
purpose of this primitive is to facilitate labelling of objects. The primitive is defined in NPC
space, its position is defined by a reference point in modelling coordinate space and an offset
from this in NPC coordinate space. The plane on which the annotation appears is always parallel
to the x-y plane of the display space and is unaffected by modelling and viewing transformations,
but the reference point is transformed normally. Height, orientation, path and alignment attri
butes may be specified for the primitive in NPC space and an annotation style may also be speci
fied which defines how the relationship between the reference point and the text string will be
displayed. The options available for the latter include unconnected, lead line displayed with
current polyline aspects and implementation dependent manner. This primitive is useful in cer
tain contexts, but it remains to be seen to how large a class of applications this will extend.

In OKS and OKS-3D, eligibility of primitives for picking, visibility and highlighting are

- 10-

determined by segment attributes. PHIOS has no segment store and rather than carry over the
OKS analogy through a structure attribute mechanism, it was recognized that more flexible ways
of controlling such entities are necessary in a system designed to serve the needs of highly
interactive applications. All primitives in PHIOS have a NAME SET attribute. This is an addi
tion to the GKS and GKS-3D attribute sets. The nameset attribute defines the eligibility of the
primitive for highlighting, invisibility, picking and incremental spatial search (a "software"
search which can be performed on the centralized structure store). A filter mechanism is incor
porated in PHIOS with an inclusion and exclusion set of names at each workstation to control
specific rendering of primitives. Primitives whose name sets have at least one name in common
with the inclusion set and no names in common with the exclusion set of a particular filter have
the property (highlighted, invisible, pickable etc.) controlled by that filter. This gives a very
flexible mechanism for structuring the models defined by the centralized structure store. For
example, the heating system or electrical system or water system of a house could be selectively
displayed by merely changing filters, if the primitives corresponding to objects in these systems
have appropriate name set attributes.

It was felt that this mechanism would be useful in OKS and GKS-3D also, but it has been
decided that the mechanism should not be incorporated in GKS-3D at this stage, but is to be con
sidered in the 5 year review of GKS.

•

1.2.5. Input
The input models in all three standards are very similar. Both OKS-3D and PHIOS extend the
logical input devices by allowing 3-dimensionallocator and stroke devices as well as the six logi
cal input devices defined in GKS.

Pick input in PHIOS has been extended to give more information about what has been
picked. In GKS and OKS-3D, the PICK device returns the name of the segment and the PICK
identifier within the segment. As a structure in PHIGS could be executed as part of one or more
parent structures, some applications will need to know more than just the local structure name.
Consequently, in PHIGS it is possible to recover the names of the structures in the hierarchy that
led to the invocation of the structure that has been picked.

1.2.6. Colour Models
Colour models define a colour coordinate space and a subspace, in which each point represents a
describable colour. OKS only supports the RGB colour model, in which colours are described by
triples of values ranging from 0 to 1 or 0% to 100%for each of the three primaries.

PHIGS and GKS-3D allow other colour models to be used, including CIE, HSV and HLS.
The application program can select the colour model in which the tuple of values specifying
colours will be interpreted. The CIE colour model was introduced in response to the observation
that "device independent" colour is becoming a major issue in computer graphics. The specifi
cation of colour is an area in which there is increasingly close collaboration between the makers
of graphics standards and the makers of standards for document production and printing.

1.2.7. Summary
This section has only given an informal introduction to the new facilities available and the differ
ences between PHIGS and GKS-3D. Stringent efforts have been made to harmonize PHIGS and
OKS-3D and remaining differences either reflect different requirements for their respective fields
of application or fundamental differences of opinion about the conceptual model by which they
are related.

- 11-

1.3. Language Bindings
In the early days of ISO work on graphics standards, it was realized that the different languages
from which people used graphics made it necessary to define the functional specification in a way
that was independent of anyone language. The functional standards, OKS, OKS-3D and PHIOS
therefore define a collection of functions and data types which are intended to be sufficiently
abstract as not to hinder binding to any particular programming language. There is a separate
ISO standardization activity to cover language bindings for GKS, GKS-3D and PHIGS. Bindings
for these standards to FORTRAN, Pascal, Ada and C are either completed or in preparation.
Table 1 shows the current status of the language binding standards. The rules of the game are
that language bindings may only be standardized for programming languages which themselves
have some status as standards. Thus there are no standardized bindings to languages such as Pro
log or Lisp, though there is much interest in bindings to these languages and alternative
approaches continue to be reported in the literature.I The paper by Sparks and Gallop'" gives a
good overview of the problems and approaches to language binding standardization.

•

1.4. The Computer Graphics Metafile (CGM)
GKS provides a mechanism for the storage of graphical information, segment storage, but this
only provides a method for the storage of transient information and is not designed for long-term
storage between sessions. Once the workstation is closed, segment storage for that workstation
ceases to exist.

OKS recognized the need for storage of graphical information between sessions and ini
tially included within it a GKS Metafile facility as part of the standard which allowed an audit
trail of GKS commands (used to create and manipulate pictures) to be stored and later retrieved
and executed.

As it became clear that there would be more than one graphics standard at the functional
level and all would have a need for long term storage and retrieval of graphical information, it
was decided to separate out the metafile function as a separate standard. Thus was born the Com
puter Graphics Metafile (CGM) for the storage and transfer of picture description information
(ISO 8632) which was approved for progression to an International Standard in September 1986.

OKS does include a set of functions for reading and writing metafiles and an Annex which
specifies a metafile of the audit trail type which is adequate for the needs of GKS. The Annex
(E) is not an intrinsic part of the standard, but if provided by an implementation, will allow com
munication between GKS systems or long-term storage and auditing within a GKS system.

OKS Annex E describes an audit trail metafile in which the entire process of creating a pic
ture is stored for future replay. Essentially the metafile records every function invoked in the
creation of the picture. In contrast, the CGM is a picture capture metafile and captures a snapshot
of the graphical image. It is probably fair to say that at the time the COM project was started, the
differences between these two types of metafile were not widely or deeply understood and har
monization problems have arisen as a result. The CGM metafile does not include any elements
which imply dynamic change to the image, nor does it record any segmentation structure to the
image. This can cause problems for GKS applications which wish to write metafiles to the CGM
standard. The relationship between the CGM and GKS is explored in the paper by Brodlie,
Henderson and Mumford.f

OKS-3D poses even more profound problems in this area as a result of the much more com
plex transformation pipeline and satisfactory compromises are currently being sought.

For a detailed description of the CGM, see the book by Arnold and Bono.3

- 12-

1.4.1. Functional Specification of the CGM
Each instance of the COM is a collection of elements. Figure 2 summarizes the overall structure
of a metafile as a series of levels.
(1) Metafile level. A metafile consists of a metafile descriptor and picture descriptions. The

metafile descriptor contains information that is valid for the whole metafile, for example the
precision of real and integer quantities in the metafile. The main body of the metafile con
tains descriptions of a number of independent pictures that can be accessed individually.
These descriptions are self-contained in that the description of one picture is not dependent
on any information stored in another picture definition.
Picture level. Pictures descriptions are bounded by particular delimiters. Between these
delimiters is a picture descriptor which defines how the picture definition data are stored.
The description of the picture itself is contained within the picture body.
Picture body level. The elements at this level are essentially primitive and attribute ele
ments describing the graphical content of the picture.

(2)

(3)

BEOIN Metafile
METAFILE descriptor Pictures END Metafile

METAFILE level

BEOIN
PICTURE

Picture
level

Picture
descriptor

Picture
body

END
PICfURE

In any order

Primitive
elements

Picture
body
level

BEOIN
PICTURE
BODY

Attribute
elements

Control
elements

(1)

Figure 2

The elements making up the COM split broadly into seven classes:
Description elements. These elements specify the version of the COM used in defining the
file and information concerning the capabilities of the process needed to read the COM.
Control Elements. These elements define the size and orientation of the space in which the
COM is defined.
Picture Descriptor Elements. The COM provides more flexibility L: ''''fI, -areas than OKS.
For example, line width in OKS is specified by giving the width of the ne .s a factor of the
standard line width on the specified device. The COM allows as an ah, rnative the width to
be specified in virtual device coordinates. The descriptor elements declai : the modes in use
for this particular COM.
Graphical Elements. These describe the visual components of the picture being transferred.
COM includes more primitives than OKS, for example, circular arcs, disjoint polylines and
rectangles.
Attribute Elements. These specify the attributes of the graphical elements.

(2)

(3)

(4)

(5)

- 13-

(6) Escape Elements. These describe device or system dependent elements where no constraint
is placed on the contents.

(7) External Elements. These elements are used to include relevant messages and application
data not directly related to the graphical image of the picture.

1.4.2. Encodings of the CGM
The first part of the standard describes the elements that may appear in a metafile and the con
straints on their ordering. Subsequent parts of the standard define the representations for these
elements in actual metafiles. Three representation schemes, known as encodings, have been
standardized. Each has particular goals such as compactness, ease of generation and interpreta
tion, ease of transfer across networks. The three encodings are:
(1) Character Encoding. The aims of this encoding are compactness and transferrability across

a network. The encoding is composed solely from the ISO 7-bit (ASCII) printing charac
ters. Elements are encoded as an opcode followed by associated data.

(2) Binary Encoding. This encoding aims to minimize the processor effort required to generate
and/ or interpret the metafile. It is perhaps best suited for storage and retrieval of graphical
data within one system.

(3) Clear Text Encoding. This encoding is aimed at the requirement of having a metafile that
can be read and edited by people. It is almost guaranteed that this format can be used for
transfers between any pair of heterogeneous systems.

CGM also allows private encodings as long as they conform to the functional description and
general rules of conformance given in Part 1of the Standard.

•

1.4.3. Conformance
It is worth noting that the conformance statements in COM relate to the conformance of a
metafile. They do not refer to the processes of generating or interpreting metafiles. Thus there
can be no guarantee that a metafile written by one generator can be understood by every inter
preter. Commercial products typically differ in the range of CGM elements they generate and the
range they can interpret, though the description of each metafile does contain a list of element
types used in that metafile, so one can a priori determine whether a given metafile can be inter
preted by an interpreter with given capabilities. This limited conformance requirement needs to
be borne in mind when purchasing software purporting to offer CGM.

1.4.4. Implementations
By the end of 1987 over two dozen companies in the USA had released products or announced
plans for products incorporating support for the CGM. Three kinds of product are emerging:
applications such as CAD or business graphics packages may offer the ability to write a CGM file
capturing one or more of the pictures created during a design session, second applications such as
desktop publishing systems or printer spoolers which can read in CGM files and make some use
of the pictures contained therein (for example paste into document or print on device), and third a
small number of applications (such as graphics editors) can take in a CGM picture description,
manipulate it and write it out again as a CGM description.

A major boost was given to COM in the USA at the Integrate '88 demonstration at the
NCOA '88 conference and exhibition held in Anaheim in March 1988. Integrate '88 was a mul
tivendor systems integration demonstration which incorporated four application areas typically
found in a multifaceted corporation: engineering/design, corporate communications/financial
analysis, graphics arts and computer-aided publishing. Some 38 vendors took part in the demons
tration. Multi-vendor equipment and software were linked together through an ethernet

- 14-

communications infrastructure running TCP/IP and used COM as the standard picture inter
change format. The demonstration was organized as a series of scenarios. In a typical scenario
an operator would retrieve a design created on a CAD program. The CAD representation ~as
then modified and output as a file in COM format. In this format it was then sent to the graphics
art department for enhancement or directly to printing and publishing for merging with text in a
brochure. Similar procedures were used to exchange files between finance, graphics arts, and
printing and publishing. It was an impressive demonstration of the potential of interchange for
mats such as CGM in promoting product harmonization and is worth mentioning for that reason
alone.

A second demonstration of this type was held at the Eurographics UK Chapter Conference
in Manchester in March 1989 where more encodings were interchanged. The NCOA '89
demonstration included PRIGS as part of the interchange system for the first time.

•
1.4.5. CGMAddenda
As mentioned above, COM in its present form does not include all the facilities necessary to
serve as a GKS metafile for all levels of OKS. A project known as CGM Addendum 1 is address
ing this and reached the status of draft in December 1987. The principal elements added in
Addendum 1 include:
(1) segmentation support;
(2) capabilities needed for dynamic picture regeneration;
(3) device viewport control.
Some stable functionality from CGI is also being included for example closed figures and pixel
array and drawing mode support.

A second Addendum, CGM Addendum 2, is being processed to provide support for GKS-
3D by introducing appropriate 3D elements.

1.5. The Computer Graphics Interface (CGI)
The Computer Graphics Interface is an interface to graphics devices. It is intended as the inter
face through which a device driver communicates with a device. Unlike the CGM which defines
the output from a graphics system for transmission or storage, the cor standard has to han~le
both output and input and it is assumed that the device is on-line and capa~le of supp~rtmg
dynamic interactive graphics. The CGI has to support a wide range of devices from SImple
plotters to high powered interactive terminals and it is this diversity which is one of the main rea
sons why CGr has been under development for so long and agreement sti11looks to be some way
away (although it has now reached DfS stage). The book by Arnold and Bon03 gives a
comprehensive account of the CGI draft as it existed at the end of 1987.

cor is a multipart standard with six parts. Part 1 is an overview introducing the other parts
as follows.
(1) Part 2 - control, negotiation and errors. Control functions are provided for device manage

ment and coordinate space specification. Device management includes initialization and
termination, deferral mode control etc. Negotiation is the process of establishing the capa
bilities of the device the driver will use. This involves interrogation of the facilities pro
vided by the device and selection of those to be used. Error handling is necessarily different
to functional standards and CGI provides the ability to turn off error reporting and detect
ing.

(2) Part 3 - output and attributes. The output primitives provided in COI are very similar to
those in COM. Bundled and individual specification of aspects are supported.

- 15 -

(3) Part 4 - segmentation. CGI defines two types of stored graphics object, segments and bit
maps. The segment model is close to the GKS model and the operations provided over seg
ments are essentially the operations inherent in GKS. A mechanism is provided to enable
primitives stored in a segment to acquire new attribute values when a segment is copied.
This is an extension of the rather bizarre feature of GKS by which primitives acquire a new
clipping rectangle when certain segment manipulation operations are performed.

(4) Part 5 - input. The CGI input functionality is designed to support the input models of the
functional standards. CGI provides the six input classes of GKS together with an area class
and general input class.

(5) Part 6 - raster. This functionality allows the creation, storage, manipulation and display of
images stored as sets of pixels. The bitmap functionality is not found in other graphics
standards. Bitmaps provide a second point in the CGI pipeline at which graphics output
data can be stored and modified, at the point where primitives have been rendered to pixel
values. A bitmap can be selected as the destination for graphics output, allowing portions
of a picture to be defined and named. Bitmaps can be combined using either two or three
operand raster operations, allowing logical combinations of bit map parts.

The CGI is a very large and complex set of functions, standardization of which is still far from
complete.

Many of the functions are inappropriate for many devices, however it is not a straightfor
ward matter to identify simple subsets of the functions and group them in sensible ways. The
current draft uses the idea of a constituency profile. Such profiles define sets of functions and
their precise capabilities for particular classes of CGI users. It is intended that the CGI standard
itself will define a number of such profiles related to the needs of GKS, and other profiles can be
standardized through the Registration procedure.

•

1.6. Registration
During the evolution of all these standards it has become obvious that it is not possible to stand
ardize everything at once. In particular, there are a number of graphical elements that can be
found in a bewildering number of varieties, for example marker types. Rather than delay the
standards in progress by trying to get agreement on extensive lists of such elements for each stan
dard in turn, the documents now just refer to a single registration mechanism and mandate only a
very small number of such elements.

The US National Institute of Science and Technology has been approved as the Registration
Authority for the Register of Graphical Items. The Procedures for Registration of Graphical
Items will be published in the form of an ISO/IEC Technical Report, but this is likely to be pro
cessed as an International Standard at its first review.

1.7. Conformity Testing
The Commission of the European Communities is establishing a European Conformance Testing
Service for standards in the information technology and telecommunications areas. Three Euro
pean laboratories have set up a testing service for GKS: AFNOR in France, GMD in Germany
and the National Computer Centre in the UK.

A standard entitled "Conformance Testing of Graphics Standards" is being prepared.
Topics to be addressed include guidelines for conformance sections of functional standards, pro
cedures for developing a test suite and procedures for running a test service.

- 16-

1.8. Compatibility
As can be seen from the descriptions above, the degree of compatibility between the standards is
not as great as one would expect. The work has tended to fragment with individual groups of
experts concentrating on one or two of the many activities. It is now recognized that there is a
need for a coherent reference model for computer graphics which will provide a framework for
future standardization activities and a coherent programme of work.

2. Reference Model

2.1. Introduction
Serious work on a Reference Model for Computer Graphics started at the ISO meeting at Timber
line in July 1985. A Task Group with membership from the GKS, GKS-3D, PHIGS, CGI, CGM
and language bindings working groups came together under the chairmanship of F.R.A. Hopgood
to put forward a simple model for comment.

A major problem identified early on was the relationship between the workstation interface
of the functional standards and CGI. While some believed the two were synonymous, the CGI
Working Group believed they had a much wider remit.

The CGM Working Group had established an International Standard based on a clean con
cept of a picture to be captured and restored. GKS, on the other hand, had much more the con
cept of graphical information flowing to some subset of open workstations with the arrival of
information at the workstation display being determined by a number of controls. Making a
clean interface between the two standards was difficult.

PHIGS, designed as a structuring facility for computer graphics, had also made changes to
the primitive set and the way operator attributes, such as highlighting, were controlled at the
workstation. Although PHIGS could have been designed with GKS-3D as the viewing back-end
to the system, this was not the case.

In consequence, a set of graphics standards had been produced over a 10 year period with a
great deal of similarity and common concepts but with minor incompatibilities due to the dif
ferent times at which they were produced and the different people involved. It was clearly going
to be difficult to produce a Reference Model of the existing set of standards with clean concepts.
The approach had to be to define a Reference Model having a distillation of the current concepts
in use and use this as the basis for the next generation of standards. GKS, the oldest of the set of
standards, would be coming up for its Review in a few years time.

2.2. Strand Model
An ad hoc Committee on Reference Models was established and this met in Frankfurt in Febru
ary 1986. A major input to that meeting was a paper by Graham Reynolds'' emanating from the
Modular Graphics Systems Project! at the University of East Anglia. This defined a novel pro
cess oriented graphics system architecture for emulating a variety of computer graphics systems.
It was proposed that this could be used as tho basis for a Reference Model.

The underlying conceptual models of most standard graphics systems, in particular of those
existing and proposed international standards for graphics, and of many existing graphics pack
ages, are most often seen as being graphics processing pipelines. In the case of graphics output,
graphics data is refined as it passes down the pipeline, by associating graphical attributes,
transforming coordinates, clipping etc., until it reaches a form which is suitable for display on a
particular workstation or device. Graphical input can be viewed as a pipeline of processes
transforming the data resulting from some input interaction into a form suitable for use by the
application. The input interaction may also involve processes from the output pipeline in order to

- 17-

achieve any desired prompts and echoes. Clearly, the composition of these pipelines and the
order of components within them may differ widely between models, however there are often a
reasonable number of components common to most. Examples of these are transformations,
attributes, clipping, storage etc. These common components play an equivalent role in each
model, even though the internal details of the components will most likely differ. It can be
shown that a large number of the differences between graphics system models can be expressed
in terms of the different orderings (or configurations) of these components.

The Reynolds abstract reference model of graphics data states developed this processing
pipeline model by isolating the smallest incremental changes to the states of graphics information
(or storage areas), and by defining when graphics data undergoes transitions between these states
by the application of specialized processes.

The data states are grouped together to form strands of processing, where a particular strand
is concerned with a subset of the overall intended graphical effects. Five major strands can be
identified in most standard graphics systems, as follows:
(1) attribute strand;
(2) transformation strand;
(3) clipping strand;
(4) dimensionality strand;
(5) storage strand.
The processing strands are illustrated in figure 3, which also indicates how a specific graphics
pipeline can be configured by ordering the state transitions on and between strands. The Frank
furt meeting identified a list of concepts that needed to be included in a Reference Model:
(1) pipelines;
(2) levels/interfaces;
(3) multiplexing;
(4) attribute binding;
(5) elaboration;
(6) instantiation;
(7) language bindings and encodings;
(8) data coding versus procedural interface;
(9) resource sharing;

•

(10) input model;
(11) application interface;
(12) operator interface;
(13) primitives, attributes;
(14) storage structures;
(15) workstations;
(16) metafiles;
(17) raster graphics.
The strand approach was looked at as an alternative to the more normal pipeline description of
computer graphics.

- 18 -

attribute strand
elaborate •.•. " ••.••." •••.•.

00 ,

•
bind ASFs bind individual bind bundles bind colour.............. " ..•...•.•..,,,

•,,,
•.....

•• •.. .
o •

• 0 •

normalization .·viewing workstation

0'"0 0 Ot-----to
o NDC NPC DC•••••,,

•,
X-V ,.- •. '"' ••••• workstation

•

modelling

-----------M-e--~O we .••••
Clipping strand I :

Front Back'

--~O~~O~-'~O~--~O~"---
,,,
\

•••storage :;trand
••

Work\.tation sto:Jge

----~O~--~O~·----~O~-----
Central storage Raster storage

I djmfll5ionaljty strand
30 -20 20 -30

----------~()r------~()~---------

--0- Process

•• •••• •• •••••• Possible GKS type plpellne

Figure 3

2.3. External Reference Model
After the Frankfurt meeting, two independent approaches were considered. The first concentrated
on establishing a Reference Model that was primarily concerned with how other standards would
interact with the computer graphics standards. The second concentrated on establishing an inter
nal reference model for computer graphics showing how the various concepts in graphics should
fit together.

The External Reference Model was based on the pipeline approach establishing a 7 stage
pipeline for input and output. The output stages were seen as:
(1) Conceptualization: the mapping of the application's requirements into graphical terms.
(2) Formulation: the creation of graphical information.
(3) Elaboration: the mapping of graphical information onto the abstract picture on a worksta

tion.

- 19-

(4) Generation: the mapping of some part of the abstract picture onto a virtual display surface.
(5) Realization: the use of real attributes on the workstation to define the picture.
(6) Production: the process of causing the image to appear.
(7) Visualization: the process of inspecting the output by the operator.
A similar set of stages did the reverse process for input.

Work on the external reference model continued until January 1989 with several refine
ments of the document.

2.4. Components and Frameworks
The major input to the internal reference model came from BSI using the work of Arnold and
Reynolds on strands and Duce on Formal Specification.e Out of these came a components and
frameworks model for describing graphics standards.

Components can be thought of as basic concepts such as output primitives, attributes, pic
tures, views etc. Frameworks define how these components fit together in a particular standard.
Thus a framework statement might be that pictures in this standard can only be constructed from
a sequence of output primitives that have all their attributes bound to them.

As for the external reference model, the internal reference model went through a number of
refinements with attempts at describing existing standards in terms of the model. As a separate
activity, the relationship between components and abstract data types was established.

•

2.5. A Single Reference Model
A meeting was held in Paris in January 1989 to consider the two activities - external and internal.
The major output from the meeting was a decision to merge the external and internal reference
model into a single activity. The meeting elaborated the basic concepts or components in the
Reference Model and attempted to define both the internal and external relationships. Four major
concepts were agreed:
(1) Pictures: the current contents of a space.
(2) Collections: a storage structure associated with primitives and their related attributes.
(3) Metafiles: a mechanism for storing and retrieving pictures.
(4) Archives: a mechanism for storing and retrieving collections.
A Reference Model based on these 4 major concepts was seen as being both feasible and able to
relate to existing standards.

A subsequent meeting in Darmstadt provided further input to the Reference Model includ
ing a desire to have more symmetry between output and input and an ability to have attributes
jointly owned by the output primitive and the associated input device.

2.6. Summary
A Working Draft Reference Model has now been completed by the acting Document Editors
D.A. Duce and F.R.A. Hopgood. This will be presented to the complete ISO Working Group in
October 1989. Its current state is given in Appendix A.

- 20-

3. Revisionof GKS

3.1. Introduction
The international Review of GKS started with a Workshop sponsored by Eurographics in Disley
in September 1987.11The Workshop split into four major activities:
(1) concepts;
(2) storage;
(3) primitives;
(4) input.
The major concerns in each area are given below.

.'

•3.2. Concepts
There was less clarity in the concepts of GKS than there ought to be. A major problem of any
review would be to decide whether a slavish upward compatibility with GKS was necessary or to
admit that the original concepts were not clean and that any revision would almost certainly cause
some GKS programs to cease to work as they did before.

Additional primitives had been defined for the newer standards. A major question was
whether these should be added to GKS or the GKS model extended to include them as a subpart.

The text primitive continued to give concern. It did not have the functionality required by
the typesetting community yet was the most exotic primitive in GKS. Either it should be
extended to cover the wider community or reduced to a level similar to the other primitives.

There was strong support for a more precise definition which left language binding con
siderations to that standard. A new GKS should not look like a FORTRAN subroutine library.

3.3. Storage
The segment model of GKS was very restrictive. Also, it did not completely specify the storage
required. For example, font definitions had not been integrated into the GKS storage model. A
facility for defining macros was not available.

The main conclusions were that there was a real need for a workstation independent storage
system. If the GKS Workstation Independent Storage System was available, the possibilities for
implementors were greatly enhanced. A new standard should make a global storage mechanism
mandatory and that would simplify the overall model.

The nameset and filter mechanism of PHIGS was reviewed in some detail. The conclusion
was that the segment facilities of GKS could be subsumed into a more general naming model. It
would allow all the current functionality but would also allow all the advantages of data stored
effectively in a relational database.

3.4. Primitives
The major concerns were the level of workstation dependencies which made it impossible for a
device independent view of graphics to be available at the NDC level. Text extent was a particu
lar problem.

The main concerns were to increase the portability and make the standard more device
independent.

There was a belief that text was not really a basic primitive. CELL ARRAY could be inter
preted as a special case of FILL AREA. The need for an extension to FILL AREA had to be

- 21 -

quantified.

3.5. Input
The input model in GKS was defined at Abingdon in 1981. Not all of the input model defined
there was included in GKS. In particular, there was a good description of machine independent
input tools and how they could be set up.

The main conclusions were that all applications programs should have the ability to build
logical input devices and be responsible for the echo and control of the device where appropriate.

3.6. Tucson
An ISO meeting at Tucson in July 1988 defined the scope and goals for the GKS Review. It also
established a number of ad hoc Rapporteur Groups to provide input to the Review - input model,
relationship to window management, text etc.

It was decided to split the work needed into a Maintenance Review of GKS and an activity
aimed at producing a new Application Interface which catered for those areas not supported by
GKS.

•

The Maintenance Review of GKS was targeted at:
(1) making any necessary editorial changes and technical corrections;
(2) enhancing portability by reducing implementation and workstation dependencies;
(3) considering new functionality coming in from the later standards;
(4) reviewing the interaction of GKS with metafiles.

3.7. Ilkley
The first GKS Review Meeting took place in Ilkley in March 1989. The BSI made a strong case
for making GKS better defined even if this meant a loss of compatibility and for extending GKS
to remove the major deficiencies encountered by users.

The Ilkley meeting agreed that:
(1) New functionality should be considered in making the standard closer to COM and CO!.

The naming and selection of primitives in PHIOS should be examined. An improved text
model was needed.

(2) The Error Reporting mechanism needed to be less language dependent.
(3) More work should be delegated to the language bindings.
(4) The use of special workstations for long term storage and segments was queried.
(5) The rich level structure of GKS had not been used and required simplification.
(6) The compatibility with GKS (ISO 7942) should not be more restrictive than the current

variation allowed in implementations.
(7) Packaging of functions in a more abstract way would lead to a more consistent document.
(8) A clear definition of an NDC picture was needed if a sensible interface to CGM was to be

achieved.
(9) Primitives with their geometry completely defined at the NDC picture should be con-

sidered.
The document editors were asked to produce a revised document based on these guidelines for
discussion at the ISO meeting in Brazil in October 1989. Appendix B gives the revised text to be
submitted to that meeting by Brodlie, Duce and Hopgood.

- 22-

4. Summary
The new Reference Model Document and the new GKS (GKS-N) are the initial drafts of the next
generation of computer graphics standards. At this stage they are far from compl,ete and w~ll
have significant changes made to them during the Review procedure. They are pubhshed here in
order that a larger audience can consider the road being taken in future graphics standardization.

References

1. D. B. Arnold, G. Hall, and G. J. Reynolds, "Proposals for Configurable Models of Graphics
Systems," Computer Graphics Forum 3(3) pp. 201-208 (1984).

2. D. B. Arnold, D. A. Duce, and G. J. Reynolds, "An Approach to the Formal Specification
of Configurable Models of Graphics Systems," in Proceedings of Eurographics 87, ed. G.
Marechal, North Holland (1987).

3. D.B. Arnold 'and P.R. Bono, CGM and CGI - Metafile and Interface Standards for Com
puter Graphics, Springer-Verlag (1988).

4. K. W. Brodlie, L. R. Henderson, and A. M. Mumford, "The CGM a metafile for GKS?,"
Computer Graphics Forum 6(2) pp. 87-90 (1987).

5. G. Enderle, K. Kansy, and G. Pfaff, Computer Graphics Programming, GKS - The Graphics
Standard, Springer-Verlag (1987). (Second Edition)

6. F. R. A. Hopgood, D. A. Duce, J. R. Gallop, and D. C. Sutcliffe, Introduction to the Graphi
cal Kernel System (GKS), Academic Press (1986). (Second Edition)

7. W. Huebner and Z.I. Markov, "GKS-based Graphic Programming in Prolog," in GKS
Theory and Practice, ed. P.R. Bono and I. Herman, Springer-Verlag (1987).

8. ISO,' 'Information processing systems - Computer graphics - Graphical Kernel System
(GKS) functional description," ISO 7942, ISO Central Secretariat (August 1985).

9. G. J. Reynolds, "A Token Based Graphics System," Computer Graphics Forum 5(2) pp.
139-146 (1986).

10. M. R. Sparks and J. R. Gallop, "Computer graphics language bindings: programmer inter
face standards," Computer-Aided Design 19(8) pp. 418-424 (1987).

11. _, "GKS Review Workshop," Computer Graphics Forum 6(4) pp. 367-369 (1987).

Appendix A

Reference Model

•

INTERNATIONAL STANDARD ISOIIEC xxxx(E)

Information processing systems - Computer graphics - Computer Graph
ics Reference Model

•

o Introduction

The Computer Graphics Reference Model (CGRM) defines an architecture for computer graphics. Its purpose
is to provide a consistent terminology for computer graphics and establish the relationship between the con
cepts which make up the reference model. It should be used in describing specific standards and in the rela
tionship between graphics standards and the environment in which they exist.
This standard will provide the basis for the development of future computer graphics standards and ensure
their long term coherence based on objective rational foundations. Existing graphics standards will not neces
sarily fit precisely into the Reference Model. However, experience with the current standards has significantly
influenced the model.
International Standards related to computer graphics exist or are under development in the following areas:

a) Open System Interconnection - Basic Reference Model;
b) Virtual Terminal Protocols and Terminal Management;
c) File Transfer, Access and Management Protocols;
d) Office Document Architecture and Interchange;
e) Text and Office Systems;
f) Exchange of Product Model Data;
g) Character Sets and Coding;
h) Open Distributed Processing.

1

ISO/IEC xxxx(E) 2

1 Scope and field of application

This International Standard defines a structure within which current and future International Standards for
computer graphics shall be compared and their relationships described.
This International Standard does not define how computer graphics standards shall be defined and developed.
It does not specify the functional descriptions of computer graphics standards, the bindings of those standards
to programming languages, or the encoding of graphical information in any coding technique or interchange
format. It is neither an implementation specification for systems incorporating computer graphics, nor a basis
for appraising the conformance of implementations.
This International Standard, the Computer Graphics Reference Model (CGRM), defines a set of concepts and
their inter-relationships which should be applicable to the complete range of future graphics standards.
CGRM defines computer graphics output in terms of output primitives which make up pictures that are output
to the operator. The operator defines input values that are transmitted to the application in an appropriate
form. Any connection of output generated to input received is handled by the application. To allow complex
graphical images, CGRM defines a storage facility called the collection from which pictures may be com
posed.
This standard may be applied to:

a) Verify and refine user requirements for computer graphics;
b) Identify needs for computer graphics standards and external interfaces;
c) Refine individual models from the user requirements for computer graphics;
d) Define the architecture of new computer graphics standards;
e) Compare computer graphics standards.

CGRM provides four levels of abstraction that correspond to the application, virtual, logical and physical
environments. CGRM defines the operations on pictures and collections appropriate in each environment.

•

2

-

3 ISO/IEC xxxx(E)

~, 2 Definitions

For the purpose of this International Standard, the following definitions apply.
2.1 application: The external entity that accesses the application environment. Applications are not modelled
in the CGRM, but their interactions with computer graphics are modelled.
2.2 application environment: The environment closest to the application interface.
2.3 application interface: The interface provided by the application environment to the application. This is
the only interface between the application and the application environment, and consequently the graphics sys
tem.
2.4 archive: A mechanism for representing a collection for storage, retrieval and transmission.
2.5 clipping: Restriction of the geometric shape of an output primitive to a region of interest.
2.6 collection: A named structured assembly of entities which can be transformed into a set of output or input
primitives.
2.7 environment: A subdivision of CORM at a given level of abstraction. The definition of the environment
includes the definition of its primitives, picture, an (optional) set of collections and (optional) associated state
information. Each environment contains at least one coordinate space as part of its definition. A set of func
tions is provided on the picture and collection.
2.8 geometry: The property of a primitive used to define nearest.
2.9 input primitive: The atomic unit from which input is composed by the application. There may be more
than one class of input primitive. An input primitive consists of an input value, whose type depends on the
class. An input primitive may have associated properties.
2.10 logical environment: The environment between the virtual and the physical environments. Output primi
tives contain complete geometric and rendering descriptions.
2.11 metafile: A mechanism for representing a picture for storage, retrieval and transmission.
2.12 operator: The external entity that observes the contents of ~e. physic.al pict~re and provides p~ysjcal
input values. Operators are not modelled in the CORM, but their interacttons With computer graphics are
modelled.
2.13 operator interface: The interface provided by the physical environment to the operator.
2.14 output primitive: The atomic unit from which graphical output is composed. There may be more than
one class of output primitive. An output primitive consists of a geometric shape. An output primitive may
have associated properties.
2.15 physical environment: The environment closest to the operator interface.
2.16 picture: A spatially structured set of output primitives at a given environment level.
2.17 post: An operation which transforms part of the picture at one environment level to a picture at the next
lower environment level. Posting can be achieved by "posting" the collections making up the picture rather
than posting the picture itself.
2.18 property: A value associated with a primitive whose meaning is dependent on the class of the primitive.
2.19 rendering: Differentiation of two primitives of the same type by means other than their geometry.
2.20 transformation: An operation that achieves a transition from one environment to another.
2.21 traversal: An operation which transforms a collection or part of a collection to produce the picture or
part of the picture within the same environment.

3

ISO/IEC xxxx(E) 4

Definitions

2.22 trigger: An operation which transforms some part of the input memory at one environment level to some
part of the input memory at the next higher environment level.
2.23 virtual environment: The environment between the application environment and the logical environ
ment. Output primitives in the virtual environment contain complete geometric descriptions.

•

4

5 ISO/IEC xxxx(E)

3 Conformance

The concepts and their interrelationships in CGRM provide the framework in which aUfuture computer graph
ics standards should be defined.
Future standards should express their main concepts in the vocabulary of the CGRM and indicate the precise
constraints defined by a specific standard. \
CGRM requires that future standards define environments and interactions between environments as well as
application and operator interfaces. •

5

ISOIIEC xxxx(E) 6

4 The Computer Graphics Reference Model

4.1 Introduction
The Computer Graphics Reference Model (CGRM) consists of the following major concepts:

a) environments;
b) output primitives;
c) input primitives;
d) pictures;
e) input memory;
f) posting;
g) triggering;
h) properties;
i) transformations;
j) collections;
k) metafiles;
1)archives.

•

4.2 Environments
A CGRM environment consists of a picture, an input memory, a set of collections and possibly associated state
information, defined at a specific coordinate space. A set of functions is defined that applies to the picture,
input memory and collection. There are four environments as shown in figure 1.

a) application;
b) virtual;
c) logical;
d) physical.

The four environments are always present in the description of a graphics system but some of them may be
transparent or null.

6

7 ISO/IEC xxxx(E)

The Computer Graphics Reference Model Environments

APPLICATION

c ~

METAFILE Input AR~HIVE
Picture Memory

CoTIection

VIRTUAL

h ::::
METAFILE Input AR~HIVE

Picture Memory

Collection

LOGICAL

C ~

METAFILE Input AR::::HIVE
Picture Memory

l__ __J
IColrection

PHYSICAL- ;;...._

METAFILE Input AR ::::HIVE
Picture Memory

Colrection

•

Figure 1

The main characteristics of each environment are given below.
Application environment: in this environment, output information is composed into graphics fragments with
editing, composition and transformation applied. It is not necessary for the precise geometry of the picture to
be defined at this stage but naming used in interaction shall be defined. Input memory is constructed in the
precise form required by the application.

7

ISOIIEC xxxx(E) 8

Environments The Computer Graphics Reference Model

Virtual environment: in this environment, the graphical picture to be output is defined as a set of virtual output
pnmmves. The geometry of these virtual primitives is completely defined so that virtual pictures are geometri
cally complete. All graphical devices should be capable of rendering pictures in the virtual environment.
Input memory is defined in the coordinate system used in the virtual environment. Similar input primitives can
only be differentiated by their associated properties.
Logical environment: associated with graphical output primitives is a set of properties associated with render
ing. In the logical environment, the complete set of properties should be bound to the logical output primitive.
It is possible that only a subset of output devices can precisely render the information in the logical environ
ment. Input values are converted to device independent form with input value properties added to differentiate
the origin of the input if required. The precise interpretation of the input memory by the application may not
be known in this environment.
Physical environment: the environment consists of a picture in device coordinates with a specific device.
Input memory will contain input values as received from the input device. It is not necessary for there to be a
one-to-one correspondence between the contents of physical input memory and logical input memory. All
properties associated with the input devices used will be known at this stage.
Fan-out is only allowed between the virtual and logical environments. The virtual environment may map onto
more than one logical environment. A single logical environment maps onto a single physical environment as
shown in figure 2.

•

Application Environment

Virtual Environment

Logical Environment Logical Environment

Physical Environment Physical Environment

Figure 2

8

9 ISOIIEC xxxx(E)

The Computer Graphics Reference Model Output primitives

4.3 Output primitives
output primitives are atomic units in terms of which graphical output in each of the four environments is
described. Four types of output primitives are recognized corresponding to the four different environments.
Output primitives have associated geometry and properties. Only application output primitives can be edited.
The geometry of application output primitives is not necessarily fully defined. Application output primitives
, can be edited, but cannot be rendered. If clipping is provided in the application environment, the results of
clipping operations have to be expressible in terms of application output primitives.
The geometry of virtual primitives is completely defined. Virtual output primitives cannot be edited, clipped
or rendered. Logical output primitives have both geometry and rendering completely defined.
Physical output primitives may be rendered and clipped. The result of clipping a physical output primitive is
not necessarily expressible in terms of physical output primitives.
Properties of output primitives can constrain the possible input values allowed and affect the transformation
applied to input values in defining input primitives at a higher environment level.

•

4.4 Input primitives
Input primitives are atomic units in terms of which input in each of the four environments is described. Four
types of input primitives are recognised corresponding to the four different environment levels. Input primi
tives have associated properties and may have associated geometry. Only physical input primitives can be
edited.
Physical input primitives are produced in the physical environment through the operator interface. Properties
associated with physical input primitives describe the input device used.
Logical input primitives are produced in the logical environment by triggering from the physical environment.
Properties associated with logical input primitives describe generic input devices.
Virtual input primitives are produced in the virtual environment by triggering from the logical environment.
Properties associated with virtual input primitives include the geometry associated with the virtual picture.
Application input primitives are produced in the application environment by triggering from the virtual
environment. Properties associated with application input primitives include the geometry understood by the
application and any naming associated with input and output by the application.

4.5 Pictures
Graphical output is composed into pictures which can be present in each of the four ~nvironments. Specific
functions exist for posting a picture at one environment to generate some part of a picture at the next lower
environment level.
Pictures can be stored in metafiles. Metafiles can be retrieved and added to the current picture at this environ
ment level, or replace it.
The following operations exist on pictures:

add output primitive
add transformed collection
copy to metafile (whole picture)
delete picture
delete output primitive
inquire property
inquire property of picture at position
post picture
retrieve picture from metafile

9

-

ISOIIEC xxxx(E) 10

Input memory The Computer Graphics Reference Model

4.6 Input memory
Input is composed into input memory which can be present in each of the four environment levels. Specific
functions exist for triggering an input memory at one environment to generate some part of input memory at
the next higher environment level.
The following operations exist on input memory:

add input primitive
add transformed collection
delete input memory
delete input primitive
inquire property
trigger input memory

4.7 Posting
Posting is the operation which transforms some of the picture at one environment level to be included in the
picture at the next environment level. Posting can be achieved by "posting" the collections making up the pic
ture rather than posting the picture itself.
Posting can be automatic so that a change in the picture at one environment level automatically causes the post
operation to be performed. Posting can be continuous so that the picture at one environment level is continu
ously transformed into the picture at the lower level. Posting can be defined to occur only when specified.

4.8 Triggering
Triggering is the operation which transforms some part of the input memory at one environment level to be
included in the input memory at the next higher environment level.
Triggering can be automatic so that any change in input memory at one environment level automatically
causes the triggering operation. Triggering can be continuous so that the input memory at one level is continu
ally transformed into the input memory at the next higher level. Triggering can be defined to occur only when
certain events happen.

4.9 Properties
Application properties: describe the way the operator perceives the information displayed on the device and
can be used in returning information from the operator to the application. Application properties are bound to
primitives in the application picture.
Virtual properties: these properties are completely defined for all virtual primitives. In particular they pre
cisely define the geometry of the virtual picture. Virtual properties precisely define the geometry of input
values in the virtual input memory.
Logical properties: these properties are defined for all logical primitives. In particular, they precisely define
the rendering of the logical picture required on a device. Logical properties define generic device properties to
be associated with logical input primitives.
Physical properties: these properties control what parts of the logical picture appear on the device. It is possi
ble that the physical device will not be able to render the logical picture precisely. Input properties describe
the physical input device in use.

4.10 Transformations
Transformations exist between the coordinate spaces in different environments. A post operation defines a
transformation between some part of the picture at one environment level before it is added to the picture at the
next lower environment level. Similarly, a trigger operation defines a transformation between some part of the
input memory at one environment level before it is added to the input memory at the next higher environment
level.

10

11 ISOIIEC xxxx(E)

The Computer Graphics Reference Model Transformations

If the picture is composed from a set of collections, and collections exist in the two environments, a transfor
mation of the picture from one environment to another can be realized by a transformation of collections in
one environment to relevant entries in the other environment with the appropriate linking to the picture at the
lower level. The post and trigger operations can change the properties associated with primitivies or entities in
a collection.

4.11 Collections
A set of entities can be grouped together in a collection. Structure can exist within a collection which relates
one entity with another. Collections exist at all four environments. Collections can be archived and retrieved.
Collections are added to a picture or input memory by the operation 'add transformed collection'. Traversal is
one method that can be used to achieve this.
Archived collections can only be retrieved at the same environment level as that at which the archive was gen
erated. The following operations exist on collection:

copy collection to archive (whole collection)
create collection
delete collection
edit collection (only in application environment)
inquire collection
post collection
retrieve collection from archive

•

4.12 Relationship between output and input
There is a symmetry between output and input which is exemplified by the definition of output primitives and
input primitives. The application expresses the output which the operator is to observe in terms of output
primitives and the operator constructs the input on which the application is to act from input primitives.
There may be a linkage between output primitives and input primitives in that properties of output primitives,
for example a transformation, may be controlled by input values and properties of input primitives, for exam
ple the range of allowable values, may be indicated by an output primitive. The linkage between input and
output is described in the CORM by shared primitives and storage of input and output at appropriate levels in
the model.
Graphically represented feedback and echoes to the operator input are thus no ~fferen~ t~ other graphic~l ~ut
put. The application may choose which picture level they appear for the first time. SimIlarly, the applIcation
may choose at which level the naming of output primitives or their geometry can be used by the input primi-

tives.
Conceptually, input produces responses in the application environment. However, if echoes are defined to first
appear at, for example, the logical environment and input values have a transformation which generates logical
coordinate values and the echo is defined to be dependent on this value, it is permissible that an optimization
exists that allows the system to take the input logical coordinate value and use it in specifying the echo without
needing the application to intervene.

4.13 External relationships
The overall structure of the reference model is illustrated in figure 3.

11

ISOIIEC xxxx(E) 12

External relationships The Computer Graphics Reference Model

Application

t 1..·····. Application Interface

Metafile Archive

E :> Application Environment oE :>0

t 1
oE :> Virtual Environment oE :>0

t 1
••• :>- Logical Environment oE :>

t 1
E ;;a Physical Environment -< :>-

I 1········· Operator Interface

Operator

Figure 3 - Interfaces
There are two main interfaces to computer graphics:

a) operator interface: the interface provided by the physical environment to the operator.
b) application interface: the interface provided by the physical environment to the operator. This is the
only interface between the application and the application environment, and consequently the graphics sys
tem.

The external entities are:
c) operator: the external entity that observes the contents of the physical picture and provides physical
input values. The operator is not part of the computer graphics reference model.
d) application: the external entity that accesses the application environment. The application is not part of
the computer graphics reference model.

External interfaces also exist for metafiles and archives at each environment. Internal interfaces exist between
the application and virtual environments, the virtual and logical environments and the logical and physical
environments.

12

13 ISOIlEC xxxx(E)

The Computer Graphics Reference Model External relationships

Metafiles and archives may be generated by external agents and imported through the appropriate environment
interface. Thus communication between a computer graphics system and the outside world is described in the
reference model in terms of an application interface, operator interface, metafile or archive.
The four environments are always present in the description of a computer graphics system that is neither a
metafile, archive, application interface, operator interface or internal interface, but it is permissible for any
environment to be null, in other words to provide an identity post transformation for that environment to the
next lower environment.

•

13

ISOIlEC xxxx(E) 14

Annex A

Window Systems

(Non-normative Annex)

Window systems exist below the Physical Environment of the Computer Graphics Reference Model and pro
vide a multiplexing and resource management function at this level.
The primitives of the window system are virtual bit maps with properties, The connection between the win
dow system and the computer graphics system is shown in figure 4,

Application Application

., '-----,------': .

Window Management System

Bit Map Device

Figure 4

The window system can be elaborated using the same model as the computer graphics system, as shown in
figure 5,

14

15 ISOflEC xxxx(E)

AnnexA Window Systems

WM APPLICATION
~ ::::r-

Picture Collection

WMVIRTUAL
~ _:::;

I~ r--

I~I0METAFILE [2J
I [Q]I

Picture Collection

WMLOGICAL

~ _..
I

I I
~METAFILE

UI\

Picture Collection

WMPHYSICAL

~ :;
Colour
Table

METAFILE Constrained
Picture

Picture Collection

..

Figure 5

The window application level for some window systems at least will require a collection if the system allows

15

-
ISO/IEC xxxx(E) 16

Window Systems AnnexA

window updates that change the geometry of the virtual picture. An example is a menu which displays a sub
set of the range of menu items. If an increase in the menu area allows more menu items to be shown, this
would require the menu window to be stored at the window application level.
A collection is required at the virtual environment if the window system allows operations that do not change
the geometry. Re-ordering windows on a screen could be done by the window system storing the windows for
damage repair at the virtual level.
A collection is required at the logical environment if the window system does pop-up menus by storing and
retrieving bit maps with the rendered information. Whether storage is done at the logical or physical environ
ment will depend on whether changes that effect resource management cause changes to the physical picture.
For example, if a window is hidden which currently uses all the colour table entries, does the uncovered win
dow have its true colours substituted now that the colour table is not overloaded? The answer to this question
determines whether the collection occurs at the logical or physical environment.
The pictures in the window environment contain primitives that are bit maps with properties. In particular,
properties are used to control highlighting, visibility and detectability. For example, the focus for mouse and
keyboard input is an attribute similar to visibility and detectability.
As for the CGRM, the picture is geometrically complete at the virtual environment. That is, bit maps are posi
tioned correctly. At the logical level, borders, scroll bars, rendering of the window contents are precisely
defined. At the physical environment, scarce resources such as the colour table are allocated to produce the
picture to appear on the device.
There are good reasons why metafiles will be required at the virtual, logical and physical level. At the virtual
environment, cut and paste operations are performed using metafile output and application processing. At the
logical level, plotter output of the correctly rendered picture (without colour table resource constraints) will be
achieved by metafile output. At the physical environment, metafile output is required for screen capture.
Examples of how specific window operations are performed are given below. These particular operations may
be performed in other ways by some systems. In particular, nearly all operations can be performed by the
application redefining bit map primitives to the window system.
Highlighting: highlighting a window is seen as an attribute of the window and is probably performed at the
logical level. Highlighting would cause the allocation of colour table resources to change so would not neces
sarily be done at the physical environment.
Dragging: dragging a window with just a border shown can be achieved at the physical or logical level.
Dragging with the complete window moving changes the geometry, and it performed no lower than the virtual
environment.
I cons: the iconization of windows is done by storing icons and windows at the application environment of the
window system. Whether updates of iconized pictures are retained in the application collection will depend on
the window system.
Resize : as this is a geometry change, it is likely to be done using the window stored in the application collec
tion.
Cut and paste: assuming bit maps are cut and pasted, and the system only allows the contents of bit maps to
be cut and pasted, this is done by metafile output followed by input at the virtual level.
Rubber banding: similar to dragging outline box.
Stacking/reordering: changing window order is frequently done at the virtual environment. The collection
contains bit maps of the windows without borders. The border information is contained in the environment
state list.
Scrolling: scrolling over a limited field (for example, over a menu too large to display but of well-defined
size) could be done at the application or virtual levels. For scrolling over undefined or potentially very long
areas will normally require application to redefine bit map windows.
Menu selection: menus will normally be stored in the application environment collection and will cause a
change in the virtual picture when popped-up, pulled-down etc.

16

17 ISO/IEC xxxx(E)

AnnexA Window Systems

Lens: the device that magnifies bit maps is an operation on the physical picture which may require a physical
collection for picture part storage.
Colourfocus: systems that give preference to a specific window in terms of colour table resource will achieve
this by state information associated with the picture at the logical environment.
Radio buttons: menu devices which cause the window system to make visible or highlight some part of one of
a set of windows is achieved by properties associated with the windows and possibly state information to
ensure only one of several buttons is highlighted in the radio button case.
Text input: for window systems that organize text input to a window only sending text to the application on
the pressing of a control key, this would be handled at the virtual environment as there is potentially some
geometric changes.
Archives will depend on the requirement for persistence of information between sessions.
Collections will often contain single primitive items. However, a hierarchical set of windows is an example of
a collection with a set of primitives in it if they are manipulated as a whole.

•

17

ISOIIEC xxxx(E) 18

AnnexB

The Relationship of Imaging to the Computer Graphics Reference Model

(Non-normative)

This annex addresses the relationship between imaging and the Computer Graphics Reference Model. This is
an example of an application of the Computer Graphics Reference Model. Imaging is concerned with opera
tions on images and extraction of features and structure from images. An image in this context is a rectangular
array of picture elements. Image operations apply a basic operator over an entire region of interest of an
image. Image presentation is concerned with presenting an image on a display in conjunction with graphical
output, for example displaying contours on image data.
To relate the CGRM and imaging it is necessary to identify the environment or environments in which imaging
operations take place. An image is identified with a collection in the application environment; image opera
tions are then operations applied to this collection which may change the contents and structure of the collec
tion. Transfer formats for images are identified with archives of the application collection in the CGRM. Such
archives may be used to input images to an imaging system and for saving processed images.
Image presentation is a display operation on this collection in the application environment. For display pur
poses, the image is a particular graphics primitive and is displayed in a similar manner to other classes of
graphics primitives. Displaying images with other graphical data is then treated quite naturally. The primi
tives representing images are refined through virtual, logical and physical environments in a manner entirely
analogous to other graphics primitives.

•

18

19 ISO/IEC xxxx(E)

Annex C

Existing standards and CGRM

(Non-normative)

GKS workstations correspond to the logical and physical environments. Realization of bundled aspects is
done at the logical level. Transformation of coordinates from NDC to DC takes place at the posting of the log
ical picture. In GKS, those aspects which are definitely geometric are bound at the virtual (NDC) level. How
ever some geometric text attributes (alignment) are not able to be completely bound until the logical level
(unlike the CGRM proposal). The individual/bundled model fits into CGRM as long as the complete geometry
is specified at the NDC level. This deficiency in GKS has been corrected for at least one font in PHIGS.
Segment store in GKS is identified as a virtual collection (WISS) and a logical collection (WDSS).
There are a number of areas in GKS where it does not fit precisely with CGRM. Each identifies a problernin
GKS, not CGRM.
GKS-3D has more than one coordinate system involved in the posting from NDC3 to DC3 (virtual to physi
cal). The reference model does not preclude this.
Both GKS and GKS-3D have no clear concept of a picture to be viewed. The poor compatibility with CGM
identifies this. If these standards adhered to CGRM, the interaction and connection to CGM would be more
precisely defined.
The structure store in PRIGS is a collection at the application level.
All three functional standards have a deferral/regeneration model which is difficult to fit into CGRM. It is
believed that this is due to the imprecision of the model rather than a deficiency in CGRM.

•

19

Appendix B

GKS·N

•

-

•

CONTENTS
o Introduction
1 Scope and field of application
2 References
3 Definitions
4 Conformance

4.1 Specification
4.2 Registration

S Concepts
S.l NDC picture
S.2 Output primitives and attributes
S.3 Workstations
5.4 Coordinate systems
S.S Logical input devices
5.6 Picturepart store
5.7 Shape store
S.8 State lists
5.9 Description tables
5.10 Metafiles and Archives

6 The New Graphical Kernel System
6.1 Initialization
6.2 Graphical output

6.2.1 Output primitives
6.2.2 Geometric primitives
6.2.3 Shape store
6.2.4 Shape as a set of closed paths
6.2.5 Inside rule
6.2.6 Path contours
6.2.7 Shape attributes
6.2.8 Shape concatenation
6.2.9 Bundled primitives
6.2.10 Text attributes

iii

6.2.11 Fill area attributes
6.3 Normalization transformations
6.4 Picture part store

6.4.1 Picture part creation
6.4.2 Picture part functions
6.4.3 Adding picture parts to the NDC picture
6.4.4 Picture parts as images

6.5 The NDC picture
6.5.1 Introduction
6.5.2 NDC picture operations
6.5.3 NDC metafiles

6.6 Selection criterion
6.7 Graphical input

6.7.1 Introduction to logical input devices
6.7.2 Logical input device model
6.7.3 Operating modes of logical input devices
6.7.4 Measures of each logical input device class
6.7.5 Input queue and current event report
6.7.6 Transformation of LOCATOR and STROKE input

6.8 Clipping and shielding
6.9 GKS-N levels
6.10 Inquiry functions
6.11 Error handling
6.12 Special interfaces between GKS and the application program

7 GKS functions
7.1 Notational conventions
7.2 Control functions
7.3 Output functions
7.4 Output attributes
7.5 Normalization transformation functions
7.6 NDC picture functions
7.7 Metafile functions
7.8 Picture part store functions
7.9 Input functions
7.10 Inquiry functions

8 Workstation dependent control
8.1 Introduction
8.2 Workstation characteristics
8.3 Selecting a workstation
8.4 Workstation transformations
8.5 Geometric primitives
8.6 Bundled primitives
8.7 Bundled primitive attributes

8.7.1 Introduction
8.7.2 Polyline logical attributes
8.7.3 Polymarker logical attributes
8.7.4 Text logical attributes
8.7.5 Fill area logical attributes
8.7.6 Colour

8.8 Setting primitive attributes
8.9 Selection criterion
8.10 Transformation of LOCATOR and STROKE input

iv

8.11 Physical metafile
8.12 Logical input devices

8.12.1 Introduction
8.12.2 Initialization of logical input devices
8.12.3 Definition of logical input devices

8.13 Sending messages to a workstation
9 Workstation functions

9.1 Control functions
9.2 Inquiry functions

10 GKS data structures
10.1 Notation and data types
10.2 Contents of state lists and description tables

10.2.1 Operating state
10.2.2 GKS description table
10.2.3 GKS state list
10.2.4 Workstation state list
10.2.5 Workstation description table
10.2.6 Error state list

10.3 Initial values of state list and description table entries
10.3.1 Operating state
10.3.2 GKS description table
10.3.3 GKS state list
10.3.4 Workstation state list
10.3.5 Workstation description table
10.3.6 Error state list

A Function lists
B Error list
C Language binding considerations
D Allowable differences
E Relationship to CGM
F Relationship to CGI
G Function summary
H CIE colour model

•

v

INTERNATIONAL STANDARD ISOIIEC xxxx(E)

Information processing systems . Computer graphics . Computer Graph.
ics Reference Model

•

o Introduction

The Computer Graphics Reference Model (CGRM) defines an architecture for computer graphics. Its purpose
is to provide a consistent terminology for computer graphics and establish the relationship between the con
cepts which make up the reference model. It should be used in describing specific standards and in the rela
tionship between graphics standards and the environment in which they exist.
This standard will provide the basis for the development of future computer graphics standards and ensure
their long term coherence based on objective rational foundations. Existing graphics standards will not neces
sarily fit precisely into the Reference Model. However, experience with the current standards has significantly
influenced the model.
International Standards related to computer graphics exist or are under development in the following areas:

a) Open System Interconnection - Basic Reference Model;
b) Virtual Terminal Protocols and Terminal Management;
c) File Transfer, Access and Management Protocols;
d) OfficeDocument Architecture and Interchange;
e) Text and Office Systems;
1) Exchange of Product Model Data;
g) Character Sets and Coding;
h) Open Distributed Processing.

1

ISO 7942.NEW(E) 2

1 Scope and field of application

This International Standard specifies a set of functions for computer graphics programming, the New Graphi
cal Kernel System (GKS-N). It provides functions for two dimensional graphical output, the storage and
dynamic modification of pictures, and operator input. GKS-N functions and datatypes are specified indepen
dently of programming languages.
GKS-N establishes a system for device independent graphics programming by separating picture composition
and interaction from the realization of the pictures on a specific output device and the input devices used by the
operator.
This International Standard is applicable to a wide range of applications that produce two dimensional pictures
on vector or raster graphical devices. Operator interaction is allowed with these pictures. -_

2

3 ISO/IEC xxxx(E)

2 Definitions

For the purpose of this International Standard, the following definitions apply.
2.1 application: The external entity that accesses the application environment. Applications are not modelled
in the CGRM, but their interactions with computer graphics are modelled.
2.2 application environment: The environment closest to the application interface.
2.3 application interface: The interface provided by the application environment to the application. This is
the only interface between the application and the application environment, and consequently the graphics sys
tem.
2.4 archive: A mechanism for representing a collection for storage, retrieval and transmission.
2.5 clipping: Restriction of the geometric shape of an output primitive to a region of interest.
2.6 collection: A named structured assembly of entities which can be transformed into a set of output or input
primitives.
2.7 environment: A subdivision of CGRM at a given level of abstraction. The definition of the environment
includes the definition of its primitives, picture, an (optional) set of collections and (optional) associated state
information. Each environment contains at least one coordinate space as part of its definition. A set of func
tions is provided on the picture and collection.
2.8 geometry: The property of a primitive used to define nearest.
2.9 input primitive: The atomic unit from which input is composed by the application. There may be more
than one class of input primitive. An input primitive consists of an input value, whose type depends on the
class. An input primitive may have associated properties.
2.10 logical environment: The environment between the virtual and the physical environments. Output primi
tives contain complete geometric and rendering descriptions.
2.11 metafile: A mechanism for representing a picture for storage, retrieval and transmission.
2.12 operator: The external entity that observes the contents of the physical picture and provides physical
input values. Operators are not modelled in the CGRM, but their interactions with computer graphics are
modelled.
2.13 operator interface: The interface provided by the physical environment to the operator.
2.14 output primitive: The atomic unit from which graphical output is composed. There may be more than
one class of output primitive. An output primitive consists of a geometric shape. An output primitive may
have associated properties.
2.15 physical environment: The environment closest to the operator interface.
2.16 picture: A spatially structured set of output primitives at a given environment level.
2.17 post: An operation which transforms part of the picture at one environment level to a picture at the next
lower environment level. Posting can be achieved by "posting" the collections making up the picture rather
than posting the picture itself.
2.18 property: A value associated with a primitive whose meaning is dependent on the class of the primitive.
2.19 rendering: Differentiation of two primitives of the same type by means other than their geometry.
2.20 transformation: An operation that achieves a transition from one environment to another.
2.21 traversal: An operation which transforms a collection or part of a collection to produce the picture or
part of the picture within the same environment.

•

3

ISO 7942-NEW(E) 4

-

3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 ASF (attribute source flag): A flag for each logical attribute. If flag is set to INDIVIDUAL, the logical
attribute is bound to the primitive at creation. If flag is set to BUNDLED, a bundle index is bound at creation
and the logical attribute is bound at the logical level from the bundle table.
3.2 attribute: A particular property that applies to an output primitive.
3.3 baseline: A horizontal line within a character body (see figure 1) which, for many character definitions,
has the appearance of being a lower limit of the character shape. A descender passes below this line. All
baselines in a font are in the same position in the character bodies.
3.4 bottomline: A horizontal line at the bottom of the character body (see figure 1) which is just below all des
cenders in a font. All bottomlines in a font are in the same position in the character bodies.

------,------------r----------~top

cap

1
I
I--------~---------
1
Io

- - - - - - - __Ihalf

base

bottom ------,_----------~----------_4

left centre

Figure 1 - Font description coordinate system

right

3.5 bundle index: An index into a particular bundle table.
3.6 bundle table: A workstation dependent table. A table exists for each class of bundled primitive. Each
table entry defines the values of the logical attributes for that class of bundled primitive corresponding to a

4

5 ISO 7942.NEW(E)

Definitions

particular value of the bundle index. Whether these values are bound to particular bundled primitives depends
on the settings of the corresponding ASPs.
3.7 bundled primitive: A type of output primitive for which significant control of appearance is allowed by
workstations.
3.8 capline: A horizontal line within a character body (see figure 1) which, for many character definitions, has
the appearance of being the upper limit of the character shape. An ascender may pass above this line and in
some languages an additional mark (for example an accent) over the character may be defined above this line.
All caplines in a font are in the same position in the character bodies.
3.9 cell array: A class of bundled primitive consisting on creation of a rectangular grid of equal size rectangu
lar cells, each having a single colour index.
3.10 centreline: A vertical line bisecting the character body (see figure 1).
3.11 character body: A rectangle used by a font designer to define a character shape (see figure 1). All char
acter bodies in a font have the same height.
3.12 choice device: A class of logical input device defining one of a set of alternatives.
3.13 closed path: A path where the last point is the same as the first.
3.14 colour index: An index into a particular colour table.
3.15 colour table: A workstation dependent table. Each table entry defines the colour corresponding to a par
ticular value of the colour index.
3.16 contour: A shape which defines the outline surrounding a sub-path.
3.17 description table: A table whose entries specify the capabilities of an implementation (GKS description
table) or a workstation (workstation description table).
3.18 device coordinates (DC): The coordinates used to define logical and physical pictures on a workstation.
3.19 display space: The area available for displaying images on a particular workstation.
3.20 echo: The immediate notification to the operator of the current value of an input device.
3.21 fill area: A class of bundled primitive which is a closed polygon.
3.22 Generalized Drawing Primitive (GDP): A class of bundled primitive used to address special require
ments such as curve drawing.
3.23 geometric primitive: A type of output primitive where the geometry is precisely defined in the NDC pic
ture.
3.24 balfline: A horizontal line between the capline and the baseline within the character body (see figure 1),
about which a horizontal string of characters in a font would appear centrally placed in the vertical direction.
All halfiines in a font are in the same position in the character bodies.
3.25 identification attributes: A type of attribute used to name output primitives.
3.26 locator: A class of logical input device providing a position in world coordinates and a normalization
transformation number.
3.27 logical attributes: A type of attribute which defines the appearance of a bundled primitive in the logical
picture. Logical attributes may have different values for different workstations.
3.28 logical input device: An abstraction of one or more physical devices that delivers logical input values to
the program. Specific logical input devices can be of class LOCATOR, STROKE, VALUATOR, CHOICE,
PICK and STRING.
3.29 logical input value: A measure value delivered by a logical input device.
3.30 logical' picture: the view of the NDC picture for a particular workstation in which logical attributes are
bound to output primitives.
3.31 marker: A glyph with a specific appearance which is used to identify a particular position.

•

5

ISO 7942.NEW(E) 6

Definitions

3.32 measure: A value which is determined by one or more physical input devices and a mapping from the
values delivered by the physical devices.
3.33nameset: An attribute in the form of a set of names associatedwith the output primitive.
3.34 NDC attributes: A type of attribute bound to primitives when they are created.
3.35 NDC picture: the picture in which graphical output is composed by the application program and with
which graphical input devices interact.
3.36 normalization transformation: A window-to-viewport transformation that maps positions in world
coordinates to normalized device coordinates.
3.37 normalization transformation number: An identificationof a particular normalization transformation.
3.38 normalized device coordinates (NDC): The coordinates used to define the NDC picture and picture
parts.
3.39 output primitive: A basic graphic element that can be used to construct the NDC picture and picture
parts. Output primitives in OKS-N are of two types: geometric primitives and bundled primitives.
3.40 path: A sequence of sub-paths where the end of one sub-path is the start of the next.
3.41 physical picture: the picture constructed from the logical picture for a particular workstation by binding
physical attributes. The physical picture is displayed on the workstation's display space.
3.42 pick: A class of logical input device providing the identificationattributes attached to an output primitive.
3.43 pick identifier: An identification attribute of an output primitive.
3.44 picture part: A sequence of output primitives with associated attributes or an image.
3.45 picture part store: A collection of picture parts.
3.46 polyline: A class of bundled primitive consisting of a set of connected lines.
3.47 polymarker: A class of bundled primitive consisting of a set of positions.
3.48 prompt: An indication to the operator that a specific logical input device is available.
3.49 selection criterion: A rule for choosing elements from a sequence of output primitives. In OKS-N,
selection criteria are expressed as operations on namesets.
3.50 shape: An area defined by a set of closed paths.
3.51 state list: A list whose entries specify the current values of variables relating toOKS-N as a whole (OKS
state list) or to a specific workstation (workstation state list).
3.52 string: A class of logical input device providing a character string.
3.53 stroke: A class of logical input device providing a sequence of positions in world coordinates and a nor
malization transformation number.
3.54 sub-path: A sequence of points defining the path between two end points.
3.55 text: A class of bundled primitive consisting of a position and a character string.
3.56 topline: A horizontal line at the top of a character body (see figure 1)which is just above the upper limit
of all character shapes in a font. Ascenders and accents are below the topline.
3.57 trigger: A condition which determines when a logical input value is delivered by a logical input device.
3.58 valuator: A class of logical input device providing a real number.
3.59 workstation: A display space and associated input peripherals.
3.60 workstation transformation: A workstation window-to-viewportmapping which transforms positions in
NDC to device coordinates, preserving aspect ratio.
3.61 world coordinate (WC): The coordinates used by the application program to define output primitives.

•

,
•

6

-

7 ISO 7942·NEW(E)

4 Conformance

4.1 Specification
The set of functions known as OKS-N shall be as described in Clauses 4, 5, 6, 7, 8, 9 and 10. These functions
are organized in two upward compatible levels. A GKS-N implementation shall be invalid if it lies between or
outside the two defined levels. In an implementation all graphical capabilities that can be addressed by OKS-N
functions shall be used only via OKS-No •

4.2 Registration
For certain parameters of the functions, GKS defines value ranges as being reserved for registration. The
meanings of these values will be defined using the established procedures. These procedures do not apply to
values and value ranges defined as being workstation or implementation dependent; these values and ranges
are not standardized.
Information concerning the Registration Authority and its procedures may be obtained on request to the Secre
tary General, ISO Central Secretariat, case postale 56, CH-1211 Geneve, Switzerland, quoting the number of
this International Standard.

7

ISO 7942-NEW(E) 8

5 Concepts

5.1 NDC picture
Graphical input and output in GKS-N is defined in terms of a set of virtual input and output devices. A central
concept of GKS-N is the virtual orNDC picture (Normalized Device Coordinate picture) where graphical out
put is composed and with which the operator interacts using graphical input devices (see figure 2).
The NDC picture consists of a sequence of output primitives.

5.2 Output primitives and attributes
Output primitives are abstractions of basic actions a device can perform such as drawing lines and printing
character strings. Associated with output primitives are primitive attributes which define additional properties
of the primitive. For example, the size of characters to be output could be specified by a primitive attribute.
Output primitives have three sets of attributes:

a) identification
b)NDC
c) logical

Identification attributes can be used to partition output primitives into sets for a variety of purposes. The main
identification attribute is the nameset.
NDC attributes are bound to the output primitive on creation and describe the output primitive in the NDC pic
ture.
Logical attributes define the rendering of the logical picture to be displayed on the workstation.

5.3 Workstations
GKS-N defines a workstation as an abstract display space and associated input peripherals. Multiple worksta
tions can be in operation together.
A selection criterion based on the namesets of the output primitives in the NDC picture defines what subset of
the NDC picture is displayed on a workstation.
For each workstation, the NDC picture is transformed into a logical picture on the workstation. The logical
picture is defined in NDC coordinates. Output primitives in the logical picture have all logical attributes and
relevant NDC attributes bound to them. Logical attributes may be bound to output primitives in the NDC pic
ture in which case the same values are bound to the equivalent output primitive in the logical picture.
The logical picture is transformed into the physical picture which is realized on the workstation display space.
The physical picture is obtained by applying all relevant attributes to the output primitives in the logical pic
ture.

5.4 Coordinate systems
Output primitives are defined by the application in a world coordinate system. The world coordinates are
specified by the application. More than one world coordinate system can be specified.
The application specifies the transformation from world coordinates to NDC. NDC is a workstation indepen
dent coordinate system.

8

Concepts

NDC
metafile

9

Application

Language Binding

GKS-N

NDC picture

Picture
part
store

® = Selection
Criterion

Figure 2 - GKS-N structure

ISO 7942.NEW(E)

Coordinate systems

•

NDC
archive

9

ISO 7942-NEW(E) 10

Coordinate systems Concepts

The display space of a workstation has a device coordinate system (DC) associated with it. The logical pic
ture is defined in NDC and the physical picture in DC. The application specifies the mapping from NOC to
DC for each worksation.
Output primitives and attributes are mapped from WC to NOC by normalization transformations and from
NDC to DC by workstation transformations.

5.5 Logical input devices
A logical input device is an abstraction of one or more physical devices. An application can define how it
receives logical input values from logical input devices.
Logical input devices are divided into classes dependent on the datatype of the logical input value. All logical
input devices of one class deliver logical input values of the same datatype.
Several operating modes are defined for every logical input device. The operating modes specify whether the
operator or the application has the initiative in controlling input.

5.6 Picture part store
Sequences of output primitives with associated attributes can be defined as a picture part and retained in pic
ture part store. Positions associated with output primitives and attributes are stored in NDC coordinates. The
NDC picture can be augmented by adding the sequence of output primitives in a picture part. By applying dif
ferent transformations to the output primitives in a picture part, several instances of a picture part can appear in
the NDC picture.
Some predefined picture parts exist in GKS-N which are used in the definition of output primitives.

5.7 Shape store
One type of output primitive in GKS-N consists of a shape through which a picture part is extruded. The
shape store contains both pre-defined shapes and shapes defined by the application. An example of a pre
defined shape is a character form. The picture part store contains some pre-defined picture parts - in particular
a solid colour area covering the whole of NDC space. This picture part is used in the definition of solid colour
characters and areas. Predefined picture parts are available that correspond to the colour index values avail
able.

5.8 State lists
State lists in OKS-N precisely describe the current state of an application in its use of graphics. Two types of
state list exist in OKS-No The GKS state list describes the current state of the NDC picture, picture part store
and the associated logical input devices. The workstation state list describes the current state of a workstation.
Several workstation state lists can be in use at the same time.

5.9 Description tables
The details of a particular GKS-N implementation are defined in a set of description tables. The GKS descrip
tion table contains information about the specific implementation of OKS-No The workstation description
table defines the characteristics of a type of workstation.

5.10 Metafilesand Archives
The contents of the NDC picture and physical picture can be stored and retrieved from metafiles. Metafiles at
the physicallevel can be used for hardcopy output and video input.
The picture part store can be archived.

10

-
11 ISO 7942-NEW(E)

6 The NewGraphical Kernel System

6.1 Initialization
To activate GKS-N, the function OPEN GKS is invoked. This defines a set of data structures (called state lists
and description tables) which define the characteristics of the implementation of GKS-N in use. State lists are
dynamic and may change during program execution. Description tables are static and define the characteristics
of a particular system. The following data structures are initialized on GKS-N being opened:

a) Operating state list: defines the state ofGKS-N.
b) GKS description table: gives information about the workstations available, size of picture part store and
number of normalization transformations allowed.
c) GKS state list: provides information about the state of GKS-N as the execution of a program progresses.
On OPEN GKS being invoked, it is set up with predefined default values.
d) Workstation description table: describes the characteristics of a class of workstations. One is provided
for each class in the GKS-N implementation accessed.

Inquiry functions are provided to access all the information in the data structures that define the implementa
tion and current state of GKS-N in use.

•

6.2 Graphical output

6.2.1 Output primitives
The graphical information that is generated by GKS-N to produce the NDC picture or picture parts in the pic
ture part store is a sequence of output primitives.
Output primitives in GKS-N are of two types:

a) Geometric primitives
b) Bundled primitives.

Relevant primitive attributes are bound to an output primitive when it is created. The SET PRIMITIVE
ATTRIBUTE function specifies the current value of an attribute in the GKS state list. The binding of attri
butes for bundled primitives is described in 6.2.9.
All output primitives have the following two classes of identification attributes associated with them:

c)NAMESET
d) PICK IDENTIFIER

Output primitives that make up the current NDC picture can have their NAMESET attributes changed by
invoking one of the functions ADD NAME TO NDC PICTURE or REMOVE NAME FROM NDC PICTURE.
The values of all other attributes cannot be changed once they have been bound to an output primitive. How
ever, attributes can be discarded in the transformation from NDC to logical picture if they are no longer
relevant.

6.2.2 Geometric primitives
Geometric primitives are defined by a shape positioned in NDC space and a picture part (also positioned in
NDC space) which is extruded through the shape to produce a patterned area in the NDC picture of the picture
part being created.
Shapes can be as simple as a square area or as complex as the outlines of a text string. The picture part
extruded through the shape can be as simple as an infinite plane of a single colour or as complex as a fully

11

-

ISO 7942-NEW(E) 12

Graphical output The New Graphical Kernel System

coloured image.
Line drawings are defined in terms of shapes which form the contour of the line. A specific function is defined
for creating a shape associated with the contour of a line.
Shapes are defined in world coordinates which are transformed to NDC coordinates. The creation of
geometric primitives takes place in the NDC space.

6.2.3 Shape store
All shapes that are created are stored in the shape store. A GKS-N implementation will have a set of pre
defined shapes in the shape store available to the application. These include the character fonts, markers and
other useful glyphs.
Shapes are defined in three ways:

a) Set of Closed Paths: functions are proviced to define a shape consisting of a set of closed paths.
b) Path Contour: a function is provided to create a shape which is the contour of a sub-path such as a
sequence of line segments.
c) Concatenation: a shape can be created out of a sequence of already created shapes by specifying the
relative positioning of the original shapes in defining the new shape.

Shapes can be deleted from shape store when they are no longer required.

6.2.4 Shape as a set of closed paths
A shape can be defined as a set of closed paths between the invocation of the function BEGIN SHAPE and the
invocation of the function END SHAPE.
A closed path is defined by the sequence of sub-path definitions between the invocation of the function
BEGIN CLOSED PATH and the invocation of the function END CLOSED PATH.
Paths are defined using the following four SUb-paths:

a)UNES: GKS-N defines a sub-path as a connected set of straight lines defined by a point sequence.
b) CURVES: GKS-N defines a sub-path as a Bezier cubic curve by specifying the start point, two control
points and end point.
c) ARC: GKS-N defines a sub-path as an arc of a circle by specifying the start point, tangent point, end
point and radius. A straight line is drawn from the start point to arc of circle of radius required followed by
straight line. The arc is tangential to the two lines from the start point to the tangential point and from the
tangential point to the end point.
d) ELLIPTICAL ARC: GKS-N defines a sub-path as an arc of an ellipse by specifying a start point,
tangential point and end point. An elliptic arc is drawn from start point to end point that is tangential to the
two lines from start point to tangential point and from tangential point to end point.
e)NUB CURVE: GKS-N defines a sub-path as a Non Uniform B-spline curve. The spline order, knots and
control points are provided as parameters. A range specifies the extent of the curve.

If the end point of a sub-path is not equal to the start point of the next sub-path in a closed path definition, a
single line sub-path is added to link the two points. If the start point of the first sub-path is not equal to the end
point of the last sub-path, a single line sub-path is added to link the two points.

6.2.5 Inside rule
The inside of a shape is defined by the set of closed paths defining the shape and an associated inside rule.
Two inside rules are defined in GKS-N:

a) Even-odd rule;

12

13 ISO 7942-NEW(E)

The New Graphical Kernel System Graphical output

b) Non-zero winding number rule.
The even-odd rule determines whether a point is inside the shape by creating a straight line starting at the
point and going to infinity in any direction. If the number of intersections between the straight line and the
sub-paths making up the shape is odd, the point is inside the shape; otherwise it is outside the shape.
The non-zero winding number rule determines whether a point is inside the shape by creating a straight line
starting at the point and going to infinity in any direction. Each sub-path has a direction associated with it. In
the case of the LINES sub-path, it is assumed that the sub-path goes from the start point to the end point. The
other sub-paths have a precise definition of direction also. Starting with a count of zero, for each intersection
between the straight line to infinity and a sub-path, one is added to the count for each intersection where the
line crosses the sub-path when the sub-path is going from left to right. One is subtracted from the count if the
sub-path is going from right to left. If the resulting count is zero, the point is outside the shape; otherwise it is
inside.
For a simple shape consisting of a set of non-intersecting closed paths none of which intersect themselves, the
two inside rules have the same definition of inside and outside.
Only the points inside the shape are affected by the extruded picture part in the geometric primitive.

•

6.2.6 Path contours
A function CREATE CONTOUR defines a shape as the contour surrounding a sub-path. The precise form of
the shape created depends on the following attributes associated with the sub-paths:

a) STYLE: defines the style of the shape created. For example, DASHED would generate a shape consist
ing of a set of equal length sub-shapes interspersed with gaps of the same length.
b) WIDTH: defines the width of the shape created. The width can be specified using the current X or Y
world coordinate or NOC. In each case, it defines a width in NOC space by the appropriate conversion.
c) CAP: defines the form of the two ends of the sub-path assuming it is not closed. Butted, rounded or
square ends are defined.
d) JOIN: for sub-paths consisting of a sequence of lines this attribute specifies the join between line seg
ments. Mitred, round or bevel joins are defined. For mitred joins, a mitre limit is defined which limits the
spikes for two lines with a small angle between them.

6.2.7 Shape attributes
Each shape can have a set of shape attributes associated with it. These attach specific names to points or coor
dinate values within the shape. The attributes for a shape are defined explicitly by invoking the SET SHAPE
ATTRIBUTE function as part of the shape creation. The following attribute names are predefined:

a) TOPY, CAPY, HALFY, BASEY, BOTTOMY, CENTREY
b) LEFTX, RIGHTX, CENTREX
c) CENTRE, ORIGIN
d) TOP, BOTTOM, LEFT, RIGHT
e) TOPLEFT, TOPRIGHT, BOTTOMLEFT, BOTTOMRIGHT
f) START, MIDDLE, END

The names in sets a) and b) define coordinate values. The names in sets c), d) and e) define positions in NDC
space. The names in set f) only apply to path contours and define positions in NOC space.

6.2.8 Shape concatenation
A shape may be defined as a sequence of existing shapes with an associated concatenation criterion. The con
catenation criterion defines the position of the second shape to the first, the third shape to the second and so on.
If P is a shape attribute name of the first shape and Q is a shape attribute name of the second shape, a possible
concatenation criterion might be Q at P .

13

ISO 7942-NEW(E)

Graphical output

-

14

The New Graphical Kernel System

For example, a text string output from left to right would be defined as a sequence of predefined character
shapes with the concatenation criterion LEFT of NEXT at RIGHT of CURRENT.

6.2.9 Bundled primitives
Bundled primitives are divided into the six classes:

GKS-N generates a set of connected lines defined by a point
sequence.

a) POLYLINE:

b) POLYMARKER:

c) TEXT:

d) FILL AREA:

e) CELL ARRAY:

f) GENERALIZED DRAW-
ING PRIMITIVE(GDP):

GKS-N generates symbols of one type centred at given positions.

GKS-N generates a character string at a given position.

GKS-N generates a polygonal area which may be hollow or filled
with a uniform colour, a pattern, or a hatch style.

GKS-N generates an array of cells with individual colours.

GKS-N addresses special geometrical output capabilities of a works
tation such as the drawing of spline curves, circular arcs, and ellip
tic arcs. The objects are characterized by an identifier, a set of
points and additional data. GKS-N applies all transformations to the
points but leaves the interpretation to the workstation.

The interior of a FILL AREA primitive is defined in the following way (see figure 3). For a given point, create
a straight line starting at that point and going to infinity. If the number of intersections between the straight
line and the polygon is odd, the point is within the polygon; otherwise it is outside. If the straight line passes a
polygon vertex tangentially, the intersection count is not affected. If a point is within the polygon, it is
included in the area to be filled, subject to clipping. This is equivalent to the even-odd inside rule for shapes.

in (n = 1)

out(n = 2)

Figure 3 • Area inside a fill area boundary

When a FILL AREA primitive is clipped, the resulting new boundaries become part of the area boundaries
(see figure 4). Multiple subareas may be generated.

14

15 ISO 7942·NEW(E)

The New Graphical Kernel System Graphical output

PI P,_ P3 P4

Ps

P6

P,

~ Pg

WINDOW

•

IlresUlting AREAsafter clippingatthe WINDOW

><Pj points added to polygon

Figure 4 • Examples of FILL AREA clipping

A CELL ARRAY primitive is specified by a pair of points P, Q and an array of colour indices. The points P
and Q define a rectangle aligned with the world coordinate axes which is divided into a grid of DXxDY cells,
where DX and DY are the dimensions of the colour index array. The colour index array is oriented with
respect to the rectangle as shown in figure 5. The grid is subject to all transformations, potentially transform
ing the rectangular cells into parallelograms. The rules for mapping the transformed cells onto the pixels of a
raster display are stated in 8.6.

123 DX P 123 . DXP

1
21--+--+---+--+--+--1

3

DY DY

Q Q

CELL ARRAY
DXxDYCELLS

TRANSFORMED
CELL ARRAY

Figure 5 • Mapping of CELL ARRAYs

NDC attributes associated with the bundled primitives are:

15

-
ISO 7942-NEW(E) 16

Graphical output The New Graphical Kernel System

FIlL AREA

POLYLINE INDEX
POLYMARKER INDEX
TEXT INDEX
CHARACTER HEIGHT
CHARACTER UP VECTOR
TEXT PATH
TEXT ALIGNMENT
FILL AREA INDEX
PA'ITERN REFERENCE POINT
PATTERN SIZE

POLYLINE
POLYMARKER
TEXT

CELL ARRAY
GENERALIZED DRAWING PRIMITIVE

none
no explicit NDC attributes but can
use attributes of other bundled prim
itive classes

The bundled primitive INDEX is an index into a bundle table (stored in the workstation state list) which exists
on each workstation. The values in a particular bundle (or entry in the bundle table) may be different for dif
ferent workstations. They control how the NDC picture is transformed to produce the logical picture. A full
description of logical attributes is given in Clause 8.
Bundled primitives have both NDC and logical attributes. Current values of NDC attributes defined in world
coordinates are stored in the GKS state list. When the NDC attributes are bound to their respective primitives,
the values are subject to the same transformations as the geometric data contained in the definition of the prim
itive. Hence, current values are unaffected by changes in the normalization and workstation transformations.
The difference in attribute binding for geometric and bundled primitives is illustrated in figure 6.
Logical attributes can be bound to a bundled primitive either when the primitive is created or when the primi
tive is added to the logical picture. The GKS state list contains a set of ATTRIBUTE SOURCE FLAGS
(ASFs) which determine which attributes are bound in the NDC picture and which are postponed to the logical
picture. This is described in 8.6.

16

17

The New Graphical Kernel System

geometric
primitive

GKS
state
list

fill area
bundled
primitive

bundledNDC

~
attributes

geometric NDC
attributes

/{-~I'.. bundle 3geometry index
/ completely

defined
t.

Pattern size
and origin

L~r-.. /~I'\./
1
2 %3 e

Figure 6 - Attribute binding for primitives

ISO 7942-NEW(E)

Graphical output

•

NDC
picture

logical
picture
on

workstation

6.2.10 Text attributes
CHARACTER HEIGHT specifies the nominal height of a capital letter character. The CHARACTER UP
VECTOR gives the up direction of a character. TEXT PATH has the possible values RIGHT, LEFT, UP and
DOWN. It specifies the writing direction of the text string. For RIGHT, the text string is written in the direc
tion of the baseline of a character implicitly specified by the CHARACTER UP VECTOR. For LEFT, the
baseline direction is the opposite direction to RIGHT. For UP, the character path coincides with the direction
of the CHARACTER UP VECTOR. For DOWN, it is the opposite direction to the CHARACTER UP VEC
TOR. For the UP and DOWN text path directions the characters are arranged so that the centres of the charac
ter bodies are on a straight line in the direction of the CHARACTER UP VECTOR (see figure 7).

17

-
ISO 7942-NEW(E) 18

Graphical output The New Graphical Kernel System

UP path

CHARACTER HEIGHT

RIGHT path

CHARACTER"
UP VECTOR ""

DOWN path

LEFTpath

Figure 7 - Text geometric attributes

TEXT ALIGNMENT, although an NDC attribute, is more appropriately described in 8.7.4.
The initial values of the text attributes are:

CHARACTER HEIGHT WC 0.01 (i.e. 1% of the height of the default win-
dow)

CHARACTER UP VECTOR WC (0,1)
TEXT PATH RIGHT
TEXT ALIGNMENT (NORMAL, NORMAL)

The alignment settings in figure 7 are not the NORMAL settings for text path UP and DOWN (see 8.7.4).

6.2.11 Fill area attributes
The FILL AREA primitive has the NDC attributes PATTERN REFERENCE POINT and PATTERN SIZE. If
the fill area is to be rendered by a pattern in the logical picture on a workstation, the origin of the pattern and
its size are the same on each workstation and are defined by these two attributes. A full description of render
ing fill areas is given in 8.7.5.

6.3 Normalization transformations
In GKS-N, the application programmer can compose his graphical picture from separate entities each of
which, conceptually, is defined with its own world coordinate system (WC). The relative positioning of the
separate entities is defined by having a single normalized device coordinate space (NDC) onto which all the
defined world coordinate systems are mapped. A set of normalization transformations define the mappings
from the world coordinate systems onto the single normalized device coordinate space, which can be regarded
as a workstation independent abstract viewing space. On creation, output primitives have world coordinate
positions transformed to NDC coordinates before being added to the NDC picture or picture part store. Shapes

18

19 ISO 7942.NEW(E)

The New Graphical Kernel System Normalization transformations

are stored in NDC coordinates. A single normalization transformation is current at anyone time and this is
used for the transformation.
A normalization transformation is specified by defining the limits of an area in the world coordinate system
(window) which is to be mapped onto a specified area of the normalized device coordinate space (viewport).
Window and viewport limits specify rectangles parallel to the coordinate axes in WC and NDC (see figure 8).
The rectangles include their boundaries. The normalization transformation performs a mapping fromWC onto
NDC that includes translation and differential scaling with positive scale factors for the two axes.
Although NDC space conceptually extends to infinity, the region ofNDC space in which the viewport needs to
be located and that can be viewed at a workstation is the closed range [O,l]x[O,l]. In addition, an implementa
tion may support only a restricted range of NDCs. However, this range is always sufficiently greater than the
[O,l]x[O,I] square. In particular, NOCs in the range [-7,7]x[-7,7] are always handled.
Each normalization transformation is identified by a transformation number which is an integer between 0 and
31 inclusive. The normalization transformation with transformation number 0 is the unity transformation
which maps [O,l]x[O,l] in world coordinates to [O,l]x[O,l] in normalized device coordinates. It cannot be
changed.
Initially, all other normalization transformations are set to a default transformation which is the same as
transformation number O. Different transformations can be specified at any time when GKS-N is open. Since
GKS-N provides a number of different normalization transformations, it is possible for the application pro
gram to specify them prior to outputting the graphical picture. The separate entities in the picture are output by
selecting a particular normalization transformation before outputting the associated graphical primitives.
However, specifying a normalization transformation, while the graphical output is taking place, is allowed.
A normalization transformation may be selected by SELECTNORMALIZATION TRANSFORMATION, and
it will be used for all output until another is selected. By default, normalization transformation°is selected.

•

WINDOW 1

WCl
WC2

Figure 8 . Normalization transformations

19

-

ISO 7942-NEW(E) 20

Picture part store The NewGraphical Kernel System

6.4 Picture part store

6.4.1 Picture part creation
In GKS-N, output primitives on creation will either be added to the NDC picture or a picture part. When
GKS-N: is opened, primitives on creation are added to the NDC picture. When a BEGIN PICTURE PART
function is invoked, primitives stop being added to the NDC picture and are added to the picture part just
started instead. When END PICTURE PART is invoked, the sequence of primitives that make up the picture
part are added to the picture part store (PPS) and subsequent primitives revert to being added to the NDC pic
ture. The picture part is identified by a unique, application specified picture part name. Primitives in the pic
ture part have attributes bound to them in the same way as primitives added to the NDC picture.

6.4.2 Picture part functions
The following functions are provided to manipulate picture parts:

a) RENAME PICTURE PART: changes the name of the picture part specified to a new name.
b) DELETE PICTURE PART: removes a picture part from the picture part store.
c) BEGIN PICTURE PART AGAIN: reopens a picture part. Output primitives created are added in
sequence to the end of the specified picture part until END PICTURE PART is invoked.
d) APPEND PICTURE PART: adds one picture part to the end of the other picture part.

6.4.3 Adding picture parts to the NDC picture
A picture part can be added to the NDC picture by invoking COpy PICTURE PART TO NDC PICTURE. In
sequence, each output primitive in the picture part is transformed by the specified transformation matrix and
the specified NAMESET is added to the NAMESET already associated with the output primitive. This allows
several instances of a picture part to appear in the NDC picture in different positions and these can be differen
tiated by their different NAMESETs.

6.4.4 Picture parts as images
Geometric primitives can consist of a coloured image defined as a picture part extruded through a shape. A
special function is provided in GKS-N to allow flexible definition of images. The function CREATE IMAGE
PICTURE PART defines a function associated with the picture part which returns a colour index given a point
in NDC space.

6.S The NDCpicture

6.5.1 Introduction
The NDC picture at any time consists of a sequence of output primitives which have been added to the picture
in one of three ways:

a) on creation outside the definition of a picture part;
b) by copying from a picture part;
c) on input from an NDC metafile.

The order of appearance of output primitives in the NDC picture is important in that if two output primitives
overlap, the second primitive in the sequence will obscure some part of the first.
Each workstation that is open is responsible for selecting the subset of the NDC picture to be viewed and
rendering it.
Associated with each output primitive in the NDC picture is a set of attributes and the clipping set and shield
set in effect when the primitive was added to the NDC picture.

20

21 ISO 7942·NEW(E)

The New Graphical Kernel System The NDC picture

6.5.2 NDC picture operations
The following operations can be applied to the NDC picture:

a) DELETE PRIMITIVES: primitives whose NAMESET attribute in the NDC picture satisfies the selec
tion criterion are deleted from the NDC picture.
b) REMOVE NAME FROM NDC PICTURE: the specified name is removed from the NAMESET of all
primitives in the NDC picture.
c) ADD NAME TO NDC PICTURE: the specified name is added to the NAMESETs of all primitives in
the NDC picture which satisfy the specified selection criterion.

6.5.3 NDC metafiles
It is useful to be able to capture the contents of the NDC picture and store it away for future use or transmis
sion to another system. The function COpy NDC PICTURE TO NDC METAFILE will store the NDC picture
as a picture on the specified metafile. The picture can be recovered at a later time and added to the current
NDC picture by invoking COpy NDCMETAFILE PICTURE TO NDC PICTURE.

6.6 Selectioncriterion
Functions in GKS-N select subsets of the current NDC picture according to a selection criterion based on the
namesets of the sequence of output primitives that define the NDC picture. A function of this type is ADD
NAME TO NDC PICTURE. The selection criterion is based on the Structured Query Language (SQL). The
comparison operations allowed are:

a) CONTAINS
b) DOES NOT CONTAIN
c) IS IN
d) IS NOT IN
e) EQUALS
f) NOT EQUALS

Each operation specifies a nameset which is compared with the nameset of each output primitive in the NDC
picture. The result is a sequence of output primitives which can be anything from the empty sequence to the
complete sequence of output primitives in the NDC picture. For example, CONTAINS (RED,GREEN) would
select all output primitives having namesets containing both names RED and GREEN.
More than one comparison operation can be included in the selection criterion by using the following logical
operations:

g) AND
h) OR
i) NOT

For example, CONTAINS (RED,GREEN) OR CONTAINS (BLUE,YELLOW) will select those primitives
with namesets containing either RED and GREEN or BLUE and YELLOW.
The selection can depend on two sub-sequences merged together by the operations:

j)UNION
k) INTERSECTION
I)MINUS

For example, CONTAINS (RED,GREEN) OR CONTAINS(BLUE,YELLOW) MINUS CONTAINS (PUR·
PLE) will select all the primitives with namesets containing either RED and GREEN or BLUE and YELLOW
except for those primitives that also contain PURPLE in the nameset.

•

21

-
ISO 7942-NEW(E) 22

Graphical input The New Graphical Kernel System

6.7 Graphical input

6.7.1 Introduction to logical input devices
An application program obtains graphical input from an operator by controlling the activity of one or more
logical input devices, which deliver logical input values to the program.
The device identifier defines the class of logical input device and how it relates to physical devices on a works
tation.
The logical input device class determines the type of logical input value delivered. The classes and the logical
input values they provide are:

a) LOCATOR: a position in world coordinates and a normalization transformation
number.

b) STROKE: a sequence of points in world coordinates and a normalization
transformation number.

c) VALUATOR: a real number.

d) CHOICE: a CHOICE status and a non-negative integer which represents a
selection from a number of choices.

e) PICK: a PICK status, a nameset and a pick identifier.

t) STRING: a character string.

f) COMPOSITE: an application defined logical input device which delivers values that
are composites of values of the above types.

A workstation contains at least one logical input device.
Each logical input device can be operated in three modes, called operating modes. At any time a logical input
device is in one, and only one, of the modes set by the invocation of the function SET LOGICAL INPUT
DEVICE MODE. The three operating modes are REQUEST, SAMPLE and EVENT. Input from devices is
obtained in different ways depending on the mode as follows.

g) REQUEST: A specific invocation of REQUEST INPUT causes an attempt to read
a logical input value from a specified logical input device. This can
only occur when the logical input device is in REQUEST mode.
GKS-N waits until the input is entered by the operator or a break
action is performed by the operator. The break action is dependent
on the logical input device and on the implementation. If a break
occurs, the logical input value is not valid.

h) SAMPLE: A specific invocation of SAMPLE INPUT causes GKS-N, without
waiting for an operator action, to return the current logical input
value of a specified logical input device. This can only occur when
the logical input device is in SAMPLEmode.

i) EVENT: GKS-N maintains one input queue containing temporally ordered

22

23 ISO 7942-NEW(E)

The New Graphical Kernel System Graphical input

event reports. An event report contains the identification of a logical
input device and a logical input value from that device. Event reports
are generated asynchronously, by operator action only, from input
devices in EVENT mode.

The application program can remove the oldest event report from the
queue and examine its contents. The application can also flush from
the queue all event reports from a specified logical input device.

A specific logical input device is said to be taking part in an interaction during the whole time that it is in
SAMPLE or EVENT mode, but, when it is in REQUEST mode, only during the execution of a REQUEST
INPUT function for that device. Alternatively, an interaction with the device may be said to be underway dur
ing that time. Many devices on many workstations may be taking part in interactions simultaneously.

•

6_7.2 Logical input device model
To describe the precise actions of the logical input devices, it is first necessary to describe their relationship
with physical input devices, using the concept of measures and triggers.
A logical input device contains a measure, a trigger, an initial value, a prompt and echo type, an echo area and
a data record containing details about the prompt and echo type. A logical input device's measure and trigger
are parts of the implementation of the workstation containing the logical input device. Initial value, prompt
and echo type, echo area, and data record can be supplied by the application program.
The measure of a logical input device is a value determined by one or more physical input devices together
with a 'measure mapping'. More than one measure can simultaneously be determined by a single physical
device; a separate measure mapping applies for each measure. A measure can be seen as the state of an
independent, active process (a measure process). Each state corresponds exactly with a logical input value.
The current state of the measure process (i.e. the device's measure) is available to GKS-N as a logical input
value. Whenever the device is taking part in an interaction, the measure process is in existence. Under other
conditions, this process does not exist.
While the measure process is in existence, if echoing is required, output indicating the current state of the
measure process is provided to the operator.
The trigger of a logical input device is a physical input device or a set of them together with a 'trigger map
ping'. The operator can use a trigger to indicate significant moments in time. At these moments, the trigger is
said to 'fire'. A single operator action (for example, pressing a button or a light pen tip switch) causes the
firing of not more than one trigger. Several logical input devices can refer to the same trigger.
A trigger can be seen as an independent, active process (a trigger process) that sends a message to one or more
recipients when it fires. A logical input device is a recipient of its trigger if there is a pending REQUEST for it
or if it is in EVENT mode. Both of these conditions can be true simultaneously for different logical input dev
ices. If there is at least one recipient for a trigger, the trigger process is in existence. Under other conditions
this process does not exist.
If a REQUEST for a logical input device is pending when the device's trigger fires, the measure of that device
is used to satisfy the REQUEST. If one or more devices containing a given trigger are in EVENT mode when
the trigger fires, the identifications of those devices and their measure values are passed to the input queue
mechanism as separate event reports. The input queue mechanism is described in detail in 6.7.5.
When a trigger firing succeeds in satisfying a REQUEST, or adding event records to the input queue, GKS
provides to the operator an acknowledgement the form of which depends on the implementation of the logical
input device. The acknowledgement is not controllable by a GKS function.

23

-

ISO 7942·NEW(E) 24

Graphical input The New Graphical Kernel System

6.7.3 Operating modes of logical input devices
The mode of a logical input device may be changed by invoking the appropriate SET LOGICAL INPUT DEV·
ICEMODE function.
After an invocation of SET LOGICAL INPUT DEVICE MODE with the parameter REQUEST, no measure
process exists for the specified device and the device's identifier is not on its trigger's list of recipients. After
an invocation with the parameter EVENT, a newly initiated measure process is in existence for the specified
device and the device's identifier is on its trigger's list of recipients.
After an invocation with the parameter SAMPLE, a newly initiated measure process is in existence for the
specified device, but the device's identifier is not on its trigger's list of recipients.
Initially a logical input device is in REQUEST mode. While a device is in REQUEST mode, a logical input
value may be obtained by invoking the appropriate REQUEST INPUT function. The effects of doing so are as
follows.

a) To create a measure process for the specified device and set its initial value. Echoing is performed by
the measure process if echoing is on for the specified device.
b) To add the device's identifier to its trigger's list of recipients. If the list was previously empty, the
trigger process is started.
c) To suspend GKS-N until the trigger of the specified device fires, or the operator invokes the break facil
ity.
d) If the trigger fired, to set the logical input value to the current state of the measure process.
e) To destroy the measure process.
f) To remove the device's identifier from its trigger's list of recipients. If this list becomes empty, the
trigger process is destroyed.
g) If the trigger fired, to return the logical input value and the status OK, otherwise to return the status
NONE.

While a logical input device is in SAMPLE mode, a logical input value may be obtained by invoking the
SAMPLE INPUT function. The effect of doing so is to set the logical input value to the current state of the
measure process without waiting for a trigger firing.
While a logical input device is in EVENT mode, logical input values are added as event reports to the input
queue, and may be obtained in sequence by invoking AWAIT INPUT.
Figure 9 shows the effect of every operating mode on the measure and trigger of a logical input device.

6.7.4 Measures of each logical input device class
Details of the measures of logical input devices of different classes are as follows.
A LOCATOR measure consists of a position in world coordinates (P) and a normalization transformation
number (N). Then P transformed to NDC by N lies within the workstation window and within the viewport
specified by N and outside all viewports of higher priority thanN.
A STROKE measure consists of a sequence of points in world coordinates and a normalization transformation
number (N). Let P1....Pm be the points. Then Pi (l$;i~) transformed to NDC by N lie within the workstation
window and within the viewport specified by N and there is no viewport of higher priority than N containing
all the points Pi transformed to NDC by N. Thus, N may change as points are added to the stroke.
Any invocation of SET WINDOW AND VIEWPORT or SET VIEWPORT INPUT PRIORITY can cause a
change in P (any Pj for STROKE) or N or both, but the above conditions hold for the new values.
The rules imply that no normalization transformation having priority less than that of transformation 0 can
appear in the state of a LOCATOR or STROKE measure process (with the default settings of the viewport
input priorities, normalization transformation 0 has the highest).

24

-
25 ISO 7942-NEW(E)

The New Graphical Kernel System Graphical input

REQUEST mode single value returned to
application program on trigger
firing. Interaction lasts for* single request

I
I
1

. measure L: --+---""'.,.;------l trigger

•

SAMPLE mode Trigger inoperative. Value
returned for each call to SAMPLE.
Multiple calls to SAMPLE in

A a single interaction.
1

trigger

EVENT mode Value and device identification
sent to single queue on trigger
firing and removed by a call
to AWAIT EVENT.

I

AWAIT :

E~ V QUEUE

I
1
1
1

measure 1,-1 --+---""'.,.;-----1 trigger

Note: - - - - - dashed arrows represent flow of input data
--- solid arrows represent control

Figure 9 - Operating modes using measures and triggers

A VALUATOR measure provides logical input values that are real numbers. Each value lies between (possi
bly including) minimum and maximum values. which are in the data record in the workstation state list.
A CHOICE measure provides logical input values whose components are OK or NOCHOICE and an integer
in the range 1 to a device dependent maximum specified in the workstation description table. If the first com
ponent is OK. then the integer is valid. CHOICE input typically occurs when an operator presses a button (the

25

ISO 7942.NEW(E) 26

Graphical input The New Graphical Kernel System

numeric identifier of the button determines the measure) or combination of buttons (the measure is derived
from the combination of buttons pressed).
A PICK measure provides logical input values whose components are OK or NOPICK, NAMESET and a
PICK IDENTIFIER. If the first component is OK, then the NAMESET and PICK IDENTIFIER obey the fol
lowing rules:

a) The output primitive picked is visible and detectable on the workstation.
b) The NAMESET and PICK IDENTIFIER are the NAMESET and PICK IDENTIFIER attributes of the
output primitive picked. Part of the primitive lies within the workstation window and, if clipping was on,
part also lies within the primitive's set of Clippingrectangles and, if shielding was on, part also lies outside
the primitive's set of shielding rectangles.

The PICK initial value is tested against the above rules whenever the PICK measure process is initiated. If the
rules are not satisfied, the process state is set to NOPICK.
A STRING measure provides logical input values which are character strings up to a device dependent max
imum length specified by the buffer size value in the data record in the workstation state list.

6.7.5 Input queue and current event report
The input queue contains zero or more event reports. Event reports contain pairs of values (device identifier,
logical input value) resulting from trigger firings. Event reports can be added to the input queue when logical
input devices in EVENT mode are triggered by the operator. Events can be removed from the input queue by
invocations of AWAlT INPUT, and FLUSH DEVICE EVENTS.
When a trigger that is part of one or more logical input devices in EVENT mode fires, the resulting event
reports are entered into the queue. A set of event reports, one for each device is added to the input queue, if
and only if there is room for the whole set of simultaneous event reports. AWAlT INPUT returns all the
simultaneous event reports together.
If there is not room in the queue for all event reports when a trigger fires, input queue overflow has occurred.
Input queue overflow is not reported to the application program immediately. It is reported via the error
mechanism during the next invocation of any GKS-N function that can remove event reports from the input
queue (AWAlT INPUT, FLUSH DEVICE EVENTS, and CLOSE WORKSTATION). The input queue has to
be emptied before further event reports will be added. Between the detection of input queue overflow and the
next time AWAlT INPUT is invoked with the input queue empty, no events are generated by trigger firings
and thus no acknowledgements are provided. (This permits the application program to determine how many
events were in the queue when overflow occurred by calling AWAlT INPUT with zero timeout.)
When the 'input queue overflow' error is reported, the trigger causing the overflow is indicated by placing into
the error state list the identification of anyone of the logical input devices using that trigger which was in
EVENT mode at the time the overflow was detected.
AWAlT INPUT, if the queue is not empty, removes the first event report and returns it to the application pro
gram. If the queue is empty, AWAlT INPUT suspends execution until an event report is queued or until the
specified timeout period has elapsed.
FLUSH DEVICE EVENTS removes all event reports for a specific device from the input queue.

6.7.6 Transformation of LOCATORand STROKEinput
The application programmer requires LOCATOR input to define a position in the most appropriate world coor
dinate system currently defined by the set of normalization transformations. This is achieved by first
transforming the input data from DC to NDC by the inverse workstation transformation which is in effect
when LOCATOR input is generated (see 8.10). LOCATOR input always defines a position in the NDC range
[O,l]x[O,l].

To return to the application program a position in world coordinates, the position in NDC space needs to be
transformed from NDC to WC by the inverse of one of the normalization transformations. Each normalization

26

27 ISO 7942·NEW(E)

The New Graphical Kernel System Graphical input

transformation has associated with it a viewport input priority which is only relevant to LOCATOR and
STROKE input. Normalization transformations are ordered in a list defined by the viewport input priority. At
OKS initialization, an implementation defined number of normalization transformations are initialized to have
window and viewport set to the unit square and their viewport input priorities are set relative to the transforma
tion number with transformation number 0 given the highest priority, transformation number 1 the next highest
and so on. Changing the viewport input priority of any normalization transformation is allowed at any time.
The LOCATOR input position in NDC space is compared with the viewports of the normalization transforma
tions, to find the normalization transformation with the viewport which has the highest viewport input priority
and contains the LOCATOR position. The LOCATOR position is transformed by the inverse of this normali
zation transformation to the associated WC. This LOCATOR position is returned to the application program
in WC together with the number of the normalization transformation used.
As transformation number 0 is the unity transformation with viewport [O,l]x[O,l] and cannot be changed, this
ensures that LOCATOR input is always within at least one viewport. A data flow chart for LOCATOR input
is given in figure 10.

•

27

-

ISO 7942-NEW(E) 28

Graphical input The New Graphical Kernel System

Priority

Lowest Highest Second Third

WCO WCl
WC2

WC3

Maps to
WCwindow
with highest
priority for
position

Workstation
window

\
\
\
\,,

DC points mapped "
to workstation window ,

\x \

H
DC

Figure 10 - LOCATOR input

As transformation number 0 is given the highest viewport input priority initially, LOCATOR input is effec
tively returned in WC equivalent to NDC until a normalization transformation is defined with a viewport input
priority greater than that of transformation number O. If a normalization transformation is no longer required
for mapping LOCATOR input back to WC, it can effectively be hidden by reassigning it a viewport input
priority lower than transformation number O.
Changing the viewport input priority of transformation number 0 is allowed.
In an event report, generated by a LOCATOR device in EVENT mode, the DC position is transformed to the
appropriate WC position before the event report is placed on the input queue. These transformations may be

28

29 ISO 7942.NEW(E)

The New Graphical Kernel System Graphical input

performed while the normalization and workstation transformations are being changed; thus, there is a race
condition. The implementation has therefore to treat the transformations as resources to be allocated and deal
located between the competing processes.
Similar considerations apply to transformation of STROKE input as apply to LOCATOR input, with the com
plication that more than one point is involved.

When each point of a stroke is generated, the coordinates of the point are transformed from DC to NDC by the
inverse workstation transformation then in effect (see 8.11). STROKE input always consists of points in the
NDC range [O,l]x[O,l].

The STROKE points in NDC space are compared with the viewports of the normalization transformations, to
find the normalization transformation with the viewport which has the highest viewport input priority and con
tains all of the points. The STROKE points are then transformed by the inverse of this normalization transfor
mation and returned to the application program in WC together with the number of the normalization transfor
mation used.

If the STROKE device is in SAMPLE mode, the normalization transformation used may vary between succes
sive samples.

In EVENT mode, there is a similar race condition to that applying to LOCATOR input. Between placing an
event report on the input queue and the execution of AWAIT EVENT which removes the STROKE event from
the queue, it is possible for the normalization transformation and the workstation transformation to be changed
by the application program. To ensure that the DC points input by the operator are equivalent to the WC
points retrieved from the input queue, it is advisable for the application program not to change transformations
while a STROKE device is in EVENT mode.

•

6.8 Clipping and shielding
Associated with output primitives in the NDC picture are a set of clipping rectangles and a set of shielding rec
tangles. The current set of each are added to the output primitive as it is added to the NDC picture.
Invoking the functions SET CLIPPING RECTANGLE SET and SET SHIELDING RECTANGLE SET define
a set of clipping and shielding rectangles. These sets can be made active by invoking SET CLIPPING INDI
CATOR with the parameter CLIP or SET SHIELDING INDICATOR with the parameter SHIELD.
Clipping and shielding occurs as the NDC picture is transformed and rendered by the workstation.

6.9 GKS-N levels
The GKS-N system is designed for use in an interactive environment. GKS-N provides two levels. The first
level just contains the geometric primitives while the second level contains both the geometric primitives and
bundled primitives together with all the relevant attributes and workstation control.

6.10 Inquiry functions
Inquiry functions return values directly from or derived from the various state lists and description tables. The
data types of the values and the default values of the entries are summarized in clause 10.
The inquiry functions of GKS-N are designed in such a way that they do not cause any errors to be generated.
Inquiry functions for values that may be logically unavailable have an output parameter, 'error indicator', that
determines whether or not the other returned values are valid. The availability parameter is of type integer
and, in the event of the other values not being available, returns an error number, which identifies the appropri
ate GKS-N error condition. The same error numbers are used as for non-inquiry functions and thus the stan
dard list of error messages should be consulted. If GKS-N is not in the proper state, then the error number
appropriate to this condition is the one returned, even if there are other reasons for the values being unavail
able. If the values are available, zero is returned in the error indicator parameter.
For all values except zero the returned output values are implementation dependent. The description of each
inquiry function lists the error indicator values that the function can return.

29

-
ISO 7942.NEW(E) 30

Inquiry functions The New Graphical Kernel System

6.11 Error handling
For each GKS-N function, a finite number of error situations is specified, any of which will cause the ERROR
HANDLING function to be invoked. The ERROR HANDLING function defined in GKS·N invokes an
ERROR LOGGING function which appends an error message and identification of the GKS-N function
(which caused the error) to the error file before returning to the ERROR HANDLING function.
This two-stage invocation of error handling allows the ERROR HANDLING function provided to be replaced
by the application while still having access to services provided by the ERROR LOGGING function.
All GKS-N functions check that it is used appropriately and that the values of input parameters are valid
before attempting to execute the function. At least the first error detected will cause the ERROR HANDLING
function to be invoked.
The application supplied ERROR HANDLING function is only allowed to invoke GKS-N inquiry functions,
the ERROR LOGGING function and the EMERGENCY CLOSE GKS function. Inquiry functions are not
allowed to generate errors.
If the application detects errors outside GKS-N and regains control, it can invoke the EMERGENCY CLOSE
GKS function which will attempt to save as much of the graphical information as possible. GKS·N itself may
invoke the EMERGENCY CLOSE GKS function if it gets into difficulty.

6.12 Special interfaces betweenGKS and the application program
A uniform escape mechanism for allowing access to installation and hardware specific features (a 'standard
way of being non-standard') is provided by means of the ESCAPE function. Although the use of this mechan
ism reduces the portability of the application program, it does so in an easily identifiable manner.
The ESCAPE function does not generate geometrical output; by contrast, the GENERALIZED DRAWING
PRIMITIVE can generate geometrical output not otherwise generated by GKS.

,

30

31 ISO 7942-NEW(E)

7 GKS functions

7.1 Notational conventions
The heading of each function specifies

a) the function's name;
b) references to the function (aligned to the right).

The GKS functional capabilities are summarized in annex 8.5.
The parameter lists indicate for each entry

c) whether the entry is an input (In) or output (Out) parameter (aligned to the left);
d) the name of the parameter;
e) the data type (aligned to the right).

The first three type definitions define sequences of an arbitrary type (X) of length greater than 1, length greater
than 2 and length greater than 3, respectively. The ordinary sequence type seq X, allows sequences of length
O.
seq, X == if: seq X I #f>l}
seqz X ~~ if: seq X I#f>2}
seq, X == if: seq X I#f>3}
Points in world coordinates are of type WCPoint.

WCPoint == R x R

Character strings are sequences of characters. Character is a basic type.

Char
CharString == seq Char

Colour indices are of type Colrlnd. This type is a basic type.

Colrlnd

Colour index arrays are of type ColArray.

ColArray == N x N ~ ColrInd

Types for bundled primitives are now defined.

Prim ::=POLYLINE IPOLYMARKER ITEXT I
FILLAREA ICELLARRAY IGDP

VBPrimParam ::= polyline «Seq2 WCPoint» I
polymarker -ccseq, WCPoint» I
text «WCPoint x CharString» I
fillarea «seq3 WCPoint» I
cellarray «WCPoint x WCPoint x ColArray» I
gdp «seq WCPoint x GDPld x GDPData»

•

Types forGDP identifiers and data records are base types.

GDPId
GDPData

31

ISO 7942-NEW(E)

Notational conventions

32

-

GKS functions

The type EFile is used in OPEN GKS for the type of the error file.

EFile

The values of the type PrimAttr are the names of the primitive attributes. These are listed in the table below
together with the types of the values of each attribute.

Attribute name Type
POLYLINE INDEX
LINETYPE
LINEWIDTH SCALEFACTOR
POLYLINE COLOUR INDEX
POLYMARKER INDEX
MARKERTYPE
MARKER SIZE SCALE FACTOR
POLYMARKER COLOUR INDEX
TEXT INDEX
TEXT FONT AND PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR INDEX
CHARACTER HEIGHT
CHARACTER UP VECTOR
TEXT PATH
TEXT ALIGNMENT
FILL AREA INDEX
FILL AREA INTERIOR STYLE
FILL AREA STYLE INDEX
FILL AREA COLOUR INDEX
PATTERN SIZE
PATTERN REFERENCE POINT
PICK IDENTIFIER
NAMESET

PolylineInd
LineType
LineWidth
ColrInd
PolymarkerInd
MarkerType
MarkerSize
ColrInd
TextInd
FontPrec
Expan
Spacing
Colrlnd
CharHeight
CharUpVector
Path
Align
Fi1lInd
Fi1lInterior
FillStyleInd
ColrInd
PattemSize
WCPoint
PickId
NameSet

Of the types listed in the table above, the following are basic types.

PolylineInd
LineType == {x:N I x:;f{)}
Colrlnd
PolymarkerInd
MarkerType
TextInd
FillInd
FillStylelnd
PickId

== {x:N Ix:;f{)}

Definitions of the remaining types are given below.

32

== {x:R Ix~O}
== {x:R Ix~O}
== Font x Prec
== {x:Nlx~}
::= STRINGPREC ICHARPREC I STROKEPREC
== {x:R Ix~O}
==R
== {x:R Ix~O}
==RxR
::= RIGHT ILEFT IUP IDOWN
== {x: Horizontal, y : Vertical. (x,y)}
::= HNORMAL ILEFT ICENTRE IRIGHT
::= VNORMAL ITOP ICAP IHALF IBASE IBOTTOM
::=HOLLOW I SOLID IPATTERN IHATCH
== {x,y:R Ix>O"y>O. (x,y)}
==PName
Name is a basic type

The type VPrimAttr is the supertype of all the types of the primitive attributes.

GKS functions

LineWidth
MarkerSize
FontPrec
Font
Prec
Expan
Spacing
CharHeight
CharUpVector
Path
Align
Horizontal
Vertical
FillInterior
PatternSize
NameSet

33 ISO 7942·NEW(E)

Notational conventions

•

VPrimAttr ::= polylineind <<PolylineInd» I
linetype -c-d.ine'Iypesc- I
linewidth <<LineWidth» I
colrlnd «Colrlnd» I
polyrnarkerind «PolymarkerInd» I
markertype <<MarkerType» I
markersize «MarkerSize» I
textind «TextInd» I
fontprec <<FontPrec» I
expan «Expan» I
spacing «Spacing» I
charheight «CharHeight» I
charupvector «CharUpVector» I
path «Path» I
align «Align» I
fillind «FillInd» I
fillinterior <<Filllnterior» I
fillstyleind <<FillStyleInd» I
patternsize «PatternSize» I
refpoint «WCPoint» I
asfs «Asfs» I
pickid «PickId» I
nameset «NameSet»

The type LogAttr is a subtype of PrimAttr and includes just the names of the logical attributes of bundled
primitives.

33

ISO 7942.NEW(E)

Notational conventions

LogAttr

34

GKS functions

::= LINETYPE ,LINEWIDTH SCALE FACTOR
,POLYLINECOLOUR INDEX
'MARKERTYPE'MARKERS~SCALEFACTOR
,POLYMARKER COLOUR INDEX
,TEXT FONT AND PRECISION, CHARACTER EXPANSION FACTOR
ICHARACTER SPACING, TEXT COLOUR INDEX
, FILL AREA INTERIOR STYLE, FILL AREA STYLE INDEX
I FILL AREA COLOUR INDEX

VAsf

The type VAsf represents values of attribute source flags.

::= BUNDLED, INDIVIDUAL

The following types are used to describe transformations and clipping control.

NormTran
NormTranl
WCWindow
NDCViewport

Rectangle

RectangleSet
Priority
Vip
Clip
Shield

NDCWindow
DCViewport

== {Xmin,Xmax,Ymin,Ymax: R 'Xmin<xmax 1\Ymin<Ymax • (Xmin'x max,Ymin,Ymax)}
== {xmin,xmax,Ymin,Ymax: R, Xmin«xmaxI\Ymin<Ymax

1\ O~min<l
1\O<xmax~l
1\ ~Ymin<l
1\O<Ymax:S;;l• (Xmin,Xmax,Ymin,Ymax)}

== {xmin,Xmax,Ymin,Ymax: R, xmin<xmax I\Ymin<Ymax
1\O~min<l
1\ O<xmax:S;;l
A~Ymin<l
1\O<Ymax~l • (Xmin,Xmax,Ymin,Ymax)}
== P Rectangle

::= HIGHER, LOWER
::=NorrnTran ~ N
::= CLIP, NOCLIP
::= SHIELD INOSHIELD

== {Xmi",x,,_,Ymi,.,Ymax: R IxlIiJl<xmu AYmi:l<Yrnax • (Xmin,Xmax,Ymin,Ymax)}
== {Xmi".Xmax,Ymi••.Ymax: R Ixmin<xmax AYr:±:.<Yrr».. • (xmin,xmax,Ymin,Ymax)}

The type NormTranl is a subtype of NormTran and excludes normalization transformation number O.
The type PartName is a basic type for the names of picture parts.

PartName

The type ImageFunction is a basic type describing images.

ImageFunction

Values of the names associated with picture parts in archives are of type ArchName. This is a basic type.

ArchName

NDC archive identifiers are of type ArchId.

ArchId

The type Matrix23 denotes a 2x3 matrix.

Matrix23 == {i,j:N, m:R '1~i~2, 1~j~3 • (i,j) ~ m}

Types for input are described below.

34

GKS functions

MeasureId
Triggerld
MeasureClass
Deviceld
Mode
InputStatus
ChoiceStatus
PickStatus
InputValue

InitialInput
Echo
EchoArea
Timeout

35 ISO 7942-NEW(E)

Notational conventions

::= LOCATOR ISTROKE IVALUATOR ICHOICE IPICK ISTRING ICOMPOSITE
-- Wsld x Nl x MeasureClass
::= REQUEST ISAMPLE IEVENT
::= OK INONE
::- OK INOCHOICE
::= OK INOPICK
::= locatorvalue «NorrnTran x WCPoint»

I strokevalue «NorrnTran x seqWCPoint»
I valuatorvalue «R»
I choicevalue «ChoiceStatus x N»
Ipickvalue <<PickStatus x NarneSet x PickId»
I stringvalue «CharString»
I compvalue «CompValue»

== InputValue x PEType x Echo x EchoArea x InputData
::= ECHO INOECHO
== {xmln,xmax,Ymin,Ymax: R IXmln<x max I\Ymln<Ymax • (Xmln,Xmax,Ymin,Ymax)}
== {x:R Ix~}

•

The type PEType is a basic type describing prompt and echo types and InputData is a basic type describing
input data records.
Values of the identifiers associated with pictures in metafiles are of type Pictureld. This is a basic type.

Pictureld

NDC metafile identifiers are type NDCMetafileID and rendered metafile identifiers are of type RenderFileld

NDCMetafileld
RenderFileld

Types associated with workstation control are listed in the table below. All are basic types.

Entity
Wsld
WsType

Type
Workstation identifier
Workstation type

The types associated with bundles are listed below.

Type definitions are given below.

LineBundle
MarkerBundle
TextBundle
FillBundle

Bundle
LineBundle
MarkerBundle
TextBundle
Filffiundle

Type
Polyline
Polymarker
Text
Fill area

== LineType x LineWidth x Colrlnd
== MarkerType x MarkerSize x Colrlnd
== FontPrec x Expan x Spacing x Colrlnd
== FillInterior x FillStylelnd x ColrInd

In addition, pattern arrays are defined as follows.

PatternArray == {i,j:N, m: ColrInd 11:Si:Smaxx,l:Sj:smaxy• (i,j) -+m}

Colour models are specified by values of the type ColMod:

35

ISO 7942-NEW(E)

Notational conventions

ColMod

-
36

GKS functions

== {x:N I x,.t()}
The type Colr specifies colour coordinates. The number of coordinates necessary is dependent on the colour
model. Colours in the RGB and CIELUV colour models, which are required to be available, are specified by
three coordinates and the type definitions are:

ColRGB
ColCIELUV
Colr

== {r,g,b:R IO:S;r:S;lI\O:S;g:S;lI\O:S;b::;l. (r,g,b)}
== {u',v',Y:R.(u',v',Y)}
::= colrgb «ColRGB» I colcieluv <CoICIELUV»

LCC

The type LCC specifies luminance values and chromaticity coefficients.

== {u',v',Y:R.(u',v',Y)}
The bundle, pattern and colour tables are described by the types:

Representation

VRep

Rep

PolylineBT
PolymarkerBT
TextBT
FillBT
PatternBT
ColourT

::= POLYLINE IPOLYMARKER ITEXT IFILLAREA IPATTERN
ICOLOUR
::= linebundle <<LineBundle» I

markerbundle <<MarkerBundle» I
textbundle «TextBundle» I
fillbundle «FillBundle» I
patternarray «PatternArray» I
colr «Colr»

::= polylineind «Polylinelnd»
polymarkerind «PolymarkerInd» I
textind «Textlnd» I
fillind «FillInd» I
fillstyleind «FillStyleInd» I
colrind «Colrlnd»

== Polylinelnd ~ LineBundle
== PolymarkerInd ~ MarkerBundle
== Textlnd ~ TextBundle
== FillInd ~ FillBundle
== FillStyleInd ~ PatternArray
== ColrInd ~ Colr

Workstation selection criteria are defined by the types:

SelectCrit
SelectType
SelectT

::= VISIBILITY IHIGHLIGHTING IDETECTABILITY
== SelectType ~ SelectCrit

RType

The next type is used by inquiry functions.

::= SET IREALIZED
The following types describe the operating state of GKS. The first distinguishes GKS closed from GKS open.
The second distinguishes the state in which there is no open picture part from the state in which a picture part
is open. The third distinguishes the state in which there is no shape open from that in which there is a shape
open; the fourth distinguishes closed path closed from closed path open.

GKSOpSt
PPOpSt
SHOpSt
CPOpSt

::= GKCL IGKOP
::= PPCL IPPOP
::= SHCL I SHOP
::= CPCL ICPOP

The following types are used by the ESCAPE function

36

GKS functions

37 ISO 7942·NEW(E)

Notational conventions

Escapeld
InEscapeData
OutEscapeData

The following types are used by the error handling functions:

ErrNum
FNarne (elabourate to all GKS-N function names later)

The following types are used to describe shapes and paths.

ShapeNarne
InsideRule
SubPathClass

SplineOrder
ControlPoints
Knots
ParamRan
NUB

SubPathParam

PathAttr

Style
CoordSyts
Coord
Width
Cap
Joinl
Join2
Join

VPathAttr

ShapeAttr

ConcatCrit

::= EVENODD IWINDING
::= LINES ICURVES IARC IELLIPTICALARC INUB

•

== {i:N I i>O}
== seqj WCPoint
== seq, R
==RxR
== {s: SplineOrder, cp: ControlPoints, kn: Knots, (tmin,tmax):ParamRan I

#Icn= s+#cp A (V j,kE l..#kn Ik» j, lcn(k)'2:knU» A

tmin>kn(s) /\ tmax<kn(#cp+l) /\ tmin<tmax
• (s,cp,kn,(tmin,t max»)}

::= lines «seqz WCPOINT» I
curves «WCPOINT xWCPOINT xWCPOINT xWCPOINT» I
arc «WCPOINT xWCPOINT xWCPOINT x R» I
ellipticalarc «WCPOINT xWCPOINT xWCPOINT» I
nub «NUB»

::= STYLE IWIDTII ICAP IJOIN

::= SOLID IDOTTED IDASHED
::=WCINDC
::=XIY
::= CoordSys x Coord x R
::= BUTTED IROUNDED ISQUARE
::= ROUND IBEVEL
::=MITRED
::= joinl «Joinl» Ijoin2 doin2 x R»

::= style «Style» I
width «Width» I
cap «Cap» I
join <<Join»
::= TOPY ICAPY IHALFY IBASEY IBOTTOMY ICENTREY I
LEFTX IRIGHTX ICENTREX I
CENTRE IORIGIN I
TOP IBOTTOM ILEFT IRIGHT I
TOPLEFT ITOPRIGHT IBOTTOMLEFT IBOTTOMRIGHT I
START IMIDDLE IEND

37

-
ISO 7942-NEW(E) 38

Control functions GKS functions

7.2 Control functions

OPENGKS 6.11
In error file File

The GKS operating state is set to GKOP = 'GKS open'. The GKS state list is allocated and initialised as indi
cated in 10. The GKS description table and the workstation description tables are made available. The entry
'error file' in the GKS error state list is set to the value specified by the parameter.

CLOSEGKS 6.11
none

The GKS operating state is set to GKCL = 'GKS closed'. The GKS description table, GKS state list and the
workstation description tables become unavailable. GKS can be reopened by invoking the function OPEN
OKS.

ESCAPE
In specific escape function identification
In escape input data record
Out escape output data record

6.12
EscapeId

InEscapeData
OutEscapeData

The specified non-standard specific escape function is invoked. The form of the escape data records and which
of them are used may vary for different functions. The following rules govern the initial definition of a
specific escape function:

a) the GKS concepts (see clause 5) are not violated;
b) the GKS state lists are not altered;
c) the function does not generate graphical output;
d) any side effects are well documented.

Specific escape functions may apply to more than one workstation, for example all open workstations. The
escape input data record can include a workstation identifier where this is required. Examples of specific
escape functions are:

e) local control of a frame buffer;
t) use of specialist hardware.
g) switch between alphanumeric and graphics modes.

Specific escape function identifications are registered in the ISO International Register of Graphical Items,
which is maintained by the Registration Authority (see 4.2). When a specific escape function has been
approved by ISO, the specific escape function identification will be assigned by the Registration Authority.

EMERGENCY CLOSE GKS 6.11
none

OKS is closed due to an emergency. All open workstations are closed and GKS is closed. This function may
be called even if there has already been an error. If OKS is already closed, no action is taken.

38

39 ISO 7942.NEW(E)

GKS functions Control functions

ERROR HANDLING
In error number as listed in annex B
In identification of the OKS function

which caused the error detection
In error file File

The ERROR HANDLING function is invoked by GKS in any of the error situations listed in Annex B. The
standard function just calls the ERROR LOGGING function with the same parameters. The ERROR HAN·
DLING function may be replaced by an application program supplied function to allow specific reaction to
some error situations.

6.11
ErrNum
FName

•

ERROR LOGGING
In error number as listed in annex B
In identification of the GKS function

6.11
ErrNum
FName

which caused the error detection
In error file File

The ERROR LOGGING function appends an error message and identification of the GKS function that caused
the error to the error file and then returns to the calling function.

7.3 Output functions

CREATE BUNDLED PRIMITIVE
In primitive type
In primitive parameters

6.2.9, 8.6, 8.7
Prim

VBPrimParam
A primitive of the specified type is created. The current values of the primitive's attributes as given by the
OKS state list (see 10.2.3) are bound to the primitive.
If there is no picture part open, the current sets of clipping and shielding rectangles are also bound to the primi
tive and the primitive is added to the NDC picture.
If there is a picture part open, the primitive is stored in the open picture part. No sets of clipping or shielding
rectangles are bound to the primitive and the primitive is not added to the NDC picture.

CREATE GEOMETRIC PRIMITIVE 6.2.2
In shape name
In shape origin
In shape transformation
In picture part name
In picture part transformation

A primitive of the specified class is created. The current values of the NAMESET and PICK IDENTIFIER
attributes are bound to the primitive.
If there is no picture part open, the current sets of clipping and shielding rectangles are also bound to the primi
tive and the primitive is added to the NDC picture.
If there is a picture part open, the primitive is stored in the open picture part. No sets of clipping and shielding

ShapeName
WCPoint
Matrix23
PartName
Matrix23

39

ISO 7942-NEW(E) 40

Output functions GKS functions

rectangles are bound to the primitive and the primitive is not added to the NDC picture.

BEGIN SHAPE 6.2.3,6.2.4,6.2.5,6.2.6,6.2.7,6.2.8
In shape name ShapeName
In winding rule InsideRule

OKS IS set into the operating state SHOP - 'Shape open'. The shape name is recorded as the 'name of the
open shape' in the OKS state list (see 10.2.3). All subsequent closed path definitions until the next END
SHAPE will become part of the shape definition. Any shape attributes set after the invocation of BEGIN
SHAPE and before the invocation of END SHAPE will become attributes of the shape being defined.

END SHAPE 6.2.3
none

OKS is set into the operating state SHCL = 'Shape closed'. Closed paths may no longer be added to the previ
ous, open shape. The 'name of the open shape' in the OKS state list (see 10.2.3) becomes unavailable for
inquiry.

DELETE SHAPE
In shape name
The specified shape is deleted. The shape name may be reused by the application.

6.2.3
ShapeName

BEGIN CLOSED PATH 6.2.4
none

GKS is set into the operating state CPOP = 'Closed path open'. All subsequent sub-path definitions until the
next END CLOSED PATH will be collected in sequence into this closed path.

END CLOSED PATH 6.2.4
none

GKS is set into the operating state CPCL = 'Closed path closed'. Sub-paths may no longer be added to the
previously-open closed path.

CREATE SUB PATH
In sub-path class
In sub-path parameters

6.2.4
SubPathClass
SubPathParam

40

-
41 ISO 7942-NEW(E)

GKS functions Output functions

A sub-path of the specified class is created and added to the sequence of sub-paths defining a closed path.

CREATE CONTOUR
In shape name
In sub-path class
In sub-path parameters

6.2.6
ShapeName

SubPathClass
SubPathParam

A shape is created which is the contour of the sub-path specified by the path class and path parameters. The
precise form of the contour is defined by the current attributes of the sub-path. •

SET SUB PATH ATTRIBUTE 6.2.6
In attribute name SubPathAttr
In attribute value VSubPathAttr

The current entry in the GKS state list corresponding to the specified attribute name is set to the value specified
by the attribute value. Attribute names and their types are listed in 7.1.

SET SHAPE ATTRIBUTE
In attribute name
In attribute value

6.2.7
ShapeAttr

VShapeAttr
The current attribute entry in the GKS state list corresponding to the specified attribute name is set to the value
specified by the attribute value. The predefined attribute names and their types are listed in 7.1.

CREATE CONCATENATED SHAPE
In shape name
In sequence of shape names
In concatenation criterion

6.2.8
ShapeName

seq2 ShapeName
ConcatCrit

A new shape is defined with name equal to the first parameter. The new shape is a concatenation of the
sequence of shapes defined by the sequence of shape names using the concatenation criterion to specify the
geometric relationship between pairs of shapes in the shape name sequence.

7.4 Output attributes

SET PRIMITIVE ATTRIBUTE
In attribute name
In attribute value

6.2.1,8.8
PrimAttr

VPrimAttr
The current attribute entry in the GKS state list corresponding to the specified attribute name is set to the value

41

-
ISO 7942-NEW(E) 42

Output attributes GKS functions

specified by the parameter. Attribute names and their types are listed in 7.1.

SET ATTRIBUTE SOURCE FLAG 6.2.1,8.6
In attribute name PrimAttr
In attribute source flag value VAsf

The current attribute source flag entry in the GKS state list corresponding to the specified attribute name is set
to the value specified by the parameter.

7.5 Normalization transformation functions

SET WINDOW AND VIEWPORT 6.3,6.7.4
In transformation number NormTranl
In window limits WCWindow
In viewport limits NDCViewport

The window and viewport limits entries of the specified normalization transformation in the GKS state list are
set to the values specified by the parameters.

SET CLIPPING RECTANGLE SET 6.8
In set of clipping rectangle limits RectangleSet

The 'clipping rectangle set' entry in the GKS state list is set to the value specified by the parameter.

SET SIDELDING RECTANGLE SET
In set of shielding rectangle limits

6.8
RectangleSet

The 'shielding rectangle set' entry in the GKS state list is set to the value specified by the parameter.

In transformation number
In reference transformation number
In relative priority

6.7.4,8.10,8.11
NormTran
NormTran

Priority

SET VIEWPORT INPUT PRIORITY

The viewport input priority of the specified normalization transformation in the GKS state list is set to the next
higher or next lower priority relative to the reference transformation according to the specified relative priority.
If the specified transformation number is the same as the reference transformation number, the function has no
effect.

SELECT NORMALIZATION TRANSFORMATION
In transformation number

6.3
NormTran

42

43 ISO 7942·NEW(E)

GKS functions Normalization transformation functions

The 'current normalization transformation number' entry in the GKS state list is set to the value specified by
the parameter.

SET CLIPPING INDICATOR
In clipping indicator

The 'clipping indicator' entry in the GKS state list is set to the value specified by the parameter.

6.7.4,6.8
Clip

•

SET SIDELDING INDICATOR
In shielding indicator

The 'shielding indicator' entry in the GKS state list is set to the value specified by the parameter.

6.7.4,6.8
Shield

7.6 NDC picture functions

DELETE PRIMITIVES
In selection criterion

6.5.2
SelectCrit

Primitives in the NDC picture whose nameset attributes satisfy the specified selection criterion are deleted
from the NDC picture.

REMOVE NAME FROM NDC PICTURE
In name
In selection criterion

6.4.2
Name

SelectCrit
The specified name is removed from the namesets of all primitives in the NDC picture which satisfy the selec
tion criterion.

ADD NAME TO NDC PICTURE
In name
In selection criterion

6.5.2
Name

SelectCrit
The specified name is added to the namesets of all primitives in the NDC picture which satisfy the specified
selection criterion.

7.7 Metafile functions

COpy NDC PICTURE TO NDC METAFILE
In metafile identifier
In picture identifier
In selection criterion
In nameset

6.5.3
NDCMetafileId

PictureId
SelectCrit
NameSet

43

..•

ISO 7942.NEW(E) 44

Metafile functions GKS functions

Primitives in the NDC picture which satisfy the specified selection criterion are stored in the specified metafile.
The picture is given the specified picture identifier in the metafile. The names in the specified nameset are
added to the nameset attribute of each primitive in the specified metafile.

COPY NDC METAFILE PICTURE TO NDC PICTURE
In metafile identifier
In picture identifier
In nameset

6.5.3
NDCMetafileId

PictureId
NameSet

The specified picture in the specified metafile is added to the NDC picture. The names in the specified nameset
are added to the nameset attribute of each primitive in the specifiedpicture.

7.8 Picture part store functions

BEGIN PICTURE PART
In picture part name

6.4.1
PartName

The picture part operating state is set to PPOP = 'Picture part open'. The picture part name is recorded as the
'name of the open picture part' in the GKS state list (see 7.6). All subsequent output primitives until the next
END PICTURE PART will be collected in sequence into this picture part after the original contents. The
current attributes are bound to the primitives. Sets of clipping and sets of shielding rectangles are not bound
and the primitives are not added to the NDC picture.

END PICTURE PART 6.4.1
none

The picture part operating state is set to PPCL = 'Picture part closed'. Primitives may no longer be added to
the previously open picture part. The 'name of the open picture part' in the GKS state list (see 10) becomes
unavailable for inquiry.

ARCHIVE PICTURE PART
In picture part name
In archive identifier
In archive name

5.10
PartName

ArchId
ArchName

The specifiedpicture part is stored in the specified archive. The archive name is given to the picture part.

RETRIEVE PICTURE PART FROM ARCmVE
In archive identifier

5.10
ArchId

In archive name ArchName
In picture part name PartName

The picture part with archive name is retrieved from the specified archive and added to picture part store with

44

45 ISO 7942-NEW(E)

GKS functions Picture part store functions

the specified picture part name.

BEGIN PICTURE PART AGAIN
In picture part name

6.4.2
PartName

The specified picture part is reopened. The picture part operating state is set to PPOP = 'Picture part open' .
The picture part name is recorded as the 'name of the open picture part' in the OKS state list (see 10.2.3). All
subsequent output primitives until the next END PICTURE PART will be collected in sequence into this pic
ture part after the initial contents. The current attributes are bound to the primitives. Sets of clipping and sets
of shielding rectangles are not bound and the primitives are not added to the NDC picture. •

APPEND PICTURE PART
In source picture part name
In sink picture part name
In nameset

6.4.2
PartName
PartName
NameSet

Primitives in the picture part specified by source picture part name are appended to the picture part specified
by sink picture part name. The names in the specified nameset are added to the nameset attributes bound to
each of the primitives in the picture part.

RENAME PICTURE PART
In old picture part name
In new picture part name

6.4.1
PartName
PartName

The specified picture part is renamed. If old picture part name is the name of the open picture part, the 'name
of the open picture part' in the OKS state list is set to new picture part name.
The old picture part name may be reused by the application program.

DELETE PICTURE PART 6.4.2
In picture part name PartName

The specified picture part is deleted. The picture part name may be reused by the application program.

COPY PICTURE PART TO NDC PICTURE 6.4.3
In picture part name PartName
In selection criterion SelectCrit
In transformation matrix Matrix23
In nameset NameSet

Primitives in the specified picture part in picture part store which satisfy the specified selection criterion are
added to the NDC picture after transformation by the specified transformation matrix. The names in the
specified nameset are added to the nameset attributes bound to each of the primitives in the picture part. The

45

ISO 7942-NEW(E) 46

Picture part store functions GKS functions

current sets of clipping rectangles and shielding rectangles are bound to each primitive.

CREATE IMAGE PICTURE PART
In picture part name
In image function

The specified picture part is defined by the image function.

6.4.4
PartName

ImageFunction

7.9 Input functions

SET LOGICAL INPUT DEVICE MODE
In device identifier
In operating mode

6.7.1,6.7.3
DeviceId

Mode
The specified logical input device is set to the specified operating mode. Depending on the specified operating
mode, an interaction with the given device may begin or end. The input device state defined by 'operating
mode' is stored in the workstation state list for the given device.

REQUEST INPUT 6.7.1,6.7.2,6.7.3,6.7.4,8.10,8.11
In device identifier DeviceId
Out status InputStatus
Out logical input value InputValue

GKS performs a REQUEST on the specified logical input device. If the break facility is invoked by the opera
tor, the status NONE is returned; otherwise OK is returned together with the logical input value.

SAMPLE INPUT
In device identifier
Out logical input value

6.7.1,6.7.2,6.7.3,6.7.4,8.10,8.11
DeviceId

InputValue
The current logical input value of the specified logical input device is returned.

AWAIT INPUT
In timeout (seconds)
Out device identification and logical input value

6.7.1,6.7.2,6.7.3,6.7.4,8.10,8.11
Timeout

P (DeviceId x InputValue)
If the input queue is empty, GKS is set into a wait state until an input event is written into the queue or the time
specified in the timeout parameter has elapsed. If a timeout occurs and there is still no entry in the queue, a
NONE value is returned for device identification. If there is at least one entry in the queue, the oldest event is
returned. The device identifier is returned together with the corresponding logical input value.
The operation is performed even if input queue overflow (error 17) has occurred.
A timeout of zero causes an immediate inspection of the queue, and a NONE value for device identification is
returned if the queue is empty.

46

47 ISO 7942-NEW(E)

GKS functions Input functions

Some operating systems may not provide a reliable timeout facility. In this case a timeout different from zero
may never cause a timeout at all.

FLUSH DEVICE EVENTS 6.7.5
In device identifier DeviceId

All entries in the input queue from the specified logical input device are removed. The operation is performed
even if input queue overflow (error 17) has occurred.

•
7.10 Inquiry functions
Inquiry functions return values from the various state lists. The data types of the values and the default values
of the state list entries are summarized in clause 10. Errors detected by inquiry functions are reported through
an error indicator parameter, see 6.10. The error handling procedure is not called.

INQUIRE OPERATING STATE VALUE
Out OKS operating state value
Out picture part store operating state value

The operating states are returned.

6.10
OKSOpSt
PPOpSt

INQUIRE GKS DESCRIPTION TABLE
Out error indicator
Out workstation description table

6.10
ErrorIndicator

WDT
If the inquired information is available, the error indicator is returned as 0 and values are returned in the output
parameter.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to the following error number to indicate the reason for non
availability:

2 GKS not open

INQUIRE GKS STATE LIST
Out error indicator
Out OKS state list

6.10
ErrorIndicator

OSL
If the inquired information is available, the error indicator is returned as 0 and values are returned in the output
parameter.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to the following error number to indicate the reason for non
availability:

47

ISO 7942-NEW(E) 48

Inquiry functions GKS functions

2 GKS not open

INQUIRE INPUT QUEUE OVERFLOW
Out error indicator
Out device identifier

6.7.5,6.10
ErrorIndicator

DeviceId
If the inquired information is available. the error indicator is returned as 0 and values are returned in the output
parameters.
If the input queue has overflowed since OPEN OKS or the last invocation of INQUIRE INPUT QUEUE
OVERFLOW, the identification of the logical input device that caused the overflow is returned. The entry is
removed from the error state list.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to one of the following error numbers to indicate the reason for non
availability:

2 GKS not open
35 Input queue has not overflowed ever or since the last invocation of INQUIRE INPUT QUEUE

OVERFLOW
36 Input queue has overflowed. but associated workstation has been closed

48

49 ISO 7942·NEW(E)

8 Workstation dependent control

8.1 Introduction
As shown in figure 2, GKS-N has a set of functions which create and modify the NDC picture. When a works
tation is opened, a selection criterion is established for the workstation which selects part of the NDC picture
for rendering on the workstation.
When primitives are created, the relevant attributes are bound to the primitive before it is added to the NDC
picture or picture part store. The GKS-N state list contains the current values of all the attributes that can be
bound to primitives on creation.
The operation of rendering the NDC picture on a workstation proceeds in two stages. In the first stage,
unbound attributes of primitives are bound by accessing the relevant workstation dependent tables and the
resulting primitives are rendered to produce the logical picture which is still in NDC space. In GKS-N, colour
is specified indirectly and in the logical picture colour is not resolved beyond colour indices.
The second stage applies the workstation transformation, workstation clip and replaces colour indices by the
colours defined in the colour table for the workstation to produce the physical picture which is displayed on the
workstation display space. The physical picture can be sent to a metafile.
The updating of the logical and physical pictures is continuous. Any change to the NDC picture produces a
change as soon as possible in the logical picture. The physical picture will have any colour or workstation
transformation changes made as soon as possible also.

•

8.2 Workstation characteristics
For every type of workstation present in a GKS-N implementation there exists a generic workstation descrip
tion table which describes the standard capabilities and characteristics of the workstation. When the worksta
tion is opened, a new specific workstation description table is created for that workstation containing informa
tion which is derived from the following: the generic workstation description table, the device itself, and pos
sibly other implementation dependent sources. The content of the specific workstation description table may
change at any time while the workstation is open. The application program can inquire which generic capabil
ities are available before the workstation is open. The specific capabilities may be inquired while the worksta
tion is open by first inquiring the workstation type of an open workstation, to obtain the workstation type of the
specific workstation description table, and then using this workstation type as a parameter to the inquiry func
tions which query the workstation description table. This information may be used by the application program
to adapt its behaviour accordingly. If capabilities are requested that a particular workstation does not provide
or, in the case of the generic workstation description table, is not yet available a standard error reaction is
defined.
An abstract graphical workstation with maximum capabilities

a) has one addressable display space of fixed resolution;
b) allows only rectangular display spaces (the display space does not consist of a number of separate parts);
c) permits the specification and use of smaller display spaces than the maximum while guaranteeing that no
display image is generated outside the specified display space;
d) renders the NDC picture to produce the physical picture using workstation dependent logical attributes;
e) has one or more logical input devices for each input class;

49

ISO 7942.NEW(E) 50

Workstation characteristics Workstation dependent control

f) permits REQUEST, SAMPLE and EVENT type input;
g) allows logical input devices to be set in REQUEST, SAMPLE or EVENT mode independently of each
other.

There are three different types of capability:
h) An explicitly defined and required capability. Every OKS-N implementation supports the capability.
i) An explicitly defined and non-required capability. A OKS-N implementation may support the capability
and, if it does, it is implemented according to the explicit function definitions.
j) A conceptually defined and non-required capability. A OKS-N implementation may provide the capabil
ity. Its implementation follows general rules given by the OKS-N concepts and functional definitions.

The set of explicitly defined and required capabilities includes:
k) predefined bundle numbers up to the required minimum;
1)linetypes 1 to 4
m) marker types 1 to 5;
n) text precision STROKE;
0) interior style HOLLOW;
p) one input device for each input class;
q) prompt and echo type 1;
r) colour models ROB and CIELUV.

The set of explicitly defined and non-required capabilities include:
s) interior style SOLID, PATTERN, HATCH;
t) transformable patterns;
u) prompt and echo types above 1 that are defined;

The set of conceptually defined and non-required capabilities includes:
v) linetypes above 4;
w) marker types above 5;
x) specific generalized drawing primitives;
y) prompt and echo types above the defined set;
z) specific escape functions.

Table 1 identifies the minimum support required.

50

51 ISO 7942-NEW(E)

Workstation dependent control Workstation characteristics

Table 1 -Minimum support required

CAPABILITY Minimum value
Colour models (see note 5) 2
Foreground colours (intensity) 1
Linetypes 4
Linewidths 1
Predefined polyline bundles 5
Settable polyline bundles 20
Marker types 5
Marker sizes 1
Predefined polymarker bundles 5
Settable polymarker bundles 20
Character heights (see note 1) 1
Character expansion factors (see note 1) 1
String precision fonts 1
Character precision fonts 1
Stroke precision fonts 2
Predefined text bundles 6
Settable text bundles 20
Predefined patterns (see note 2) 1
Settable patterns (see notes 2 and 4) 10
Hatch styles (see note 3) 3
Predefined fill area bundles S
Settable fill area bundles 10
Input classes 6
Prompt and echo types per device 1
Length of input queue (see note 4) 20
Maximum string buffer size (characters) 72
Maximum stroke buffer size (points) 64

•

NOTES

1 Relevant only for character and string precision text.

2 Relevant only for workstation supporting pattern interior style.

3 Relevant only for workstation supporting hatch interior style.

4 Since available resources are finite and entries have variable size, it may not always be possible to achieve the minimum values in a
particular application.

S The colour models RGB and CIELUV are mandatory.

Actual workstations may provide more capabilities than those listed in the workstation description table.
These cannot be used by GKS-N. However, if the workstation itself provides sufficient intelligence, the addi
tional capabilities may be accessed via the GENERALIZED DRAWING PRIMITIVE or ESCAPE functions,
or used locally by the workstation operator. As an example, if a workstation has two display surfaces, the
operator may switch locally from one to the other without notifying GKS-N or the application program. More
than one display space can be controlled by GKS-N only by defining a separate workstation for each display
space.

51

ISO 7942-NEW(E) 52

Selecting a workstation Workstation dependent control

8.3 Selectinga workstation
The application program references a workstation by means of a workstation identifier. Connection to a partic
ular workstation is established by the function OPEN WORKSTATION, which associates the workstation
identifier with a workstation type. The current state of each open workstation is kept in a workstation state list.
Connections are released by the function CLOSEWORKSTATION.

8.4 Workstation transformations
The normalized device coordinate space can be regarded as a workstation independent abstract viewing sur
face. Each open workstation can select independently some part of the NDC space in the range [O,l]x[O,l] to
be displayed somewhere in the workstation display space. A particular workstation transformation is a map
ping from NDC space onto the device coordinates (DC) for that workstation.
The units of device coordinates are metres on a device capable of producing a precisely scaled image (for
example, on most plotters) and appropriate workstation dependent units otherwise (for example, on a display
unit with unknown monitor size). In either case the device coordinate system maps onto the display space in
the following way:

a}the DC origin is at the bottom left corner of the display space;
b) the device coordinate units are related to the display space in such a way that a square in device coordi
nates appears as a square on the display surface (this is trivially true if device coordinate units are metres);
c) x and y increase to the right and upwards respectively.

On some devices, device coordinate units do not coincide with addressable units, for example if the address
able units do not satisfy the above conditions.
The current size of the display space in device coordinate units is recorded in the specific workstation descrip
tion table (see 8.2).
The workstation transformation is a uniform mapping from NDC onto DC and thus performs translation and
equal scaling with a positive scale factor for the two axes. Thus picture composition can be achieved using the
normalization transformations whereas the workstation transformation allows different aspects of the com
posed picture to be viewed on different workstations. For example, a drawing could be output to a plotter at
the correct scale and simultaneously some part of the drawing could be displayed on the full display surface of
an interactive terminal.
The workstation transformation can be specified at any time after the workstation has been opened.
A workstation transformation is specified by defining the limits of an area in the normalized device coordinate
system within the range [O,l]x[O,l] (workstation window) which is to be mapped onto a specified area of the
device coordinate space (workstation viewport). Workstation window and workstation viewport limits specify
rectangles parallel to the coordinate axes in NDC and DC. The rectangles include their boundaries. To ensure
that no output outside the workstation window is displayed, GKS clips at the workstation window boundaries,
and this clipping cannot be disabled. As the workstation window is defined somewhere in the NDC range
[O,l]x[O,l], this ensures that the only part of NDC space that can be viewed on any workstation lies in the
range [O,l]x[O,l]. If the workstation window and workstation viewport have different aspect ratios, the scaling
specified would be different on each axis if the workstation window was mapped onto the workstation
viewport in its entirety. To ensure equal scaling on each axis, the workstation transformation maps the works
tation window onto the largest rectangle that can fit within the workstation viewport such that:

d) aspect ratio is preserved;
e) the lower left-hand corner of the workstation window is mapped to the lower left-hand corner of the
workstation viewport.

Thus, space is left unused at the top or right side of the workstation viewport if the aspect ratios of the worksta
tion window and workstation viewport are different.

52

53 ISO 7942-NEW(E)

Workstation dependent control Workstation transformations

All workstation transformations are set by default to map NDC space [O,l]x[O,l] onto the whole of the works
tation display space. If the display space is not square, the same rules as above apply to achieve equal scaling
on each axis.
Workstation transformations are changed by the SET WORKSTATION WINDOW AND VIEWPORT func
tion.

8.5 Geometric primitives
All attributes are bound to geometric primitives on creation. The physical picture is then generated by looking
up the workstation's colour table where appropriate and applying the workstation transformation and clip.

8.6 Bundled primitives
Each bundled primitive has four types of attributes (NDC, logical, physical and identification). NDC attributes
are bound to the bundled primitive on creation. Logical attributes can either be bound on creation or bound
when the logical picture is generated from the NDC picture. Identification attributes are bound on creation
(although the nameset attribute can be altered later) and identify what part of the NDC picture is rendered on a
workstation (using the selection criterion) and are used to identify the primitives that input values are associ
ated with.
The four bundled primitives, POLYLINE, POLYMARKER, FILL AREA and TEXT, each have a set of logi
cal attributes which can either be bound to the NDC picture or at the workstation when the NDC picture is
being rendered to produce the logical picture. The sets of attributes are:

•

Primitive Logical attributes

FILL AREA

LINETYPE
LThffi~THSCALEFACTOR
POLYLINE COLOUR INDEX

POLYLINE

POLYMARKER MARKER TYPE
MARKERS~SCALEFACTOR
POLYMARKER COLOUR INDEX
TEXT FONT AND PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR INDEX

TEXT

FILL AREA INTERIOR STYLE
FILL AREA STYLE INDEX
FILL AREA COLOUR INDEX

For each class of primitive, a bundle table exists on each workstation. Each bundle table entry contains values
for the set of logical attributes associated with that class. For example, the workstation POLYLINE bundle
table will have a set of entries each of which will contain values for LINETYPE, LINEWIDTH SCALE FAC
TOR and POLYLINE COLOUR INDEX. Values for each of these attributes are also present in the GKS state
list. The GKS state list also contains entries for an index value for each bundled primitive class and a set of
ATTRIBUTE SOURCE FLAGS (ASFs), one for each attribute that can either be bound in the NDC picture or
at the workstation when the logical picture is created. The initial values of all the ASFs are the same. It is
implementation dependent whether they are BUNDLED or INDIVIDUAL.
On the creation of a bundled primitive, the following attributes are bound:

a) all NDC and identification attributes;
b) all logical attributes of the primitive where the corresponding ASF is set to INDIVIDUAL (rather than
BUNDLED);

53

-_

ISO 7942-NEW(E) 54

Bundled primitives Workstation dependent control

c) If some logical attributes are not bound on creation, the bundled primitive index is bound to the primi
tive.

At the workstation, the logical picture is created as follows for each bundled primitive that satisfies the selec
tion criterion:

d) no further binding if all logical attributes are already bound;
e) if the bundled primitive index is bound to the primitive, this indicates that some logical attributes have
not yet been bound. The entry in the bundle table for that index value will contain the attribute values still
to be bound. The bundled primitive index does not appear in the attributes of the primitives in the logical
picture.

Figure 12 shows, for the POLYLINE primitive, the effect for different settings of the ASFs. Names have been
used in place of values for some attributes to make the figure clearer.
The bundled primitive CELL ARRAY has all its attributes bound on creation. These include an array of
colour indices. Consequently, if the primitive appears in the logical picture of a workstation, the attributes
bound to it are the same in both the logical and NDC pictures. The physical picture is obtained by looking up
all the colour indices in the workstation's colour table and replacing them by the colours specified in the table
(see 8.7.6).
Mapping the transformed cells onto the pixels of a raster display (see figure 11) is performed by the following
rules:

t) If the centrepoint of a pixel lies inside the parallelogram defined by the transformed rectangle, its colour
is set.
g) The pixel is assigned the colour of the cell which contains the pixel's centrepoint. Thus, the pixel colour
is selected by point sampling the transformed rectangle at the pixel centrepoint, not by area sampling or
filtering.

The minimal simulation required is to draw the transformed boundaries of the cell rectangle, using implemen
tation dependent colour, linewidth and linetype.
The bundled primitive GDP uses the attributes of other bundled primitive classes. If used by a GDP, the attri
butes of the other primitives behave in the same way as for the primitive class itself.

P 123 . DX XXXXXXXXX

x
X
X ~~~~~~~
XXXXXXXXX

PIXEL LOCATIONS
ON DISPLAY SURFACE

DY

Q
TRANSFORMED
CELL ARRAY

Figure 11 -Mapping CELL ARRAY cells onto pixels

54

55 ISO 7942·NEW(E)

Workstation dependent control Bundled primitives

8.7 Bundled primitive attributes

8.7.1 Introduction
Some logical attributes have a range of values (say 1 to 5). For attributes of that type, values greater than the
maximum defined are reserved for registration. Values less than 0 may be available but their meanings are
implementation dependent The value 0 is not allowed.
The colour index for each primitive defines an entry in the workstation colour table.
The following subclauses describe the logical attributes of each bundled primitive class.

8.7.2 Polylinelogicalattributes
The polyline logical attributes are LINETYPE, LINEWIDTH SCALE FACTOR and POLYLINE COLOUR
INDEX.
The defined linetypes 1 to 4 are solid, dashed, dotted, and dashed-dotted. The linetype specifies a sequence of
line segments and gaps which are repeated to define the rendering of the polyline. It is workstation dependent
whether this sequence is restarted or continued at the start of the polyline, at the start of a clipped piece of a
polyline, and at each vertex of a polyline.
The linewidth is calculated as a nominal linewidth multiplied by the linewidth scale factor. This value is
mapped by the workstation to the nearest available linewidth.

•

8.7.3 Polymarker logicalattributes
The polymarker logical attributes are MARKER TYPE, MARKERSIZE SCALE FACTOR, and POLY
MARKER COLOUR INDEX.
Marker types 1 to 5 are dot, plus sign, asterisk, circle and diagonal cross each centred on the positions they are
identifying.

55

ISO 7942-NEW(E)

Bundled primitive attributes

56

Workstation dependent control

OKS STATELIST
A B C

POLYLINE INDEX 3 3 3
LINETYPE Dotted Dotted Dotted

LINE~THSCALEFACTOR Thick Thick Thick
POLYLINE COLOUR INDEX 5 5 5

ASFs
LINETYPE INDIVIDUAL BUNDLED INDIVIDUAL

LINE~THSCALEFACTOR INDIVIDUAL BUNDLED BUNDLED
POLYLINE COLOUR INDEX INDIVIDUAL BUNDLED BUNDLED

A

•

B C

I POLYLINE BUNDLE TABLE
r---------------------~

WORKSTATION

LINEWIDTH POLYLINE
LINETYPE SCALE FACTOR COLOUR

INDEX
1 SOLID NORMAL 1
2 DOTTED THICK 4
3 DASHED NORMAL 3
4 SOLID THIN 2

A B C

•••••••••

DOTTED
THICK

COLOUR=5

,,-----,,,,,

DOTTED
NORMAL
COLOUR=3

56

DASHED
NORMAL
COLOUR=3

Figure 12 - Effect of different ASF settings

57 ISO 7942-NEW(E)

Workstation dependent control Bundled primitive attributes

The marker size is calculated as a nominal size multiplied by the markersize scale factor. This size is mapped
by the workstation to the nearest available size. Marker type 1is always displayed as the smallest displayable
dot.
The marker is visible if, and only if, the marker position is within the clipping rectangle. The clipping of par
tially visible markers is workstation dependent.

8.7.4 Text logicalattributes
Text has the NDC attributes CHARACTER HEIGHT, CHARACTER UP VECTOR, TEXT PATH and TEXT
ALIGNMENT. The first three have been described in 6.2.10.
The logical attributes are TEXT FONT AND PRECISION, CHARACTER EXPANSION FACTOR, CHAR
ACTER SPACING and TEXT COLOUR INDEX.
The CHARACTER SPACING value specifies how much additional space is to be inserted between two adja
cent character bodies. If the value of CHARACTER SPACING is zero, the character bodies are arranged one
after the other along the TEXT PATH, without any additional space between. A positive value of CHARAC
TER SPACING will insert additional space between character bodies. A negative value of CHARACTER
SPACING will cause adjacent character bodies to overlap. CHARACTER SPACING is specified as a fraction
of the font nominal character height.

•

The effect of the attributes CHARACTER HEIGHT, TEXT PATH, CHARACfER EXPANSION FACTOR,
CHARACTER SPACING and TEXT FONT AND PRECISION is to define an (imaginary) rectangle with its
sides parallel to the x and y axes, enclosing the text. The bounds of this enclosing rectangle are as follows.
For TEXT PATH = LEFT or RIGHT, the height of the rectangle is the height of the character body of the
specified font; the left side of the rectangle is the left side of the character body of the leftmost character and
the right side of the rectangle is the right side of the character body of the rightmost character. For TEXT
PATH =UP or DOWN, the top of the rectangle is the top of the character body of the topmost character and
similarly, the bottom of the rectangle is the bottom of the bottommost character; the width of the rectangle is
the width of the widest character in the specified font.
The effect of the CHARACTER UP VECTOR attribute is to transform the enclosing rectangle, thus defining
an enclosing parallelogram, the text extent parallelogram (the rectangle has been rotated and sheared).
The TEXT ALIGNMENT attribute controls the positioning of text in relation to the text position. For simpli
city the TEXT ALIGNMENT is described in terms of the default CHARACTER UP VECTOR and implied
baseline direction, when the text extent parallelogram is actually a rectangle. The horizontal component of
TEXT ALIGNMENT has four values: LEFT, CENTRE, RIGHT and NORMAL. If the horizontal component
is LEFT, the left side of the text extent parallelogram passes through the text position. Similarly, if the value is
RIGHT, the right side of the text extent parallelogram passes through the text position. If the horizontal com
ponent is CENTRE, the text position lies midway between the left and right sides of the text extent parallelo
gram. Thus, if TEXT PATH =UP or DOWN, the straight line passing through the centrelines of the charac
ters also passes through the text position. The vertical component of TEXT ALIGNMENT has six values:
TOP, CAP, HALF, BASE, BOTTOM and NORMAL. These each correspond to one of the font specific hor
izontallines in the definition of a character (see figure 1). A value of TOP causes the top of the text extent
parallelogram to pass through the text position. A value of CAP causes the text position to lie on the capline of
the whole string (TEXT PATH =LEFT or RIGHT) or on the capline of the topmost character in the string
(TEXT PATH =UP or DOWN). A value of HALF causes the text position to lie on the halftine of the whole
string (TEXT PATH = LEFT or RIGHT) or on a line halfway between the halftines of the top and bottom
characters (TEXT PATH =UP or DOWN). A value of BASE causes the text position to lie on the baseline of
the whole string (TEXT PATH = LEFT or RIGHT) or on the baseline of the bottom character in the string
(TEXT PATH '" UP or DOWN). A value of BOTTOM causes the bottom of the text extent parallelogram to
pass through the text position.
In the general case, the orientation referred to as horizontal is that of the implied baseline direction with
RIGHT representing direction of that vector and LEFT being opposite to it. Similarly the orientation referred

57

ISO 7942.NEW(E) 58

Bundledprimitive attributes Workstation dependent control

to as vertical is that of the CHARACTER UP VECTOR with UP representing the direction of that vector and
DOWN being opposite to it.
Either component of TEXT ALIGNMENT can take the value NORMAL. For each value of TEXT PAill, the
effect of a particular component being NORMAL is equivalent to one of the other values of that component.
In each case, the equivalent alignment value is chosen to achieve a natural alignment for that TEXT PATH
value. The complete list of equivalent values is:

TEXT PATH NORMAL Horizontal and Vertical Alignments
RIGHT (LEFT, BASE)
LEFT (RIGHT, BASE)
UP (CENTRE, BASE)
DOWN (CENTRE, TOP)

Text font and precision together constitute one attribute. The text font value is used to select a particular font
on the workstation. Every workstation supports at least one font that is able to generate a graphical representa
tion of the characters defined in ISO 646. This is font number 1. Font numbers greater than 1 are reserved for
registration. Font numbers less than 0 may be supported but are implementation dependent.
The text precision value is used to select the 'closeness' of the text representation at the workstation in relation
to that defined by the NDC text attributes and the transformation and clipping currently applicable. The text
precision value has the following possible values:

a) STRING: The TEXT character string is generated in the requested text font and is positioned by
aligning the TEXT output primitive at the given text position. CHARACTER HEIGHT
and CHARACTER EXPANSION FACTOR are evaluated as closely as reasonable, given
the capabilities of the workstation. CHARACTER UP VECTOR, TEXT PATH, TEXT
ALIGNMENT and CHARACTER SPACING, need not be used. Clipping is done in an
implementation and workstation dependent way.

b) CHAR: The TEXT character string is generated in the requested text font. For the representation
of each individual character, the attributes CHARACTER HEIGHT, the implied width,
the up direction of the CHARACTER UP VECTOR, the baseline direction, and CHAR
ACTER EXPANSION FACTOR are evaluated as closely as possible, in a workstation
dependent way. The spacing used between character bodies is evaluated exactly; the
character body, for this purpose, is an ideal character body, calculated precisely from the
text attributes and the font dimensions. The position of the resulting text extent parallelo
gram is determined by the TEXT ALIGNMENT and the text position. Clipping is per
formed at least on a character by character basis.

c) STROKE: The text character string in the requested text font is displayed at the text position by
applying all text attributes. The character string is clipped exactly at the clipping rectan
gle.

STROKE precision does not necessarily mean vector strokes; as long as the representation adheres to the rules
governing STROKE precision, the font may be realized in any form, for example by raster fonts.
All text precisions are supported as follows. A workstation may use a higher precision than the one requested
for this purpose i.e. if STROKE precision is supported in a particular font, the implication is that both STRING
and CHAR precision are available in that font. However it is not necessary for a workstation to support all pre
cisions for a given font (i.e. for a given font, STROKE can be missing or both STROKE and CHAR can be
missing). Text font and precision are workstation mandatory. Every workstation of a particular installation
should support at least one STROKE precision text font. This is font number 1, containing the character set
defined by ISO 646. This implies that, for STROKE precision text, some sort of software character generator
is required for those implementations that have inadequate hardware. Not all workstations need to support all
fonts, but for those that do, the same font number is used to select that font on all workstations of a particular
installation.

58

-
S9 ISO 7942-NEW(E)

Workstation dependent control Bundled primitive attributes

Fonts are defined only within the GKS-N implementation. The font designer specifies the shape of the symbol
representing each character in a local 2D cartesian font coordinate system. Fonts are either monospaced or pro
portionally spaced. Each character in a font coordinate system has an associated character body, a font base
line, a font halfiine, a capline and a centreline (see figure 3). For monospaced fonts, the character bodies of all
characters have the same size. For proportionally spaced fonts, the width of the bodies may differ from charac
ter to character. The character body edges are parallel to the axes of the font coordinate system. The font base
line, the font halfiine and the capline are parallel to the x-axis of the font coordinate system, and within the
vertical extent of the body. The position of the font halfiine is defined by the font designer for use in aligning
text strings. The centreline is parallel to the y-axis and bisects the body. Their exact positions are specified by
the font designer.
The height of a character in the font coordinate system is given by the height from the font baseline to the cap
line. The width of a character is given by the width of the character body. The width of a character may
include space on either side of the character and this space is generally evenly split between the left and right
sides of the character. It is assumed that the characters lie within their body, except that kemed characters may
exceed the side limits of the character body.
In general, the top limits of the bodies for a font are identical with, or very close to, the typographical capline
or ascender line, and the bottom limit to the descender line. The space, if any, between the topline and the cap
line may be used for an additional mark over the character, for example an accent. However, these and other
details are purely for the use of the font designer. The intention is only that characters placed with their bodies
touching in the horizontal direction should give an appearance of good normal spacing, and characters touch
ing in the vertical direction will avoid clashes between ascenders and descenders (typographically 'set solid').
Since the values of CHARACTER HEIGHT and CHARACTER UP VECTOR are given in world coordinate
units, but the characters are generated on the workstation in device coordinates, using the workstation depen
dent font and precision, the NDC attributes need to be transformed in such a way that the workstation can gen
erate the characters in the way intended.
The effect to be achieved is now described. Together with the text coding, a height vector parallel to the
CHARACTER UP VECTOR with length equal to CHARACTER HEIGHT, and a width vector parallel to the
implied baseline direction with length equal to the implied character width, are passed down the viewing pipe
line. These vectors are transformed by the normalization transformation, by a picture part transformation if
within a picture part, and by the workstation transformation. They are also stored in picture parts. Then the
vectors can be used by the workstation character generator. Thus, the shape of individual characters can be
transformed by a normalization transformation that is unequal in x and y and by a picture part transformation.
On the workstation, the height of a character is given by the length of the transformed height vector; the char
acter up direction is given by the direction of the transformed height vector; the width of a character is given
by the length of the transformed width vector multiplied by the font width to height ratio for the character and
by the CHARACTER EXPANSION FACTOR; the character base direction is given by the direction of the
transformed width vector. The characters are arranged together in a text extent parallelogram, depending on
the values of TEXT PATH and CHARACTER SPACING. The text extent parallelogram is then positioned
according to the value of TEXT ALIGNMENT and the text position, contained in the definition of the TEXT
primitive.
Figures 13 gives examples of the effects of different values of text attributes. Figure 14 gives examples of the
effect of different normalization transformations on the displayed form of the text. Figure 15 shows the effect
of a set of attributes being specified.

•

59

ISO 7942.NEW(E) 60

Bundledprimitive attributes Workstation dependent control

GlARACTER EXPANSION FACTOR

1 2 0.5

d1 16 l1

GlARACTER SPACING

o [E ~ 0.25 [EII~
0.5 ~III~ 0.75 ~IIII~

TEXT ALIGNMENT

LEFT

D~J
CENTRE

RIGHT

TOP CAP HALF BASE BOTTOM

Figure 13•Text attributes

60

Workstation dependent control

..

..

61 ISO 7942-NEW(E)

Bundled primitive attributes

..
..r-----~7_----------~------~

.. "',

-.

.....1 ~~ ..I
....

ND

Figure 14 - Effect of normalization transformation on text

•

61

ISO 7942-NEW(E)

Bundled primitive attributes

Character expansion factor = 2

Character spacing = -0.86

••

62

Workstation dependent control

• Text Origin

Figure 15 - Effect of several text attributes together

GKS-N provides a function INQUIRE TEXT EXTENT which returns an estimate of the area a given text
string will occupy when displayed with the current NDC and logical attributes on a specified workstation,
together with a concatenation point which can be used as the origin of a subsequent TEXT output primitive for
the concatenation of character strings, where this is meaningful.
At precisions STRING and CHAR, the text extent parallelogram is an approximation of that defined above,
being the minimum which completely encloses the character bodies of the displayed string. For UP and
DOWN text paths, the widest character body in the font is enclosed. The parallelogram is returned as four
corner points in anticlockwise order. If, at STROKE precision, the CHARACTER WIDTH VECTOR and
CHARACTER BASE VECTOR are perpendicular, the text extent parallelogram is a rectangle.
The concatenation point can be used as the origin of a subsequent TEXT output primitive for the concatenation
of character strings, where meaningful. For certain combinations of TEXT PATIi and TEXT ALIGNMENT,
concatenation is not meaningful and the returned concatenation point is the same as the text position.
If TEXT PATIi is RIGHT or LEFT, the concatenation point is displaced from the text position, in a direction
determined by the horizontal component of TEXT ALIGNMENT. If this component is LEFT, the direction is
to the right; if it is CENTRE, the displacement is zero; if it is RIGHT, the direction is to the left. Unless the
horizontal component of TEXT ALIGNMENT is CENTRE, the magnitude of the displacement is the width of
the text extent parallelogram plus one additional character spacing. (The width of the text extent parallelogram
is the length of the sides parallel to the CHARACTER BASE VECTOR.)
If TEXT PATIi is UP or DOWN, the concatenation point is displaced from the text position in a direction
determined by the vertical component of TEXT ALIGNMENT. If this component is TOP or CAP, the direc
tion is down; if it is HALF, the displacement is zero; if it is BASE or BOTTOM, the direction is up. Unless
the vertical component of TEXT ALIGNMENT is HALF, the magnitude of the displacement is the height of
the text extent parallelogram plus an additional character spacing. (The height of the text extent parallelogram
is the length of the sides parallel to the CHARACTER UP VECTOR.)

62

•

63 ISO 7942-NEW(E)

Workstation dependent control Bundled primitive attributes

8.7.5 Fill area logicalattributes
Fill area has the NDC attributes PATTERN REFERENCE POINT and SET PATTERN SIZE. If the PAT
TERN SIZE is (SX,SY), this defines the pattern height vector as (O,SY)and pattern width vector as (SX,O).
These values are subject to the same transformations as the geometric data contained in the definition of the
primitive. The usage of the fill area NDC attributes is described later in this sub-clause.
The logical attributes of fill area are FILL AREA INTERIOR STYLE, FILL AREA STYLE INDEX and FILL
AREA COLOUR INDEX.
The FILL AREA INTERIOR STYLE is used to determine in what style the area should be filled. It has the
following values:

a) HOLLOW: No filling, but draw the bounding polyline, using the FILL AREA COLOUR INDEX
currently selected. The linetype and linewidth are implementation dependent.
Fill the interior of the polygon using the FILL AREA COLOUR INDEX currently
selected.

c) PATTERN: Fill the interior of the polygon using the FILL AREA STYLE INDEX currently selected
as an index into the pattern table. In this context, the FILL AREA STYLE INDEX is
sometimes referred to as the pattern index.
Fill the interior of the polygon using the FILL AREA COLOUR INDEX and the FILL
AREA STYLE INDEX currently selected. The FILL AREA STYLE INDEX is used as a
pointer into the list of hatch styles, in which case it is sometimes referred to as the hatch
index.

For interior style PATTERN, the pattern is defined by the pattern representation, which specifies an array
(DXXDY)of colour indices, that are pointers into the colour table. The size and position of the start of the pat
tern are determined by a pattern box. The pattern box, which is a parallelogram, is defined by the pattern
width vector and the pattern height vector located relative to the PATTERN REFERENCE POINT. The pat
tern box is conceptually divided into a grid of DXxDY cells. The colour index array is associated with the
cells as follows: the element (l,DY) is associated with the cell having the PATTERN REFERENCE POINT at
one comer; elements with increasing first dimension are associated with successive cells in the direction of the
pattern width vector; elements with decreasing second dimension are associated with successive cells in the
direction of the pattern height vector. The attributes defining the pattern box are subject to all the transforma
tions producing a transformed pattern box. The pattern is mapped onto the polygon by conceptually replicat
ing the transformed pattern box in directions parallel to its sides until the interior of the complete polygon is
covered.

b) SOLID:

d) HATCH:

Mapping the transformed pattern cells to the pixels of a raster display is performed by the following rules:
e) if the centre of a pixel lies inside the parallelogram defined by the transformed cell, its colour is set;
t) the pixel is assigned the colour of the cell corresponding to the pixel's centre.

For a workstation which can implement patterns but not transformable patterns, a suitable action is to generate
non-transformed patterns to fill a polygon.

For interior style HATCH, the hatch index selects among hatch styles. No hatch styles are predefined.
Whether hatching is affected by transformations or not is workstation dependent.

Interior style HOLLOW is available on every workstation. It is workstation dependent which of the interior
styles SOLID, PATTERN and HATCH are available.

63

ISO 7942-NEW(E) 64

Bundledprimitive attributes Workstation dependent control

8.7.6 Colour
In GKS-N, colour is specified in a number of different situations. It may be an attribute of a primitive, in
which case it is specified as a colour index. It may be part of a pattern for FILL AREA, in which case an array
of colour indices is specified, or it may be part of a primitive itself, namely CELL ARRAY, when an array of
colour indices is also specified. In each case, the colour is specified as an index into a colour table on the
workstation. On each workstation, there is one colour table into which all the colour indices point.

The size of the colour table is workstation dependent but entries 0 and 1 always exist. Entry 0 corresponds to
the background colour. The background colour is the colour of the display space after it has been cleared.
Entry 1 is the default foreground colour and entries higher than 1 correspond to alternative foreground colours.
Colours are described by a colour model together with a specification of colour coordinates in the colour space
of that model. There is a colour model in effect at each workstation, specified by the 'current colour model
entry' in the workstation state list.
Colours are associated with a colour index by the function SET COLOUR REPRESENTATION. The function
INQUIRE WORKSTATION STATE LIST can be used to determine the colour associated with a colour index.
The parameters of these functions describe the colour as a specification of colour coordinates in the colour
space of the current colour model. The number of coordinates necessary to specify colour, and their interpre
tation, depends on the current colour mode1.
The current colour model at a workstation is set by the control function SET COLOUR MODEL. This func
tion selects the colour model used for interpretation of the parameters of SET COLOUR REPRESENTATION
and INQUIRE WORKSTATION STATE LIST.
Colour models 1 and 2 are predefined as RGB and CIELUV. Colour models greater than 2 are reserved for
registration. Colour models less than 1 are implementation dependent. These colour models are described in
AnnexH.
When colours are associated with a colour index they are mapped to the nearest available on the workstation.
On some workstations it may not be possible to change the background colour, and in this case the mapping of
a specific colour to the nearest available for the background colour may be different from the mapping of the
same colour for the foreground colours.

Some workstations are not capable of displaying colours (for example, workstations only capable of displaying
colours with equal red, green, and blue intensities or workstations only capable of displaying colours which are
different intensities of the same colour); these are referred to as monochrome workstations. Whether a works
tation is capable of colour is recorded in the 'colour available' entry in the workstation description table. On
monochrome workstations, the intensity is computed from the colour values in a workstation dependent way.

8.8 Setting primitive attributes
The function SET PRIMITIVE ATIRffiUTE defines all the attribute values in the GKS-N state list that can be
bound to a primitive on creation. One value is set at a time by specifying the attribute and the new attribute
value to be associated with it. This value is bound to all subsequent primitives to which it refers until the value
is reset by another invocation of SET PRIMITIVE ATIRIBUTE for this specific attribute.
The function SET REPRESENTATION defines an entry in a bundle table, the pattern table or the colour table
of a workstation. Some standard definitions for data entries are contained in the workstation description table
and are used as initial values. The application program may select a standard definition or may define the
value of a specific entry explicitly. Only the most commonly used (or anticipated) combinations of values
need be predefined for each workstation. At least these predefined entries with indices up to the minimum
number of predefined entries are distinguishable from each other. Other combinations of values can be set by
the SET REPRESENTATION function, possibly after inquiring the workstation capabilities. The tables which
are on every workstation are:

64

6S ISO 7942-NEW(E)

Workstation dependent control Setting primitive attributes

polyline bundle table
polymarker bundle table
text bundle table
fill area bundle table
pattern table
colour table

The values in these tables may be changed at any time. However, they only effect the rendering of primitives
added to the NDC picture after the values were changed.

8.9 Selection criterion
The selection criterion for a workstation can be set by invoking the function SET WORKSTATION SELEC
TION CRI1ERION. As soon as the selection criterion has been changed, the sequence of primitives in the
NDC picture are examined and those that satisfy the new selection criterion have their remaining attributes
bound to produce a new physical picture for display or storage.

8.10 Transformation of LOCATOR and STROKE input
The application programmer requires LOCATOR input to define a position in the most appropriate world coor
dinate system currently defined by the set of normalization transformations.
This is achieved by first transforming the input data from DC to NDC by the inverse workstation transforma
tion which is in effect when LOCATOR input is generated. LOCATOR input can only be obtained from posi
tions within the part of the current workstation viewport into which the current workstation window is mapped
(note that this is a subset of the workstation viewport whenever the aspect ratio of the workstation viewport
and workstation window differ). Thus, LOCATOR input always defines a position in the NDC range
[O,l]x[O,l].
The mapping from NDC positions to WC positions is described in 6.7.6.
Similar considerations apply to transformation of STROKE input as apply to LOCATOR input, with the com
plication that more than one point is involved.
When each point of a stroke is generated, the coordinates of the point are transformed from DC to NDC by the
inverse workstation transformation then in effect. STROKE input can only be obtained from positions within
the part of the current workstation viewport into which the current workstation window is mapped (analogous
to LOCATOR input). Thus STROKE input always consists of points in the NDC range [O,l]x[O,l]. The map
ping from NDC positions to WC positions is described in 6.7.6.

8.11 Physical metafile
The contents of the physical picture may be captured and stored for future use or transmission to another sys
tem. The function COPY PHYSICAL PICTURE TO PHYSICAL METAFILE will store the physical picture
as a picture on the specified metafile. Blank pictures may be inserted in the physical metafile by invoking the
function COpy BLANK PHYSICAL PICTURE TO PHYSICAL METAFILE. The picture can be recovered
at a later time and added to the current physical picture by invoking COPY PHYSICAL METAFILE PIC
TURE TO PHYSICAL PICTURE.

8.12 Logical input devices

8.12.1 Introduction
A workstation may have one or more logical input devices for each input class. A logical input device is
identified by a logical input device number which consists of a workstation identifier, a device class and the
device number within that class on that particular workstation.
The application program has some degree of control over logical input devices in that it may supply an initial
value for the device, set an area of the display space for the display of prompt and echos and select prompting

6S

ISO 7942-NEW(E) 66

Logicalinput devices Workstation dependent control

and echoing techniques to be used.
The application program may also define the composition of compound logical input devices in terms of the
measures and triggers provided by the workstation.

8.12.2 Initialization of logical input devices
There is an INITIALIZE LOGICAL INPUT DEVICE function which can only be called if the logical input
device it specifies is in REQUEST mode. This function provides the following information to a device via the
workstation state list (if the INITIALIZE function is not called, then default values apply):

a) An initial value appropriate to the device. If the initial value violates the rules, an error occurs and the
workstation state list is unchanged.
b) A prompt and echo type that selects the prompting technique and, if echoing is on, the echoing tech
nique for a logical input device. An implementation dependent prompt and echo type (type 1) is required
for all logical input devices. Further prompt and echo types are defined but not required. Prompt and echo
types above those are reserved for registration (see 4.2). Prompt and echo types less than 0 are device
dependent.
c) An echo area (xmin,xmax,ymin,ymax) in device coordinates. Input device implementations may use the
echo area for certain prompt and echo types to display prompts or echoes.
d) A data record. Some input classes have mandatory control values in the data record. Some prompt and
echo types within an input class also have mandatory control values in the data record. These values
occupy well defined places in the data record. In any data record used in initializing an input device,
values mandatory to the input class, if any, appear first followed by values mandatory to the prompt and
echo type if any. Depending on the device and prompt and echo type, the data record may contain other
(additional) information.

When a logical input device is REQUESTed, or when it is set to EVENT or SAMPLE mode, its measure is set
to the initial value from the workstation state list, unless this is not a valid measure for the device. If it is not a
valid measure for the device, the measure is set to a device dependent value, except for PICK devices, for
which the measure is set to NOPICK.
Prompt and echo types describe both the prompt, which informs the operator that the device is available, and
the echo, which informs the operator of the state of the measure. The functions provided to control input dev
ice mode, SET LOGICAL INPUT DEVICE MODE, also control whether echo is on or off. In addition, an
implementation dependent acknowledgement of successful trigger firings is provided.
Prompt and echo types for LOCATOR logical input devices are:
<0 prompting and echoing is LOCATOR device dependent.
1 designate the current position of the LOCATOR using an implementation-defined technique.
2 crosshair, i.e. designate the current position of the LOCATOR using a vertical line and a horizontal

line spanning over the display surface or the workstation viewport intersecting at the current locator
position.

3 designate the current position of the LOCATOR using a tracking cross.
4 designate the current position of the LOCATOR using a rubber band line connecting the initial locator

position given by this function and the current locator position.
S designate the current position of the LOCATOR using a rectangle. The diagonal of the rectangle is the

line connecting the initial locator position given by this function and the current locator position.
6 display a digital representation of the current position of the LOCATOR in LOCATOR device depen

dent coordinates within the echo area.

66

67 ISO 7942-NEW(E)

Workstation dependent control Logical input devices

~7 reserved for registration.
For some LOCATOR prompt and echo types, two positions are required. One of the positions, which remains
fixed during the input operation, is the initial locator position. The other position is the current locator position
that varies dynamically as the operator uses the LOCATOR.
Prompt and echo types for STROKE logical input devices are:
<0 prompting and echoing is STROKE device dependent.
1 display the current stroke using an implementation defined technique.
2 display a digital representation of the current stroke position within the echo area.
3 display a marker at each point of the current stroke. •
4 display a line joining successive points of the current stroke.
~5 reserved for registration.
If the operator enters more points than the current input buffer size, the additional points are lost
Stroke data record entries for variables such as intervals in X, Y and time may be provided to constrain the
number of points delivered
For all prompt and echo types, the first entry in the stroke data record is the input buffer size which is an
integer in the range (1..n). This is compared against an implementation defined 'maximum input buffer size'
for this device (contained in the workstation description table). If the requested buffer size is greater, the
'maximum input buffer size' is substituted in the stored data record. If the initial stroke specified in the initial
value is longer than the buffer size, an error is issued.
When a STROKE measure process comes into existence, it obtains a buffer of the current input buffer size.
The initial stroke is copied into the buffer, and the editing position is placed at the initial buffer editing position
within it. Replacement of points begins at this initial position. If the initial buffer editing position cannot be
specified in the stroke data record, the value 1 is used.
Prompt and echo types for VALUATOR logical input devices are:
<0 prompting and echoing is VALUATOR device dependent.
1 designate the current VALUATOR value using an implementation defined technique.
2 display a graphical representation of the current VALUATOR value within the echo area (for exam-

ple, a dial or a pointer).
3 display a digital representation of the current VALUATOR value within the echo area.
~4 reserved for registration.
For all VALUATOR prompt and echo types, the valuator data record includes, in the first two positions, a low
value and a high value, in that order, specifying the range. The values from the device will be scaled linearly
to the specified range.
Prompt and echo types for CHOICE logical input devices are:
<0 prompting and echoing is CHOICE device dependent.
1 designate the current CHOICE number using an implementation defined technique.
2 the physical input devices that are most commonly used to implement a CHOICE logiCaiinput device

normally have a built-in prompting capability. This prompt and echo type allows the application pro
gram to invoke this prompting capability. If the value of the i-th element of 'prompt array' in the
choice data record is OFF, prompting of the i-th alternative of the specified choice input device is
turned off. An ON value indicates that prompting for that alternative is turned on. The first entry in
the choice data record is the number of choice alternatives. This is compared against an implementa
tion defined 'maximum number of choice alternatives' for this device (contained in the workstation
description table). If the maximum value is exceeded, an error is issued. The second entry in the
choice data record is the 'prompt array' .

67

-

ISO 7942.NEW(E) 68

Logical input devices Workstation dependent control

allow the operator to indicate a CHOICE number by selecting, using an appropriate technique, one of
a set of CHOICE strings. The CHOICE strings are contained in the choice data record and are
displayed within the echo area. The logical input value is the number of the string selected. The first
entry in the choice data record is the number of choice strings. This is compared against an imple
mentation defined 'maximum number of choice alternatives' for this device (contained in the worksta
tion description table). If the maximum value is exceeded, an error is issued. The second entry in the
choice data record is the 'array of choice strings'.
allow the operator to indicate a CHOICE number by selecting, via an alphanumeric keyboard, one of
a set of CHOICE strings. The CHOICE strings are contained in the choice data record and may be
displayed in the echo area as a prompt. The string typed in by the operator is echoed in the echo area.
The logical input value is the number of the string that has been typed in by the operator. The first
entry in the choice data record is the number of choice strings. This is compared against an imple
mentation defined 'maximum number of choice alternatives' for this device (contained in the worksta
tion description table). If the maximum value is exceeded, an error is issued. The second entry in the
choice data record is the 'array of choice strings'.
the picture part named by the choice data record is interpreted during execution of the INITIALIZE
LOGICAL INPUT DEVICE function for later use as a prompt of the specified CHOICE device. It
will be displayed within the echo area by mapping the unit square [O,l]x[O,l] of NDC space onto the
echo area. The PICK IDENTIFIERS in the picture part are mapped to CHOICE numbers in a
CHOICE device dependent fashion. Picking these primitives selects the corresponding CHOICE
value. After the interpretation, no logical connection between the specified picture part and the
specified CHOICE device exists. The first entry in the choice data record is the picture part name.

~6 reserved for registration.
Prompt and echo types for PICK logical input devices are:
<0 prompting and echoing is PICK device dependent.

3

4

.•

5

1 use an implementation-defined technique that at least highlights the 'picked' primitive for a short
period of time.

2 echo the contiguous group of primitives within the NDC picture with the same PICK IDENTIFIER
and NAMESET as the 'picked' primitive, or all primitives of the NDC picture with the same PICK
IDENTIFIER and NAME SET as the 'picked' primitive.

3 echo all the primitives in the NDC picture with the same NAMESET as the 'picked' primitive.
~4 reserved for registration.
Prompt and echo types for STRING logical input devices:
<0 prompting and echoing is STRING device dependent.
1 display the current STRING value within the echo area.
2:2 reserved for registration.
For all prompt and echo types, the first entry of the string data record is the input buffer size, which is an
integer in the range (1..n). This is compared against an implementation defined 'maximum input buffer size'
for this device (contained in the workstation description table). If the requested buffer size is greater, the
'maximum input buffer size' is substituted in the stored record. If the initial string is longer than the buffer
size, an error is issued.
For all prompt and echo types, the second entry of the string data record is an initial cursor position, which
may range from 1 to the length of the initial string plus 1.
When a STRING measure process comes into existence, it obtains a buffer of the current input buffer size. The
initial string is copied into the buffer, and the cursor is placed at the initial cursor position within it. Replace
ment of characters begins at this cursor position.

68

69 ISO 7942·NEW(E)

Workstation dependent control Logical input devices

The items in data records mandatory for each class are: in a STROKE data record, input buffer size in number
of points; in a VALUATOR data record, low value and high value; in a STRING data record, input buffer size
and initial cursor position. Prompt and echo types which have mandatory values are types 2, 3, 4 and 5 for
CHOICE.

8.12.3 Definition of logical input devices
The application program can construct logical input devices of compound types using the function DEFINE
LOGICAL INPUT DEVICE. Each workstation supporting input devices provides a number of measures and
triggers that map onto physical devices associated with the workstation. The application can specify which of
these measures and triggers are to be used in constructing the measure and trigger processes for a specified
device. The value returned by such a device is a sequence of values of basic types. Satisfaction of any of the
trigger conditions specified causes the corresponding logical input device's trigger to fire.

•

8.13 Sending messages to a workstation
The MESSAGE function allows a character string to be sent to a workstation. The application program has no
control over the position and appearance of the character string and an implementation is allowed to place the
string on a device distinct from, but associated with, the workstation.

69

-
ISO 7942-NEW(E) 70

9 Workstation functions

9.1 Control functions

OPEN WORKSTATION
In workstation identifier
In workstation type

8.3
WsId

WsType
GKS requests the operating system to establish a connection for a workstation characterized in the workstation
description table by the 'workstation type'. The workstation state list is allocated and initialized as indicated in
10.3.3.The workstation identifier is added to the set of open workstations in the GKS state list.
The current NDC picture is displayed on the workstation.

CLOSE WORKSTATION
In workstation identifier

6.7.5,8.3
Wsld

The workstation state list is deallocated. The workstation identifier is deleted from the set of open workstations
in the GKS state list. The input queue is flushed of all events from all devices on the workstation being closed.
If the 'identification of one of the logical input devices that caused an input queue overflow' entry in the GKS
error state list refers to this workstation identifier, then all the contents of that entry become undefined.
The connection to the workstation is released. The display surface need not be cleared when CLOSE
WORKSTAnON is invoked, but it may be cleared.

SET COLOUR MODEL
In workstation identifier
In colour model

8.7.6
WsId

ColMod
The 'current colour model' entry in the workstation state list of the specified workstation is set to the value
specified by the parameters.

SET REPRESENTATION 8.8
In workstation identifier WsId
In representation designation Representation
In index Rep
In representation value VRep

The specified index is associated with the specified representation in the appropriate table on the specified

70

71 ISO 7942.NEW (E)

Workstation functions Control functions

workstation.

SET WORKSTATION WINDOW AND VIEWPORT
In workstation identifier
In workstation window limits
In workstation viewport limits

8.4
WsId

NDCWindow
DCViewport

The 'workstation window' and 'workstation viewport' entries in the workstation state list of the specified
workstation are set to the values specified by the parameters. •

DEFINE LOGICAL INPUT DEVICE
In device identifier
In measure sequence
In trigger set

8.12.3
DeviceId

seq, Measureld
P Trigger

The measure sequence and trigger set of the specified logical input device are set to the values specified by the
parameters. The measure sequence specifies the measures from which the measure process of the logical input
device is composed. The logical input values returned by the logical input device consist of a sequence of
measure values in the same order.

INITIALIZE LOGICAL INPUT DEVICE
In device identifier
In initial values

8.12.2
Deviceld

InitialInput
The initial values are stored in the workstation state list entry for the specified logical input device.

SET WORKSTATION SELECTION CRITERION
In workstation identifier
In selection type
In selection criterion

8.9
WsId

SelectType
SelectCrit

The specified selection criterion on the specified workstation is set to the value specified by the parameter.

COPY PHYSICAL PICTURE TO PHYSICAL METAFILE
In workstation identifier
In metafile identifier
In picture identifier

8.1
WsId

RenderFileId
PictureId

71

ISO 7942-NEW(E) 72

Control functions Workstation functions

Primitives in the physical picture of the specified workstation are stored in the specified metafile.

COpy BLANK PHYSICAL PICTURE TO PHYSICAL METAFILE
In workstation identifier
In metafile identifier
In picture identifier

A blank physical picture is stored in the specifiedmetafile.

8.1
WsId

RenderFileId
PictureId

COPY PHYSICAL METAFILE PICTURE TO PHYSICAL PICTURE
In workstation identifier
In metafile identifier

8.1
WsId

MetafileId
In picture identifier PictureId

The specified picture in the specified metafile is added to the physical picture of the specified workstation.

MESSAGE
In workstation identifier
In message

The message function:
a) may display a message at an implementation dependent location on the workstation viewport or on
some separate device associated with the workstation.
b) does not alter the GKS state list.

8.13
WsId

CharString

c) may affect the workstation in a purely local way (for example, requesting the operator to change
paper). Possible effects on the execution of the application program or on subsequent commands sent to
the workstation by GKS are stated explicitly in the implementation dependencies manual.

9.2 Inquiry functions
The inquiry functions that retrieve values from the workstation state lists have an input parameter of type
RType that can take the following values:

a) SET: the values returned are those provided by the application program.
b) REALIZED: the values returned are those used by the workstation when the actual values are

mapped to the available values in the workstation.
Inquiries for predefined representations in the workstation description table (see 10) have no such parameter
unlike the corresponding inquiries for the representations in the workstation state list (see 10). The values of
predefined representations are available on the workstation. Thus all values returned from a predefined
representation are such that, if used by an application program to set a representation, a subsequent inquiry for
that representation in the workstation state list would return the same values whether SET or REALIZED was

72

73 ISO 7942-NEW(E)

Workstation functions Inquiry functions

specified.

INQUIRE WORKSTATION STATE LIST

In workstation identifier
In type of returned values
Out error indicator
Out workstation state list

6.10
WsId

RType
ErrorIndicator

WSL
If the inquired information is available, the error indicator is returned as 0 and values are returned in the output
parameters.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to one of the following error numbers to indicate the reason for non
availability:

2 GKS not open
20 Specified workstation is not open

•

INQUIRE WORKSTATION DESCRIPTION TABLE
In workstation type
Out error indicator
Out workstation description table

6.10
WsType

ErrorIndicator
WDT

If the inquired information is available, the error indicator is returned as 0 and values are returned in the output
parameters.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to one of the following error numbers to indicate the reason for non
availability:

2 GKS not open
19 Specified workstation type not supported

INQUIRE TEXT EXTENT
In workstation identifier
In text position
In character string
Out error indicator
Out concatenation point
Out text extent parallelogram

8.7.4
WsId

WCPoint
CharString

ErrorIndicator
WCPoint

WCPointxWCPointxWCPointxWCPoint
The concatenation point and text extent parallelogram for the specified TEXT primitive are returned. If the
inquired information is available, the error indicator is returned as 0 and values are returned in the output
parameters.
If the inquired information is not available, the values returned in the output parameters are implementation
dependent and the error indicator is set to one of the following error numbers to indicate the reason for non
availability:

2 GKS not open
20 Specified workstation is not open

73

ISO 7942-NEW(E) 74

GKSOpSt
PPOpSt
SHOpSt
CPOpSt

10 GKS data structures

10.1 Notation and data types
In this clause, the contents of the GKS data structures are listed.

The information for each entry includes
a) the name of the entry;
b) the data type;

The notation used to define the data types is described in 7.1.

10.2 Contents of state lists and description tables

10.2.1 Operating state
GKS operating state
picture part operating state
shape operating state
closed path operating state

10.2.2 GKS description table
levelofGKS
set of available workstation types

10.2.3 GKS state list
set of open workstations
current primitive attributes
current ASFs
current normalization transformation number
normalization transformations
viewport input priorities
clipping rectangle set
shielding rectangle set
clipping indicator
shielding indicator
name of the open picture part
name of the open shape
current shape attributes
current sub-path attributes
input queue

10.2.4 Workstation state list
polyline bundle table
polymarker bundle table
text bundle table
fill area bundle table
pattern table
current colour model

74

N
PWSType

PWkId
PrimAttr ~ VPrimAttr
LogAttr ~ VAsf
NormTran
NormTran ~ (WCWindow x NDCViewport)
seq NormTran
RectangleSet
RectangleSet
Clip
Shield
PartName
ShapeName
ShapeAttr ~ VShapeAttr
SubPathAttr ~ VSubPathAttr
seq (DeviceId x InputValue)

PolylineBT
PolymarkerBT
TextBT
FillBT
PatternBT
ColMod

GKSdata structures

colour table
current workstation window
current workstation viewport
logical input device operating modes
logical input device initial values
selection criteria

10.2.5 Workstation description table
workstation type
device coordinate units
display space size
in device units (DC)
in raster units

vector or raster display
set of available linetypes
number of available linewidths
nominallinewidth (DC)
minimum linewidth (DC)
maximum linewidth (DC)
predefined polyline bundles
set of available marker types
number of available marker sizes
nominal marker size (DC)
minimum marker size (DC)
maximum marker size (DC)
predefined polymarker bundles
set of available font and precision pairs
number of available character expansion factors
minimum character expansion factor
maximum character expansion factor
number of available character heights
minimum character height (DC)
maximum character height (DC)
predefined text bundles
set of available fill area interior styles
set of available hatch styles
predefined fill area bundles
predefined pattern representations
set of available colour models
default colour model
luminance values and chromaticity coefficients
of display

number of available colours or intensities
colour available
predefined colour representations
logical input device initial values

10.2.6 Error state list
error state
error file
input device causing queue overflow

75 ISO 7942-NEW(E)

Contents of state lists and description tables

ColourT
NDCWindow
DCViewport
Deviceld -+Mode
Deviceld -+ lnitialInput
SelectT

WsType
METRESIOTHER

RxR
NxN
VECTORIRASTERIOTHER
PLineType
N
R
R
R
PolylineBT
P MarkerType
N
R
R
R
PolymarkerBT
PFontPrec
Expan
Expan
Expan
N
R
R
TextBT
P FillInterior
P FillStylelnd
FillBT
PatternBT
PColMod

. ColMod
LCxLCCxLCC

N
COLOURIMONOCHROME
ColourT
Deviceld -+ Initiallnput

OFF ION
EFile
Deviceld

•

7S

ISO 7942·NEW(E) 76

Contents of state lists and description tables

10.3 Initial values of state list and description table entries

10.3.1 Operating state
GKS operating state
picture part store operating state
shape operating state
closed path operating state

10.3.2 GKS description table
All initial values are implementation dependent.

10.3.3 GKS state list
set of open workstations
current primitive attributes
POLYLINE INDEX
LINETYPE
LINE~THSCALEFACTOR
POLYLINE COLOUR INDEX
POLYMARKER INDEX
MARKERTYPE
MARKERS~ESCALEFACTOR
POLYMARKER COLOUR INDEX
TEXT INDEX
TEXT FONT AND PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR INDEX
CHARACTER HEIGHT
CHARACTER UP VECTOR
TEXT PATH
TEXT ALIGNMENT
FILL AREA INDEX
FILL AREA INTERIOR STYLE
FILL AREA STYLE INDEX
FILL AREA COLOUR INDEX
PATTERN SIZE
PATTERN REFERENCE POINT
PICK IDENTIFIER
NAMESET
current ASFs
current normalization transformation number
normalization transformations
for each

viewport input priorities
o highest priority
n lowest (maximum normalization transformation number)
clipping rectangle set
shielding rectangle set
clipping indicator
shielding indicator
name of the open picture part

76

GKSdata structures

GKCL
PPCL
SHCL
CPCL

empty

1
1

1.0
1
1
3

1.0
1
1

(1, STRING)
1.0
1.0
1

0.Q1
(0, 1)

RIGHT
(HNORMAL, VNORMAL)

1
HOLLOW

1
1

(I, 1)
(0,0)

language binding dependent
empty

all BUNDLED or all INDIVIDUAL
o

window (0,1,0,1)
viewport (0,1,0,1)

(O..n)

{(O,l,O,l)}
empty
CLIP

NOSHIELD
undefined

77 ISO 7942-NEW(E)

GKS data structures Initial values of state list and description table entries

name of the open shape
current shape attributes
current sub-path attributes
input queue

undefined
?
?

empty

10.3.4 Workstation state list
Initial values are taken from the workstation description table except for the following entries.
current workstation window
current workstation viewport
where (xd,yd) is the display space size from the workstation description table
selection criterion
logical input device operating modes

(0,1,0,1)
(O,xd,O,yd)

none
REQUEST

•

10.3.5 Workstation description table
All initial values are implementation dependent.

10.3.6 Error state list
error state
error file
input device causing queue overflow

OFF
implementation dependent

undefined

77

ISO 7942.NEW(E) 78

AnnexA

Function lists

(This annex forms an integral part of the standard.)

B. Order of appearance

Control functions (5.2)
OPENGKS
CLOSEGKS
ESCAPE
EMERGENCY CLOSE GKS
ERROR HANDLING
ERROR LOGGING

Output functions (5.3)
CREATE BUNDLED PRIMITIVE
CREATE GEOMETRIC PRIMITIVE
BEGIN SHAPE
END SHAPE
BEGIN CLOSED PATII
END CLOSED PATII
CREATE SUB PATII
CREATE CONTOUR
SET SUB PATII ATTRIBUTE
SET SHAPE ATTRIBUTE
CREATE CONCATENATED SHAPE

Output attributes (5.4)
SET PRIMITIVE ATTRIBUTE
SET ATTRIBUTE SOURCE FLAG

Normalization transformation functions (5.5)
SET WINDOW AND VIEWPORT
SET CLIPPING RECTANGLE SET
SET SHIELDING RECTANGLE SET
SET VIEWPORT INPUT PRIORITY
SELECT NORMALIZATION TRANSFORMATION
SET CLIPPING INDICATOR
SET SHIELDING INDICATOR

78

79 ISO 7942-NEW(E)

AnnexA Order of appearance

NDC picture functions (5.6)
DELETE PRIMITIVES
REMOVE NAME FROM NDC PICTURE
ADD NAME TO NDC PICTURE

Metafile functions (5.7)
COpy NDC PICTURE TO NDC METAFILE
COPY NDC METAFILE PICTURE TO NDC PICTURE

Picture part store functions (5.8)
BEGIN PICTURE PART
END PICTURE PART
ARCHIVE PICTURE PART
RETRIEVE PICTURE PART FROM ARCHIVE
BEGIN PICTURE PART AGAIN
APPEND PICTURE PART
RENAME PICTURE PART
DELETE PICTURE PART
COPY PICTURE PART TO NDC PICTURE
CREATE IMAGE PICTURE PART

Input functions (5.9)
SET LOGICAL INPUT DEVICE MODE
REQUEST INPUT
SAMPLE INPUT
AWAIT INPUT
FLUSH DEVICE EVENTS

Inquiry functions (5.10)
INQUIRE OPERATING STATE VALUE
INQUIRE GKS DESCRIPTION TABLE
INQUIRE GKS STATE LIST
INQUIRE INPUT QUEUE OVERFLOW

Workstation functions (7)
OPENWORKSTATION
CLOSEWORKSTATION
SET REPRESENTATION
SETWORKSTATION WINDOW AND VIEWPORT
DEFINE LOGICAL INPUT DEVICE
INITIALIZE LOGICAL INPUT DEVICE
SETWORKSTATION SELECTION CRITERION
COPY PHYSICAL PICTURE TO PHYSICAL METAFILE
COPY BLANK PHYSICAL PICTURE TO PHYSICALMETAFILE
COPY PHYSICAL METAFILE PICTURE TO PHYSICAL PICTURE
MESSAGE
INQUIRE WORKSTATION STATE LIST
INQUIRE WORKSTATION DESCRIPTION TABLE
INQUIRE TEXT EXTENT

79

'-

ISO 7942-NEW(E) 80

Annex B

Error list

(This annex forms an integral part of the standard.)
OPENGKS

1 GKS is already open

CLOSEGKS
2 GKS not open

ESCAPE
2 GKS not open
3 Specified escapefunction is not supported

EMERGENCY CLOSE GKS
none

ERROR HANDLING
none

ERROR LOGGING
none

CREATE BUNDLED PRIMITIVE
2 GKS not open

CREATE GEOMETRIC PRIMITIVE
2 GKS not open

33 Specified shape does not exist

BEGIN SHAPE
2 GKS not open

31 Shape already open

END SHAPE
2 GKS not open

32 Shape not open

DELETE SHAPE
2 GKS not open

33 Specified shape does not exist

BEGIN CLOSED PATH
2 GKS not open
29 Closed path already open

80

81 ISO 7942-NEW(E)

AnnexB Error list

END CLOSED PAm
2 GKS not open
30 Closed path not open

CREATE SUB PATH
2 GKS not open
30 Closed path not open

CREATE CONTOUR
2 GKS not open

•
SET SUBPAm ATTRmUTE

2 GKS not open

SET SHAPE ATTRIBUTE
2 GKS not open

CREATE CONCATENATED SHAPE
2 GKS not open

33 Specified shape does not exist
34 Invalid concatenation criterion

SET PRIMITIVE ATTRmUTE
2 GKS not open

SET ATTRIBUTE SOURCE FLAG
2 GKS not open

SETWINDOW AND VIEWPORT
2 GKS not open

SET CLIPPING RECTANGLE SET
2 GKS not open

SET SHIELDING RECTANGLE SET
2 GKS not open

SET VIEWPORT INPUT PRIORITY
2 GKS not open

SELECT NORMALIZATION TRANSFORMATION
2 GKS not open

SET CLIPPING INDICATOR
2 GKS not open

SET SHIELDING INDICATOR
2 GKS not open

DELETE PRIMITIVES
2 GKS not open

81

-
ISO 7942-NEW(E) 82

Error list AnnexB

REMOVE NAME FROM NDC PICTURE
2 GKS not open

ADD NAME TO NDC PICTURE
2 GKS not open

COPY NDC,PICTURE TO NDC METAFILE
2 GKS not open

COPY NDC METAFILE PICTURE TO NDC PICTURE
2 GKS not open
5 Specified picture does not exist in specified metafile

BEGIN PICTURE PART
2 GKS not open
6 Picture part already open
7 Specified picture part name already in use

END PICTURE PART
2 GKS not open
8 Picture part not open

ARCHIVE PICTURE PART
2 GKS not open
9 Specifiedpicture part does not exist

RETRIEVE PICTURE PART FROM ARCHIVE
2 GKS not open
7 Specified picture part name already in use

BEGIN PICTURE PART AGAIN
2 GKS not open
6 Picture part already open
9 Specified picture part does not exist

APPEND PICTURE PART
2 GKS not open
10 Source picture part does not exist
11 Sink picture part does not exist
6 Picture part already open

RENAME PICTURE PART
2 GKS not open
12 Oldpicture part does not exist
13 New picture part name already in use
14 Old picture part name and new picture part name are the same

DELETE PICTURE PART
2 GKS not open
9 Specified picture part does not exist

82

83 ISO 7942-NEW(E)

AnnexB Error list

COPY PICTURE PART TO NDC PICTURE
2 GKS not open
9 Specified picture part does not exist

CREATE IMAGE PICTURE PART
2 GKS not open
7 Specified picture part name already in use

SET LOGICAL INPUT DEVICE MODE
2 GKS not open
16 Specified logical input device does not exist •

REQUEST INPUT
2 GKS not open
16 Specified logical input device does not exist

SAMPLE INPUT
2 GKS not open
16 Specified logical input device does not exist

AWAIT INPUT
2 GKS not open
17 Input queue has overflowed

FLUSH DEVICE EVENTS
2 GKS not open
16 Specified logical input device does not exist
17 Input queue has overflowed

INQUIRE OPERATING STATE VALUE
none

INQUIRE GKS DESCRIPTION TABLE
none

INQUIRE GKS STATE LIST
none

INQUIRE INPUT QUEUE OVERFLOW
none

OPENWORKSTATION
2 GKS not open
18 Workstation already open
19 Specified workstation type not supported

CLOSEWORKSTATION
2 GKS not open
17 Input queue has overflowed
20 Specified workstation is not open

83

-
ISO 7942-NEW(E) 84

Error list AnnexB

SET REPRESENTATION
2 GKS not open

20 Specified workstation is not open
21 Linetype not supported
22 Marker type not supported
23 Textfont not supported/or specifiedprecision
24 Specifiedfill area interior style not supported
25 Specified hatch style not supported

SETWORKSTATION WINDOW AND VIEWPORT
2 GKS not open

20 Specified workstation is not open

DEFINE LOGICAL INPUT DEVICE
2 GKS not open

26 Specified combination of measures and triggers cannot be provided
27 Specified logical input device is active

INITIALIZE LOGICAL INPUT DEVICE
2 GKS not open
16 Specified logical input device does not exist
28 Specified initial value is invalid

SETWORKSTATION SELECTION CRITERION
2 GKS not open

20 Specified workstation is not open

COpy PHYSICAL PICTURE TO PHYSICALMETAFILE
2 GKS not open

20 Specified workstation is not open

COpy BLANK PHYSICAL PICTURE TO PHYSICALMETAFILE
2 GKS not open
20 Specified workstation is not open

COPY PHYSICALMETAFILE PICTURE TO PHYSICAL PICTURE
2 GKS not open

20 Specified workstation is not open

MESSAGE
2 GKS not open
20 Specified workstation is not open

INQUIRE WORKSTATION STATE LIST
none

INQUIRE WORKSTATION DESCRIPTION TABLE
none

INQUIRE TEXT EXTENT
none

84

85 ISO 7942-NEW(E)

AnnexB Error list

Systemerrors

4 At least one open workstation is unable to generated the specified GDP
35 Input queue has not overflowed ever or since the last invocation of INQUIRE INPUT QUEUE OVERFLOW
36 Input queue has overflowed. but associated workstation has been closed

•

85

•

ISO 7942-NEW(E) 86

Annex C

Language binding considerations

(This annex does not form an integral part of the standard, but provides additional information.)

Function
OPENGKS
CLOSEGKS
ESCAPE

Question
Can the error file be invalid

Can escape function identification be invalid
Can escape input data record be invalid

EMERGENCY CLOSE GKS
ERROR HANDLING
ERROR LOGGING
CREATE BUNDLED PRIMITIVE

CREATE GEOMETRIC PRIMITIVE

Is primitive type valid
Should language binding give errors on:
Number of points invalid
Invalid code in string
Dimensions of colour array invalid
GDP identifier is invalid
GDP data record is invalid
Is shape name valid
Is part name valid
Is shape name validBEGIN SHAPE

END SHAPE
DELETE SHAPE
BEGIN CLOSED PATH
END CLOSED PATH
CREATE SUB PATH
CREATE CONTOUR

Is shape name valid

SET SHIELDING RECTANGLE SET

Are sub-path parameters invalid
Is shape name valid
Are sub-path parameters valid
Is attribute name valid
Is attribute value valid
Is attribute name valid
Is attribute value valid
Is shape name valid
Is sequence of shape names valid
Is attribute name valid
Is attribute value valid
Is attribute name valid
Transformation number not positive
Transformation number greater than 31
Rectangle definition is invalid
Clipping rectangle definition is invalid
Invalid set
Shielding rectangle definition is invalid
Invalid set

SET SUB PATH ATTRIBUTE

SET SHAPE ATTRIBUTE

CREATE CONCATENATED SHAPE

SET PRIMITIVE ATTRIBUTE

SET ATTRIBUTE SOURCE FLAG
SETWINDOW AND VIEWPORT

SET CLIPPING RECTANGLE SET

86

87 ISO 7942-NEW(E)

Annex C Language binding considerations

SETVIEWPORT INPUT PRIORITY Transformation number negative
Transformation number greater than 31

SELECf NORMALlZATION TRANSFORMATION Transformation number negative
Transformation number greater than 31

SET CLIPPING INDICATOR
SET SHIELDING INDICATOR
DELETE PRIMITIVES
REMOVE NAME FROM NDC PICTURE
ADDNAME TO NDC PICTURE
COPY NDC PICTURE TO NDCMETAFILE
COpy NDC METAFILE PICTURE TO NDC PICTURE
BEGIN PICTURE PART
END PICTURE PART
ARCHIVE PICTURE PART
RETRIEVE PICTURE PART FROM ARCHIVE
BEGIN PICTURE PART AGAIN
APPEND PICTURE PART
RENAME PICTURE PART
DELETE PICTURE PART
COpy PICTURE PART TO NDC PICTURE
CREATE IMAGE PICTURE PART

SET LOGICAL INPUT DEVICE MODE
REQUEST INPUT
SAMPLE INPUT
AWAIT INPUT
FLUSH DEVICE EVENTS
INQUIRE OPERATING STATE VALUE
INQUIRE GKS DESCRIPTION TABLE
INQUIRE GKS STATE LIST
INQUIRE INPUT QUEUE OVERFLOW
OPENWORKSTATION

CLOSEWORKSTATION
SET REPRESENTATION

SETWORKSTATION WINDOW AND VIEWPORT

Invalid name
Invalid name
Invalid name
Invalid name
Invalid name

•

Invalid name
Invalid name
Invalid name
Invalid names
Invalid names
Invalid name
Invalid name(s)
Invalid name
Invalid image function
Invalid device identifier
Invalid device identifier
Invalid device identifier
Invalid timeout
Invalid device identifier

Invalid identifier
Invalid workstation type
Connectionidentifierrequued?
Invalid identifier
Invalid identifier
Invalid representation
Invalid index
Linetype is equal to 0
Linewidth scale factor is less than zero
Marker type is equal to 0
Marker size scale factor is less than 0
Text font is equal to 0
Character expansion factor is less than or equal to 0
Colour index is invalid
Pattern index is invalid
Dimensions of colour array are invalid
Colour is outside range [0,1]
Invalid workstation identifier
Invalid window limits

87

Invalid viewport limits
Invalid device identifier
Invalid measure sequence
Invalid trigger set
Invalid device identifier
Rectangle definition is invalid
Invalid workstation identifier
Invalid workstation identifier
Invalid metafile identifier
Invalid picture identifier
Invalid workstation identifier
Invalid metafile identifier
Invalid picture identifier
Invalid workstation identifier
Invalid metafile identifier
Invalid picture identifier
Invalid workstation identifier
Invalid workstation identifier
Invalid workstation type
Invalid workstation identifier
Invalid code in string

Where the specific escape function identification is bound to an integer in a programming language, specific
escape function identifications greater than 0 are reserved for registration and specific escape function
identifications less than 0 are implementation dependent.

Where the GDP identifier is bound to an integer in a programming language, GDP identifiers greater than 0 are
reserved for registration and GKD identifiers less than 0 are implementation dependent.

ISO 7942-NEW(E)

Language binding considerations

DEFINE LOGICAL INPUT DEVICE

INITIALIZE LOGICAL INPUT DEVICE

SET WORKSTATION SELECTION CRITERION
COPY PHYSICAL PICTURE
TO PHYSICAL METAFILE

COPY BLANK PHYSICAL PICTURE
TO PHYSICAL METAFILE

COPY PHYSICAL METAFILE PICTURE
TO PHYSICAL PICTURE

MESSAGE
INQUIRE WORKSTATION STATE LIST
INQUIRE WORKSTATION DESCRIPTION TABLE
INQUIRE TEXT EXTENT

88

88

AnnexC

89 ISO 7942.NEW(E)

AnnexD

Allowable differences

(This annex does not form an integral part of the standard, but provides additional information.)

•

89

-
ISO 7942-NEW(E) 90

AnnexE

Relationship to CGM

(This annex does not form an integral part of the standard, but provides additional information.)

90

91 ISO 7942-NEW(E)

AnnexF

Relationship to CGI

(This annex does not form an integral part of the standard, but provides additional information.)

•

91

--
ISO 7942.NEW(E) 92

AnnexG

Function summary

(This annex does not form an integral part of the standard, but provides additional information.)

92

93 ISO 7942-NEW(E)

AnnexH

eIE colour model

(This annex does not form an integral part of the standard, but provides additional information.)
As ISO 9592-1: 1989 (Programmer's Hierarchical Interactive Graphics System) Annex I.

•

93

